Publications

  • M. Reeves and H. S. Bhat (2022)
    Neural Continuous-Time Markov Models.
    [arXiv]
  • H. S. Bhat (2022)
    Drift Identification for Lévy alpha-Stable Stochastic Systems.
    [arXiv]
  • M. E. Reeves, H. S. Bhat, and S. Goldman-Mellor (2022)
    Resampling to Address Inequities in Predictive Modeling of Suicide Deaths.
    BMJ Health & Care Informatics 29(1): e100456.
    [link]
  • H. S. Bhat, K. Collins, P. Gupta, and C. M. Isborn (2022)
    Dynamic Learning of Correlation Potentials for a Time-Dependent Kohn-Sham System.
    Proceedings of the 4th Annual Learning for Dynamics and Control Conference, PMLR 168, pp. 546-558. [arXiv] [link]
  • H. S. Bhat, M. E. Reeves, and S. Goldman-Mellor (2022)
    Equity-Directed Bootstrapping: Examples and Analysis.
    Stat 11(1): e456.
    [link] [arXiv]
  • S. Goldman-Mellor, H. S. Bhat, M. H. Allen, M. Schoenbaum (2022)
    Suicide Risk Among Hospitalized Versus Discharged Deliberate Self-Harm Patients: Generalized Random Forest Analysis Using a Large Claims Data Set.
    American Journal of Preventive Medicine 62(4): 558-566.
    [link]
  • P. Gupta, H. S. Bhat, K. Ranka, and C. M. Isborn (2021)
    Statistical Learning for Predicting Density-Matrix Based Electron Dynamics.
    Stat 11(1): e439.
    [link] [arxiv]
  • R. K. Yoon, H. S. Bhat, and B. Osting (2021)
    A non-autonomous equation discovery method for time signal classification.
    SIAM Journal on Applied Dynamical Systems 21(1): 33-59.
    [arxiv] [link]
  • S. Goldman-Mellor, C. Hall, M. Cerdá, and H. S. Bhat (2020)
    Firearm suicide mortality among emergency department patients with physical health problems.
    Annals of Epidemiology 54, pp. 38-44.
    [link]
  • H. S. Bhat, K. Ranka, and C. M. Isborn (2020)
    Machine learning a molecular Hamiltonian for predicting electron dynamics.
    International Journal of Dynamics and Control 8(4): 1089-1101.
    [link] [arXiv]
  • H. S. Bhat, M. Reeves, and R. Raziperchikolaei (2020)
    Estimating Vector Fields from Noisy Time Series.
    Proceedings of the 54th Asilomar Conference on Signals, Systems, and Computers, pp. 509-606.
    [pdf] [link]
  • H. S. Bhat (2019)
    Learning and Interpreting Potentials for Classical Hamiltonian Systems.
    In: International Workshops of ECML PKDD 2019, Proceedings, Part I,
    Communications in Computer and Information Science 1167, pp. 217-228.
    [arxiv] [link]
  • H. S. Bhat and S. Rawat (2019)
    Learning Stochastic Dynamical Systems via Bridge Sampling.
    In: Advanced Analytics and Learning on Temporal Data (AALTD 2019),
    Lecture Notes in Computer Science 11986, pp. 183-198.
    [pdf] [link]
  • H. S. Bhat, L.-H. Huang, and S. Rodriguez (2019)
    Driving Markov Chains to Desired Equilibria via Linear Programming.
    Proceedings of the 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 741-748.
    [pdf] [link]
  • R. Raziperchikolaei and H. S. Bhat (2019)
    A Block Coordinate Descent Proximal Method for Simultaneous Filtering and Parameter Estimation.
    Proceedings of the 36th International Conference on Machine Learning, PMLR 97, pp. 5380-5388.
    [abs] [pdf] [supplementary material] [code]
  • R. Dale and H. S. Bhat (2018)
    Equations of mind: Data science for inferring nonlinear dynamics of socio-cognitive systems.
    Cognitive Systems Research, 52, pp. 275-290.
    [link]
  • H. S. Bhat, R. W. M. A. Madushani, and S. Rawat (2018)
    Parameter Inference for Stochastic Differential Equations with Density Tracking by Quadrature.
    In: Statistics and Simulation. Springer Proceedings in Mathematics & Statistics. 231, pp. 99-113.
    [link]
  • H. S. Bhat and S. J. Goldman-Mellor (2017)
    Predicting adolescent suicide attempts with neural networks.
    NIPS 2017 Workshop on Machine Learning for Health (ML4H)
    [arXiv]
  • H. S. Bhat and R. W. M. A. Madushani (2016)
    Density tracking by quadrature for stochastic differential equations.
    [arXiv]
  • H. S. Bhat, R. W. M. A. Madushani, and S. Rawat (2017)
    Bayesian inference of stochastic pursuit models from basketball tracking data.
    In: Bayesian Statistics in Action. Springer Proceedings in Mathematics & Statistics. 194, pp.127-137.
    [pdf] [link]
  • H. S. Bhat, R. W. M. A. Madushani, and S. Rawat (2016)
    Scalable SDE filtering and inference with Apache Spark.
    Proceedings of the 5th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (KDD BigMine '16), PMLR 53, pp. 18-34.
    [pdf] [link]
  • H. S. Bhat and R. W. M. A. Madushani (2016)
    Nonparametric adjoint-based inference for stochastic differential equations.
    Proc. 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 798-807.
    [pdf] [link]
  • T. Bergmann, R. Dale, N. Sattari, E. Heit, and H. S. Bhat (2016)
    The interdisciplinarity of collaborations in Cognitive Science.
    Cognitive Science, 41 (5), pp. 1412-1418.
    [link]
  • H. S. Bhat, N. Kumar, and G. J. Vaz (2015)
    Towards scalable quantile regression trees.
    Proc. 2015 IEEE Conference on Big Data, pp. 53-60.
    [pdf] [link]
  • H. S. Bhat, L.-H. Huang, S. Rodriguez, R. Dale, and E. Heit (2015)
    Citation prediction using diverse features.
    IEEE Conference on Data Mining Workshop on Data Science and Big Data Analytics, pp. 589-596.
    [pdf] [link]
  • H. S. Bhat, L.-H. Huang, and S. Rodriguez (2015)
    Learning stochastic models for basketball substitutions from play-by-play data.
    ECML/PKDD 2015 Workshop on Machine Learning and Data Mining for Sports Analytics (MLSA 2015).
    [pdf]
  • H. S. Bhat and N. Kumar (2015)
    Large-scale empirical tests of the Markov tree model.
    International Journal of Financial Studies, 3 (3), pp. 280-318.
    [link]
  • H. S. Bhat and R. W. M. A. Madushani (2015)
    Computing the density function for a nonlinear stochastic delay system.
    Proc. 12th IFAC Workshop on Time Delay Systems (TDS 2015), IFAC-PapersOnLine, 48 (12), pp. 316-321.
    [pdf] [link]
  • H. S. Bhat (2014)
    Algorithms for linear stochastic delay differential equations.
    In: Topics in Statistical Simulation. Springer Proceedings in Mathematics & Statistics. 114, pp. 57-65
    [pdf] [link]
  • H. S. Bhat and D. Zaelit (2014)
    Forecasting retained earnings of privately held companies with PCA and L1 regression.
    Applied Stochastic Models in Business and Industry, 30 (3), pp. 271-293.
    [pdf] [link]
  • H. S. Bhat and G. J. Vaz (2013)
    Frequency response and gap tuning for nonlinear electrical oscillator networks.
    PLoS ONE, 8 (11): e78009.
    [link]
  • H. S. Bhat, G. J. Vaz, and J. C. Meza (2013)
    Fast solution of load shedding problems via a sequence of linear programs.
    Proc. 2013 IEEE International Conference on Big Data, Santa Clara, CA, Nov. 2013.
    [pdf] [link]
  • P. J. Becich, B. P. Stark, H. S. Bhat, and D. H. Ardell (2013)
    CMCpy: Genetic code-message coevolution models in Python.
    Evolutionary Bioinformatics, 9, pp. 111-125.
    [link]
  • H. S. Bhat and N. Kumar (2012)
    Spectral solution of delayed random walks.
    Physical Review E, 86 (4) 045701.
    [pdf] [link]
  • H. S. Bhat and N. Kumar (2012)
    Option pricing under a normal mixture distribution derived from the Markov tree model.
    European Journal of Operational Research, 223 (3), pp. 762-774.
    [pdf] [link]
  • *H. S. Bhat and B. Osting (2011)
    Two-dimensional inductor-capacitor lattice synthesis.
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30 (10), pp. 1483-1492.
    [pdf] [link]
  • *H. S. Bhat and B. Osting (2011)
    Kirchhoff's laws as a finite volume method for a planar Maxwell system.
    IEEE Transactions on Antennas and Propagation, 59 (10), pp. 3772-3779.
    [pdf] [link]
  • H. S. Bhat and D. Zaelit (2011)
    Predicting private company exits using qualitative data.
    Proc. 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD2011), Shenzhen, China, May 2011.
    [pdf] [link]
  • H. S. Bhat and N. Kumar (2010)
    Markov tree options pricing.
    Proc. SIAM Conference on Mathematics in Industry (MI '09), San Francisco, CA, Oct. 2009, pp. 162-173.
    [pdf] [link]
  • *H. S. Bhat, W. Lee, G. N. Lilis, and E. Afshari (2010)
    Steady-state perturbative theory for nonlinear circuits.
    Journal of Physics A: Mathematical and Theoretical, 43, 205101.
    [link]
  • *G. N. Lilis, J. Park, W. Lee, G. Li, H. S. Bhat, and E. Afshari (2010)
    Harmonic generation using nonlinear LC lattices.
    IEEE Transactions on Microwave Theory and Technique, 58 (7), pp. 1713-1723.
    [link]
  • *H. S. Bhat and B. Osting (2010)
    Discrete diffraction in two-dimensional transmission line metamaterials.
    Microwave and Optical Technology Letters, 52 (3), pp. 721-725.
    [link]
  • *H. S. Bhat and B. Osting (2009)
    Diffraction on the two-dimensional square lattice.
    SIAM Journal on Applied Mathematics, 70 (5), pp. 1389-1406.
    [link]
  • *H. S. Bhat and B. Osting (2009).
    The zone boundary mode in periodic nonlinear electrical lattices.
    Physica D, 238, pp. 1216-1228.
    [link]
  • H. S. Bhat and R. C. Fetecau (2009).
    On a regularization of the compressible Euler equations for an isothermal gas.
    Journal of Mathematical Analysis and Applications, 358 (1), pp. 168-181.
    [link]
  • H. S. Bhat and R. C. Fetecau (2009).
    The Riemann problem for the Leray-Burgers equation.
    Journal of Differential Equations, 246 (10), pp. 3957-3979.
    [link]
  • *H. S. Bhat and B. Osting (2008).
    Thin slit diffraction in conventional and dual composite right/left-handed transmission line metamaterials.
    Proc. Asia-Pacific Microwave Conference (APMC '08), Hong Kong, Dec. 2008.
    [link]
  • *B. Osting and H. S. Bhat (2008).
    Dispersive diffraction in a two-dimensional hexagonal transmission lattice.
    Proc. International Symposium on Antennas and Propagation (ISAP '08), Taipei, Taiwan, Oct. 2008.
    [pdf]
  • *H. S. Bhat and E. Afshari (2008).
    Nonlinear constructive interference in electrical lattices.
    Physical Review E, 77, 066602.
    [link]
  • H. S. Bhat and R. C. Fetecau (2008).
    Stability of fronts for a regularization of the Burgers equation.
    Quarterly of Applied Mathematics, 66, pp. 473-496.
    [link]
  • E. Afshari, H. S. Bhat, A. Hajimiri (2008).
    Ultrafast analog Fourier transform using two-dimensional LC lattice.
    IEEE Transactions on Circuits and Systems I, 55 (8), pp. 2332-2343.
    [link]
  • H. S. Bhat, R. C. Fetecau, and J. B. Goodman (2007).
    A Leray-type regularization for the isentropic Euler equations.
    Nonlinearity, 20, pp. 2035-2046.
    [link]
  • E. Afshari, H. S. Bhat, X. Li, and A. Hajimiri (2006).
    Electrical funnel: a new signal combining method.
    Proc. IEEE International Solid-State Circuits Conference (ISSCC '06), Feb. 2006, pp. 206-208.
    [link]
  • E. Afshari, H. S. Bhat, A. Hajimiri, and J. E. Marsden (2006).
    Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines.
    Journal of Applied Physics, 99, 054901.
    [link]
  • H. S. Bhat and R. C. Fetecau (2006).
    Lagrangian averaging for the 1D compressible Euler equations.
    Discrete and Continuous Dynamical Systems B, 6 (5), pp. 979-1000.
    [link]
  • H. S. Bhat and R. C. Fetecau (2006).
    A Hamiltonian regularization of the Burgers equation.
    Journal of Nonlinear Science, 16 (6), pp. 615-638.
    [link]
  • H. S. Bhat, R. C. Fetecau, J. E. Marsden, K. Mohseni, and M. West (2005).
    Lagrangian averaging for compressible fluids.
    Multiscale Modeling and Simulation, 3 (4), pp. 818-837.
    [link]

Preprints

  • H. S. Bhat and B. Sims (2012)
    InvestorRank and an inverse problem for PageRank.
    [pdf]
  • H. S. Bhat and N. Kumar (2011)
    Comparing exact Bayesian and BIC Markov order classifiers.
    [pdf]
  • H. S. Bhat and N. Kumar (2010)
    On the derivation of the Bayesian Information Criterion.
    [pdf]
The starred citations are based upon work supported by the National Science Foundation under Grants 0913048, 0753983 and/or 0713732. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

Theses

  • H. S. Bhat (2005).
    Lagrangian averaging, nonlinear waves, and shock capturing.
    Dissertation (Ph.D.), California Institute of Technology.
    [link]
  • H. S. Bhat (2000).
    Aubry-Mather sets and a problem of three bodies.
    Thesis (A.B., Honors in Mathematics), Harvard University.
    [pdf] [library record]
Eigenvalues
[Home]