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Abstract

We use proprietary data collected by SVB Analytics, an affiliate of Silicon Valley Bank, to forecast
the retained earnings of privately held companies. Combining methods of principal component analysis
(PCA) andL1/quantile regression, we build multivariate linear modelsthat feature excellent in-sample
fit and strong out-of-sample predictive accuracy. The combined PCA andL1 technique effectively deals
with multicollinearity and non-normality of the data, and also performs favorably when compared against
a variety of other models. Additionally, we propose a variable ranking procedure that explains which
variables from the current quarter are most predictive of the next quarter’s retained earnings. We fit
models to the top five variables identified by the ranking procedure and thereby discover interpretable
models with excellent out-of-sample performance.

Keywords:L1 regression; principal component analysis; private companies; quantile regression; fore-
casting

1 Introduction

In the United States, privately held companies are not typically required to file financial statements with the
Securities and Exchange Commission (SEC). This is in sharp contrast to publicly owned companies, which
are required to submit quarterly 10-Q and annual 10-K statements to the SEC. This contrast extends itself
to statistical studies. The bulk of the literature on quantitative forecasting of financial variables deals with
publicly owned companies, because financial data for such companies is relatively easy to acquire.

In this paper, we analyze data on privately held companies maintained in SVB Analytics’ (SVBA)
proprietary database. We use this data to develop models that use financial variables from the current quarter
to predict retained earnings for the next quarter, and we also identify which variables are the most predictive
of retained earnings. The data is described in more detail below in Section 2.

The findings of this paper are significant for two reasons. First, we expect that the statistical methodology
developed here can be fruitfully applied to other data sets,both internal and external to SVBA. Principal
component analysis (PCA) and quantile/L1 regression have been applied separately in many studies, but, to
our knowledge, this is the first study in which the combination of these techniques is explored in the context
of forecasting. Second, the models we describe are the first statistical models built using SVBA’s database
of financial statements. The conclusions of this study are designed to confirm and extend domain-specific
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knowledge of the dynamics of privately held companies. Given their predictive accuracy, the models built
here can potentially be used to improve models for credit scoring [Fernandes, 2005] and warrant pricing
[Lauterbach and Schultz, 1990] for privately held firms.

1.1 Summary of Results

Using principal component analysis (PCA) and 10-fold cross-validation, we reduce the dimension of the co-
variate space from87 to35. This dimensionality reduction solves the problem of significant multicollinearity
in the original87-variable data set.

We then applyL1 regression—also known as Least Absolute Deviation (LAD) regression—to the PCA-
transformed, lower-dimensional data set. Through a numberof subsequent tests, we find that the models
built using this combination of PCA andL1 regression possess excellent in-sample fit: analyses of regression
residuals from bothL1 andL2 (ordinary least squares) models reveal that the residuals fit the Laplace
distribution far better than they fit the normal distribution. This is the first of several indications of the
appropriateness ofL1 regression. The development of these statistical methods and resulting in-sample
tests are described in Section 3.

Once we have a model where quarterq + 1 retained earnings have been fit to quarterq covariates, we
perform out-of-sample tests. We apply the model to covariates from quarterq + 1 and see how well we
do at predicting quarterq + 2 retained earnings. In Section 4, we report in detail the results of these tests,
which show that PCA plusL1 regression outperforms four competing methods: PCA plusL2 regression and
three nonlinear, nonparametric regression approaches. Moreover, when we apply quantile regression to the
PCA-transformed data set, we are able to generate accurate interval forecasts.

While the models built using 35 PCA-transformed covariatesare predictive, they do not by themselves
help answer the question of which of the original variables in the data set are most predictive of retained
earnings. To address this, we describe in Section 5 a method for using the PCA plusL1 model to rank quarter
q variables in order of importance to the regression model forquarterq+1 retained earnings. Using the top
five such variables, we develop pruned and simplified models with improved out-of-sample performance.
One of our main findings here is that once the most predictive variables have been identified using the PCA
plusL1 approach, different robust regression approaches may be applied to yield interpretable models with
excellent out-of-sample predictive power.

In Section 5.3, we apply the PCA plusL1 methodology to quarterly financial statement data for publicly
traded companies in the S&P 500 index. The data includes 38 covariates and covers the same period of time
as the SVBA data. The38-dimensional data set again displays a high level of multicollinearity, so we use
PCA to reduce the dimensionality to28, after which we find thatL1 regression models again outperform
L2 regression models as well as competing nonlinear, nonparametric approaches. An interesting difference
is that while the PCA plusL1 results for the SVBA data set show strong consistency across11 quarters of
testing, for the S&P 500 data set, we observe one large jump inquarterly error that coincides with the onset
of an economic recession. We note two other differences. Netincome is a highly predictive variable for the
SVBA models, and this variable is effectively replaced by net worth for the S&P 500 models. The relative
error for the S&P 500 models is roughly one percentage point higher than for the SVBA models. Overall,
though the S&P 500 results are preliminary, they serve as a concrete demonstration that the techniques
developed in this paper can be effectively applied to other data sets.

1.2 Prior Work

The literature on statistical modeling of privately held firms is not nearly as large as that on publicly held
firms. One way this asymmetry of information manifests is in the estimation of CAPM (Capital Asset
Pricing Model) betas of privately held companies; a popularmethod is to use comparable public companies
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for which data is readily available [Bowman and Bush, 2006].Despite this asymmetry, there do exist various
financial databases for privately held companies. Our review of research that studies these data sets is by no
means exhaustive, as our aim is to put our work in the context of relevant studies.

There is a relatively large amount of work on the problems of assessing the probability that a privately
held company will default on a loan or go bankrupt. Here we find, for example, a discrete-time hazards
model applied to data on 7711 individual firms collected by Intesa SanPaolo [De Leonardis and Rocci,
2008], generalized additive modeling applied to data on Norweigian limited liability firms [Berg, 2007] and
probit modeling applied to data from the Bureau van Dijk FAMEdatabase of U.K. firms [Bunn and Redwood,
2003]. As with the SVBA data analyzed here, these data sets comprise financial statements such as balance
sheets and income statements. [Mramor and Valentincic, 2003] used a database of nearly 20,000 Slovenian
companies to develop a liquidity forecasting model—note that in Slovenia, the government collects finan-
cial statements from all companies, including young startup companies, again enabling the authors to use
balance sheets, income statements, and other data points for each company in their study. In the U.S., such
data is not ordinarily collected from privately held companies, making the SVBA database a rare source.

A noteworthy study involving U.S. firms is that of [Hand, 2005]. Privately held companies that file for
an initial public offering (IPO) must provide five years of audited historical financial statements; [Hand,
2005] uses this data source in conjunction with firm valuations data (obtained from Recombinant Capital)
to establish a close relationship between financial statement data and equity values for privately held firms.
More recently, [Minnis, 2011] has analyzed private firm financial statements collected by Sageworks to
show that firms that provide their lenders with audited financial statements enjoy a significantly lower cost
of debt.

Many studies on privately held U.S. firms have utilized commercial databases from Thomson Ventur-
eXpert [Bhat and Zaelit, 2011] or Venture Economics [Tolkamp, 2007]. These databases do not contain
financial statements, either audited or otherwise, and are typically used for their qualitative data (such as
which investors have invested in each company) or financial variables that have been aggregated across
either time or industry sector.

2 Description of the Data

SVB Analytics (SVBA) compiles regularly submitted financial statements provided by clients. These fi-
nancial statements are audited prior to delivery and are comprised of classical balance sheet and income
statement metrics that are reliable and rich in detail.

The data utilized in this study is a subset of this data set, spanning 13 quarters from Q1 2008 to Q1
2011, and only consisting of those companies whose last twelve months of revenue is less than $75 million.
Note that the names or other equivalent identifying information of the clients werenot included in the data
set analyzed here. The analysis focused on the performance of statistical models across the entire data
set—no client’s data was analyzed individually. However, it is known that, in the aggregate, these clients
predominantly consist of privately held companies.

The primary focus of this paper is on modeling past, present,and future SVBA clients, not necessarily
all possible privately held companies. The data used in thisstudy reflects this in two underlying biases:
companies represented in the data have debt in their capitalstructure and have passed SVBA’s initial via-
bility and risk assessments. Despite these biases, revenueand affiliated metrics are well dispersed, and the
collection of companies represented in the data consist of avariety of technology and life science companies
that are in different stages of their lives.

The subset of SVBA data used here has not been used for prior studies in either the statistical or financial
literature. This paper represents the first attempt to utilize the data for any type of forecasting.

As the database is proprietary, we describe the variables interms of broad categories rather than spe-
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cific names. Balance sheet assets are measured by{Xj}j=27
j=1 , liabilities by {Xj}j=47

j=28, and net worth by

{Xj}j=56
j=48. Income statement revenue is measured by{Xj}j=59

j=57, expenses by{Xj}j=69
j=60, and other items

by {Xj}j=85
j=70. We include two unitless ratiosX86 andX87; all other variables are measured in units of

thousands of dollars.
In Table 1, we present summary statistics for each of the 87 covariates. More specifically, we present the

mean (µ), standard deviation (σ), percent of samples that lie within one standard deviationof the mean (%
Conc), excess kurtosis (γ), and range (Rng) for all 87 covariates. Here the covariatesare aggregated across
all quarters from Q1 2008 to Q1 2011.

By excess kurtosis, we mean the sample excess kurtosis computed using the default kurtosis function
from the R utility packagee1071. This function corresponds to theb2 formula described in the literature
[Joanes and Gill, 1998]. Since we have aggregated 13 quarters worth of data, we have a large sample size of
n = 15411 and the differences between the sample excess kurtosis functions are negligible [Joanes and Gill,
1998].

For a normally distributed random variable, the excess kurtosis vanishes (γ = 0), and the probability of
obtaining values within one standard deviation of the mean is≈ 0.683. In Table 1, the large values ofγ and
% Conc indicate significant departure from normality for themarginal distributions of eachXj . We omit
quantile-quantile plots comparing the empirical quantiles of eachXj to those of the normal distribution, but
simply note that all such plots are clearly nonlinear, confirming non-normality of theXj ’s.

By range, we mean the difference between the maximum and minimum sample values of the covariate.
The large values of Rng in Table 1 together with the large values of % Conc indicate the following. For each
j ∈ [1, 87], despite the fact that the values ofXj are very likely to be within standard deviation of the mean,
we can always find≥ 1 companies that display extreme behavior inXj .

2.1 Preliminary Considerations

We number the quarters from Q1 2008 to Q1 2011 using integersq ∈ {1, 2, . . . , 13}. Let Nq denote the
number of companies for which we have data from quarterq. Examining the raw data, it is clear that (a)Nq

fluctuates as a function ofq, and (b) eachNq is smaller than1844, the total number of unique companies.
We plot in the left panel of Figure 1 the number of companies for which we have exactlyz quarters

worth of data, asz goes from1 to 13. Less than20% of companies are represented for all 13 quarters. For
any given company, the actual list of quarters for which we have data may not be consecutive. This list will
also vary from one company to the next. These facts motivate us to look at a sequence of one-quarter-ahead
models rather than a single model fit to multiple quarters’ worth of data.

2.2 Consecutive Quarter Intersections

Let Cq denote the set of companies for which we have data in two consecutive quartersq andq + 1, asq
varies from1 to 12. Let |Cq| denote the number of companies in the setCq. In the right panel of Figure
1, we plot |Cq| versusq. Note that|Cq| > 1000 for all but the last quarterq = 12. Moreover, one
checks that|⋃12

q=1 Cq| = 1746. By looking at all intersections of consecutive quarters, our analysis covers
1746/1844 = 94.7% of the companies in the data set.

Hence we form12 pairs of matrices{(X0
q ,X

1
q )}12q=1. HereX0

q contains the quarterq data for all com-

panies inCq, andX1
q contains the quarterq + 1 data for all companies inCq. Both matricesXj

q are of size
N × p whereN = |Cq| andp = 87.

Let r1q denote the vector of all quarterq + 1 retained earnings for all companies inCq. The elements of
r1q have units of thousands of dollars. Letmq denote the median ofr1q , and then define the median absolute
deviation (MAD):

MAD(r1q) = median
∣∣r1q −mq

∣∣ .
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For q = 1, . . . , 12, we give in Table 2 the minimum, median, maximum, and median absolute deviation of
r1q . Note that the median values are all on the order of104. Note also that we use the term retained earnings
though the actual value may be negative and therefore represent accumulated loss.

2.3 Statistical Goal

With these definitions, we can state the first statistical goal of this paper: estimation of regression functions
fq that use quarterq information contained inX0

q to forecast quarterq + 1 retained earningsr1q , i.e.,

r1q = fq(X
0
q ) + εq. (1)

We are interested in both the in-sample fit and out-of-sampleperformance of these models.

3 Statistical Methods and In-Sample Tests

3.1 PCA

Before proceeding, we review the basic theory behind PCA [Jolliffe, 2002]. Let 1 be anN × 1 vector of
ones. LetX be theN × p matrix such that thek-th column ofX is the vectorµk1, whereµk is the mean of
thek-th column ofX. Then let

X̃ = X −X, (2)

a centered version ofX where each column has zero mean. We now compute the singular value decompo-
sition (SVD):

X̃ = V ΣW T . (3)

HereV is an orthogonalN ×N matrix,W is an orthogonalp × p matrix, andΣ is anN × p matrix with
p singular values along its diagonal and zero’s elsewhere. The singular values are nonnegative and sorted in
decreasing order.

Note that in the above discussion, we omitted superscripts and subscripts for readability. For our specific
data matrices, we will have the decompositionX̃j

q = V j
q Σ

j
q(W

j
q )T where all the matrices in the equation

depend onj andq. In what follows, we will similarly omit superscripts/subscripts on the matricesY andS.
Theprincipal componentsare the columns ofW , and the matrix

Y = X̃W = V Σ (4)

is the PCA-transformed data matrix. Note that the columns ofW are the eigenvectors of the variance-
covariance matrixS = 1

N−1
X̃T X̃; the eigenvalues ofS are given by 1

N−1
ΣTΣ.

SinceV is orthogonal,Y TY = ΣTΣ, i.e., the variance-covariance matrix ofY is purely diagonal.
By (4), multiplying X̃ by W has the effect of decorrelating the covariates in the original data matrix.
The columns ofW can be interpreted as new covariates—each one a linear combination of the original
covariates—that are perfectly decorrelated.

LetΣ′ be the matrix obtained by starting withΣ and setting all but thep′ largest diagonal entries to zero.
Then define

X̃ ′ = V Σ′W T .

This is a rank-p′ approximation ofX̃. By the Eckart-Young theorem, the rank-p′ approximationZ that
minimizes the Frobenius norm‖X̃ − Z‖F is Z = X̃ ′. This motivates the SVD/PCA as a tool for finding
an optimal low-dimensional representation of the originaldata set, which we carry out below. This in turn
gives us another interpretation of the columns ofWq as an optimal basis in which to represent the original
data set.
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We define theN × p′ transformed data matrix by

Y ′ = X̃ ′W ′ ≡ X̃W ′, (5)

whereW ′ is thep× p′ matrix obtained by retaining only the firstp′ columns ofW .

Scaling. Note that the PCA described above is unscaled. Scaling refers to normalizing the columns of̃X
so that they have variance one. We have found that with SVBA’sdata, the regression models using scaled
PCA are worse (in both in-sample and out-of-sample tests) than those using unscaled PCA. In what follows,
we omit further discussion of the scaled PCA.

3.2 Motivation and Results

To understand why the PCA is well-indicated for this data, wecompute the condition numbers of the matri-
cesY 0

q —see thep′ = 87 column of Table 3. The condition number is the ratio of the largest to the smallest
singular value ofY 0

q . The enormity of these numbers indicates three issues: (i) thep× p matrices(Y 0
q )

TY 0
q

are close to singular, (ii) the original data set possesses significant multicollinearity, and (iii) naı̈vely fitting
an ordinary least squares (OLS) model of the formr1q = α + Y 0

q βq + εq is unsound. The multicollinearity
of the data set is to expected—the columns of our original data set correspond to balance sheet and income
statement variables, and many of these can be expected to be correlated, e.g., “accounts receivable” and
“gross sales.”

A standard idea to combat these problems is to use PCA-transformed, lower-dimensional representations
of the data matrices [Jolliffe, 2002, Chap. 8]. In thep′ = 35 andp′ = 20 columns on the left half of Table 3,
we record the condition numbers of theN × p′ matrices(Y 0

q )
′ computed using (5). The condition numbers

for these matrices are much smaller than for the original data set.
Another way to view the effect of dimensionality reduction is to examine correlation matrices. LetZq

(respectively,Z ′
q) denote the correlation matrix obtained from the data matrix Y 0

q (respectively,(Y 0
q )

′). The
maximum absolute value of the non-diagonal entries ofZq is given in the “Max” column of Table 3—for
some quarters, there are covariates with significant correlation. Continuing into the right half of the table,
thep′ = 87 (respectively,p′ = 35 andp′ = 20) column gives the number of above-diagonal entries ofZq

(respectively,Z ′
q) that are at least0.1 in absolute value. Note that thep′ = 35 andp′ = 20 columns are

identically zero, again indicating that(Y 0
q )

′ does not suffer from the multicollinearity ofY 0
q .

Putting together the results of Table 3, it is clear that using PCA to reduce the dimensionality of the data
set remedies the three issues (i-iii) described above.

3.3 Selecting p′

The next PCA-related question to answer is: how do we choosep′, the number of columns of(Y 0
q )

′? In the

left panel of Figure 2, we plot thej-th singular valueΣjj of the centered data matrix̃X0
1 from Q1 2008. The

plots for other quartersq ≥ 2 look qualitatively the same. The plot shows that if our goal were merely to
devise matrices(Y 0

q )
′ that closely approximateY 0

q , then we would expectp′ = 20 to be an excellent choice.
As our goal is instead to use(Y 0

q )
′ to predictr1q , we remind the reader that the PCA was performed

only on the data matricesX0
q . PCA variables that correspond to small singular values mayin fact be good

predictors ofr1q . The right panel of Figure 2 showslog(Σjj) versusj. This shows that choosing any
1 ≤ p′ ≤ 80 will yield a matrix (Y 0

q )
′ with a far better (i.e., smaller) condition number than the full matrix

Y 0
q .

Our strategy is to selectp′ based on10-fold cross-validation. For eachq ∈ {1, 2, . . . , 12}, we randomly
partitionCq into 10 disjoint subsetsCq;i of approximately equal size. LetXj

q;i denote the data matrixXj
q

restricted to only those companies inCq;i.
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We loop over each foldi, each time taking(X0
q;i,X

1
q;i) to be the test set. For eachi, the training data

consists of all rows ofX0
q andX1

q that arenot present in the test set. We apply the PCA to the training
set data, reducing the number of columns in thej = 0 data matrix top′ ∈ [5, 80]. We then fitL1 and
L2 regression models to the PCA-transformed training set data. Finally, we test the performance of these
models on the test set data that has been held out. Our metric for test set performance is the median absolute
deviation between true and predicted retained earnings. Note that the details of fitting and testing the models
are described in detail below.

Averaging over the the10 folds and over the12 quarters, we obtain the results plotted in Figure 3. Note
that bothL1 andL2 test error curves decrease monotonically fromp′ = 5 until p′ = 35. Forp′ > 35, the
test set errors are either greater or only marginally less than the error atp′ = 35. Therefore, in the remainder
of the study, we usep′ = 35 as our baseline value ofp′.

3.4 Linear Models

In this section, we useY ′
q to denote(Y 0

q )
′. We discuss two competing methods for fitting linear models.

L2 (Ordinary Least Squares) Regression. We propose a model of the form

r1q =
[
1 Y ′

q

]
βq + εq (6)

whereβq is a vector ofp′ + 1 unknown regression coefficients, andεq stands for the residual error. The
column of1’s included in the matrix takes care of the intercept. We findβq by minimizing the sum of
squared residuals,

‖εq‖22 = εTq εq =

|Cq |∑

j=1

(εqj)
2.

The solutionβq satisfies the normal equation

[
1
T

(Y ′
q )

T

] [
1 Y ′

q

]
βq =

[
1
T

(Y ′
q )

T

]
r1q .

Note that1TY ′
q = 1

T X̃qW
′
q = 0

T , since each column of̃Xq has mean zero. We letΣ′′
q denote the matrix

Σ′
q truncated to sizeN × p′. Then

[
1
T

(Y ′
q )

T

] [
1 Y ′

q

]
=

[
Nq 0

T

0 (Σ′′
q)

TΣ′′
q

]
,

which is a purely diagonal matrix, so the solution forβq is trivial:

βq =

[
N−1

q 0
T

0 ((Σ′′
q )

TΣ′′
q)

−1

] [
1
T

(Y ′
q )

T

]
r1q .

L1 and Quantile Regression. We propose a model of precisely the same form as above:

r1q =
[
1 Y ′

q

]
βq + εq.
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The only difference is in how we solve forβq. In L1 or Least Absolute Deviation (LAD) regression, we find
βq by minimizing the sum of absolute residuals,

‖εq‖1 =
|Cq|∑

j=1

|εqj|. (7)

Several numerical methods efficiently solve this minimization problem [Barrodale and Roberts, 1973; Bloomfield and Steiger,
1980; Li and Arce, 2004].

Quantile regression [Koenker and Bassett, 1978; Koenker and Hallock, 2001; Koenker, 2005] is a gen-
eralization of the above procedure. Forτ ∈ (0, 1), we define a tilted version of the absolute value function:

ρτ (x) =

{
τx x ≥ 0

(τ − 1)x x < 0.

Suppose we are given scalar data{ζi}Ni=1. Fix τ ∈ (0, 1) and consider

Fτ (ξ) =
N∑

i=1

ρτ (ζi − ξ).

Let ξ∗ = argmin
ξ

Fτ (ξ). One checks thatξ∗ is equal to theτ -th quantile of the scalar data set{ζi}Ni=1. We

thus define quantile regression as follows: forτ ∈ (0, 1), findβq that minimizes

‖εq‖1;τ =

|Cq |∑

j=1

ρτ (εqj). (8)

Note that whenτ = 0.5, we haveρτ (x) = |x|/2, and so minimizing‖εq‖1;0.5 is the same as minimizing
‖εq‖1 as defined in (7).

Applied to our data set, we see that quantile regression builds a model for theτ -th quantile of the next
quarter’s retained earningsr1q . In the special case ofτ = 0.5, the procedure reduces toL1 regression and
produces a model for the median of the next quarter’s retained earningsr1q .

3.5 Nonlinear Models

To compare against the linear models, we also fit three nonlinear, nonparametric regression models. Unlike
the linear models, these models can be tuned using user-specified parameters. To determine optimal values
of these parameters, we follow a 10-fold cross-validation procedure, similar to the one described in Section
3.3. As before, in thei-th fold of quarterq, the test set is(X0

q;i,X
1
q;i), and the training set consists of all rows

of X0
q andX1

q that arenot present in the test set. We fixp′ = 35 and vary the parameters of the nonlinear
model. For each parameter choice, we obtain the error between the test set retained earnings and the model
retained earnings using the training set predictors. We measure this error using both root mean squared error
(RMSE) and median absolute error (MAE).

Averaging over quarters and cross-validation folds, we determine the choice of parameters that mini-
mizes each error metric in turn. We have taken care to choose intervals of parameters such that the mini-
mum does not appear at the boundary of the interval—if it does, we rerun the cross-validation study using
appropriately enlarged intervals.

Most importantly, we do not tune the parameters of the nonlinear models using out-of-sample data. We
use 10-fold cross-validation on in-sample data to mimic theprocedure that one would apply if one were
creating true forecasts of the future using data that is onlypresent now. We follow this philosophy of
parameter selection for each of the nonlinear models.
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Regression Trees. We use the R packagerpart to test the performance of regression trees [Breiman,
1984]. The package allows the user to set several parameters; we use the default values of all parameters
except for minsplit and cp. For a particular node, to determine whether the node should be split, rpart checks
whether the number of instances associated to the node is at least equal to minsplit; if not, rpart will not split
the node. Similarly, for a candidate split, the parameter cpis the minimum factor by which the loss function
must be reduces.

Searching across 29 values of cp between10−7 and10−1 and 20 values of minsplit from2 to 40, we find
that the parameters that minimize test set RMSE are minsplit= 2, cp = 4.0 × 10−6, while the parameters
that minimize test set MAE are minsplit= 2, cp= 3.0× 10−6.

Random Forests. We use the R packagerandomForest to test the performance of random forests
[Breiman, 2001]. Again, while there are many parameters that the user can set, we use the default values
of all parameters except for ntree and mtry. Here ntree is thenumber of trees in the forest, and mtry is the
number of covariates for which candidate splits are assessed. Searching across 20 values of ntree from50
to 1000 and 17 values of mtry from3 to 35, we find that the parameters that minimize test set RMSE are
ntree= 500,mtry = 35, while the parameters that minimize test set MAE are ntree= 950,mtry = 27.

Boosted Trees. We use themboost function in the R packageblackboost to test the performance
of boosted regression trees [Bühlmann and Hothorn, 2007].Themboost function uses conditional infer-
ence trees as base learners for the boosting algorithm. We use default values of the parameters for the
boosting algorithm, but vary two tree parameters, minsplitand cp, that have the same interpretation as the
corresponding rpart parameters described above, except that “number of instances” is replaced by “sum of
weights.”

We search across 27 values of cp from10−8 and10−1 and 20 values of minsplit from2 to 40, and find
that the parameters that minimize test set RMSE are minsplit= 22, cp = 0.01, while the parameters that
minimize test set MAE are minsplit= 14, cp= 0.1.

Remarks. In the remainder of this paper, when we report either‖ · ‖2 or RMS errors, the nonlinear
regressions use the optimal RMSE parameters given above. Similarly, when we report either‖ · ‖1 or
median absolute errors, the nonlinear regressions use the optimal MAE parameters given above. Also, when
we describe the results of the above procedures, we refer to the models by the one word abbreviations “tree,”
“forest,” and “boost.”

3.6 In-Sample Results

For 1 ≤ q ≤ 11, we fit each of the five models (L1, L2, tree, forest, boost) described above. Let us first
examine the in-sample errors. For each model and each quarter q, we tabulate in Table 4 both the sum of
squared errors‖εq‖22 and the sum of absolute errors‖εq‖1.

It is mathematically guaranteed thatL1 regression minimizes‖εq‖1 andL2 regression minimizes‖εq‖22
across alllinear models; these results are borne out in Table 4. There are two facts, consistent across all
quarters, that were not predetermined. First, two of the three nonlinear methods, forest and boost, produced
absolute and squared errors that exceed those produced by the linear models. Second, the model with the
best in-sample fit is the single regression tree (tree). Thisindicates that for the data set considered here,
regression trees do belong in the list of models against which to compareL1 regression. However, as we
find later, the tree method’s out-of-sample results do not match its in-sample fit.
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Next we examine the residualsεq for both theL1 andL2 models. For each quarterq, we use maximum
likelihood estimation (MLE) to fit normal

fN(x;µ, σ) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(9)

and Laplace

fL(x;λ, b) =
1

2b
exp

(
−|x− λ|

b

)
(10)

densities toεq. These particular distributions arise from the following consideration: in the linear model (6),
if the residualsεq are i.i.d. samples from a Laplace (respectively, normal) distribution, thenL1 regression
(respectively,L2 regression) yields the maximum likelihood estimate (MLE) for βq.

We denote the MLE of a parameter (e.g.,σ) using a hat (e.g.,̂σ). We form two hypotheses:

• H0 (null): εq follows normal(µ̂, σ̂)

• H1 (alternative):εq follows Laplace(λ̂, b̂)

Let LN
q andLL

q denote the maximized values of the likelihood functions forthe normal and Laplace densi-
ties, evaluated on the same set of residualsεq. We form the test statistic

Tq = log
LN
q

LL
q

.

For bothL1 andL2 residuals, we obtain one value ofTq for eachq ∈ {1, 2, . . . , 11}. The asymptotic
distribution ofTq has been calculated [Kundu, 2005]—applying this calculation, we find that for all quarters,
and for bothL1 andL2 regression residuals, we can rejectH0 with ap-value less than2.2× 10−16.

We can go further in our analysis of the residuals. Both the normal and Laplace densities are special
cases of the exponential power distribution (EPD)

f(x) =
1

2p1/pΓ(1 + p−1)σp
exp

(
−|x− µ|p

pσp
p

)
. (11)

Forp = 2 andp = 1, respectively,f(x) reduces to the normal and Laplace densities. Note that in theEPD,
the decay rate of the distribution’s tail is controlled by the parameterp. For bothL1 andL2 residuals, we
use numerical maximization of the likelihood function to find µ̂, σ̂p, andp̂. The results are given in Table 5.
In all cases,p is found to equal1 to machine precision, again indicating that the Laplace distribution fits the
residuals better than the normal.

In Figures 4 and 5, we plot three cumulative distribution functions (CDFs) for the residualsεq from L1

regression. In black, we plot the empirical CDF, while in blue and in red, we plot the fitted Laplace and
normal CDFs. These plots suggest that not only is the Laplacedistribution a better fit to the residuals than
the normal, but also that the Laplace distribution fits the residuals closely in absolute terms.

Overall, the analysis of residuals helps to understand whyL1 regression works well for this data set.
For an established, publicly traded company, large fluctuations in retained earnings may be viewed as rare
events. For young startup companies, on the other hand, suchevents are much more likely. This fact shows
itself in our analysis; the residuals’ distribution, like the Laplace distribution, has heavier tails than the
Gaussian distribution. Quantile/L1 regression is one of several regression procedures that arerobust with
respect to heavy-tailed errors [Fox, 2008, Chap. 19], making it well-suited for the problem considered here.
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4 Out-of-Sample Tests

In what follows, hats signify statistical estimates. For example,r1q and r̂1q are, respectively, the true and
estimated retained earnings from quarterq+1 for all companies inCq. Suppose we have already used either
L2 orL1 regression to determine the vector of unknown coefficientsβq. Then our model is

r̂1q =
[
1 (Y 0

q )
′
]
βq, (12)

with residual error
εq = r1q − r̂1q . (13)

We now describe how to apply this model to forecast retained earnings for future quarters. Let us use (5)
and (2) to write

r̂1q = fq(X
0
q ) =

[
1 (X0

q −X0
q )(W

0
q )

′
]
βq. (14)

The functionfq takes as input the quarterq data matrixX0
q and produces as output the vector of quarter

q + 1 retained earnings forecastŝr1q .
Suppose we have the data matrixX0

θ from quarterθ > q. We can use this data to forecast retained
earningsr1θ for quarterθ + 1. Our forecast will be

r̂1θ = fq(X
0
θ ) =

[
1 (X0

θ −X0
q )(W

0
q )

′
]
βq. (15)

4.1 Results

For eachq = 1, 2, . . . , 11, we use(Y 0
q )

′ andr1q to build L1, L2, and nonlinear regression models. To test
the out-of-sample performance of these models, we apply them on the next quarter’s data, i.e.,θ = q + 1.
We therefore obtain retained earnings forecasts for 11 quartersθ + 1 = 3, 4, . . . , 13.

In Table 6, we report the out-of-sample performance for the five models (L1, L2, tree, forest, and boost)
across 11 quarters of testing. To the left of the double vertical bar, we report the RMSE

ERMSE
θ =

√
1

|Cθ|
‖r1θ − r̂1θ‖22.

To the right of the double vertical bar, we report the MAE

EMAE
θ = median

∣∣∣r1θ − r̂1θ

∣∣∣ .

Across all quarters of testing, and in both RMSE and MAE metrics, theL1 model has the lowest out-of-
sample error. The performance of theL1 model also shows strong consistency across different quarters.
The difference between the performance of the linear and nonlinear models is striking. Note that the tree
model, which had the smallest in-sample errors in Table 4, does not perform well out-of-sample. Based on
our testing, there is no reason to prefer any of the nonlinearmodels over theL1 model.

Recalling Table 2, we see that the median absolute out-of-sample error for the PCA plusL1 model is,
roughly, two orders of magnitude less than the median value of the quantity being forecast, retained earnings.

In Figure 6, we plot the median absolute errorsEMAE
θ as a function ofθ. We obtain one curve for each

of four models included in our test—the errors for the tree model are excluded because their average is
near1400. TheL1 model consistently displays out-of-sample errors less than any of the competing models.
Moreover, theL1 model’s error is consistent from one quarter to the next.
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We have reported results for models trained on the PCA-transformed data set(Y 0
q )

′ with p′ = 35
columns. Note that when we changep′ to either20 or 80 and keep all other parameters the same, the
errors of all the models increase. Though theL1 model still has the least error, the out-of-sample results
again indicate thatp′ = 35 is a good choice for the number of columns to retain in the PCA-transformed
data matrices.

Also in Figure 6, we plot scatterplots of the predicted retained earningŝr1θ versus true retained earnings
r1θ aggregated across all11 quarters of out-of-sample testing. Note that the correlation coefficient is0.9952.
We include a line of slope one that goes through the origin—ifthe models were perfect, all points would
sit on the line. Note that we have omitted quarter-by-quarter scatterplots because they all look nearly the
same—the large majority of points lie close to the line, and occasionally, we find large differences between
true and predicted retained earnings. Overall, theL1 models feature excellent out-of-sample performance.

4.2 Interval Forecasting

Thus far we have been focused on point forecasting. For a given company, a point forecast is a single number
that is our best estimate of the next quarter’s retained earnings. Here we explore a different approach, that
of interval forecasting. For each company, we seek an interval [a, b] that has a certain probabilityδ of
containing the true retained earnings.

This approach is easily implemented using quantile regression. For a given value ofδ, we takeτ± =
0.5 ± δ/2, so thatτ+ − τ− = δ. We perform quantile regression with these two values ofτ , obtaining

regression coefficientsβ+
q andβ−

q . Using these coefficients in (15), we obtain the upperr̂+θ and lowerr̂−θ
ends of the forecast intervals for all quarterθ + 1 retained earnings:

r̂±θ = fq(X
0
θ ) =

[
1 (X0

θ −X0
q )(W

0
q )

′
]
β±
q

To evaluate accuracy, we examine

Eδ
θ =

#
{
r1θ ∈

[
r̂−θ , r̂

+
θ

]}

|Cθ|
, (16)

the fraction of all true quarterθ + 1 retained earnings that actually lie within the forecast intervals.
In Table 7, we give the results of this procedure for values ofδ in {0.1, 0.2, 0.3, 0.4, 0.5}. For each value

of δ, and for each of11 quarters of out-of-sample testing, we see thatEδ
θ is close toδ for each quarterθ. In

short, the interval forecast is accurate: the empirical probabilitiesEδ
θ are close to the desired probabilitiesδ.

For reference, we also give the mean width of the forecast interval,

W δ
θ = mean

(
r̂+θ − r̂−θ

)
, (17)

for each value ofδ and each quarterθ. The mean is taken over all companies from quarterθ. As expected,
these intervals grow in size asδ increases.

Given the consistency of the results from one quarter to the next, we could easily adapt this procedure in
two different ways. First, if we desire empirical probabilitiesEδ

θ that exceed some fixed valueδ0, we could
determine how much larger thanδ0 we should takeδ. Second, if we desire forecast interval widthsW δ

θ less
than some fixed value, we could determine how large we can takeδ. Table 7 indicates that both of these
goals are achievable, and hence that this procedure could beadapted for various applications.

5 Variable Ranking and Model Pruning

Thus far our model (14) is expressed in terms of35 PCA-transformed variables. This relatively large number
of covariates, each of which is a linear combination of the 87original covariates, yields a model that is not
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easily interpretable. Moreover, these models do not help usto answer the question of which of the 87
original covariates is most predictive of retained earnings. In order to address these issues, we seek to use
the information already present in the PCA plusL1 model to determine which of the original variables is
most predictive.

Before proceeding, let us give two additional motivating reasons for performing the study in this way.
Suppose we were to use forward stepwise modeling on the original space of 87 covariates to determine the
topJ most predictive variables. In this approach, we start with no predictors and add one at a time, each time
looping over all predictors that have not yet been chosen andselecting the one with the greatest predictive
power, as defined either by hypothesis tests or by cross-validation test set error. This requires searching
through87!/(87 − J)! possible models, a task that becomes computationally difficult asJ increases.

Suppose we were to use backward stepwise modeling on the original space of 87 covariates to determine
the top five most predictive variables. In this approach, we start with a model fit to all predictors and remove
one at a time, each time looping over all predictors that havenot yet been eliminated and removing the one
with the least predictive power, as defined either by hypothesis tests or by cross-validation test set error.
Here our progress would be blocked by multicollinearity, asmanifested in the large (∼ 1016) condition
number of the data matrix with all 87 columns.

The approach we now describe is far more efficient than forward stepwise modeling and also avoids the
problem of multicollinearity that prevents us from using backward stepwise modeling. Let us express the
PCA plusL1 model in terms of the original covariate space. We partitionthe(p′+1)-dimensional vector of
coefficientsβq as follows:

βq =
[
β0
q β1:p′

q

]
,

so thatβ0
q is the scalar intercept andβ1:p′

q is ap′-dimensional vector of the remaining coefficients. Then (14)
can be written

r̂1q = β0
q1+ X̃0

q γq, (18)

whereγq = (W 0
q )

′β1:p′
q is ap-dimensional vector of regression coefficients. These regression coefficients

can be viewed as multiplying the original balance sheet and income statement variables present in the mean-
centered data matrix̃X0

q = X0
q −X0

q .

5.1 PCA plus L1 Variable Ranking

We do not expect that allp = 87 of the coefficients inγq are equally important, and we seek a ranking
of variables in order of importance to the forecasting model. Let γq =

[
γ1q γ2q · · · γpq

]
denote thep

components ofγq. For1 ≤ j ≤ p, letxj
q denote thej-th column ofX̃0

q . Then (18) is

r̂1q = β0
q1+

p∑

j=1

γjqx
j
q. (19)

This statistical model is still written in terms of the columns of the mean-centered data matrix. We assume
that each row ofxj

q is in fact a sample of a random variablexjq. This implies the probabilistic model

r̂ = β0
q +

p∑

j=1

γjqx
j , (20)

wherer̂ is itself a random variable. Suppose that eachxj is bounded, i.e., there exist finite(mj,Mj) such
thatmj ≤ xj ≤ Mj . Then it is clear that̂r is also bounded. We may estimate the maximum value by

r̂max ≥ β0
q +

∑

γj
q≥0

γjqMj +
∑

γj
q<0

γjqmj,
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and the minimum value by
r̂min ≤ β0

q +
∑

γj
q≥0

γjqmj +
∑

γj
q<0

γjqMj.

These inequalities become equalities if, for example, the random variables{xj} are pairwise independent.
This implies that the range of̂r can be estimated via

range(r̂) = r̂max− r̂min

≥
∑

γj
q≥0

γjq(Mj −mj) +
∑

γj
q<0

γjq(mj −Mj)

≥
p∑

j=1

∣∣γjq
∣∣ (Mj −mj) =

p∑

j=1

∣∣γjq
∣∣ range

(
xj
)
.

Our variable ranking procedure relies on the principle thatthe term on the right-hand side that explains the
largest fraction of the range of̂r corresponds to the most important variable in the model. We therefore use
the sample range ofxj

q as an estimate of the range ofxj , and compute

Γj =
∣∣γjq

∣∣ range
(
x
j
q

)

for j = 1, 2, . . . , p. We define thek-th most important variable to be the one that has thek-th largest value
in the set{Γ1,Γ2, . . . ,Γp}.

Suppose we were to take the variance of both sides of (20). Assuming that the variance-covariance
matrix of the random variables{xj}pj=1 is purely diagonal, we obtain

Var(r̂) =
p∑

j=1

(γjq)
2Var

(
xj
)
. (21)

The right-hand side is the sum of the squares of the standardized regression coefficients for the model (20).
Using these standardized coefficients to rank the importance of variables in anL2 multivariate model is a
classical technique.

We therefore view eachΓj as a regression coefficient that has been standardized usingthe range rather
than the standard deviation. Other authors have referred tothese coefficients as maximum impact coefficients
[Alderson and Nielsen, 2002]:Γj measures the maximum possible impact that thej-th inputxj has on the
outputr̂.

Since the SVBA data set consists of audited, cleaned data, weview extreme values in any of the variables
as important indicators, rather than as outliers. The tightclustering of values around the mean in each of
the covariates in Table 1 suggests that only by looking at extreme values would one be able to extract
information that helps predict retained earnings. This motivates the use of the range, which is maximally
sensitive to extreme values in each of the covariates.

We apply our ranking procedure to each of the PCA plusL1 forecasting models developed above, one
for each of11 quarters. The rankings of the top five most important variables can be found in Table 8. Note
that if one is interested in forecasting quarterq + 1 retained earnings, the most important variable is always
the retained earnings from quarterq. Besides retained earnings, net profit is another variable that appears in
all 11 top five lists. Both results are highly intuitive from the point of view of standard accounting principles.
Note that the variable “other equity” also appears in all11 top five lists.

14



5.2 Pruned/Simple Models

Let us define apruned modelto be one that predicts quarterq + 1 retained earnings based on the top
five quarterq variables. Starting from the mean-centered data matrixX̃0

q , we delete all but five columns

corresponding to the top five variables for quarterq. The resultingN × 5 matrix will be denotedPq; let P j
q

denote thej-th column of this matrix. We assume that the first three columns ofPq correspond to retained
earnings, net profit, and other equity, respectively—theseare the three variables common to all11 top five
lists in Table 8. When we fit a model to these three variables, we refer to it as asimple model.

There are two reasons to build pruned and simple models: (1) to improve the interpretability of the
models, and (2) to quantify how well the procedure from Section 5.1 identifies variables with predictive
power.

With these definitions and our rankings in mind, we fit five linear models and one nonlinear model to
the data. In all cases, residual error is as in (13). We first describe the linear models:

1. PCA plus RLM. The form of the model is the same as in (6):

r1q =
[
1 Y ′

q

]
βq + εq

As before,Y ′
q is the PCA-transformed data matrix withp′ = 35 columns. The only difference between

this and the PCA plusL1 model is that the coefficientsβq are found by minimizing

‖εq‖ρ =

|Cq |∑

j=1

ρ
(
εqj

)
, (22)

whereρ is Tukey’s bisquare function [Maronna et al., 2006]. We include this model because our
earlier analysis indicated that the regression residuals have tails that are heavier than those of the
normal distribution. Such behavior suggests the use of robust regression;L1 and RLM are competing
robust regression techniques.

2. L1 pruned. This is anL1 model fitted to each quarter’s top5 variables:

r1q = β0
q + Pqβ

1:5
q + εq. (23)

The regression coefficientsβq are found by minimizing‖εq‖1.

3. RLM pruned. This is the same model as (23),

r1q = β0
q + Pqβ

1:5
q + εq, (24)

except that the regression coefficientsβq are found by minimizing‖εq‖ρ from (22).

4. L1 simple. This is anL1 model fitted to the three variables that we have found are common to all11
top5 lists in Table 8:

r1q = β0
q + P 1

q β
1
q + P 2

q β
2
q + P 3

q β
3
q + εq, (25)

where the regression coefficients{β0
q , β

1
q , β

2
q , β

3
q} are found by minimizing‖εq‖1.

5. RLM simple. This is the same model as (25),

r1q = β0
q + P 1

q β
1
q + P 2

q β
2
q + P 3

q β
3
q + εq, (26)

except that the regression coefficientsβq are found by minimizing‖εq‖ρ from (22).
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The only new nonlinear model we fit is an additive model of the form

r1q = β0
q +

5∑

j=1

f j
q (P

j
q ) + εq. (27)

The f j
q functions are nonparametric smoothing functions that are calculated using a backfitting algorithm

[Hastie et al., 2009]. We include this model to check whethera nonlinear, partially nonparametric model
fitted to a small number of influential variables performs better than a linear model. As it turns out, for all
quarters of testing, its error exceeds the linear models’ errors by a large margin; we do not include these
results in tables given below. We mention the results of the additive model to again confirm the suitability
of linear models for this problem.

For the five new linear models described above, out-of-sample median absolute errors are given in Table
9. We also include errors for the PCA plusL1 model, and we italicize the lowest error value for each quarter.

The PCA plusL1 model is competitive. At no point does it achieve the lowest out-of-sample error. How-
ever, for a purely machine-generated model, into which we have invested no intuition or domain-specific
knowledge, its performance is more than adequate. For the PCA plusL1 model, the standard deviation of
the errorsσε, a metric that measures the consistency of the model, is the smallest across all six models.

The PCA plus RLM model gives slightly smaller average error than the PCA plusL1 model, but itsσε
is the highest across all six models. This large value stems from the relatively large error incurred in the last
quarter of testing.

Pruning both theL1 and RLM models decreases their out-of-sample errors. For the L1 model, this
comes at the expense of a largerσε. However, the pruned RLM model achieves what we believe is an
excellent balance between low average errorµε and consistencyσε—both values are second best across all
six models.

Finally, the simpleL1 and simple RLM models have the smallest mean out-of-sample errors, but both
σε values have increased slightly relative to the pruned versions of these models.

The differences between the pruned and simple models are slight. The first conclusion we draw is that
the variable ranking procedure from Section 5.1, which usesthe regression coefficients from the PCA plus
L1 model, succeeds in finding models with superior out-of-sample performance. The results from the most
predictive RLM models are consistent with the hypothesis that the variables included in the pruned/simple
models are the most predictive variables.

Our second conclusion is that once the top variables have been identified, we can obtain strong out-of-
sample performance via either robust regression technique.

5.3 Comparison with Results for Publicly Traded Companies

In order to test whether PCA plusL1 regression works well on other data sets, and also to understand some
of the differences between models of privately held and publicly traded companies, we have applied the tech-
niques described in this paper to financial data for companies in the Standard & Poor’s (S&P) 500 index. The
source of this data set is S&P Capital IQ, a division of Standard & Poor’s (http://www.capitaliq.com).
This data set consists of 38 financial variables extracted from quarterly financial statements over the same
time span as the SVBA data. These 38 variables are standard balance sheet and income statement variables,
all measured in units of millions of dollars. One of the variables is retained earnings, which will again serve
as the dependent variable in our models.

Our goal here is to highlight similarities and differences between the PCA plusL1 methodology applied
to the SVBA data versus the S&P 500 data. We therefore presentour results in summary form, mostly
omitting detailed tables and figures. In future work, we planto carry out a detailed analysis of forecasting
models for the S&P 500 data.
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Examining each of the 38 S&P 500 covariates in turn, in the same way as in Table 1, we find similar
trends. For each covariate, the percent of samples that lie within one standard deviation of the mean is
between 92.4% and 99.9%. For each covariate, the sample excess kurtosis is between33 and3603. Other
metrics such as the sample range and sample standard deviation are not as consistent from one covariate to
the next, unlike what we found in Table 1. We attribute this inconsistency to the different constituencies
represented in the respective data sets. The companies in the S&P 500 index cover a broader range of
industry sectors than the companies in the SVBA database. The companies in the SVBA database have been
or currently are lending clients of SVB; in contrast, the companies in the S&P 500 index are not necessarily
selected for their credit worthiness.

Importantly, the S&P 500 data displays a similar level of multicollinearity as the SVBA data. Plots of
the singular values reveal the same trends as in Fig. 2, with several singular values lying close to zero.
Applying the same 10-fold cross-validation study described in Section 3.3, we produce a plot that is similar
to Fig. 3—the only difference is that the optimal number of PCA-transformed variables is nowp′ = 28.

Comparing the results of linear and nonlinear models as in Table 6, we find that the PCA plusL1 model
features the best out-of-sample predictive accuracy for the retained earnings of S&P 500 companies.

Next, we apply the variable ranking and model pruning techniques from Section 5.2 to the PCA plus
L1 model for the S&P 500 data. We present the top five variables for each quarter in Table 10, and the
out-of-sample results for pruned and simple models in Table11.

A key difference is that the PCA plusL1 model’s errors are now much less consistent from one quarter
to the next. For the SVBA data, if we examine theL1 errors to the right of the vertical bar in Fig. 6, all the
errors lie in the tight interval[333, 497]—the coefficient of variation (standard deviation divided by mean)
for these errors is0.11.

However, for the PCA plusL1 model applied to the S&P 500 data, the errors lie in the interval [69, 145],
with coefficient of variation equal to0.33. Moreover, the error for Q3 2008 is74.8, while the errors for
Q4 2008 and Q1 2009 are144.4 and145.3. The increase in error from Q3 2008 to Q4 2008 is 96%, far
higher than any increase (or decrease) in consecutive quarter errors observed for the PCA plusL1 model
on the SVBA data. Noting that Q4 2008 coincided with the beginning of a serious economic recession, we
hypothesize that the consistency of the forecasting model for privately held companies may be due to their
relative insulation from macroeconomic forces, as compared to publicly traded companies.

The simple models in Table 11 are trained on the three variables common to all 11 top five lists in
Table 10: retained earnings, total assets, and total liabilities. We can see that model pruning/simplification
decreases bothµε andσε as compared to the original PCA plusL1 and PCA plus RLM models. We conclude
that while the identities of the most predictive variables turn out to be rather different for privately held versus
publicly traded companies, the pruning method works well for both data sets.

Examining the regression coefficients for the pruned and simple models of S&P 500 retained earnings,
we find that the coefficients of total assets and total liabilities are nearly equal in magnitude but have opposite
sign. This implies the following simplification:

r̂1q = β0
q + (1.017)ret. earnings+ (0.0117)[total assets− total liabilities]

= β0
q + (1.017)ret. earnings+ (0.0117)net worth

The coefficients we have reported are for the final quarter’s pruned PCA plusL1 model. The true coefficients
for total assets/liabilities are very slightly larger/smaller than±0.0117—we have averaged the absolute
values of the true coefficients to produce this number. The comparable model for the SVBA data reads as
follows:

r̂1q = β0
q + (1.003)ret. earnings+ (0.768)net profit+ (0.00282)other equity.

For a publicly traded company, the optimal model appears to be one where quarterly retained earnings
increase by a small percentage (in the above case,1.17%) of the net worth (or book value) of the company.
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Net income/profit does not enter directly into this model at all. For a privately held company, the optimal
model appears to be one where retained earnings increase through a combination of the past quarter’s net
profit plus a small percentage of the company’s other equity.We see that the identities of the top variables
has changed, and that this change creates different types ofmodels.

Because the data sets differ in units (thousands versus millions of dollars), we present one final set of
results showing relative errors in theL1 norm. Using the same notation as in Section 4.1, we define for each
quarterθ the quantity

EREL
θ =

∥∥∥r1θ − r̂1θ

∥∥∥
1∥∥r1θ

∥∥
1

. (28)

Herer1θ (respectively,r̂1θ ) is the vector of true (respectively, predicted) retained earnings. Computing the
component-wise relative errors between these vectors is not possible due to occasional zero entries inr1θ .
Note that theEREL

θ metric does not suffer from this problem.
In Table 12, we compare the relative out-of-sample errors for retained earnings forecasts using both

SVBA and S&P 500 data sets. The overall performance of all models is roughly one percentage point better
for SVBA data. While pruning/simplification of the models does improve the SVBA relative errors, the
improvement is more pronounced for the S&P 500 errors.

6 Conclusion

The combined PCA plusL1 model forecasts retained earnings with greater out-of-sample accuracy than a
variety of other regression techniques: OLS, trees, forests, and boosting. Using the PCA plusL1 model to
select variables, we are able to develop reduced-order models where the out-of-sample accuracy has been
improved still further. As we have explained, a key driver for the success ofL1 and other robust regression
models is our finding that the retained earnings residuals are distributed with heavier-than-normal tails.

Based on the success of this method, we see three areas for future work. First, we seek to further explore
the differences between privately held and publicly tradedcompanies. We seek to investigate more deeply
the financial statement data for companies in the S&P 500 index; the results of Section 5.3 give us a number
of hypotheses to test. Second, the current study has focusedon using a novel data set to develop a sound
framework for predictive modeling. Incorporating domain-specific knowledge into this framework, e.g.,
developing separate models for different industry sectors, or using variable amounts of past data based on
historical conditions, may lead to improvements. Finally,we seek to generalize the codes and algorithms
developed here to forecast financial variables besides retained earnings.
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µ σ % Conc γ Rng µ σ % Conc γ Rng

X1 6.5e+3 1.7e+4 95.2 3.8e+2 6.5e+5X45 1.9e+2 1.6e+3 97.9 5.3e+2 6.2e+4
X2 2.5e+2 5.8e+3 99.7 1.4e+3 2.8e+5X46 4.4e+2 4.4e+3 98.2 5.6e+2 1.8e+5
X3 4.3e+2 4.9e+3 98.6 3.4e+2 1.4e+5X47 3.9e+1 1.4e+3 99.9 1.8e+3 6.6e+4
X4 3.1e+3 5.7e+3 91.2 2.9e+1 8.7e+4X48 2.8e+3 2.6e+4 98.0 7.1e+2 8.9e+5
X5 5.1e+1 1.3e+3 98.9 9.5e+2 1.0e+5X49 1.7e+4 3.0e+4 89.2 2.5e+1 3.7e+5
X6 2.3e+2 2.3e+3 98.5 4.4e+2 7.7e+4X50 -3.5e+4 6.3e+4 92.1 8.2e+1 1.4e+6
X7 8.5e+1 8.7e+2 98.4 3.0e+2 2.6e+4X51 1.3e+1 4.1e+2 99.7 6.2e+3 4.1e+4
X8 3.4e+1 3.7e+2 98.6 3.0e+2 1.2e+4X52 4.7e+2 5.0e+3 98.1 4.8e+2 1.6e+5
X9 9.0e+2 4.8e+3 96.1 2.8e+2 1.4e+5X53 -7.6e+0 9.7e+2 98.4 5.5e+2 7.1e+4
X10 2.8e+2 1.9e+3 96.7 1.9e+2 7.4e+4X54 7.2e+0 6.7e+2 98.6 6.2e+2 4.8e+4
X11 2.8e+1 3.1e+2 98.3 1.3e+3 1.7e+4X55 2.2e+2 2.2e+3 98.0 5.3e+2 6.9e+4
X12 6.5e+2 1.6e+3 94.2 1.2e+2 5.6e+4X56 2.3e+4 6.8e+4 93.5 7.3e+1 1.5e+6
X13 4.3e+1 7.0e+2 99.2 7.0e+2 2.7e+4X57 5.0e+3 9.5e+3 92.4 4.5e+1 1.8e+5
X14 7.8e+1 6.3e+2 97.5 2.8e+2 2.2e+4X58 2.2e+1 7.5e+2 99.7 5.9e+3 7.1e+4
X15 6.7e+1 5.8e+2 97.8 5.9e+2 2.5e+4X59 2.5e+0 1.1e+2 99.7 5.7e+3 1.1e+4
X16 1.8e+2 3.3e+3 99.2 1.2e+3 1.6e+5X60 1.7e+1 5.2e+2 99.6 5.5e+3 5.1e+4
X17 1.8e+1 3.8e+2 99.6 8.1e+2 1.4e+4X61 2.3e+3 5.7e+3 93.4 7.5e+1 1.0e+5
X18 2.9e+3 6.7e+3 93.7 6.2e+1 1.0e+5X62 8.9e+2 2.2e+3 92.5 1.8e+2 8.3e+4
X19 1.1e+3 3.3e+3 94.2 1.3e+2 7.5e+4X63 8.4e+2 2.2e+3 94.3 3.5e+2 7.3e+4
X20 5.7e+1 9.0e+2 99.4 5.2e+2 3.0e+4X64 1.2e+3 2.0e+3 91.0 9.3e+1 6.4e+4
X21 2.2e+2 2.6e+3 98.7 1.0e+3 1.6e+5X65 9.0e+0 1.4e+2 98.7 2.4e+3 8.7e+3
X22 5.0e+1 4.2e+2 98.1 2.3e+2 1.2e+4X66 1.8e+1 3.3e+2 98.5 5.2e+2 2.3e+4
X23 2.1e+2 2.1e+3 98.2 3.0e+2 5.7e+4X67 5.6e+2 2.0e+3 94.2 4.4e+2 7.6e+4
X24 1.3e+2 8.9e+2 97.6 5.0e+2 6.0e+4X68 1.6e+2 4.3e+2 93.6 9.1e+1 1.5e+4
X25 2.0e+2 9.1e+2 96.2 8.7e+1 2.1e+4X69 4.2e+1 3.6e+2 97.7 8.9e+2 2.1e+4
X26 1.0e+2 9.7e+2 98.1 4.2e+2 3.2e+4X70 1.8e+1 2.1e+2 98.7 7.8e+3 2.3e+4
X27 3.6e+3 1.7e+4 95.8 1.6e+2 3.6e+5X71 8.8e+1 3.3e+2 95.8 1.2e+3 2.0e+4
X28 1.6e+3 3.6e+3 93.4 1.1e+2 1.0e+5X72 4.2e-1 2.2e+1 99.9 3.7e+3 1.5e+3
X29 3.5e+2 6.0e+3 99.3 1.1e+3 2.9e+5X73 1.5e+0 6.2e+1 99.8 2.3e+3 4.6e+3
X30 7.2e+2 2.3e+3 93.6 8.6e+1 4.3e+4X74 2.7e+0 1.6e+2 99.6 7.4e+3 2.2e+4
X31 1.7e+1 6.1e+2 99.5 1.2e+4 7.2e+4X75 2.3e+1 3.2e+2 98.3 2.4e+3 3.2e+4
X32 5.5e+1 6.5e+2 98.4 7.5e+2 3.3e+4X76 4.8e+1 8.4e+2 99.1 2.9e+3 6.5e+4
X33 2.7e+1 4.0e+2 99.2 4.8e+2 1.2e+4X77 7.0e+1 1.5e+3 99.4 3.7e+3 2.1e+5
X34 7.4e+2 2.1e+3 94.0 2.7e+2 8.4e+4X78 1.8e+1 1.4e+3 99.8 1.4e+4 1.8e+5
X35 2.1e+3 6.1e+3 93.4 8.1e+1 1.2e+5X79 1.8e+0 5.5e+1 99.6 1.8e+3 4.1e+3
X36 1.7e+3 3.8e+3 93.6 8.7e+1 7.5e+4X80 4.9e+1 5.8e+2 98.4 2.3e+3 6.0e+4
X37 1.4e+2 8.6e+2 96.6 2.3e+2 2.8e+4X81 1.5e+1 3.7e+2 99.3 5.0e+3 3.8e+4
X38 2.0e+0 3.4e+1 99.3 9.5e+2 1.7e+3X82 1.8e+0 3.8e+2 99.3 2.0e+3 3.6e+4
X39 9.2e+1 1.3e+3 98.6 6.0e+2 5.8e+4X83 7.7e-1 3.0e+1 99.9 3.0e+3 2.4e+3
X40 1.9e+2 3.0e+3 98.9 2.3e+3 1.8e+5X84 -2.4e+0 7.3e+2 99.9 6.7e+3 1.1e+5
X41 1.8e+3 5.6e+3 94.5 9.5e+1 1.0e+5X85 -1.2e+3 3.7e+3 92.7 4.8e+2 2.7e+5
X42 5.2e+1 5.3e+2 98.1 5.2e+2 2.1e+4X86 -1.8e+2 8.1e+3 100.0 6.9e+3 7.2e+5
X43 9.5e+1 1.2e+3 98.7 4.9e+2 3.3e+4X87 1.0e+0 1.8e+0 94.8 5.6e+2 8.7e+1
X44 9.0e+2 6.8e+3 97.7 6.5e+2 2.8e+5

Table 1:Mean (µ), standard deviation (σ), percent of samples that lie within one standard deviationof the mean (%
Conc), excess kurtosis (γ), and range (Rng) for all 87 covariates, aggregated across all quarters from Q1 2008 to Q1
2011. All Xj ’s have units of thousands of dollars, except for the unitless ratiosX86 andX87. For a normal random
variable,γ = 0 and % Conc= 68.3. Large values ofγ and % Conc indicate significant departure from normality for
the marginal distributions of eachXj . Also note the large values of Rng, implying that for eachj, we can find≥ 1
companies displaying extreme behavior inXj .
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Figure 1: The total number of companies in the study is1844. The left panel shows that if we try to study
only those companies for which we have many quarters worth ofdata, we will leave out most companies. For
example, less than 20% of the companies are represented for all 13 quarters. LetCq denote those companies
represented in consecutive quartersq andq + 1. In the right panel, we see that|Cq| is at least800 for all q
and exceeds1000 except atq = 12.

min median max MAD

Q2 2008 -8.78e+05 -1.58e+04 6.56e+041.38e+04
Q3 2008 -9.17e+05 -1.76e+04 7.50e+041.47e+04
Q4 2008 -9.55e+05 -1.72e+04 8.33e+041.42e+04
Q1 2009 -9.91e+05 -1.80e+04 3.86e+041.46e+04
Q2 2009 -1.04e+06 -1.87e+04 6.45e+041.56e+04
Q3 2009 -1.06e+06 -1.99e+04 1.04e+051.61e+04
Q4 2009 -7.71e+05 -2.03e+04 1.08e+051.64e+04
Q1 2010 -7.74e+05 -2.14e+04 1.18e+051.71e+04
Q2 2010 -1.16e+06 -2.06e+04 1.99e+051.72e+04
Q3 2010 -1.16e+06 -2.10e+04 1.34e+051.75e+04
Q4 2010 -1.04e+06 -2.18e+04 1.43e+051.79e+04
Q1 2011 -1.04e+06 -2.27e+04 7.74e+041.83e+04

Table 2: For each of12 quartersq, we give the minimum, median, maximum, and median absolute deviation
(MAD) of the true retained earnings vectorr1q .
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p′ = 87 p′ = 35 p′ = 20 Max p′ = 87 p′ = 35 p′ = 20

Q1 2008 1.164e16 7.899e1 4.045e1 0.75 9 0 0
Q2 2008 1.161e16 9.032e1 4.370e1 0.35 6 0 0
Q3 2008 1.122e16 7.239e1 3.603e1 0.56 12 0 0
Q4 2008 9.710e4 7.524e1 3.651e1 0.00 0 0 0
Q1 2009 1.179e16 7.786e1 3.860e1 0.46 8 0 0
Q2 2009 2.925e6 7.360e1 3.877e1 0.00 0 0 0
Q3 2009 1.096e16 6.826e1 3.069e1 0.68 21 0 0
Q4 2009 1.090e16 6.544e1 3.023e1 0.60 9 0 0
Q1 2010 1.107e16 7.179e1 3.829e1 0.73 5 0 0
Q2 2010 1.103e16 8.035e1 3.918e1 0.24 20 0 0
Q3 2010 1.067e16 7.062e1 3.491e1 0.47 11 0 0
Q4 2010 1.060e16 7.355e1 3.253e1 0.56 11 0 0

Table 3: Condition numbers (left of double vertical bar) andcorrelation counts (right of double vertical bar)
for full PCA-transformed data matrixY 0

q (with p′ = 87) and reduced-dimension PCA-transformed data
matrices(Y 0

q )
′ with p′ = 35 andp′ = 20 columns. The condition numbers are calculated by taking the

ratio of the largest to the smallest singular value. The correlation counts are the number of above-diagonal
elements of the correlation matrix with absolute value greater than or equal to0.1. The original data matrix
possesses such entries, but the reduced-dimension data matrices do not. For reference, in the “Max” column,
we also report the maximum absolute correlation in the originalp′ = 87 data matrices. The results show that
the raw data sets possess significant multicollinearity, which can be remedied by using PCA withp′ = 35.
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Figure 2: LetΣjj denote thej-th singular value of the centered Q1 2008 data matrixX̃0
1 . Then the left and

right panels show, respectively,Σjj andlog(Σjj) versusj.
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Figure 3: Results of10-fold cross-validation to determine the optimal number of PCA columns. Note that
bothL1 andL2 test error curves are monotonically decreasing untilp′ = 35. Forp′ > 35, the test set errors
are either greater or only marginally less than the error atp′ = 35.

L1 L2 tree forest boost L1 L2 tree forest boost

Q1 2008 1.74e10 1.64e10 1.38e9 5.31e11 2.68e111.11e6 1.29e6 8.45e5 5.14e6 2.54e6
Q2 2008 1.26e10 1.18e10 1.42e9 5.99e11 4.37e111.11e6 1.26e6 7.97e5 5.65e6 3.05e6
Q3 2008 7.99e9 6.80e9 1.16e9 5.86e11 2.90e111.09e6 1.24e6 7.32e5 4.92e6 2.38e6
Q4 2008 2.59e10 2.35e10 1.32e9 5.98e11 2.07e111.41e6 1.70e6 7.61e5 5.06e6 2.75e6
Q1 2009 4.02e10 3.12e10 1.74e9 7.72e11 3.06e111.36e6 2.14e6 9.56e5 5.74e6 2.88e6
Q2 2009 2.13e10 1.88e10 1.69e9 7.39e11 3.16e111.29e6 1.61e6 9.77e5 5.89e6 2.77e6
Q3 2009 1.41e10 9.74e9 1.23e9 4.32e11 1.43e111.22e6 1.44e6 7.79e5 5.10e6 1.95e6
Q4 2009 2.31e10 1.91e10 1.25e9 4.41e11 1.44e111.48e6 1.75e6 7.97e5 5.51e6 2.37e6
Q1 2010 1.17e10 9.63e9 2.17e9 1.09e12 5.64e111.29e6 1.40e6 1.08e6 7.30e6 3.85e6
Q2 2010 2.81e10 2.52e10 2.12e9 1.03e12 6.44e111.28e6 1.59e6 1.05e6 6.96e6 3.61e6
Q3 2010 1.01e11 4.59e10 1.45e9 8.60e11 3.01e111.62e6 2.82e6 8.20e5 6.28e6 2.55e6

mean 2.75e10 1.98e10 1.54e9 6.99e11 3.29e111.30e6 1.66e6 8.72e5 5.78e6 2.79e6

Table 4: In-sample errors for models fitted usingp′ = 35 PCA-transformed covariates. In the left half, we
report sum of squared errors (‖εq‖22); in the right half, we report sum of absolute errors (‖εq‖1). The results
for the linearL1 andL2 models are expected—over all linear models, theL2 model minimizes‖εq‖22 and
theL1 model minimizes‖εq‖1. Note that the linear models fare better than two of the nonlinear models:
random forests (forest) and boosted trees (boost). However, the model with the best in-sample fit is the
single regression tree model (tree), a result that does not carry over to the out-of-sample tests in Table 6.
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µ̂ σ̂p p̂ µ̂ σ̂p p̂

Q1 2008 5.46e-11 1.01e+03 1.00e+00 1.24e+00 1.17e+03 1.00e+00
Q2 2008 1.46e-11 1.05e+03 1.00e+00 1.59e+02 1.19e+03 1.00e+00
Q3 2008 5.82e-11 1.05e+03 1.00e+00 2.82e+01 1.20e+03 1.00e+00
Q4 2008 -3.64e-11 1.36e+03 1.00e+00 3.22e+02 1.59e+03 1.00e+00
Q1 2009 1.46e-11 1.09e+03 1.00e+00 2.12e+02 1.69e+03 1.00e+00
Q2 2009 2.91e-11 1.05e+03 1.00e+00 1.79e+02 1.30e+03 1.00e+00
Q3 2009 -4.09e-11 1.08e+03 1.00e+00 1.29e+02 1.26e+03 1.00e+00
Q4 2009 -4.37e-11 1.35e+03 1.00e+00 2.48e+02 1.56e+03 1.00e+00
Q1 2010 7.28e-12 1.06e+03 1.00e+00 7.93e+01 1.15e+03 1.00e+00
Q2 2010 -1.48e-11 1.13e+03 1.00e+00 1.06e+02 1.39e+03 1.00e+00
Q3 2010 8.75e-11 1.54e+03 1.00e+00 2.82e+02 2.66e+03 1.00e+00

Table 5: Maximum likelihood estimates of exponential powerdistribution (EPD) parameters, fitted to regres-
sion residuals fromL1 (left) andL2 (right) models. Fitting was carried out using numerical maximization
of the EPD likelihood. Note that in all cases, the estimated shape parameter̂p equals1 up to machine preci-
sion. Since the EPD reduces to the Laplace and normal distributions when, respectively,p = 1 andp = 2,
this is further indication that the Laplace distribution fits the regression residuals better than the normal
distribution.

L1 L2 tree forest boost L1 L2 tree forest boost

Q3 2008 3558 3635 9434 11730 18257 380 495 1466 816 939
Q4 2008 5633 5727 8127 12153 21565 405 532 1400 793 939
Q1 2009 5203 5380 7582 13478 18462 408 559 1333 764 984
Q2 2009 6376 6110 10798 14122 18688 386 681 1368 901 1107
Q3 2009 4393 5046 8970 13363 19603 333 775 1296 721 917
Q4 2009 3736 3639 20475 13947 17952 378 578 1252 802 897
Q1 2010 5650 5679 7555 10239 13895 427 545 1308 902 960
Q2 2010 4666 4724 29758 29574 32214 430 633 1452 930 1115
Q3 2010 5541 5730 10129 16145 27374 393 509 1438 862 959
Q4 2010 12188 11967 14803 14690 21956 478 688 1505 1014 1108
Q1 2011 7192 10355 9954 15471 20834 497 1235 1519 1004 1126

mean 5831 6181 12508 14992 20982 410 657 1394 865 1005

Table 6: Out-of-sample errors for models fitted usingp′ = 35 PCA-transformed covariates. Two different
metrics are separated by the double vertical bar: to the left, we report root mean squared errors (RMSE); to
the right, we report median absolute errors (MAE). TheL1 model has the smallest MAE for all 11 quarters,
and the smallest RMSE for 8 out of 11 quarters. Averaged over all quarters, the RMSE and MAE of theL1

model are smaller than all other models.
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Figure 4: For each quarter, after fitting the PCA plusL1 regression model, we plot three cumulative distri-
bution functions (CDFs) for the residuals: empirical (black), fitted normal distribution (red), fitted Laplace
distribution (blue). The results clearly show that the Laplace is a better fit to the residuals than the normal.
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Figure 5: For each quarter, after fitting the PCA plusL1 regression model, we plot three cumulative distri-
bution functions (CDFs) for the residuals: empirical (black), fitted normal distribution (red), fitted Laplace
distribution (blue). The results clearly show that the Laplace is a better fit to the residuals than the normal.
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Figure 6: On the left, we plot the median absolute error as a function of quarterq for four different models—
all errors plotted here are out-of-sample errors corresponding to the right block of numbers in Table 6. The
PCA plusL1 model errors are consistently smaller than the errors made by the other models. The errors
are in units of thousands of dollars. On the right, using the PCA plusL1 model, we provide a scatterplot
of the out-of-sample predicted retained earnings vs. true retained earnings, aggregated across11 quarters
of testing. Note that the correlation coefficient is0.9952. The black line is a line of slope1 through the
origin—if the model were perfect, all points would lie on this line.

δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

Eδ
θ width Eδ

θ width Eδ
θ width Eδ

θ width Eδ
θ width

Q3 2008 0.106 198 0.188 424 0.283 596 0.365 830 0.481 1179
Q4 2008 0.073 151 0.197 347 0.290 528 0.358 756 0.428 1004
Q1 2009 0.118 218 0.214 432 0.295 681 0.385 974 0.480 1343
Q2 2009 0.098 213 0.178 495 0.284 742 0.399 1100 0.491 1493
Q3 2009 0.091 179 0.205 411 0.294 620 0.391 858 0.497 1193
Q4 2009 0.092 171 0.189 346 0.272 547 0.353 787 0.440 1062
Q1 2010 0.077 183 0.163 365 0.261 607 0.371 875 0.472 1281
Q2 2010 0.108 241 0.206 513 0.305 752 0.396 992 0.487 1324
Q3 2010 0.100 276 0.214 515 0.322 762 0.419 977 0.525 1288
Q4 2010 0.062 202 0.145 541 0.230 793 0.313 1039 0.393 1300
Q1 2011 0.093 284 0.214 622 0.325 995 0.435 1396 0.511 2105

mean 0.093 210 0.192 456 0.287 693 0.380 962 0.473 1325

Table 7: Out-of-sample interval forecasting results. For five different values ofδ, and for11 quarters, we
provide interval forecasts using quantile regression withτ± = 0.5± δ/2. That is, we forecast theτ+-th and
τ−-th quantiles of the retained earnings for each private company for each quarter, thus obtaining interval

forecasts[r̂−θ , r̂
+
θ ]. The metricEδ

θ is the fraction (16) of true retained earnings that lie within the respective
forecast interval. Note that these numbers are close toδ, indicating accuracy of the interval forecast. We
also show the widths of the forecast intervals (17), averaged across all companies, for all values ofδ andθ.
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1 2 3 4 5

Q1 2008 ret. earnings other equity net profit common stock return on assets
Q2 2008 ret. earnings other equity net profit common stock preferredstock
Q3 2008 ret. earnings restricted cash other equity common stock netprofit
Q4 2008 ret. earnings net profit nocl other equity other expenses
Q1 2009 ret. earnings other equity net profit common stock restricted cash
Q2 2009 ret. earnings other equity net profit common stock nocl
Q3 2009 ret. earnings net profit other equity common stock restricted cash
Q4 2009 ret. earnings restricted cash other equity net profit commonstock
Q1 2010 ret. earnings net profit other equity apo return on assets
Q2 2010 ret. earnings apo other equity net profit restricted cash
Q3 2010 ret. earnings net profit restricted cash apo other equity

Table 8: We present the ranking of variables obtained using the PCA plusL1 ranking described in Section
5.1. Hereapo stands for accounts payable (other), andnocl stands for non-operating current liabilities.
For each quarterq, we list the top five variables in order of how important they are to the PCA plusL1

forecasting model of quarterq + 1 retained earnings. Note that quarterq retained earnings, net profit, and
other equity are present in all11 top five lists.

PCA+L1 PCA+RLM L1 pruned RLM pruned L1 simple RLM simple

Q3 2008 380.3 390.8 370.8 373.1 363.7 367.5
Q4 2008 404.7 403.4 410.7 415.8 414.9 415.7
Q1 2009 407.7 417.2 383.8 392.9 396.2 394.3
Q2 2009 386.0 392.7 405.8 353.8 414.8 356.3
Q3 2009 333.4 323.2 296.9 293.3 288.5 285.6
Q4 2009 377.9 351.6 360.1 341.0 352.8 340.3
Q1 2010 426.8 411.8 410.3 397.7 410.0 373.4
Q2 2010 429.7 407.2 426.5 389.2 415.0 385.9
Q3 2010 392.8 352.6 360.1 348.2 351.3 336.2
Q4 2010 478.0 476.5 487.4 466.3 472.3 469.7
Q1 2011 497.5 530.9 477.3 471.9 487.1 470.0

mean (µε) 410.4 405.3 399.1 385.7 397.0 381.4
sd (σε) 46.5 58.2 54.3 53.1 56.4 55.5

Table 9: We present out-of-sample results for the PCA plusL1 model trained onp′ = 35 variables together
with five models described in Section 5.2. We show the median absolute error (in units of thousands of
dollars) made by forecasting quarterθ+1 retained earnings using quarterθ covariates; the models themselves
were fitted by regressing quarterθ retained earnings onto quarterθ − 1 covariates. The smallest number in
each row has been italicized. The pruned models use only the top five variables for quarterθ − 1 indicated
in Table 8; the simple models use only the three variables common to all11 top five lists.
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1 2 3 4 5

Q1 2008 ret. earnings total liabilities total assets ap other liabilities
Q2 2008 ret. earnings total assets total liabilities common stock treasury stock
Q3 2008 ret. earnings total liabilities total assets short-term debt common stock
Q4 2008 ret. earnings total assets total liabilities treasury stock common stock
Q1 2009 total assets ret. earnings total liabilities treasury stock common stock
Q2 2009 ret. earnings total assets total liabilities treasury stock common stock
Q3 2009 ret. earnings total liabilities total assets ap other assets
Q4 2009 total assets ret. earnings total liabilities ap treasury stock
Q1 2010 ret. earnings total assets total liabilities treasury stock ap
Q2 2010 ret. earnings total assets total liabilities short-term debt ap
Q3 2010 total assets ret. earnings total liabilities treasury stock common stock

Table 10: We present the ranking of variables obtained usingthe PCA plusL1 ranking described in Section
5.1, applied to financial statement data for companies in theS&P 500 index. Hereap stands for accounts
payable, andcommon stockincludes additional paid in capital (APIC). Note that quarter q retained earnings,
total assets, and total liabilities are present in all11 top five lists.

PCA+L1 PCA+RLM L1 pruned RLM pruned L1 simple RLM simple

Q3 2008 74.8 76.4 80.5 81.2 83.2 83.2
Q4 2008 144.4 135.5 117.2 123.8 129.6 127.0
Q1 2009 145.3 124.1 91.0 90.6 86.4 89.3
Q2 2009 68.5 72.7 72.7 73.1 75.5 74.6
Q3 2009 70.2 62.7 66.8 69.2 72.2 71.2
Q4 2009 72.5 75.1 88.1 82.6 86.1 89.7
Q1 2010 76.5 73.0 71.9 70.9 72.0 71.9
Q2 2010 70.4 73.2 69.6 67.5 65.6 71.1
Q3 2010 69.1 71.8 75.4 71.1 70.0 68.3
Q4 2010 87.4 82.1 83.4 82.5 83.2 82.4
Q1 2011 97.5 91.0 82.9 80.6 78.7 79.4

mean (µε) 88.8 85.3 81.8 81.2 82.0 82.5
sd (σε) 29.1 23.2 14.1 15.9 17.2 16.5

Table 11: For the S&P 500 data described in Section 5.3, we present out-of-sample results for the PCA plus
L1 model trained onp′ = 28 variables together with five models described in Section 5.2. We show the
median absolute error (in units of millions of dollars) madeby forecasting quarterθ + 1 retained earnings
using quarterθ covariates; the models themselves were fitted by regressingquarterθ retained earnings onto
quarterθ − 1 covariates. The smallest number in each row has been italicized. The pruned models use only
the top five variables for quarterθ − 1 indicated in Table 10; the simple models use only the three variables
common to all11 top five lists.

PCA+L1 PCA+RLM L1 pruned RLM pruned L1 simple RLM simple

SVBA 3.70% 3.70% 3.68% 3.60% 3.58% 3.57%
S&P 500 5.40% 5.44% 4.72% 4.69% 4.71% 4.73%

Table 12: We compare the relative out-of-sample errors for retained earnings forecasts using both SVBA and
S&P 500 data sets. The overall performance of all models is roughly one percentage point better for SVBA
data. While pruning/simplification of the models does improve the SVBA relative errors, the improvement
is more pronounced for the S&P 500 errors. The relative errors have been computed using theL1 norm as
in (28).
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