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Abstract

We use proprietary data collected by SVB Analytics, an affliof Silicon Valley Bank, to forecast
the retained earnings of privately held companies. Combginmethods of principal component analysis
(PCA) andL!/quantile regression, we build multivariate linear modatt feature excellent in-sample
fit and strong out-of-sample predictive accuracy. The comthPCA and.' technique effectively deals
with multicollinearity and non-normality of the data, arld@performs favorably when compared against
a variety of other models. Additionally, we propose a vadgatanking procedure that explains which
variables from the current quarter are most predictive efribxt quarter’s retained earnings. We fit
models to the top five variables identified by the ranking pthre and thereby discover interpretable
models with excellent out-of-sample performance.

Keywords: L' regression; principal component analysis; private corgsamguantile regression; fore-
casting

1 Introduction

In the United States, privately held companies are not lfyicequired to file financial statements with the
Securities and Exchange Commission (SEC). This is in shamprast to publicly owned companies, which
are required to submit quarterly 10-Q and annual 10-K statésnto the SEC. This contrast extends itself
to statistical studies. The bulk of the literature on quatitie forecasting of financial variables deals with
publicly owned companies, because financial data for suctpaaies is relatively easy to acquire.

In this paper, we analyze data on privately held companiesitenaed in SVB Analytics’ (SVBA)
proprietary database. We use this data to develop modelsgbdinancial variables from the current quarter
to predict retained earnings for the next quarter, and weidéntify which variables are the most predictive
of retained earnings. The data is described in more detiaiwia Sectior{ .

The findings of this paper are significant for two reasonsstRive expect that the statistical methodology
developed here can be fruitfully applied to other data dmith) internal and external to SVBA. Principal
component analysis (PCA) and quantiléfegression have been applied separately in many studigspbu
our knowledge, this is the first study in which the combinaiid these techniques is explored in the context
of forecasting. Second, the models we describe are the thtsttical models built using SVBA's database
of financial statements. The conclusions of this study asggded to confirm and extend domain-specific
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knowledge of the dynamics of privately held companies. Giresir predictive accuracy, the models built
here can potentially be used to improve models for crediti@gcﬂFernandés{, 201)5] and warrant pricing

[Lauterbach and Schultz, 1990] for privately held firms.

1.1 Summary of Results

Using principal component analysis (PCA) and 10-fold cresl&dation, we reduce the dimension of the co-
variate space from7 to 35. This dimensionality reduction solves the problem of digaint multicollinearity
in the original87-variable data set.

We then apply.! regression—also known as Least Absolute Deviation (LAQ)ession—to the PCA-
transformed, lower-dimensional data set. Through a nurabsubsequent tests, we find that the models
built using this combination of PCA anfd' regression possess excellent in-sample fit: analysesrafssign
residuals from bothl! and L? (ordinary least squares) models reveal that the residuatbefiLaplace
distribution far better than they fit the normal distributio This is the first of several indications of the
appropriateness aof!' regression. The development of these statistical methodsesulting in-sample
tests are described in Sectign 3.

Once we have a model where quaref 1 retained earnings have been fit to quarteovariates, we
perform out-of-sample tests. We apply the model to cowesifitom quartey + 1 and see how well we
do at predicting quartey + 2 retained earnings. In Sectibh 4, we report in detail theltesd these tests,
which show that PCA plug' regression outperforms four competing methods: PCA pfusegression and
three nonlinear, nonparametric regression approacheszdver, when we apply quantile regression to the
PCA-transformed data set, we are able to generate accotateal forecasts.

While the models built using 35 PCA-transformed covariaespredictive, they do not by themselves
help answer the question of which of the original variabteshie data set are most predictive of retained
earnings. To address this, we describe in Se€lion 5 a methogihg the PCA plug' model to rank quarter
g variables in order of importance to the regression modeajjtiarterg + 1 retained earnings. Using the top
five such variables, we develop pruned and simplified modéts improved out-of-sample performance.
One of our main findings here is that once the most predictw@bles have been identified using the PCA
plus L' approach, different robust regression approaches maygiedpo yield interpretable models with
excellent out-of-sample predictive power.

In Sectior 5.8, we apply the PCA pliis methodology to quarterly financial statement data for wlypli
traded companies in the S&P 500 index. The data includesa&iates and covers the same period of time
as the SVBA data. Tha8-dimensional data set again displays a high level of muliiearity, so we use
PCA to reduce the dimensionality f8, after which we find thaf! regression models again outperform
L? regression models as well as competing nonlinear, nongaranapproaches. An interesting difference
is that while the PCA plug.! results for the SVBA data set show strong consistency adrbsgiarters of
testing, for the S&P 500 data set, we observe one large jurgparterly error that coincides with the onset
of an economic recession. We note two other differencesirdetne is a highly predictive variable for the
SVBA models, and this variable is effectively replaced bywerth for the S&P 500 models. The relative
error for the S&P 500 models is roughly one percentage pagften than for the SVBA models. Overall,
though the S&P 500 results are preliminary, they serve asnarete demonstration that the techniques
developed in this paper can be effectively applied to otlata dets.

1.2 Prior Work

The literature on statistical modeling of privately heldrf& is not nearly as large as that on publicly held
firms. One way this asymmetry of information manifests ishia estimation of CAPM (Capital Asset
Pricing Model) betas of privately held companies; a popmiathod is to use comparable public companies



for which data is readily availablb_LB_OAALmﬁ.n_andﬂlbh._iomﬁispite this asymmetry, there do exist various
financial databases for privately held companies. Ourwewgiearesearch that studies these data sets is by no
means exhaustive, as our aim is to put our work in the confexdlevant studies.

There is a relatively large amount of work on the problemsssiasing the probability that a privately
held company will default on a loan or go bankrupt. Here we,ffiod example, a discrete-time hazards
model applied to data on 7711 individual firms collected biesa SanPaolo [De Leonardis and Rocci,
@iﬂ, generalized additive modeling applied to data onggian limited liability firms @b@?] and

robit modeling applied to data from the Bureau van Dijk FANHEabase of U.K. firms [Bunn and Redwbood,
]. As with the SVBA data analyzed here, these data setprise financial statements such as balance
sheets and income statements. [Mramor and Valentinci 126¢ed a database of nearly 20,000 Slovenian
companies to develop a liquidity forecasting model—not th Slovenia, the government collects finan-
cial statements from all companies, including young spadompanies, again enabling the authors to use
balance sheets, income statements, and other data paimado company in their study. In the U.S., such
data is not ordinarily collected from privately held comjgan making the SVBA database a rare source.

A noteworthy study involving U.S. firms is that of [Hand, 2008rivately held companies that file for
an initial public offering (IPO) must provide five years ofditied historical financial statementmnd,
] uses this data source in conjunction with firm valuetidata (obtained from Recombinant Capital)
to establish a close relationship between financial statenea and equity values for privately held firms.
More recently, 1] has analyzed private firm ficiah statements collected by Sageworks to
show that firms that provide their lenders with audited fingrgtatements enjoy a significantly lower cost
of debt.

Many studies on privately held U.S. firms have utilized conuia databases from Thomson Ventur-
eXpert [Bhat and Zaelit, 2011] or Venture Economi@]. These databases do not contain
financial statements, either audited or otherwise, andyaiedlly used for their qualitative data (such as
which investors have invested in each company) or finan@ehbles that have been aggregated across
either time or industry sector.

2 Description of the Data

SVB Analytics (SVBA) compiles regularly submitted finarickiatements provided by clients. These fi-
nancial statements are audited prior to delivery and arepdsed of classical balance sheet and income
statement metrics that are reliable and rich in detail.

The data utilized in this study is a subset of this data setnisipg 13 quarters from Q1 2008 to Q1
2011, and only consisting of those companies whose lastévabnths of revenue is less than $75 million.
Note that the names or other equivalent identifying infararaof the clients weraotincluded in the data
set analyzed here. The analysis focused on the performdnstatistical models across the entire data
set—no client’s data was analyzed individually. Howeveis known that, in the aggregate, these clients
predominantly consist of privately held companies.

The primary focus of this paper is on modeling past, presemd,future SVBA clients, not necessarily
all possible privately held companies. The data used ingtudy reflects this in two underlying biases:
companies represented in the data have debt in their capiteture and have passed SVBAS initial via-
bility and risk assessments. Despite these biases, rewtlaffiliated metrics are well dispersed, and the
collection of companies represented in the data consisvafiaty of technology and life science companies
that are in different stages of their lives.

The subset of SVBA data used here has not been used for pribestn either the statistical or financial
literature. This paper represents the first attempt tazatilhe data for any type of forecasting.

As the database is proprietary, we describe the variablésrins of broad categories rather than spe-



cific names. Balance sheet assets are measurdd(hy/—; ', liabilities by {X;}/=5{, and net worth by

{X;}Z35. Income statement revenue is measured Ky}’ —2", expenses by X;}—¢}, and other items

by {X;}/=%. We include two unitless ratioXss and Xr; all other variables are measured in units of
thousands of dollars.

In Table[1, we present summary statistics for each of the 8aries. More specifically, we present the
mean (1), standard deviationo{), percent of samples that lie within one standard deviatioine mean (%
Conc), excess kurtosig), and range (Rng) for all 87 covariates. Here the covariatesaggregated across
all quarters from Q1 2008 to Q1 2011.

By excess kurtosis, we mean the sample excess kurtosis tedhpsing the default kurtosis function
from the R utility packagee1071. This function corresponds to ttée formula described in the literature
[Joanes and Gill, 1998]. Since we have aggregated 13 gsavteth of data, we have a large sample size of
n = 15411 and the differences between the sample excess kurtosigdiusiare negligiblill,
1998].

For a normally distributed random variable, the excesokistvanishesy(= 0), and the probability of
obtaining values within one standard deviation of the mean(.683. In Table[1, the large values ofand
% Conc indicate significant departure from normality for tharginal distributions of each’;. We omit
quantile-quantile plots comparing the empirical quastdéeachX; to those of the normal distribution, but
simply note that all such plots are clearly nonlinear, comfiag non-normality of theX;’s.

By range, we mean the difference between the maximum andgrmamisample values of the covariate.
The large values of Rng in Tallé 1 together with the largeesbf % Conc indicate the following. For each
J € [1,87], despite the fact that the valuesXf are very likely to be within standard deviation of the mean,
we can always find> 1 companies that display extreme behavioXin

2.1 Preliminary Considerations

We number the quarters from Q1 2008 to Q1 2011 using integers{1,2,...,13}. Let N, denote the
number of companies for which we have data from quart&xamining the raw data, it is clear that (&)
fluctuates as a function @f and (b) eachv, is smaller thari844, the total number of unique companies.

We plot in the left panel of Figurel 1 the number of companigswhich we have exactly quarters
worth of data, ag goes froml to 13. Less thar20% of companies are represented for all 13 quarters. For
any given company, the actual list of quarters for which weelgata may not be consecutive. This list will
also vary from one company to the next. These facts motiate look at a sequence of one-quarter-ahead
models rather than a single model fit to multiple quartersittvof data.

2.2 Consecutive Quarter Intersections

Let C,, denote the set of companies for which we have data in two catige quarterg; andg + 1, asq
varies froml to 12. Let|C,| denote the number of companies in the Ggt In the right panel of Figure
[, we plot|C,| versusq. Note that|C,| > 1000 for all but the last quartey = 12. Moreover, one
checks that U;il C,| = 1746. By looking at all intersections of consecutive quarters, analysis covers
1746/1844 = 94.7% of the companies in the data set.

Hence we forml2 pairs of matrices{(X{, X, )}.2,. Here X! contains the quarter data for all com-

panies inCy, andX(} contains the quarter + 1 data for all companies i’,. Both matricesX'g are of size
N x pwhereN = |C,| andp = 87.
Let r; denote the vector of all quarter+ 1 retained earnings for all companiesal. The elements of
r; have units of thousands of dollars. Lef, denote the median oﬁ and then define the median absolute
deviation (MAD):
MAD(T;) = median ‘7‘; —mg| .
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Forqg = 1,...,12, we give in Tablé R the minimum, median, maximum, and medizolate deviation of
r;. Note that the median values are all on the ordei0df Note also that we use the term retained earnings
though the actual value may be negative and therefore mmrascumulated loss.

2.3 Statistical Goal

With these definitions, we can state the first statistical gbthis paper: estimation of regression functions
fq that use quartey information contained iX{ to forecast quartey + 1 retained earnings;, i.e.,

re = f2(X0) + &q. 1)

We are interested in both the in-sample fit and out-of-sampeiormance of these models.

3 Statistical Methods and I n-Sample Tests

31 PCA

Before proceeding, we review the basic theory behind MM] Let1 be an/NV x 1 vector of
ones. LetX be theN x p matrix such that thé-th column ofX is the vectonu;, 1, wherep;, is the mean of
the k-th column of X. Then let

X=X-X, 2)

a centered version of where each column has zero mean. We now compute the singiler decompo-
sition (SVD): N
X =vw?. (3)

HereV is an orthogonalV x N matrix, W is an orthogonap x p matrix, andX is an N x p matrix with
p singular values along its diagonal and zero’s elsewhere.siffgular values are nonnegative and sorted in
decreasing order.

Note that in the above discussion, we omitted superscrhmsabscripts for readability. For our specific
data matrices, we will have the decompositish = V%7 (W7)” where all the matrices in the equation
depend ory andgq. In what follows, we will similarly omit superscripts/sutygpts on the matrice¥” andS.

Theprincipal componentsre the columns o, and the matrix

Y =XW =Vx (4)

is the PCA- transformed data matrix. Note that the column$lofire the eigenvectors of the variance-
covariance matrixs = - 1XTX the eigenvalues d¥ are given by—ETZ

SinceV is orthogonal,Y”Y = %73, i.e., the variance-covariance matrix ¥fis purely diagonal.
By (@), multiplying X by W has the effect of decorrelating the covariates in the caigdata matrix.
The columns ofii can be interpreted as new covariates—each one a linear atiuni of the original
covariates—that are perfectly decorrelated.

Let Y be the matrix obtained by starting withand setting all but thg’ largest diagonal entries to zero.
Then define

X =vewT.

This is a ranky’ approximation ¢ ofX. By the Eckart-Young theorem, the rapkapproximationZ that
minimizes the Frobenius nonmX Z\rpis Z = X'. This motivates the SVD/PCA as a tool for finding
an optimal low-dimensional representation of the origitatia set, which we carry out below. This in turn
gives us another interpretation of the columndigf as an optimal basis in which to represent the original
data set.



We define theV x p’ transformed data matrix by
Y =X'W = XW, (5)

whereWW’ is thep x p’ matrix obtained by retaining only the firgt columns ofiV'.

Scaling. Note that the PCA described above is unscaled. Scalingsrederormalizing the columns of

so that they have variance one. We have found that with SV&a#{a, the regression models using scaled
PCA are worse (in both in-sample and out-of-sample tests) tinose using unscaled PCA. In what follows,
we omit further discussion of the scaled PCA.

3.2 Motivation and Results

To understand why the PCA is well-indicated for this datacampute the condition numbers of the matri-
cesYqO—see they’ = 87 column of Tablé B. The condition number is the ratio of thgést to the smallest
singular value oquO. The enormity of these numbers indicates three issuedigp) k p matrices(YqO)TYq0

are close to singular, (ii) the original data set possesgeffisant multicollinearity, and (iii) naively fitting

an ordinary least squares (OLS) model of the foflrrh o+ YqOBq + g4 is unsound. The multicollinearity

of the data set is to expected—the columns of our origina dat correspond to balance sheet and income
statement variables, and many of these can be expected torisdated, e.g., “accounts receivable” and
“gross sales.”

A standard idea to combat these problems is to use PCA-transtl, lower-dimensional representations
of the data matricemmoz Chap. 8]. In file= 35 andp’ = 20 columns on the left half of Tablé 3,
we record the condition numbers of thex p’ matrices(YqO)’ computed usind {5). The condition numbers
for these matrices are much smaller than for the original dat.

Another way to view the effect of dimensionality reductientd® examine correlation matrices. L&}
(respectivelyZ{I) denote the correlation matrix obtained from the data mz}gﬂ (respectively,(YqO)’). The
maximum absolute value of the non-diagonal entriegpfs given in the “Max” column of Tabl&]3—for
some quarters, there are covariates with significant @iroal. Continuing into the right half of the table,
thep’ = 87 (respectivelyp’ = 35 andp’ = 20) column gives the number of above-diagonal entrieg pf
(respectively,Z;) that are at leasd.1 in absolute value. Note that the = 35 andp’ = 20 columns are
identically zero, again indicating thanO)’ does not suffer from the multicollinearity Mqo.

Putting together the results of Table 3, it is clear thatg$ICA to reduce the dimensionality of the data
set remedies the three issues (i-iii) described above.

3.3 Sdectingp/

The next PCA-related guestion to answer is: how do we chplgke number of columns 021&{10)’? In the

left panel of Figur€R2, we plot thgth singular valueZ;; of the centered data matrPZ? from Q1 2008. The
plots for other quarterg > 2 look qualitatively the same. The plot shows that if our goarevmerely to
devise matricesYqO)/ that closely approximat&?, then we would expegt = 20 to be an excellent choice.
As our goal is instead to ug&,?)’ to predictr}, we remind the reader that the PCA was performed

only on the data matricex’g. PCA variables that correspond to small singular values imé&gct be good
predictors ofr;. The right panel of Figurél2 showsg(X;;) versus;j. This shows that choosing any
1 < p/ < 80 will yield a matrix (Yqo)’ with a far better (i.e., smaller) condition number than tik mhatrix
Y0,

! Our strategy is to selegt based orl0-fold cross-validation. For eaghe {1,2,...,12}, we randomly
partition C,, into 10 disjoint subset€’,.; of approximately equal size. Lé’f;;i denote the data matriX;
restricted to only those companiesap.;.



We loop over each fold, each time taking{X};ﬂ,X;ﬂ) to be the test set. For eachthe training data
consists of all rows oth and X; that arenot present in the test set. We apply the PCA to the training
set data, reducing the number of columns in fhe- 0 data matrix top’ € [5,80]. We then fitL! and
L? regression models to the PCA-transformed training set ditally, we test the performance of these
models on the test set data that has been held out. Our nwttest set performance is the median absolute
deviation between true and predicted retained earningte tNat the details of fitting and testing the models
are described in detail below.

Averaging over the th&0 folds and over thé2 quarters, we obtain the results plotted in Figure 3. Note
that bothL!' and L? test error curves decrease monotonically frgm= 5 until p’ = 35. Forp’ > 35, the
test set errors are either greater or only marginally leas the error ap’ = 35. Therefore, in the remainder
of the study, we usg’ = 35 as our baseline value of.

3.4 Linear Models

In this section, we us&’q’ to denote(YqO)’. We discuss two competing methods for fitting linear models.
L? (Ordinary Least Squares) Regression. We propose a model of the form

r; =1 Y]] B,+¢, (6)

where, is a vector ofp’ + 1 unknown regression coefficients, angstands for the residual error. The
column of1's included in the matrix takes care of the intercept. We fifjdoy minimizing the sum of

squared residuals,
|Cql

T
HEqH% = &&= Z(qu)z-

j=1
The solutions, satisfies the normal equation

o] [ =[]

Note that1”'y; = 17X, W, = 0, since each column ok, has mean zero. We I& denote the matrix
¥, truncated to sizéV x p'. Then

[(;;T} L vl= []\(;q (z;?);z;d :

which is a purely diagonal matrix, so the solution fiyris trivial:
N1 o’ 17
— q 1
& [ 0 <<zz;>TE:;>-1} [(Y;)T]

L' and Quantile Regression. We propose a model of precisely the same form as above:

T; = [1 Yq/] By + €q-



The only difference is in how we solve f@. In L' or Least Absolute Deviation (LAD) regression, we find
B4 by minimizing the sum of absolute residuals,

1Cql

leal = 3 leg, - (7)
j=1

Several numerical methods efficiently solve this mininizraproblem [Barrodale and Robetts, 1073; Bloomfield anig®i
1980 Li and Arcb, 20(b4].
Quantile regression [Koenker and Bassett, 1978; KoenkeHaflock,[ 2001} Koenket, 2005] is a gen-

eralization of the above procedure. Foe (0, 1), we define a tilted version of the absolute value function:

pT(m):{Tx x>0

(r—1z x<0.

Suppose we are given scalar détg} ¥ ,. Fix 7 € (0,1) and consider

N
F(9) =) pr(G—9).
=1

Let ¢* = argmin F,(£). One checks that* is equal to ther-th quantile of the scalar data st} ;. We
3

thus define quantile regression as follows: fog (0, 1), find 3, that minimizes

1Cql

legllir = ZPT(qu)' (8)
j=1

Note that whenr = 0.5, we havep.(z) = |z|/2, and so minimizing|e,||1,0.5 is the same as minimizing
g4l as defined in{7).

Applied to our data set, we see that quantile regressionl$ailmodel for the-th quantile of the next
guarter’'s retained earning%. In the special case of = 0.5, the procedure reduces Id regression and
produces a model for the median of the next quarter’'s raﬂaémnings:*,}.

3.5 Nonlinear Models

To compare against the linear models, we also fit three nesrljmonparametric regression models. Unlike
the linear models, these models can be tuned using usefisggrarameters. To determine optimal values
of these parameters, we follow a 10-fold cross-validatiootedure, similar to the one described in Section
B.3. As before, in the-th fold of quarter, the test set i$X?.;, X1..), and the training set consists of all rows
of Xg andX; that arenot present in the test set. We fix = 35 and vary the parameters of the nonlinear
model. For each parameter choice, we obtain the error battirectest set retained earnings and the model
retained earnings using the training set predictors. Wesareahis error using both root mean squared error
(RMSE) and median absolute error (MAE).

Averaging over quarters and cross-validation folds, wermeine the choice of parameters that mini-
mizes each error metric in turn. We have taken care to chauee/als of parameters such that the mini-
mum does not appear at the boundary of the interval—if it deesrerun the cross-validation study using
appropriately enlarged intervals.

Most importantly, we do not tune the parameters of the nealimodels using out-of-sample data. We
use 10-fold cross-validation on in-sample data to mimicghecedure that one would apply if one were
creating true forecasts of the future using data that is pnbsent now. We follow this philosophy of
parameter selection for each of the nonlinear models.
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Regression Trees. We use the R packagepart to test the performance of regression tr@iman,
]. The package allows the user to set several parametersse the default values of all parameters
except for minsplit and cp. For a particular node, to deteemvhether the node should be split, rpart checks
whether the number of instances associated to the nodesiasatdqual to minsplit; if not, rpart will not split
the node. Similarly, for a candidate split, the parametéas ¢pe minimum factor by which the loss function
must be reduces.

Searching across 29 values of cp betwe@n’ and10~! and 20 values of minsplit fromto 40, we find
that the parameters that minimize test set RMSE are minsp#itcp = 4.0 x 10~%, while the parameters
that minimize test set MAE are minsplit 2,cp = 3.0 x 1075,

Random Forests. We use the R packageandontor est to test the performance of random forests
M,@l} Again, while there are many parametersttimuser can set, we use the default values
of all parameters except for ntree and mtry. Here ntree isitieber of trees in the forest, and mtry is the
number of covariates for which candidate splits are asdesSearching across 20 values of ntree frain

to 1000 and 17 values of mtry from3 to 35, we find that the parameters that minimize test set RMSE are
ntree= 500, mtry = 35, while the parameters that minimize test set MAE are ntei0, mtry = 27.

Boosted Trees. We use tharboost function in the R packagkl ackboost to test the performance
of boosted regression trees [Bilhimann and HotHorn, 200f&nboost function uses conditional infer-
ence trees as base learners for the boosting algorithm. Welefault values of the parameters for the
boosting algorithm, but vary two tree parameters, mingpld cp, that have the same interpretation as the
corresponding rpart parameters described above, exagptiimmber of instances” is replaced by “sum of
weights.”

We search across 27 values of cp frefm® and10~! and 20 values of minsplit fror to 40, and find
that the parameters that minimize test set RMSE are minspli2, cp = 0.01, while the parameters that
minimize test set MAE are minspht 14, cp = 0.1.

Remarks. In the remainder of this paper, when we report eitfier|| or RMS errors, the nonlinear
regressions use the optimal RMSE parameters given aboveilaBy, when we report eithelf - ||; or
median absolute errors, the nonlinear regressions usgtimab MAE parameters given above. Also, when
we describe the results of the above procedures, we refee tmodels by the one word abbreviations “tree,”
“forest,” and “boost.”

3.6 In-Sample Results

Forl < ¢ < 11, we fit each of the five modeld.{, L?, tree, forest, boost) described above. Let us first
examine the in-sample errors. For each model and each gyaste tabulate in Tablgl4 both the sum of
squared errorge,||3 and the sum of absolute errdfs,||;.

It is mathematically guaranteed thiat regression minimizels, ||, andL? regression minimizege, ||3
across allinear models; these results are borne out in Table 4. There areasts, fconsistent across alll
quarters, that were not predetermined. First, two of thegmonlinear methods, forest and boost, produced
absolute and squared errors that exceed those producee bgehr models. Second, the model with the
best in-sample fit is the single regression tree (tree). uEates that for the data set considered here,
regression trees do belong in the list of models againstiwtticcomparel.' regression. However, as we
find later, the tree method’s out-of-sample results do ndtimigs in-sample fit.



Next we examine the residuads for both theL! and L? models. For each quartgr we use maximum
likelihood estimation (MLE) to fit normal

Y
P (aino) = e (-0 ©

and Laplace
Fo(@nb) = %exp (- |2 = A') (10)

densities ta,. These particular distributions arise from the followiransideration: in the linear modél (6),
if the residuals:, are i.i.d. samples from a Laplace (respectively, normatritiiution, thenZ' regression
(respectively,L? regression) yields the maximum likelihood estimate (ML&) 3, .

We denote the MLE of a parameter (eq),using a hat (e.gg). We form two hypotheses:

e Hy (null): ¢, follows normal, &)
e H, (alternative):e, follows Laplacé\, b)

Let L)Y and L} denote the maximized values of the likelihood functionstfier normal and Laplace densi-
ties, evaluated on the same set of residagldNVe form the test statistic

N
q
Tq = log F
q
For both L' and L? residuals, we obtain one value @ for eachq € {1,2,...,11}. The asymptotic

distribution of7; has been calculate@OS]—applying this caloogtwve find that for all quarters,
and for bothZ! and Z? regression residuals, we can rejéf with ap-value less thag.2 x 10716,

We can go further in our analysis of the residuals. Both thenaband Laplace densities are special
cases of the exponential power distribution (EPD)

_ 1 | —pP
@) = S 5 1y O ( po? > ' a1

Forp = 2 andp = 1, respectivelyf(z) reduces to the normal and Laplace densities. Note that iBRH2,
the decay rate of the distribution’s tail is controlled by fharametep. For bothL! and L? residuals, we
use numerical maximization of the likelihood function todfif, 6,,, andp. The results are given in Talilé 5.
In all casesp is found to equal to machine precision, again indicating that the Laplacgiligion fits the
residuals better than the normal.

In Figured# an@5, we plot three cumulative distributionclions (CDFs) for the residuats, from L!
regression. In black, we plot the empirical CDF, while inéland in red, we plot the fitted Laplace and
normal CDFs. These plots suggest that not only is the Lagltebution a better fit to the residuals than
the normal, but also that the Laplace distribution fits ttséd@als closely in absolute terms.

Overall, the analysis of residuals helps to understand Whyegression works well for this data set.
For an established, publicly traded company, large flunatin retained earnings may be viewed as rare
events. For young startup companies, on the other hand estecits are much more likely. This fact shows
itself in our analysis; the residuals’ distribution, likeet Laplace distribution, has heavier tails than the
Gaussian distribution. Quantile/ regression is one of several regression procedures thablaust with
respect to heavy-tailed errofs [fFox, 2008, Chap. 19], neiiwell-suited for the problem considered here.
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4 Qut-of-Sample Tests

In what follows, hats signify statistical estimates. Foample,r; and% are, respectively, the true and
estimated retained earnings from quarter1 for all companies irC’,. Suppose we have already used either
L? or L' regression to determine the vector of unknown coefficigptsThen our model is

rg=[1 (Y7)] By (12)
with residual error R
€g = r; —ri. (13)

We now describe how to apply this model to forecast retaireediegs for future quarters. Let us ugé (5)
and [2) to write

ri= LX) = [1 (X - XDy By (14)
The function f, takes as input the quarterdata matrifol) and produces as output the vector of quarter

q + 1 retained earnings foreca&%
Suppose we have the data mathg from quarterf > ¢. We can use this data to forecast retained
earnings:aé for quarterd + 1. Our forecast will be

rh = J(X§) = [1 (X9 — X)W | By- (15)

4.1 Results

For eachy = 1,2,...,11, we use(Y,”) andr} to build L', L?, and nonlinear regression models. To test
the out-of-sample performance of these models, we appiy thethe next quarter’s data, i.6.= ¢ + 1.
We therefore obtain retained earnings forecasts for 1lteps#r+ 1 = 3,4, ...,13.

In Table[®, we report the out-of-sample performance for therfiodels [, L?, tree, forest, and boost)
across 11 quarters of testing. To the left of the double carbar, we report the RMSE

1 o~
ERMSE — T'l _ T'l 2.
[7] |Ct9| ” 0 9”2

To the right of the double vertical bar, we report the MAE
EYAE — median‘ré — 7?;‘ .

Across all quarters of testing, and in both RMSE and MAE rastrtheL! model has the lowest out-of-
sample error. The performance of thé model also shows strong consistency across different epsart
The difference between the performance of the linear antine@r models is striking. Note that the tree
model, which had the smallest in-sample errors in Table dsdwt perform well out-of-sample. Based on
our testing, there is no reason to prefer any of the nonlineadels over the.! model.

Recalling Tablé R, we see that the median absolute outropksaerror for the PCA plug!' model is,
roughly, two orders of magnitude less than the median vdltleeaquantity being forecast, retained earnings.

In Figure[®, we plot the median absolute erré$"F as a function of). We obtain one curve for each
of four models included in our test—the errors for the treedet@re excluded because their average is
near1400. The L' model consistently displays out-of-sample errors less #my of the competing models.
Moreover, thel.! model’s error is consistent from one quarter to the next.
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We have reported results for models trained on the PCAfvamed data se(YqO)’ with p’ = 35
columns. Note that when we changeto either20 or 80 and keep all other parameters the same, the
errors of all the models increase. Though filemodel still has the least error, the out-of-sample results
again indicate thagpt’ = 35 is a good choice for the number of columns to retain in the R@Asformed
data matrices. N

Also in Figure[6, we plot scatterplots of the predicted redi earningsg versus true retained earnings
r§ aggregated across all quarters of out-of-sample testing. Note that the corrfatioefficient i<).9952.

We include a line of slope one that goes through the originthéf models were perfect, all points would

sit on the line. Note that we have omitted quarter-by-quastatterplots because they all look nearly the
same—the large majority of points lie close to the line, aochsionally, we find large differences between
true and predicted retained earnings. Overall,ihenodels feature excellent out-of-sample performance.

4.2 Interval Forecasting

Thus far we have been focused on point forecasting. For agempany, a point forecast is a single number
that is our best estimate of the next quarter’s retainedireggn Here we explore a different approach, that
of interval forecasting. For each company, we seek an iatéayb] that has a certain probability of
containing the true retained earnings.

This approach is easily implemented using quantile regmesg=or a given value of, we taker* =
0.5+ §/2, so thatr™ — 7= = 4. We perform quantile regression with these two values; cxbbtalnlng

regression coeff|C|en1;§Jr andj; . Using these coefficients i (15), we obtain the up@%rand Iowerre
ends of the forecast mtervals for all quaréer- 1 retained earnings:

h = LX) =1 (xg-XDvey] o
To evaluate accuracy, we examine
#{ré € [re_,rﬂ}
E = : (16)
’ |Ch
the fraction of all true quartet + 1 retained earnings that actually lie within the forecastrivels.
In Table[ 7, we give the results of this procedure for valuesinf{0.1,0.2,0.3,0.4,0.5}. For each value

of §, and for each of 1 quarters of out-of-sample testing, we see tﬁgﬁs close to for each quartef. In

short, the interval forecast is accurate: the empiricalbabziiitiesEg are close to the desired probabilitiés
For reference, we also give the mean width of the forecastvat,

e~

WS = mean (r; — 7“6_> , 17)

for each value ob and each quartet. The mean is taken over all companies from quaitehs expected,
these intervals grow in size asncreases.

Given the consistency of the results from one quarter to ¢éxé me could easily adapt this procedure in
two different ways. First, if we desire empirical probatis Eg that exceed some fixed valdg, we could
determine how much larger thap we should také. Second, if we desire forecast interval widﬂ’hg; less
than some fixed value, we could determine how large we canftaKRable[T indicates that both of these
goals are achievable, and hence that this procedure cowaddmed for various applications.

5 Variable Ranking and Model Pruning

Thus far our mode[(14) is expressed in term8®PCA-transformed variables. This relatively large number
of covariates, each of which is a linear combination of theB@inal covariates, yields a model that is not
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easily interpretable. Moreover, these models do not helfowswer the question of which of the 87
original covariates is most predictive of retained earginig order to address these issues, we seek to use
the information already present in the PCA pliis model to determine which of the original variables is
most predictive.

Before proceeding, let us give two additional motivatingsens for performing the study in this way.
Suppose we were to use forward stepwise modeling on thenatigpace of 87 covariates to determine the
top J most predictive variables. In this approach, we start witfpredictors and add one at a time, each time
looping over all predictors that have not yet been chosersatatting the one with the greatest predictive
power, as defined either by hypothesis tests or by crosdatalin test set error. This requires searching
through87!/(87 — .J)! possible models, a task that becomes computationally uliffis ./ increases.

Suppose we were to use backward stepwise modeling on thiralripace of 87 covariates to determine
the top five most predictive variables. In this approach, tag svith a model fit to all predictors and remove
one at a time, each time looping over all predictors that mmte/et been eliminated and removing the one
with the least predictive power, as defined either by hymth&ests or by cross-validation test set error.
Here our progress would be blocked by multicollinearity,nasnifested in the large~( 10'%) condition
number of the data matrix with all 87 columns.

The approach we now describe is far more efficient than fatwtgpwise modeling and also avoids the
problem of multicollinearity that prevents us from usingbaard stepwise modeling. Let us express the
PCA plusL' model in terms of the original covariate space. We partiti@(p’ + 1)-dimensional vector of
coefficientsg, as follows:

f= [ a7,

so thats) is the scalar intercept arﬁj:pl is ap’-dimensional vector of the remaining coefficients. THen (14
can be written R .
0
rd = B01 + X0, (18)

wherey, = (WQ)’B(}ZP’ is ap-dimensional vector of regression coefficients. Theseegsjon coefficients
can be viewed as multiplying the original balance sheet aooime statement variables present in the mean-

centered data matriX? = X0 — X_g.

5.1 PCA plus L' Variable Ranking

We do not expect that al} = 87 of the coefficients iny, are equally important, and we seek a ranking
of variables in order of importance to the forecasting modekt~y, = [yJ 72 --- 4] denote the

components ofy,. Forl < j <p, Ietxg denote thej-th column of X?2. Then [18) is

p
rh =g+ yix. (19)
j=1
This statistical model is still written in terms of the colomof the mean-centered data matrix. We assume
that each row ok; is in fact a sample of a random variahlg. This implies the probabilistic model

p
F= 62 + Z ngj, (20)
j=1

wheref? is itself a random variable. Suppose that eatlis bounded, i.e., there exist finite:;, M/;) such
thatm,; < ) < M;. Then itis clear thaf is also bounded. We may estimate the maximum value by

. 0 . )
Tmax = 5(1 + Z 'VéMj + Z ’yf]mj,
74>0 73<0
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and the minimum value by
fon < A+ 3 7+ 3 M
7>0

'yg<0
These inequalities become equalities if, for example, dmelom variable§z’} are pairwise independent.
This implies that the range @fcan be estimated via
range{f) = Pmax — "min
> > (M —my) + Y vl (my — M)

73>0 74<0
p . p . .
> Z Va1 (M; —my) = Z || range(27) .
p =1

Our variable ranking procedure relies on the principle thatterm on the right-hand side that explains the
largest fraction of the range éfcorresponds to the most important variable in the model. Weefore use
the sample range of) as an estimate of the range:f, and compute

Tj = || range(x;)

forj =1,2,...,p. We define the:-th most important variable to be the one that hasithie largest value
inthe se{I", T, ..., T'p}.

Suppose we were to take the variance of both sides_df (20)umisg that the variance-covariance
matrix of the random variablege’ le is purely diagonal, we obtain

Var() =y " (v3)?Var (27) . (21)

J=1

The right-hand side is the sum of the squares of the starmardegression coefficients for the modell (20).
Using these standardized coefficients to rank the impogtafcariables in ar? multivariate model is a
classical technique.

We therefore view each; as a regression coefficient that has been standardized theimgnge rather
than the standard deviation. Other authors have referitb@s$e coefficients as maximum impact coefficients
||Alderson and Nielsen, 20b2]“:j measures the maximum possible impact thatjttie input2’/ has on the
outputr.

Since the SVBA data set consists of audited, cleaned dataeweextreme values in any of the variables
as important indicators, rather than as outliers. The tdjtering of values around the mean in each of
the covariates in Tablel 1 suggests that only by looking aem values would one be able to extract
information that helps predict retained earnings. Thisivates the use of the range, which is maximally
sensitive to extreme values in each of the covariates.

We apply our ranking procedure to each of the PCA glliorecasting models developed above, one
for each ofl1 quarters. The rankings of the top five most important vagisican be found in Tablé 8. Note
that if one is interested in forecasting quarer 1 retained earnings, the most important variable is always
the retained earnings from quarterBesides retained earnings, net profit is another varidldledppears in
all 11 top five lists. Both results are highly intuitive from the pbof view of standard accounting principles.
Note that the variable “other equity” also appears inlaltop five lists.
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5.2 Pruned/Simple Models

Let us define gruned modeto be one that predicts quarter+ 1 retained earnings based on the top
five quarterq variables. Starting from the mean-centered data mafgxwe delete all but five columns

corresponding to the top five variables for quartelhe resultingV. x 5 matrix will be denotedP,; let Pg
denote thej-th column of this matrix. We assume that the first three colsiof P, correspond to retained
earnings, net profit, and other equity, respectively—ttarsethe three variables common to Elltop five
lists in Tabld 8. When we fit a model to these three variablestefer to it as aimple model

There are two reasons to build pruned and simple models:o(ipprove the interpretability of the
models, and (2) to quantify how well the procedure from Sedb.1 identifies variables with predictive
power.

With these definitions and our rankings in mind, we fit five éinenodels and one nonlinear model to
the data. In all cases, residual error is agin (13). We firstriee the linear models:

1. PCA plus RLM. The form of the model is the same a$1n (6):
T; = [1 Yq/] Bq + &g

As before Y, is the PCA-transformed data matrix wjth= 35 columns. The only difference between
this and the PCA plu£! model is that the coefficients, are found by minimizing

1Cql

legllp, = ZP(qu)a (22)

j=1

where p is Tukey’s bisquare function [Maronna el al., 2k)06]. We udiel this model because our
earlier analysis indicated that the regression residual® lhails that are heavier than those of the
normal distribution. Such behavior suggests the use ofstalegressionf.' and RLM are competing
robust regression techniques.

2. L' pruned. This is ai.' model fitted to each quarter’s tépvariables:
e =B+ PyBy® + gq. (23)
The regression coefficients, are found by minimizing|e||;.
3. RLM pruned. This is the same model @s|(23),
T; = 58 + Pqﬁéﬁ + &g (24)
except that the regression coefficiefifsare found by minimizing|e,||, from (22).

4. L' simple. This is an.' model fitted to the three variables that we have found are camtmall11
top 5 lists in Tabld 8:
rq =By + Py By + PiB; + P By + <4, (25)
where the regression coefficierts, 51, 52, 33} are found by minimizing|e,]|;.
5. RLM simple. This is the same model &s](25),
re =By + P B; + P2B2 + P2B3 + &g, (26)

except that the regression coefficiefitsare found by minimizing|e, ||, from (22).
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The only new nonlinear model we fit is an additive model of therf

5

re = B9+ [1(P)) +&q 27)
j=1

The fg functions are nonparametric smoothing functions that ateutated using a backfitting algorithm
[Hastie et QHMQ]. We include this model to check wheth@onlinear, partially nonparametric model
fitted to a small number of influential variables performadrethan a linear model. As it turns out, for all
quarters of testing, its error exceeds the linear modetsrgby a large margin; we do not include these
results in tables given below. We mention the results of thditere model to again confirm the suitability
of linear models for this problem.

For the five new linear models described above, out-of-sammgdian absolute errors are given in Table
[@. We also include errors for the PCA plii$ model, and we italicize the lowest error value for each guart

The PCA plus.' model is competitive. At no point does it achieve the lowestaf-sample error. How-
ever, for a purely machine-generated model, into which we hiavested no intuition or domain-specific
knowledge, its performance is more than adequate. For tiegh@ L' model, the standard deviation of
the errorss., a metric that measures the consistency of the model, isnh#est across all six models.

The PCA plus RLM model gives slightly smaller average ermantthe PCA plud.! model, but itss.
is the highest across all six models. This large value steons the relatively large error incurred in the last
quarter of testing.

Pruning both thel.! and RLM models decreases their out-of-sample errors. Foithmodel, this
comes at the expense of a larger However, the pruned RLM model achieves what we believe is an
excellent balance between low average erroand consistency.—both values are second best across all
six models.

Finally, the simpleL! and simple RLM models have the smallest mean out-of-sanpbese but both
o. values have increased slightly relative to the pruned oessof these models.

The differences between the pruned and simple models gig.slihe first conclusion we draw is that
the variable ranking procedure from Section 5.1, which tisesegression coefficients from the PCA plus
L' model, succeeds in finding models with superior out-of-darpprformance. The results from the most
predictive RLM models are consistent with the hypothesi the variables included in the pruned/simple
models are the most predictive variables.

Our second conclusion is that once the top variables have ideatified, we can obtain strong out-of-
sample performance via either robust regression technique

5.3 Comparison with Resultsfor Publicly Traded Companies

In order to test whether PCA plus' regression works well on other data sets, and also to umshersome
of the differences between models of privately held andiplyltfaded companies, we have applied the tech-
niques described in this paper to financial data for comganithe Standard & Poor’s (S&P) 500 index. The
source of this data set is S&P Capital 1Q, a division of StasidaPoor's ht t p: / / www. capi t al i g. con).
This data set consists of 38 financial variables extractenh fjuarterly financial statements over the same
time span as the SVBA data. These 38 variables are standaritbaheet and income statement variables,
all measured in units of millions of dollars. One of the vhl&s is retained earnings, which will again serve
as the dependent variable in our models.

Our goal here is to highlight similarities and differencesvieen the PCA plug! methodology applied
to the SVBA data versus the S&P 500 data. We therefore presentesults in summary form, mostly
omitting detailed tables and figures. In future work, we giacarry out a detailed analysis of forecasting
models for the S&P 500 data.
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Examining each of the 38 S&P 500 covariates in turn, in theesamy as in Tablgl1, we find similar
trends. For each covariate, the percent of samples thatitiégnwone standard deviation of the mean is
between 92.4% and 99.9%. For each covariate, the samplesekadosis is betweesB and3603. Other
metrics such as the sample range and sample standard ole\dadi not as consistent from one covariate to
the next, unlike what we found in Tallé 1. We attribute thisoimsistency to the different constituencies
represented in the respective data sets. The companies iB&R 500 index cover a broader range of
industry sectors than the companies in the SVBA databasecdinpanies in the SVBA database have been
or currently are lending clients of SVB; in contrast, the gamies in the S&P 500 index are not necessarily
selected for their credit worthiness.

Importantly, the S&P 500 data displays a similar level of ticollinearity as the SVBA data. Plots of
the singular values reveal the same trends as in [Big. 2, withral singular values lying close to zero.
Applying the same 10-fold cross-validation study desdtilveSectiorf 3.3, we produce a plot that is similar
to Fig.[3—the only difference is that the optimal number off€ansformed variables is now = 28.

Comparing the results of linear and nonlinear models aslitel& we find that the PCA plus! model
features the best out-of-sample predictive accuracy fordtained earnings of S&P 500 companies.

Next, we apply the variable ranking and model pruning teghes from Sectioh 5.2 to the PCA plus
L' model for the S&P 500 data. We present the top five variablegdoh quarter in TableJ10, and the
out-of-sample results for pruned and simple models in Tafile

A key difference is that the PCA plus' model’s errors are now much less consistent from one quarter
to the next. For the SVBA data, if we examine th&errors to the right of the vertical bar in Figl 6, all the
errors lie in the tight interval333, 497]—the coefficient of variation (standard deviation dividgdrbean)
for these errors i8.11.

However, for the PCA plug! model applied to the S&P 500 data, the errors lie in the imlg6®, 145],
with coefficient of variation equal t16.33. Moreover, the error for Q3 2008 i&t.8, while the errors for
Q4 2008 and Q1 2009 arel4.4 and145.3. The increase in error from Q3 2008 to Q4 2008 is 96%, far
higher than any increase (or decrease) in consecutiveequamrors observed for the PCA pliis model
on the SVBA data. Noting that Q4 2008 coincided with the beiig of a serious economic recession, we
hypothesize that the consistency of the forecasting madteirivately held companies may be due to their
relative insulation from macroeconomic forces, as conpérgublicly traded companies.

The simple models in Table 111 are trained on the three vasabbmmon to all 11 top five lists in
Table[10: retained earnings, total assets, and totalitiakil We can see that model pruning/simplification
decreases both. ando. as compared to the original PCA plii$ and PCA plus RLM models. We conclude
that while the identities of the most predictive variablasitout to be rather different for privately held versus
publicly traded companies, the pruning method works welbfath data sets.

Examining the regression coefficients for the pruned angleirmodels of S&P 500 retained earnings,
we find that the coefficients of total assets and total liaédiare nearly equal in magnitude but have opposite
sign. This implies the following simplification:

rg = 62 + (1.017)ret. earningst (0.0117)]total assets- total liabilities|
= By + (1.017)ret. earningst (0.0117)net worth
The coefficients we have reported are for the final quarteuagd PCA plud.! model. The true coefficients
for total assets/liabilities are very slightly larger/dlmathan +0.0117—we have averaged the absolute
values of the true coefficients to produce this number. Timepawsable model for the SVBA data reads as

follows:
re = [38 + (1.003)ret. earningst (0.768)net profit+ (0.00282)other equity

For a publicly traded company, the optimal model appearset@ie where quarterly retained earnings
increase by a small percentage (in the above da$e%) of the net worth (or book value) of the company.
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Net income/profit does not enter directly into this modellatfeor a privately held company, the optimal
model appears to be one where retained earnings increasaitha combination of the past quarter’'s net
profit plus a small percentage of the company’s other eqWg.see that the identities of the top variables
has changed, and that this change creates different typesd#ls.

Because the data sets differ in units (thousands versu®msilbf dollars), we present one final set of
results showing relative errors in tiié norm. Using the same notation as in Seclion 4.1, we defineaftr e
quarterd the quantity R

|
1

REL_H
B =

(28)
I

Herer; (respectively,r;) is the vector of true (respectively, predicted) retainachangs. Computing the
component-wise relative errors between these vectorstipassible due to occasional zero entriesjn
Note that the&RE- metric does not suffer from this problem.

In Table[12, we compare the relative out-of-sample errorgdtained earnings forecasts using both
SVBA and S&P 500 data sets. The overall performance of alletsod roughly one percentage point better
for SVBA data. While pruning/simplification of the modelsedoimprove the SVBA relative errors, the
improvement is more pronounced for the S&P 500 errors.

6 Conclusion

The combined PCA plug! model forecasts retained earnings with greater out-ofst&mccuracy than a
variety of other regression techniques: OLS, trees, fsyestd boosting. Using the PCA pliid model to
select variables, we are able to develop reduced-order Imadere the out-of-sample accuracy has been
improved still further. As we have explained, a key driverttee success of!' and other robust regression
models is our finding that the retained earnings residualslistributed with heavier-than-normal tails.

Based on the success of this method, we see three areasuferfudrk. First, we seek to further explore
the differences between privately held and publicly tradechpanies. We seek to investigate more deeply
the financial statement data for companies in the S&P 50&jrite results of Sectidn 8.3 give us a number
of hypotheses to test. Second, the current study has foarseding a novel data set to develop a sound
framework for predictive modeling. Incorporating domajmecific knowledge into this framework, e.g.,
developing separate models for different industry sectarsising variable amounts of past data based on
historical conditions, may lead to improvements. Finallg seek to generalize the codes and algorithms
developed here to forecast financial variables besidemegt@arnings.
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X35 2.1e+3  6.1e+3 93.4 8.1le+l 1.2e45Xrg 1.8e+0 5.5e+1 99.6 1.8e+3 4.1e+3
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X400 1.9e+2 3.0e+3 98.9 23e+3 1.8ebXgs -2.4e+0 7.3e+2 99.9 6.7e+3 1l.le+b
X4 1.8e+3 5.6e+3 945 95e+l 1.0et5Xg; -1.2e+3 3.7e+3 92.7 4.8e+2 2.7e+5
X2 5.2e+1 5.3e+2 98.1 5.2e+2 2.let4Xgs -1.8e+2 8.1le+3 100.0 6.9e+3 7.2e+5
X4z 9.5e+l1 1.2e+3 98.7 4.9e+2 3.3et4Xsr 1.0e+0 1.8e+0 948 5.6e+2 8.7e+l
X4 9.0e+2 6.8e+3 97.7 6.5e+2 2.8et5

Table 1:Mean (), standard deviationo{), percent of samples that lie within one standard deviaticthe mean (%
Conc), excess kurtosig), and range (Rng) for all 87 covariates, aggregated actbgaarters from Q1 2008 to Q1
2011. All X;'s have units of thousands of dollars, except for the urstlesiosXgs and Xg;. For a normal random
variable,y = 0 and % Conc= 68.3. Large values ofy and % Conc indicate significant departure from normality for
the marginal distributions of eacki;. Also note the large values of Rng, implying that for egclve can find> 1
companies displaying extreme behavioriin.
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Figure 1: The total number of companies in the studygist. The left panel shows that if we try to study
only those companies for which we have many quarters wordaiaf, we will leave out most companies. For
example, less than 20% of the companies are representeltl f8rquarters. LeC, denote those companies
represented in consecutive quartg@ndg + 1. In the right panel, we see thgt,| is at leas800 for all ¢
and exceed$000 except aly = 12.

| min median max| MAD

Q22008 | -8.78e+05 -1.58e+04 6.56e+Q41.38e+04
Q32008 | -9.17e+05 -1.76e+04 7.50e+(041.47e+04
Q42008 | -9.55e+05 -1.72e+04 8.33e+(41.42e+04
Q12009 | -9.91e+05 -1.80e+04 3.86e+Q41.46e+04
Q22009 | -1.04e+06 -1.87e+04 6.45e+(041.56e+04
Q32009 | -1.06e+06 -1.99e+04 1.04e+(051.61e+04
Q42009 | -7.71e+05 -2.03e+04 1.08e+(Q51.64e+04
Q12010| -7.74e+05 -2.14e+04 1.18e+(51.71e+04
Q22010| -1.16e+06 -2.06e+04 1.99e+(51.72e+04
Q32010| -1.16e+06 -2.10e+04 1.34e+(Q51.75e+04
Q4 2010| -1.04e+06 -2.18e+04 1.43e+(51.79e+04
Q12011| -1.04e+06 -2.27e+04 7.74e+(41.83e+04

Table 2: For each of2 quartersy, we give the minimum, median, maximum, and median absokex&ton
(MAD) of the true retained earnings vectajy.
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| p'=87 p'=35 p'=20| Max p'=87 p'=35 p'=20

Q12008 | 1.164e16 7.899el 4.045¢l 0.75 9 0 0
Q22008| 1.161el6 9.032el 4.370¢l 0.35 6 0 0
Q32008 | 1.122e16 7.239%el 3.603¢l 0.56 12 0 0
Q42008 | 9.710e4 7.524el 3.651el 0.00 0 0 0
Q12009| 1.179e1l6 7.786el 3.860¢l 0.46 8 0 0
Q22009| 2.925e6 7.360el 3.877el 0.00 0 0 0
Q32009 | 1.096el6 6.826el 3.069¢l 0.68 21 0 0
Q42009 | 1.090el6 6.544el 3.023¢l 0.60 9 0 0
Q12010| 1.107el6 7.179el 3.829¢l 0.73 5 0 0
Q22010| 1.103e16 8.035el1 3.918¢l 0.24 20 0 0
Q32010| 1.067el6 7.062el 3.491gl 0.47 11 0 0
Q4 2010| 1.060el6 7.355el1 3.253¢ll 0.56 11 0 0

Table 3: Condition numbers (left of double vertical bar) andelation counts (right of double vertical bar)
for full PCA-transformed data matrii(qO (with p’ = 87) and reduced-dimension PCA-transformed data
matrices(YqO)’ with p’ = 35 andp’ = 20 columns. The condition numbers are calculated by taking the
ratio of the largest to the smallest singular value. Theeatation counts are the number of above-diagonal
elements of the correlation matrix with absolute value getan or equal t0.1. The original data matrix
possesses such entries, but the reduced-dimension daikeasdb not. For reference, in the “Max” column,
we also report the maximum absolute correlation in the oalgi’ = 87 data matrices. The results show that
the raw data sets possess significant multicollinearitychvban be remedied by using PCA wijth= 35.
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Figure 2: Let®;; denote thei-th singular value of the centered Q1 2008 data ma’ﬁ% Then the left and
right panels show, respectively,;; andlog(%;;) versus;.
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Figure 3: Results of0-fold cross-validation to determine the optimal number G#APcolumns. Note that
both L' and L2 test error curves are monotonically decreasing uhtit 35. Forp’ > 35, the test set errors
are either greater or only marginally less than the errof at 35.

| Lt L? tree forest boosf| Lt L? tree  forest  boost

Q12008 1.74e10 1.64el0 1.38e9 5.31ell 2.684[11.11e6 1.29e6 8.45e5 5.14e6 2.54e6
Q22008 | 1.26e10 1.18e10 1.42e9 5.99el1l 4.37¢11.11e6 1.26e6 7.97e5 5.65e6 3.05e6
Q32008| 7.99e9 6.80e9 1.16e9 5.86ell 2.90€[11.09e6 1.24e6 7.32e5 4.92e6 2.38e6
Q42008 | 2.59e10 2.35e10 1.32e9 5.98el1l 2.07¢11.41e6 1.70e6 7.61e5 5.06e6 2.75e6
Q12009| 4.02e10 3.12e10 1.74e9 7.72ell 3.06%11.36% 2.14e6 9.56e5 5.74e6 2.88e6
Q22009| 2.13e10 1.88e10 1.69e9 7.39ell 3.16¢11.29e6 1.61e6 9.77e5 5.89e6 2.77e6
Q32009 | 1.41e10 9.74e9 1.23e9 4.32ell 1.43e11.22e6 1.44e6 7.79e5 5.10e6 1.95e6
Q42009 | 2.31e10 1.91el0 1.25e9 4.41ell 1.44¢11.48e6 1.75e6 7.97e5 5.51e6 2.37e6
Q12010| 1.17e10 9.63e9 2.17e9 1.09el12 5.64e¢11.29e6 1.40e6 1.08e6 7.30e6 3.85e6
Q22010| 2.81e10 2.52e10 2.12e9 1.03el2 6.44¢11.28e6 1.59e6 1.05e6 6.96e6 3.61e6
Q32010| 1.01e11 4.59el0 1.45e9 8.60ell 3.01¢11.62e6 2.82e6 8.20e5 6.28e6 2.55e6

mean| 2.75e10 1.98el10 1.54e9 6.99ell 3.29¢11.30e6 1.66e6 8.72e5 5.78e6 2.79e6

Table 4: In-sample errors for models fitted usjpig= 35 PCA-transformed covariates. In the left half, we
report sum of squared errorie( ||3); in the right half, we report sum of absolute errofts,(|1). The results
for the linearL! and L? models are expected—over all linear models, Eiemodel minimizes|e,||3 and
the L' model minimizes|e,||;. Note that the linear models fare better than two of the neali models:
random forests (forest) and boosted trees (boost). How#wemmodel with the best in-sample fit is the
single regression tree model (tree), a result that doesamot over to the out-of-sample tests in Table 6.
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| j % Pl % b
Q12008| 5.46e-11 1.01e+03 1.00e+Qp 1.24e+00 1.17e+03 1.00e+00
Q22008| 1.46e-11 1.05e+03 1.00e+(dD 1.59e+02 1.19e+03 1.00e+00
Q32008| 5.82e-11 1.05e+03 1.00e+(dD 2.82e+01 1.20e+03  1.00e+00
Q42008 | -3.64e-11 1.36e+03 1.00e+(Qp 3.22e+02 1.59e+03  1.00e+00
Q12009| 1.46e-11 1.09e+03 1.00e+(dD 2.12e+02 1.69e+03 1.00e+00
Q22009| 2.9le-11 1.05e+03 1.00e+(d0 1.79e+02 1.30e+03 1.00e+00
Q32009| -4.09e-11 1.08e+03 1.00e+(Qp 1.29e+02 1.26e+03 1.00e+00
Q42009 | -4.37e-11  1.35e+03 1.00e+(dD 2.48e+02 1.56e+03  1.00e+00
Q12010| 7.28e-12 1.06e+03 1.00e+(dD 7.93e+01 1.15e+03 1.00e+00
Q22010| -1.48e-11 1.13e+03 1.00e+(Qp 1.06e+02 1.39e+03 1.00e+00
Q32010| 8.75e-11 1.54e+03 1.00e+(dD 2.82e+02 2.66e+03  1.00e+00

Table 5: Maximum likelihood estimates of exponential podistribution (EPD) parameters, fitted to regres-
sion residuals fronL.! (left) and L? (right) models. Fitting was carried out using numerical m@xation

of the EPD likelihood. Note that in all cases, the estimateape parametegr equalsl up to machine preci-
sion. Since the EPD reduces to the Laplace and normal distiis when, respectively, = 1 andp = 2,

this is further indication that the Laplace distributiors fthe regression residuals better than the normal
distribution.

| L' L2 tree  forest boos{| L' L? tree forest boost

Q32008| 3558 3635 9434 11730 1825 380 495 1466 816 939
Q42008 | 5633 5727 8127 12153 2156 405 532 1400 793 939
Q12009| 5203 5380 7582 13478 18462 408 559 1333 764 984
Q22009| 6376 6110 10798 14122 18688 386 681 1368 901 1107
Q32009| 4393 5046 8970 13363 19608 333 775 1296 721 917
Q42009| 3736 3639 20475 13947 17932 378 578 1252 802 897
Q12010| 5650 5679 7555 10239 1389% 427 545 1308 902 960
Q22010| 4666 4724 29758 29574 32214 430 633 1452 930 1115
Q32010| 5541 5730 10129 16145 27374 393 509 1438 862 959
Q4 2010| 12188 11967 14803 14690 21936478 688 1505 1014 1108
Q12011| 7192 10355 9954 15471 20834497 1235 1519 1004 1126

mean | 5831 6181 12508 14992 20982 410 657 1394 865 1005

Table 6: Out-of-sample errors for models fitted usjig= 35 PCA-transformed covariates. Two different
metrics are separated by the double vertical bar: to thewefreport root mean squared errors (RMSE); to
the right, we report median absolute errors (MAE). THemodel has the smallest MAE for all 11 quarters,
and the smallest RMSE for 8 out of 11 quarters. Averaged diiguarters, the RMSE and MAE of the'
model are smaller than all other models.
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Figure 4: For each quarter, after fitting the PCA plifsregression model, we plot three cumulative distri-
bution functions (CDFs) for the residuals: empirical (daditted normal distribution (red), fitted Laplace
distribution (blue). The results clearly show that the laagl is a better fit to the residuals than the normal.
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Figure 5: For each quarter, after fitting the PCA plifsregression model, we plot three cumulative distri-
bution functions (CDFs) for the residuals: empirical (daditted normal distribution (red), fitted Laplace
distribution (blue). The results clearly show that the laagl is a better fit to the residuals than the normal.
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Figure 6: On the left, we plot the median absolute error asietion of quartey; for four different models—
all errors plotted here are out-of-sample errors corredipgnto the right block of numbers in Talile 6. The
PCA plusL! model errors are consistently smaller than the errors mgdbebother models. The errors
are in units of thousands of dollars. On the right, using t8&mPlus L' model, we provide a scatterplot
of the out-of-sample predicted retained earnings vs. tetened earnings, aggregated acrbssgjuarters
of testing. Note that the correlation coefficient0i®9952. The black line is a line of slopé through the
origin—if the model were perfect, all points would lie onghine.

§=0.1 §=0.2 §=0.3 §=04 §=05
ES  width ES  width ES  width ES  width E)  width
Q32008 0.106  198]] 0.188 424 0.283 596 0.365  830| 0.481 1179
Q42008| 0.073 151l 0.197  347| 0.290 528 0.358  756| 0.428 1004
Q12009| 0.118 218l 0.214 432 0.295  681| 0.385  974| 0.480 1343
Q22009 | 0.098 213l 0.178  495|| 0.284 742 0.399 1100| 0.491 1493
Q32009| 0.091  179|| 0.205 411l 0.294 620 0.391  858| 0.497 1193
Q42009 | 0.092  171|| 0.189  346|| 0.272  547| 0.353  787| 0.440 1062
Q12010| 0.077  183|| 0.163  365| 0.261  607| 0.371  875| 0.472 1281
Q22010| 0.108 241l 0.206 513l 0.305  752| 0.396  992| 0.487 1324
Q32010| 0.100  276|| 0.214  515| 0.322  762| 0.419  977| 0.525 1288
Q42010| 0.062 202 0.145 541 0.230  793| 0.313 1039|| 0.393 1300
Q12011 0.093 284l 0.214 622 0.325  995| 0.435 1396| 0.511 2105

mean| 0.093  210|] 0.192  456| 0.287  693] 0.380  962|| 0.473 1325

Table 7: Out-of-sample interval forecasting results. Feg fifferent values of, and for11 quarters, we
provide interval forecasts using quantile regression with= 0.5+ §/2. That is, we forecast the*-th and
7~ -th quantiles of the retained earnings for each private @yor each quarter, thus obtaining interval

forecastgr, , r; |. The metricEgS is the fraction[(Ib) of true retained earnings that lie witttie respective
forecast interval. Note that these numbers are close imdicating accuracy of the interval forecast. We
also show the widths of the forecast intervals| (17), avetageoss all companies, for all valuessodnde.
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| 1 2 3 4 5

Q12008 | ret. earnings other equity net profit common stock  returnsse®s
Q22008 | ret. earnings other equity net profit common stock  prefestedk
Q32008 | ret. earnings  restricted cash other equity common stock proéit

Q4 2008 | ret. earnings net profit nocl other equity  other expenses
Q12009 | ret. earnings other equity net profit  common stock restticeesh
Q22009 | ret. earnings other equity net profit common stock nocl
Q32009 ret. earnings net profit other equity common stock restticeesh
Q42009 | ret. earnings  restricted cash other equity net profit  comstock
Q12010 ret. earnings net profit other equity apo return on assets
Q22010 ret. earnings apo other equity net profit  restricted cash
Q32010 ret. earnings net profit  restricted cash apo other equity

Table 8: We present the ranking of variables obtained usiadPCA plusL® ranking described in Section
B.1. Hereapo stands for accounts payable (other), amatl stands for non-operating current liabilities.
For each quarteq, we list the top five variables in order of how important theg & the PCA plus.’
forecasting model of quarter+ 1 retained earnings. Note that quarteretained earnings, net profit, and
other equity are present in dll top five lists.

| PCA+L' PCA+RLM L'pruned RLMpruned L'simple RLM simple

Q32008 380.3 390.8 370.8 373.1 363.7 367.5
Q42008 404.7 403.4 410.7 415.8 414.9 415.7
Q12009 407.7 417.2 383.8 392.9 396.2 394.3
Q2 2009 386.0 392.7 405.8 353.8 414.8 356.3
Q32009 333.4 323.2 296.9 293.3 288.5 285.6
Q4 2009 377.9 351.6 360.1 341.0 352.8 340.3
Q12010 426.8 411.8 410.3 397.7 410.0 373.4
Q22010 429.7 407.2 426.5 389.2 415.0 385.9
Q32010 392.8 352.6 360.1 348.2 351.3 336.2
Q4 2010 478.0 476.5 487.4 466.3 472.3 469.7
Q12011 497.5 530.9 477.3 471.9 487.1 470.0
mean fi.) 410.4 405.3 399.1 385.7 397.0 381.4
sd (<) 46.5 58.2 54.3 53.1 56.4 55.5

Table 9: We present out-of-sample results for the PCA plumodel trained onp’ = 35 variables together
with five models described in Section b.2. We show the medieolate error (in units of thousands of
dollars) made by forecasting quarter 1 retained earnings using quartecovariates; the models themselves
were fitted by regressing quarteretained earnings onto quarter 1 covariates. The smallest number in
each row has been italicized. The pruned models use onlphfive variables for quartét — 1 indicated

in Table[B; the simple models use only the three variableshoomto all11 top five lists.
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| 1 2 3 4 5
Q12008 | ret. earnings total liabilities total assets ap other linbs
Q22008 | ret. earnings total assets  total liabilites =~ common stockreagury stock
Q32008 | ret. earnings total liabilities total assets  short-terfotde common stock

Q4 2008 | ret. earnings

total assets

total liabilities

treasurylstoccommon stock

Q12009 | total assets ret. earnings  total liabilities treasurylstoccommon stock
Q22009 | ret. earnings total assets  total liabilities treasurylstoccommon stock
Q32009 | ret. earnings total liabilities total assets ap other asset
Q42009 | total assets ret. earnings  total liabilities ap  treasurgkst
Q12010 ret. earnings total assets  total liabilities treasurylstoc ap
Q22010 ret. earnings total assets  total liabilities  short-teriotde ap

Q32010| total assets

ret. earnings

total liabilities

treasurylstoccommon stock

Table 10: We present the ranking of variables obtained ubi@g®CA plusL' ranking described in Section
[B.1, applied to financial statement data for companies irS&e 500 index. Herep stands for accounts
payable, andommon stockncludes additional paid in capital (APIC). Note that geattretained earnings,
total assets, and total liabilities are present inLaltop five lists.

| PCA+L' PCA+RLM L'pruned RLMpruned L'simple RLM simple
Q32008 74.8 76.4 80.5 81.2 83.2 83.2
Q4 2008 144 .4 135.5 117.2 123.8 129.6 127.0
Q1 2009 145.3 124.1 91.0 90.6 86.4 89.3
Q2 2009 68.5 72.7 72.7 73.1 75.5 74.6
Q3 2009 70.2 62.7 66.8 69.2 72.2 71.2
Q4 2009 72.5 75.1 88.1 82.6 86.1 89.7
Q12010 76.5 73.0 71.9 70.9 72.0 71.9
Q2 2010 70.4 73.2 69.6 67.5 65.6 71.1
Q32010 69.1 71.8 75.4 71.1 70.0 68.3
Q4 2010 87.4 82.1 83.4 82.5 83.2 82.4
Q12011 97.5 91.0 82.9 80.6 78.7 79.4
mean fi.) 88.8 85.3 81.8 81.2 82.0 82.5
sd (oe) 29.1 23.2 14.1 15.9 17.2 16.5

Table 11: For the S&P 500 data described in Sedtioh 5.3, weept@ut-of-sample results for the PCA plus
L' model trained oy’ = 28 variables together with five models described in Sedfich 52 show the
median absolute error (in units of millions of dollars) mdweforecasting quartef + 1 retained earnings
using quarted covariates; the models themselves were fitted by regregsiagerd retained earnings onto
quarterd — 1 covariates. The smallest number in each row has beenzZiadiciThe pruned models use only
the top five variables for quartér— 1 indicated in Tablé_10; the simple models use only the threebies
common to alll 1 top five lists.

| PCA+L' PCA+RLM L'pruned RLMpruned L'simple RLM simple
SVBA 3.70% 3.70% 3.68% 3.60% 3.58% 3.57%
S&P 500 5.40% 5.44% 4.72% 4.69% 4.71% 4.73%

Table 12: We compare the relative out-of-sample errorsdfimimed earnings forecasts using both SVBA and
S&P 500 data sets. The overall performance of all modelslighly one percentage point better for SVBA
data. While pruning/simplification of the models does inyerthe SVBA relative errors, the improvement
is more pronounced for the S&P 500 errors. The relative efave been computed using the norm as

in 29).
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