
Driving Markov Chains to Desired Equilibria via
Linear Programming

Harish S. Bhat
Department of Applied Mathematics

University of California, Merced
Merced, CA, USA

hbhat@ucmerced.edu

Li-Hsuan Huang
Department of Applied Mathematics

University of California, Merced
Merced, CA, USA

lhuang33@ucmerced.edu

Sebastian Rodriguez
Department of Statistics
Northwestern University

Evanston, IL, USA
SebastianRodriguez2022@u.northwestern.edu

I. INTRODUCTION

Categorical time series arise frequently in both biomedical
and sports analytics settings. For instance, [1] considers EEG
measurements of infants’ sleep states, where each state is
an element of {“quiet sleep”, “indeterminate sleep”, “active
sleep”, “awake”}. In our previous work [2], we have modeled
substitutions of players in NBA basketball games—here each
state corresponds to a group of five players on the court. We
consider modeling such systems using Markov chains. We
must then estimate the entries of either the transition matrix,
for discrete-time Markov chains (DTMCs), or the transition
rate matrix, for continuous-time Markov chains (CTMCs). In
both cases, we have access to closed-form maximum likelihood
estimators (MLEs). If we decide to use a DTMC model, to
estimate the transition probability from state i to state j, we
simply count the number of transitions from i to j present in
the data, and divide by the total number of transitions from i
to any state. This is the MLE. The MLE is consistent: assume
the data is generated by an irreducible, recurrent DTMC with
transition probabilities pij . Then, given time series of length
N , as N →∞, the MLE estimates p̂ij converge to pij with
probability 1. We have stated these results for DTMCs; for
CTMCs, the story is analogous.

In practical settings, we have finite-length time series, which
may or may not explore thoroughly the state space of the
system. This can cause problems for the MLE. For instance,
if a particular transition i → j is never observed, the MLE
estimate p̂ij will be zero; depending on the application, this may
lead to poor predictive power. More drastically, suppose we
have time series in which we observe the system transitioning
into a particular state j∗ while never observing a transition
from j∗ to any other state. Then, for the MLE Markov chain,
j∗ will be an absorbing state; the equilibrium distribution of
the estimated chain will assign zero probability to all states
other than j∗. In this case, it is almost certain that the empirical
fraction of time spent in each state will be a poor match to
the long-term predictions of the estimated model.

In a different but related practical setting, we may have
perfectly reasonable observations of a Markov chain whose
equilibrium distribution we find suboptimal. How can we drive
the Markov chain to a desired equilibrium while only perturbing

as few entries of the Markov chain’s transition (or transition
rate) matrix as possible? The main contribution of this paper
is a a pair of algorithms to solve this problem for both DTMC
and CTMC models. In both cases, the model is specified by an
M ×M matrix p̂, where M is the number of states. Starting
from the MLE p̂, we ask: what is the most sparse perturbation
ε that yields a Markov chain p̂+ ε whose equilibrium vector
matches a prescribed equilibrium vector w? We formulate this
question as an optimization problem and show how to solve it
efficiently using linear programming.

While we have not found published work that solves the
problems outlined above, we can certainly identify subsets of
the literature that help contextualize the present work. Perhaps
the most relevant subset is that dealing with inverse eigenvector
problems for nonnegative matrices—see [3]–[5]. Here we find
techniques to construct nonnegative matrices with prescribed
eigenvalues and eigenvectors. Once such a nonnegative matrix
has been constructed, it can be transformed into a stochastic
matrix, i.e., a transition matrix for a DTMC. It is entirely
possible to use these methods to construct a DTMC whose
equilibrium vector matches data, i.e., matches the empirical
fraction of time spent in each state. Special algorithms to deal
with this particular case of the inverse eigenvector problem
have been developed [6], [7]. However, there is no link between
these techniques and short-term trends in the data—for each
i 6= j, the (i, j) entry of the resulting stochastic matrix does not
necessarily have anything to do with the empirical frequency
of transitions from state i to state j. In contrast, our method
constrains the estimated model to be close to these frequencies,
i.e., the MLE estimates p̂i,j .

Note that inverse eigenvector methods can be used to
construct Markov Chain Monte Carlo (MCMC) methods with
optimal properties [8]. We plan to explore in future work
whether the methods from the present paper can be used in
the MCMC context. Note also that the inverse eigenvector
problem—in which a desired eigenvalue-eigenvector pair is
prescribed—is different from inverse problems for eigenvalues
only [9]–[11].

The next subset of papers deals with PageRank, a funda-
mental algorithm used to rank web pages [12]. Consider a
collection C of M interlinked web pages and treat each web
page as a Markov chain state. If there are n links on a particular

web page, we assign a probability of 1/n to transition from
that particular web page to each of the linked pages. This gives
us a Markov chain corresponding to a random walk on the
graph corresponding to C. Also consider the M×M stochastic
matrix in which each entry is 1/M—this corresponds to a
Markov chain in which all states communicate uniformly with
all other states. The PageRank DTMC model consists of a
linear combination of the random walk and uniform transition
matrices; if the weights in the linear combination sum to 1, the
resulting matrix is itself a valid Markov chain. The equilibrium
vector of the PageRank DTMC model can then be used to rank
web pages.

There has been significant development in estimat-
ing/analyzing how this equilibrium vector changes when
links between web pages are changed [13]–[15], and also
in optimizing the PageRank vector according to various criteria
and methods [16]–[18]. Given a desired PageRank equilibrium
vector w and a PageRank DTMC model p̂ that has already been
estimated, our algorithm computes the most sparse perturbation
ε that yields a DTMC model p̂+ε with equilibrium w. Suppose
we treat the web graph as weighted, as in weighted PageRank
[19] or certain link recommendation models [20]. Then the ε
developed by our algorithm tells us how to adjust weights to
achieve a desired ranking of pages.

II. BACKGROUND

For the purposes of this paper, we describe Markov chains
via the methods we use to generate sample trajectories. For
more mathematical definitions, consult [21].

A DTMC with M states is determined by an M × M
transition matrix p. Suppose the DTMC is currently in state i.
We examine pi, row i of the matrix p. To be a valid transition
matrix, each pi must be a probability mass function over the
state space. To generate the next sample in the trajectory,
we sample from the distribution pi; this yields a state i′ ∈
{1, 2, . . . ,M}.

To continue, we repeat the above procedure, starting in state
i′. In this way, we can generate trajectories of arbitrary length,
consisting of sequences of states.

A CTMC with M states is determined by an M × M
transition rate matrix p. Suppose the CTMC is currently in
state i. We examine pi, row i of the matrix p. The entries
of pi off the diagonal must be nonnegative—we treat these
entries as parameters of M − 1 independent, exponentially
distributed random variables. We draw one sample from each
exponential random variable. The minimum of these samples
represents how long we spend in state i before transitioning.
The argmin of these samples represents the new state i′ to
which we transition.

To continue, we repeat the above procedure, starting in state
i′. In this way, we can generate trajectories of arbitrary length,
consisting of sequences of states and corresponding transition
times.

III. MATHEMATICAL METHODS

A. Discrete-Time Optimization Problem/Solution

Suppose we have an M ×M DTMC transition matrix p̂. We
seek a perturbation ε such that p̂+ ε has a desired equilibrium.
We still want p̂+ ε to be a valid Markov transition matrix, so
we require that ∑

j

(p̂i,j + εi,j) = 1. (1)

Since
∑
j p̂i,j = 1, we have

∑
j εi,j = 0. So, we only need to

solve for the off-diagonal part of ε; then

εi,i = −
∑
j 6=i

εi,j . (2)

We constrain the equilibrium vector to be w: wT (p̂+ ε) = wT .
In coordinates, this reduces to∑

i6=j

wiεi,j −
∑
i6=j

wjεj,i = wj −
∑
i

wip̂i,j .

The entries of the perturbed matrix must also be valid
probabilities: 0 ≤ p̂i,j + εi,j ≤ 1 for all i, j. For i 6= j,
we can enforce this constraint verbatim. For i = j, we use (2)
to rewrite the constraint as:

0 ≤ p̂i,i −
∑
j 6=i

εi,j ≤ 1.

For each i, we enforce the lower bound of 0:∑
j 6=i

εi,j ≤ p̂i,i.

However, for the upper bound, we replace 1 by wi and require,
for each i,

−
∑
j 6=i

εi,j + p̂i,i ≤ wi. (3)

In this paper, we will take w to be a candidate equilibrium
distribution with no absorbing states, i.e., 0 < wi < 1 for each
i. Hence (3) and (2) guarantee that εii + p̂ii ≤ maxi wi < 1.
In short, the diagonal entries of the perturbed transition matrix
p̂+ ε are bounded away from 1, implying that the perturbed
system cannot have any absorbing states.

We also enforce (3) because we know that

p̂+ ε =

 w
...
w

 (4)

automatically has equilibrium distribution w. This observation
proves that our optimization problem’s feasible set is nonempty.

We now consider the choice of objective function. We seek a
transition matrix p̂+ε that retains as many of the original MLE
entries p̂ as possible. In other words, we want to maximize
the number of zero entries of ε. Consequently, we set our
objective function equal to the sparsity-promoting 1-norm of
the off-diagonal elements of ε:

J(ε) =
∑
i,j:i 6=j

|εi,j |.

Putting the objective and constraints together, we are led to

min
ε

J(ε)

s.t. 0 ≤ p̂i,j + εi,j ≤ 1, ∀i 6= j

0 ≤ −
∑
j 6=i

εi,j + p̂i,i ≤ wi, ∀i∑
i 6=j

wiεi,j −
∑
i 6=j

wjεj,i = wj −
∑
i

wip̂i,j , ∀j

(5)

To handle the 1-norm, we employ the standard technique of
introducing additional decision variables ti,j and inequality
constraints, resulting in a problem equivalent to (5):

min
ε,t

∑
i6=j

ti,j

s.t. − ti,j ≤ εi,j ≤ ti,j , ∀i 6= j

ti,j ≥ 0, ∀i 6= j

0 ≤ p̂i,j + εi,j ≤ 1, ∀i 6= j

0 ≤ −
∑
j 6=i

εi,j + p̂i,i ≤ wi, ∀i∑
i6=j

wiεi,j −
∑
i6=j

wjεj,i = wj −
∑
i

wip̂i,j , ∀j.

(6)

This is a linear program [22], which we solve using CVX-
OPT [23] and Mosek [24]. We are committed to making
our Python source code available—see https://github.com/
hbhat4000/MCOresults.

B. Continuous-Time Optimization Problem/Solution

Let us now consider the problem for CTMC models. Suppose
we have an M ×M transition rate matrix α̂ estimated using
MLE. Suppose that α̂ has absorbing states.

We seek a perturbation ε such that α̂ has no absorbing states.
For the continuous-time Markov chain, this means that for each
i, we must have ∑

j 6=i

(α̂+ ε)i,j > 0.

If this sum were to be zero, then state i would be an absorbing
state for the continuous-time Markov chain. Note, however,
that numerical optimizers do not distinguish between strict and
non-strict inequalities. To guarantee positivity, we instead use
the constraint ∑

j 6=i

(α̂+ ε)i,j ≥ δ > 0

for some tolerance δ. Note that for a continuous-time Markov
chain, we always choose the diagonal elements of the transition
rate matrix to guarantee that the total row sum equals zero.
For this reason, we only need to solve for the off-diagonal
elements of ε, just as in the discrete-time case.

Assume that w is a desired equilibrium vector, again with
0 < wi < 1 for all i. For the perturbed system to have w as
its equilibrium, we must have

wT (α̂+ ε) = 0.

Let Y = {y1, . . . , yM} denote all row sums—not including
the diagonal element—of the estimated transition rate matrix α̂.
We set δ1 = minY∩{r : r > 0}, the minimum positive entry
from Y . We also set δ2 = min1≤i≤M (1−wi). Finally, we set
δ = min{δ1, δ2}. By setting δ in this way, we ensure that a
system that has no absorbing states and that already achieves
the desired equilibrium vector w will result in a solution of
ε = 0. We also ensure that there exists a feasible solution—with
desired equilibrium w—given by

α̂+ ε =

 w
...
w

− I, (7)

where I is the M×M identity matrix. Additionally, we require
that the perturbed transition rates are nonnegative: for all i 6= j,

α̂i,j + εi,j ≥ 0.

Because we are interested in retaining as many of the MLE
entries of α̂ as possible, we again seek a perturbation ε that is
as sparse as possible. Therefore, we use the 1-norm objective
function J defined above. Putting the objective and constraints
together, we are led to the following optimization problem:

min
ε

J(ε)

s.t. α̂i,j + εi,j ≥ 0, ∀i 6= j∑
j 6=i

(α̂+ ε)i,j ≥ δ > 0, ∀i

− wj
∑
i 6=j

(α̂+ ε)j,i +
∑
i6=j

wi(α̂+ ε)i,j = 0, ∀j.

(8)

We again employ the standard technique of introducing
decision variables ti,j and additional constraints. The resulting
optimization problem, equivalent to the one above, is:

min
ε,t

∑
i 6=j

ti,j

s.t. − ti,j ≤ εi,j ≤ ti,j , ∀i 6= j

ti,j ≥ 0, ∀i 6= j

α̂i,j + εi,j ≥ 0, ∀i 6= j∑
j 6=i

(α̂+ ε)i,j ≥ δ > 0, ∀i

− wj
∑
i 6=j

(α̂+ ε)j,i +
∑
i6=j

wi(α̂+ ε)i,j = 0, ∀j.

(9)

Again, this is a linear program [22]; we solve it using the same
software described above.

IV. SIMULATED DATA TESTS

For each simulated data test, we generate data from a known
DTMC. When we apply MLE to this data, we obtain a DTMC
p̂, which we refer to as the naive model. We then apply the
optimization method from Section III, resulting in a DTMC
p̂+ ε, which we refer to as the fixed model.

https://github.com/hbhat4000/MCOresults
https://github.com/hbhat4000/MCOresults

A. Metrics

There are two metrics in which we compare naive and fixed
models. The first, which we call long-term error, measures the
ability of the model to predict well in a distributional sense.
Given a time series, let πemp denote the empirical fraction of
time spent in each state. Given a DTMC model with transition
matrix P , we compute πmod by solving πmodP = πmod; for a
CTMC model with transition rate matrix P , we instead solve
πmodP = 0. The long-term error is the L1 distance between
the empirical and model distributions:

ELT = ‖πmod − πemp‖1 =
∑
i

∣∣πmod
i − πemp

i

∣∣ . (10)

The second metric, short-term error, measures the model’s
ability to predict the very next element of a time series. Suppose
we have a DTMC and data consisting of a sequence of states
{s0, s1, s2, . . . , sL}. For each i ∈ {0, 1, . . . , L − 1}, we use
the Markov chain to compute a one-step prediction ŝi+1 given
the current state si. The mean short-term error is

EST =
1

L

L−1∑
i=0

1ŝi+1 6=si+1
. (11)

Here 1X is the indicator function that equals 1 if condition
X is true and 0 otherwise. For both the DTMC and CTMC
models, we compute the prediction ŝi+1 by sampling from the
Markov chain conditional on currently being in state si. In both
cases, this amounts to examining row si of the transition (or
transition rate) matrix P and applying the appropriate sampling
procedure from Section II.

Test Series Length 5× 102 103 104 105 106

DTMC States
4 0.019 0.040 0.009 0.008 0.016
8 0.069 0.090 0.034 0.015 0.024

16 0.086 0.086 0.050 0.026 0.028
32 0.185 0.179 0.053 0.048 0.061
64 0.286 0.214 0.080 0.051 0.061

128 0.447 0.285 0.130 0.099 0.086
256 0.585 0.422 0.172 0.136 0.135

CTMC States
4 0.051 0.058 0.006 0.035 0.004
8 0.123 0.068 0.029 0.022 0.023

16 0.177 0.137 0.053 0.058 0.032
32 0.279 0.160 0.091 0.065 0.069
64 0.383 0.289 0.103 0.096 0.079

128 0.526 0.400 0.180 0.136 0.122
256 0.748 0.622 0.258 0.189 0.170

TABLE I
LONG-TERM TEST ERRORS FOR BOTH FIXED DTMC MODELS (FIRST 6
ROWS) AND FIXED CTMC MODELS (LAST 6 ROWS). CORRESPONDING

LONG-TERM TEST ERRORS FOR NAIVE MODELS ARE ALL ≈ 2.

B. Long-Term Error Test

To show that our method reduces long-term prediction
error, we carry out the following test. We fix the number
of states M . We randomly generate an (M − 1)-state Markov
chain that we then sample to create both a training time
series of length 104 and a test time series of length L ∈

Simulations 50 250 500 1000

DTMC States
4 1.57e-02 1.91e-02 1.89e-02 2.05e-02
8 4.65e-03 3.15e-03 3.70e-03 3.62e-03

16 1.73e-03 6.74e-04 8.84e-04 8.94e-04
32 2.27e-04 2.60e-04 1.76e-04 8.70e-05
64 6.00e-05 2.41e-04 1.81e-04 1.38e-04

128 4.33e-04 3.06e-04 2.18e-04 8.30e-05
256 2.53e-04 1.95e-04 9.00e-05 7.80e-05

CTMC States
4 5.60e-04 9.83e-04 1.03e-03 1.14e-03
8 1.81e-03 3.20e-04 6.38e-04 5.85e-04

16 6.80e-04 6.30e-05 1.40e-05 1.04e-04
32 1.32e-03 1.40e-04 1.84e-04 3.42e-04
64 6.33e-04 4.80e-05 6.00e-06 6.20e-05

128 3.30e-05 7.40e-05 5.80e-05 3.80e-05
256 2.00e-05 1.15e-04 1.13e-04 1.95e-04

TABLE II
ABSOLUTE DIFFERENCES BETWEEN FIXED AND NAIVE SHORT-TERM TEST
ERRORS FOR DTMC (FIRST 7 ROWS) AND CTMC (LAST 7 ROWS) MODELS,
SHOWING ONLY A MINIMAL CHANGE IN SHORT-TERM PREDICTIVE POWER.

{5× 102, 103, 104, 105, 106}. For the training time series, we
tack on a final transition into state M .

We use the training set to estimate both p̂, the naive MLE
model, and πemp, the empirical fraction of time spent in
each state. We then produce a fixed model by applying the
optimization procedure from Section III to p̂, setting the desired
equilibrium vector w equal to πemp. We carry out all of this
for both discrete- and continuous-time models.

Using both training and test time series, we compute the
long-term error ELT—see (10)—for all fixed models. In Table I,
we display long-term test errors for, respectively, fixed DTMC
and fixed CTMC models. We omit training errors, which are all
on the order of 10−16, indicating that the optimizer succeeds
in creating Markov models with desired equilibria.

We see from Table I that, for each fixed number of states M ,
as the length of the test set increases, the long-term test error
decreases. As more time passes, we observe an increasingly
better match between the fixed Markov chain’s equilibrium
and the empirical fraction of time spent in each state.

If we were to create a table analogous to Table I for the
corresponding naive DTMC models, every entry would be close
to 2.0, the maximum possible value of ELT. This is because
state M is the unique absorbing state for the naive model;
therefore, πmod = (0, . . . , 0, 1). Meanwhile, the M -th entry of
the πemp vector is either nearly zero (for the training set) or
identically zero (for the test set).

C. Short-Term Error Test

In the quest to reduce long-term prediction error, we do not
want to discard the short-term predictive accuracy of the MLE.
Because we have used the sparsity promoting 1-norm objective
function for ε, we expect that most entries of ε will be zero. If
this is the case, the fixed model will retain many of the MLE
entries from the naive model, and therefore the fixed model’s
short-term predictive power should not differ greatly from that
of the naive model.

To test this expectation, we run the following simulation
procedure: for fixed M , we randomly generate an (M−1)-state
Markov chain that we then sample to create both a training
time series of length 103 and a test time series of length 3×103.
For the training time series, we append a final transition into
state M . We then estimate naive and fixed models using the
training set only. For both naive and fixed models, we then
use the test set to compute short-term errors EST—see (11).
We record the absolute difference between the short-term error
of the naive and fixed models. Again, we carry out all of the
above for both discrete- and continuous-time models.

We repeat the above simulation procedure up to 1000 times.
The results, displayed in Table II, show that each fixed model’s
short-term predictive power does not differ greatly from that of
the corresponding naive model. As we proceed down the table,
we see smaller differences between the short-term errors of
the naive and fixed models. This is due to larger state spaces
yielding more sparse solutions for ε. For the largest state space
(M = 256), the dimension of ε is M(M − 1) = 65280; for
systems of this size, it is typical that less than one percent of
the entries returned by the optimizer are nonzero.

V. REAL DATA TESTS

In this section, we apply the optimization procedures from
Section III to Markov models estimated from real data sets in
the areas of basketball analytics and the life sciences.

A. NBA Data

We begin with a description of the raw data itself. For
each regular-season game from the 2015-16 NBA season, we
obtained play-by-play files (in HTML form) from public web
sites. These files contain time-stamped textual markers that we
mined to determine who was playing on the court at all times
for all games. Each team plays 82 games per season. Starting
with all 1230 regular-season games, we omitted games that
went to overtime. Hence all games in the data set considered
here lasted 48 minutes (2880 seconds). For each team, we
assigned a state number to each unique 5-person unit that
played at any time for that team. Using these state numbers
and the time stamps at which substitutions occur, we then
extracted from each game a trajectory {(ti, si)}Ni=0, where
t0 = 0 and tN = 2880. At each time ti, the system transitions
from state si−1 to state si, corresponding to a substitution of
one or more players on the court for one team only.

Our goal here is to use this data to build CTMC models
that predict how long each 5-person unit plays on the court.
Once we fix the sizes of the training and test sets, we build
one naive CTMC model for each team. We find that all naive
models—including those trained on all non-overtime games—
features at least one absorbing state; in many cases, several
absorbing states exist. Using the empirical fraction of time
spent in each state, computed using the corresponding training
set, we applied the optimization procedure from Section III to
generate fixed CTMC models for each team.

In Figure 1, we plot training set result for the naive (left) and
fixed (right) CTMC models. For these results only, the training

Dim NNZ CV Dim NNZ CV

Team
Atl 72092 240 2.167e-18 112560 274 4.445e-17
Bkn 67340 164 1.484e-18 105950 272 4.888e-18
Bos 90902 237 8.345e-19 114582 277 5.117e-18
Cha 35532 185 1.775e-18 68382 263 2.957e-18
Chi 54522 223 1.842e-18 151710 286 1.045e-17
Cle 72630 243 3.305e-18 119370 275 4.916e-18
Dal 110556 208 1.935e-18 213906 364 3.374e-18
Den 69432 144 8.410e-19 144020 344 2.740e-18
Det 13806 114 2.252e-18 35910 178 1.107e-18
GS 70490 170 2.479e-18 120756 286 8.207e-18
Hou 73170 263 2.690e-18 141000 2040 1.440e-17
Ind 58806 171 2.730e-18 118680 280 3.404e-17
LAC 55932 156 3.320e-18 97032 258 4.264e-18
LAL 43056 132 2.267e-18 68382 216 2.339e-18
Mem 59292 238 2.149e-18 181902 302 4.993e-18
Mia 63252 1256 6.223e-17 114582 1866 6.285e-17
Mil 73170 1241 2.534e-17 104652 237 3.334e-18
Min 57360 202 2.542e-18 93942 235 3.524e-18
NO 93942 193 2.229e-18 172640 2373 5.705e-17
NY 56882 183 3.909e-18 99540 267 4.578e-18
OKC 48180 190 1.604e-18 90300 234 1.641e-18
Orl 57840 235 1.326e-18 134322 306 8.248e-18
Phi 175980 280 9.187e-18 270920 389 4.804e-18
Pho 93330 171 2.320e-18 234740 328 3.836e-18
Por 34040 1046 7.235e-17 45582 236 1.085e-18
SA 69432 243 5.111e-18 141000 316 1.709e-17
Sac 66306 243 1.382e-18 102720 286 4.837e-18
Tor 30102 165 4.034e-18 46010 204 3.328e-18
Uta 113232 288 1.172e-17 199362 384 8.124e-18
Was 87912 259 2.558e-18 146306 317 4.125e-18

TABLE III
FOR EACH TEAM, WE COMPUTE FIXED CTMC MODELS USING TRAINING

SETS OF EITHER THE FIRST 40 (LEFT OF BAR) OR 60 (RIGHT OF BAR)
NON-OVERTIME, REGULAR SEASON GAMES. FOR EACH FIXED MODEL, WE
REPORT DIM, THE DIMENSION OF ε, EQUAL TO M(M − 1) WHERE M IS
THE NUMBER OF STATES OR UNIQUE 5-PERSON UNITS IN THAT TEAM’S

TRAINING SET. WE REPORT NNZ, THE NUMBER OF NONZERO ENTRIES IN
THE COMPUTED ε—THE SMALL VALUES OF NNZ RELATIVE TO DIM SHOW

THAT THE COMPUTED SOLUTIONS ARE HIGHLY SPARSE. FINALLY, WE
RECORD CV, THE MAXIMUM CONSTRAINT VIOLATION REPORTED BY THE

OPTIMIZER—ALL VALUES ARE CLOSE TO ZERO.

set consists of all non-overtime games from the entire regular
season. Each point on each plot corresponds to one 5-person
unit for one team. We see that the optimization procedure
results in a fixed model in which the naive model’s training
error has been reduced to nearly zero.

For the remainder of this section, we consider naive and fixed
CTMC models trained on proper subsets of the regular season.
We build naive and fixed CTMC models using a training set
of either the first 40 or first 60 non-overtime games played by
each team. The corresponding test sets consist of the remaining
non-overtime games in the season, less than or equal to 42 or
22 games, respectively.

In Table III, we examine the performance of our optimization
procedure applied to CTMC models trained on, respectively,
the first 40 and 60 non-overtime games. The tables show that
the optimizer succeeds in finding highly sparse solutions that
satisfy all constraints—removing absorbing states and achieving
the desired equilibrium. The sparsity is indicated by the small
number of nonzero entries of the computed ε compared to its
dimension, which equals M(M − 1). Note also that M , the

10−1 100 101 102 103

simulated playing time
10−1

100

101

102

103

tru
e
pl
ay

in
g
tim

e

10−1 100 101 102 103

simulated playing time
10−1

100

101

102

103

tru
e
pl
ay

in
g
tim

e

Fig. 1. We plot simulated versus true (training set) playing times for naive (left) and fixed (right) CTMC models. Each point on each plot corresponds to one
5-person unit for one team. We see that the fixed model features practically zero training error, dramatically reducing the training error from the naive model.

total number of unique 5-person units that appear for each
team in each training set, is always in the hundreds.

In Figure 2 (40-game) and Figure 3 (60-game), we plot test
set results for naive (left) and fixed (right) CTMC models
with differing training set sizes. Each point on each plot
corresponds to a 5-person unit for a given team. For each team,
the predicted playing times for each 5-person unit correspond
to the entries in the equilibrium vector for the CTMC model
for that team, scaled by the number of seconds in the test set
for that team. We plot the real time played by each 5-person
unit versus the predicted playing time. Note that there is a
massive concentration of points near (0, 0); we have decided
against log-scaled axes in order to give a sense of the range of
the predictions and true times in natural units. For the naive
40-game model, the RMSE (root mean-squared error) between
all predicted and real times is 2.979. For the fixed 40-game
model, the RMSE is 1.178, approximately 60.4% less than the
naive model. This RMSE is measured in thousands of seconds
across roughly 40 games; in minutes per game, the 40-game
fixed model’s average error is 0.49.

The naive 60-game model’s RMSE is 1.584, while the fixed
60-game model’s RMSE is 0.602, approximately 61.9% less.
This RMSE is measured in thousands of seconds across roughly
20 games; in minutes per game, the 60-game fixed model’s
average error is 0.50.

Hence each CTMC predicts each 5-person unit’s per-game
playing time to within half a minute, on average. We consider
this to be an excellent result.

B. Biomedical data

Holson and preproglucacon are discrete-time data sets from
the R package markovchain [25]. The Holson data set
contains life history trajectories for 1000 unique patients, each
measured at 11 points in time. The measurement at each time
has value 1, 2, or 3. We split the data into training and test

sets of size 500 each. We fit a 3-state DTMC to this data and
compare the performance of naive and fixed models.

Preproglucacon data is the DNA sequence for the gene that
encodes the protein preproglucacon. This data consists of 1572
observations with bases A, T, C, G coded numerically as 1, 4,
2, 3. We split this data into a training set of size 500 and a
test set of size 1072. Using this data, we fit a 4-state DTMC
and compare the performance of naive and fixed models.

For the sake of comparison, we also fit a hidden Markov
model (HMM) to both data sets. The HMM is more sophisti-
cated than the DTMC and requires much more computational
effort to train [26]. When we trained HMM models, we explored
hyperparameters such as the number of internal states and the
random initialization of the model. We report results for the
best (smallest long-term test error) hyperparameter choices we
were able to find.

Table IV shows long-term training and test errors for naive
DTMC, fixed DTMC, and HMM models. The fixed DTMC
models feature greatly reduced test set errors as compared
to the naive DTMC models. Note also that for the Holson
data set, the long-term test errors for the fixed DTMC and
HMM models are comparable. For the preproglucacon data,
the HMM’s long-term test error is about 4 times less than that
of the fixed DTMC. While the HMM is able to achieve better
test set results in some cases, we see that this achievement
comes at some computational expense. Including time spent
solving linear programs, our method requires ≈ 50x less time
to train compared to the HMM.

VI. CONCLUSION

Both CTMC and DTMC models containing absorbing states
do not capture well the observed fraction of time spent in
each state. We remove absorbing states by finding a sparse
perturbation to the transition (or transition rate) matrix such
that the new matrix achieves a desired equilibrium distribution.
We formulated this problem as a linear programming problem.

0 5 10 15 20 25 30 35
real time (thousands of seconds)

0

20

40

60

80

100

120

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA Test (Naive) Results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

0 5 10 15 20 25 30 35
real time (thousands of seconds)

0

10

20

30

40

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA Test (Fixed) Results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

Fig. 2. We plot naive (left) and fixed (right) CTMC test results using 40-game training sets. The fixed model decreases RMSE error by ≈ 60.4%. For further
details, see Section V-A.

0 5 10 15 20
real time (thousands of seconds)

0

10

20

30

40

50

60

70

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA Test (Naive) Results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

0 5 10 15 20
real time (thousands of seconds)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA Test (Fixed) Results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

Fig. 3. We plot naive (left) and fixed (right) CTMC test results using 60-game training sets. The fixed model decreases RMSE error by ≈ 61.9%. For further
details, see Section V-A.

Holson
Naive Fixed HMM

Training Time 0.71 54.68
LT Training Error 0.160545 1.665335e-16 0.000835
LT Test Error 0.235091 7.454545e-02 0.075380

Preproglucacon
Naive Fixed HMM

Training Time 0.05 28.40
LT Training Error 0.003426 1.942890e-16 0.000509
LT Test Error 0.113921 1.154179e-01 0.036629

TABLE IV
LONG-TERM ERRORS WITH TRAINING SIZE 500 ON HOLSON AND

PREPROGLUCACON DATA. WE ALSO REPORT THE TRAINING TIME FOR
FIXED AND HMM MODELS, IN SECONDS.

Through extensive tests with simulated and real data, we have
shown that our method improves long-term predictions without
sacrificing much short-term accuracy. Furthermore, our method
requires far less time to train than HMM methods.

APPENDIX

We start by deriving the DTMC MLE. Consider data
{s0, s1, s2, . . . , sN}. Define pi,j to be the probability of
transitioning from i to j. Then the likelihood function is:

L = ps0,s1ps1,s2 · · · psN−1,sN =
∏
i,j

p
N(i,j)
i,j

where N(i, j) is the number of times that the pattern (i, j)
occurs. Note that pi,i = 1−

∑
j 6=i pi,j . Therefore,

logL =
∑
i,j:i 6=j

N(i, j) log pi,j +
∑
i

N(i, i) log
(
1−

∑
j 6=i

pi,j
)
.

Fix states i′, j′ and maximize the log likelihood function over
the parameter pi′,j′ :

∂ logL

∂pi′,j′
=
N(i′, j′)

pi′,j′
− N(i′, i′)

1−
∑
j 6=i′ pi′,j

= 0.

Suppose there are M − 1 states in total. Then for fixed i′, the
above equation gives us M − 1 equations in M − 1 unknowns.

Let ~1 denote the (M − 1) × 1 vector of all ones. Then the
M − 1 equations can be summarized by(

N(i′, i′)I + ~N~1T
)
~p = ~N

~N = (N(i′, 1), . . . , N(i′, i′ − 1), N(i′, i′ + 1), . . . , N(i′,M))

~p = (pi′,1, . . . , pi′,i′−1, pi′,i′+1, . . . , pi′,M).

Note that ~N~1T is a rank-1 matrix; the matrix multiplying ~p is
therefore a rank-1 perturbation of a multiple of the identity. We
can then solve for ~p using the Sherman-Morrison-Woodbury
matrix inversion formula:(

N(i′, i′)I + ~N~1T
)−1

=
1

N(i′, i′)
I

− 1

N(i′, i′)
I ~N

(
1 +

~1T ~N

N(i′, i′)

)−1
~1T

1

N(i′, i′)
I

Hence ~p = ~N/
∑M
j=1N(i′, j). Since i′ and j′ were arbitrary,

we see that the MLE for the (i, j)-th entry of the transition
matrix is p̂i,j = N(i, j)/

∑M
k=1N(i, k). We have derived this

formula for i 6= j. Because p̂i,i = 1−
∑
j 6=i p̂i,j , it is valid for

i = j as well.
Next we derive the CTMC MLE. Consider data consisting of

times {0 = t0, t1, t2, . . . , tN} and states {s0, s1, s2, . . . , sN}.
Define α(x, y) as the rate that state x jumps to state y. Then
the transition rate out of state x is α(x) =

∑
y 6=x α(x, y). For

i = 0, . . . , N − 1, define Ti = ti+1 − ti. Then the likelihood
function is [27]:

L = α(s0)e
−α(s0)T0

α(s0, s1)

α(s0)
α(s1)e

−α(s1)T1
α(s1, s2)

α(s1)
· · ·

= e−α(s0)T0α(s0, s1) e
−α(s1)T1α(s1, s2) · · ·

= e−
∑

x α(x)W (x)
∏

x,y:x 6=y

α(x, y)N(x,y),

where W (x) =
∑N−1
i=0 Ti · I (si = x) and N(x, y) =∑N−1

i=0 I(si = x, si+1 = y). In words, W (x) is the total time
spent in state x, and N(x, y) is the total number of times that
the pattern (x, y) is observed. Then

logL =
∑

x,y:x 6=y

[−W (x)α(x, y) +N(x, y) logα(x, y)].

Fix states x′, y′ and maximize the log likelihood function over
the parameter α(x′, y′):

∂ logL

∂α(x′, y′)
= −W (x′) +

N(x′, y′)

α(x′, y′)
= 0.

We obtain the MLE α̂(x′, y′) = N(x′, y′)/W (x′). This holds
for all x′ 6= y′.

H. S. Bhat acknowledges support from NSF award DMS-
1723272. Both authors acknowledge use of the MERCED
computational cluster, funded by NSF award ACI-1429783.

REFERENCES

[1] K. Fokianos and B. Kedem, “Regression theory for categorical time
series,” Statistical Science, vol. 18, no. 3, pp. 357–376, 2003.

[2] H. S. Bhat, L.-H. Huang, and S. Rodriguez, “Learning stochastic
models for basketball substitutions from play-by-play data,” in MLSA15,
Workshop at ECML/PKDD 2015, 2015, pp. 55–64. [Online]. Available:
http://ceur-ws.org/Vol-1970/paper-08.pdf

[3] M. T. Chu and Q. Guo, “A numerical method for the inverse stochastic
spectrum problem,” SIAM J. Matrix Anal. Appl., vol. 19, no. 4, pp.
1027–1039, 1998.

[4] M. Chu and G. H. Golub, Inverse Eigenvalue Problems: Theory,
Algorithms, and Applications. Oxford University Press, 2005, vol. 13.

[5] Z.-J. Bai, S. Serra-Capizzano, and Z. Zhao, “Nonnegative inverse
eigenvalue problems with partial eigendata,” Numerische Mathematik,
vol. 120, no. 3, pp. 387–431, 2012.

[6] R. Kumar, A. Tomkins, S. Vassilvitskii, and E. Vee, “Inverting a steady-
state,” in Proc. 8th ACM WSDM, 2015, pp. 359–368.

[7] L. Maystre and M. Grossglauser, “Fast and accurate inference of Plackett–
Luce models,” in Advances in Neural Information Processing Systems
28, 2015, pp. 172–180.

[8] S.-J. Wu and M. T. Chu, “Constructing optimal transition matrix for
Markov chain Monte Carlo,” Linear Algebra and its Applications, vol.
487, pp. 184–202, 2015.

[9] D. P. Laurie, “Solving the inverse eigenvalue problem via the eigenvector
matrix,” J. Comp. Appl. Math., vol. 35, pp. 277–289, 1991.

[10] X. Chen and D. Liu, “Isospectral flow method for nonnegative inverse
eigenvalue problem with prescribed structure,” Journal of Computational
and Applied Mathematics, vol. 235, no. 14, pp. 3990–4002, 2011.

[11] T.-T. Yao, Z.-J. Bai, Z. Zhao, and W.-K. Ching, “A Riemannian
Fletcher–Reeves conjugate gradient method for doubly stochastic inverse
eigenvalue problems,” SIAM J. Matrix Anal. Appl., vol. 37, no. 1, pp.
215–234, 2016.

[12] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: the
Science of Search Engine Rankings. Princeton, NJ: Princeton University
Press, 2006.

[13] A. Y. Ng, A. X. Zheng, and M. I. Jordan, “Link analysis, eigenvectors
and stability,” in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington,
USA, August 4-10, 2001, 2001, pp. 903–910.

[14] A. N. Langville and C. D. Meyer, “Updating Markov chains with an eye
on Google’s PageRank,” SIAM J. Matrix Anal. Appl., vol. 27, no. 4, pp.
968–987, 2006.

[15] T. P. Chartier, E. Kreutzer, A. N. Langville, and K. E. Pedings, “Sensitivity
and stability of ranking vectors,” SIAM J. Sci. Comput., vol. 33, no. 3,
pp. 1077–1102, 2011.

[16] O. Fercoq, M. Akian, M. Bouhtou, and S. Gaubert, “Ergodic control and
polyhedral approaches to PageRank optimization,” IEEE Transactions
on Automatic Control, vol. 58, no. 1, pp. 134–148, 2013.

[17] O. Fercoq, “Perron vector optimization applied to search engines,”
Applied Numerical Mathematics, vol. 75, pp. 77–99, 2014.

[18] B. C. Csáji, R. M. Jungers, and V. D. Blondel, “PageRank optimization
by edge selection,” Disc. Appl. Math., vol. 169, pp. 73–87, 2014.

[19] D. F. Gleich, “PageRank Beyond the Web,” SIAM Review, vol. 57, no. 3,
pp. 321–363, 2015.

[20] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in Proc. 4th ACM WSDM,
2011, pp. 635–644.

[21] G. F. Lawler, Introduction to Stochastic Processes. Boca Raton: Chapman
& Hall/CRC, 2006.

[22] J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 2006.

[23] M. S. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: A Python
package for convex optimization, version 1.2.0,” http://cvxopt.org, 2018.

[24] M. ApS, MOSEK Optimizer API for Python 8.1.0.80, 2018. [Online].
Available: https://docs.mosek.com/8.1/pythonapi/index.html

[25] G. A. Spedicato, T. S. Kang, S. B. Yalamanchi,
and D. Yadav, The markovchain Package, 2017. [Online].
Available: https://cran.r-project.org/web/packages/markovchain/vignettes/
an introduction to markovchain package.pdf

[26] A. M. Fraser, Hidden Markov Models and Dynamical Systems. Philadel-
phia: SIAM, 2008.

[27] P. Guttorp, Stochastic Modeling of Scientific Data. Springer Sci-
ence+Business Media, Dordrecht, 1995.

http://ceur-ws.org/Vol-1970/paper-08.pdf
https://docs.mosek.com/8.1/pythonapi/index.html
https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduction_to_markovchain_package.pdf
https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduction_to_markovchain_package.pdf

	Introduction
	Background
	Mathematical Methods
	Discrete-Time Optimization Problem/Solution
	Continuous-Time Optimization Problem/Solution

	Simulated Data Tests
	Metrics
	Long-Term Error Test
	Short-Term Error Test

	Real Data Tests
	NBA Data
	Biomedical data

	Conclusion
	References

