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Kirchhoff’s Laws as a Finite Volume
Method for the Planar Maxwell Equations

Harish S. Bhat and Braxton Osting

Abstract—Beginning with Maxwell’s equations for the
(H1,H2, E) polarized mode in an inhomogeneous planar
medium, we derive a finite volume method that we recognize
as Kirchhoff’s laws for a corresponding circuit consisting of
inductors, capacitors, and resistors. This association automati-
cally gives local charge and energy conservation. The method
is implemented and used to find the steady-state solution for
two test problems. By comparison with the exact solution for
the homogeneous medium problem, the method is shown to be
linearly convergent.

Index Terms—Finite volume methods, Maxwell equations,
Helmholtz equation, Circuit modeling, Equivalent circuits

I. I NTRODUCTION

M AXWELL’S equations for the(H1, H2, E) polarized
mode in a planar, inhomogeneous medium with per-

mittivity ǫ(x, y) and permeabilityµ(x, y) are

µ∂tΛ = −∇E, Λ = (−H2, H1) (1a)

ǫ∂tE = − divΛ. (1b)

Let Ω = [0,M ]× [0, L] be the rectangular region occupied by
the medium. LetΓ = {0} × [0, L] be the left boundary ofΩ.
Suppose that onΓ, we have harmonic forcing at frequencyα:

E(0, y, t) = f(0, y)e2πıαt. (1c)

On the remaining three sides of the boundary, we impose
impedance or Leontovich boundary conditions:

Λ(x, y, t) · n̂ = σ(x, y)E(x, y, t), (x, y) ∈ ∂Ω \ Γ, (1d)

where∂Ω, n̂, andσ(x, y) denote the boundary ofΩ, the unit
outward normal, and the conductance on the boundary.

In this paper, we accomplish the following goals:

1) We show that a finite volume discretization of (1)
results in Kirchhoff’s laws of voltage and current for
a particular circuit consisting of inductors, capacitors,
and resistors.

2) By comparing finite volume solutions of (1) for constant
ǫ and µ with exact solutions obtained via separation
of variables, we numerically establish first-order con-
vergence.
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A. Relationship to previous work

The idea of demonstrating equivalent circuits whose con-
tinuum limit yields Maxwell’s equations is quite old [1]–
[4]. These early works predate the widespread use of digital
computers to solve differential/integral equations.

Since then, when a new numerical method for Maxwell’s
equations has been introduced, the corresponding equivalent
circuit has been explored, often as a way to gain physical
insight useful for modeling purposes [5, Chap. 1]. One of the
first papers proposing an equivalent circuit for the FDTD dis-
cretization was [6]. Equivalent circuits for the Finite Element
Method and the Method of Moments have been described in
[7] and [8, Chap. 5], respectively. For the Transmission Line
Matrix method [5], [9], [10] and the Spatial Network Method
[11], [12], equivalent circuits feature prominently.

The finite volume (FV) method appeared in computational
electromagnetics in the late 1980s [13]–[16]. More recent work
indicates that FV methods may hold an advantage over other
methods for problems with large variations in the material
parameters and sub-grid scale variations in the fields [17]–
[20]. Note that the convergence of at least two versions of the
FV method has been proven rigorously [21]–[24].

Despite the fact that the FV method has been employed
successfully for over 20 years, and unlike the situation for
any of the other popular methods for solving Maxwell’s
equations, there has to date been no discussion in the literature
of an equivalent circuit for the FV discretization. We find
two main benefits of carefully deriving an equivalent circuit
formulation of the FV discretization. First, we obtain precise
formulas that relate the local inductance, capacitance, and
boundary conductance of the circuit tospatial averages of
their continuum counterparts:µ(x, y), ǫ(x, y) and σ(x, y),
respectively. Second, relating the FV discretization to Kirch-
hoff’s laws for a circuit automatically yields local energyand
charge conservation, in addition to global energy and charge
functionals that are natural discretizations of the continuum
energy and charge functionals for Maxwell’s equations.

From the point of view of using FV to analyze a two-
dimensional case of Maxwell’s equations, our work is most
similar to [25]. We solve (1) in steady-state for an arbitrary
frequency2πα in (1c); this amounts to finding the frequency-
domain solution, which is exactly the goal of the frequency-
domain FV method proposed in [20]. In the present work, we
are not concerned with issues related to unstructured, adaptive,
or hybridized meshes [26]–[28], though we note here that our
derivation can be generalized in this direction.
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Fig. 1. Cell diagram of finite volume discretization for an interior cell Ωk .
The blue dashed lines indicate the dual graph.

II. F INITE VOLUME DISCRETIZATION OF PLANAR

MAXWELL ’ S EQUATIONS

In this section, we derive a finite volume method discretiza-
tion for (1). We tile our rectangular domainΩ with small
square cells,m in the vertical direction andn in the horizontal
direction. We define thecharge Qk in the cellΩk:

Qk(t) :=

∫

Ωk

ǫ(x, y)E(x, y, t) dx. (2)

We define thecapacitance Ck to be the scaled permittivity in
the cellΩk:

Ck :=
1

η

∫

Ωk

ǫ(x, y) dx, (3)

whereη > 0 is a characteristic length scale in the out-of-plane
direction. Next, we define thevoltage Vk(t) = Qk(t)/Ck, so

CkV̇k =

∫

Ωk

∂t(ǫE) dx = −
∫

Ωk

div Λ dx = −
∮

∂Ωk

Λ · n dℓ.

(4)
Let us assume for a moment thatΩk is an interior cell, so that
∂Ωk has no intersection with∂Ω. As shown in Figure 1,Ωk

has four neighboring cells labeledΩi, Ωj , Ωl, andΩm, the
right, up, left, and down neighbors, respectively. We labelthe
four corners ofΩk asW , X , Y , andZ. With this notation,

CkV̇k =

∫

−−→
WX

H2 dℓ+

∫

−−→
XY

(−H1) dℓ

+

∫

−−→
Y Z

(−H2) dℓ +

∫

−−→
ZW

H1 dℓ. (5)

Now let us define the currents. In general, when we have two
neighboring cellsΩk andΩi that are separated by a vertical
segmentγ, if Ωk is to the left of Ωi, then we define the
horizontal current

Ik,i :=

∫

γ

(−H2) dℓ. (6)

In general, when we have two neighboring cellsΩk andΩj

that are separated by a horizontal segmentγ, if Ωk is below

Ωj , then we define thevertical current

Ik,j :=

∫

γ

H1 dℓ. (7)

Note that the right-hand sides of (5), (6), and (7) all involve
line integrals of scalar fields, which are all independent of
parametrization.

With these conventions, we have

CkV̇k = −Ik,i − Ik,j + Il,k + Im,k. (8)

Note that this equation says that at each lattice node, the sum
of incoming currents must equal the sum of outgoing currents,
implying local charge conservation.

We define theinductance of the segmentγ as

Lγ :=
η

|γ|

∫

γ

µ dℓ. (9)

Let us check how the currents evolve in time. We compute

İk,i = −
∫

γ

∂xE

µ
dℓ ≈ − η

Lγ

∫

γ

∂xE dℓ (10a)

≈ − η

Lγ

(

|Ωi|−1

∫

Ωi

E dx− |Ωk|−1

∫

Ωk

E dx

)

(10b)

≈ 1

Lγ
(Vk − Vi). (10c)

Let us explain the sequence of approximations made above:

• In (10a), we replaceµ by its segment averageLγ/η.
• To approximate the flux between cells in (10a), the

integral
∫

γ
∂xE dℓ is approximated by the value of∂xE

evaluated at the midpoint ofγ, a second-order accurate
finite-difference formula is applied using the values ofE
at the center of the cellsΩq andΩp, and then these values
are replaced by the cell averages. This is the main finite
volume approximation [29].

• To go from (10b) to (10c), we replaceǫ by its cell
average, which gives us

Vk =
Qk

Ck
=

∫

Ωk

ǫE dx

η−1
∫

Ωk

ǫ dx
≈ η

|Ωk|

∫

Ωk

E dx. (11)

Using analogous approximations, we compute

İk,j ≈
1

Lγ
(Vk − Vj). (12)

For an interior cellΩk, (8), (10), and (12) are Kirchhoff’s laws
of voltage and current for a regular square lattice of inductors
and capacitors [30], [31].

A. Boundary conditions

To handle boundary condition (1c) onΓ, we use a column
of ghost cells. Each ghost cell, where the electric field is
prescribed, is directly to the left of a cell in the first column,
where the electric field is an unknown. Letγ ⊂ Γ be the right
boundary of the ghost cell. We compute the voltage of the
ghost cell using (11):

Vk ≈ η

|Ωk|

∫

Ωk

E dx ≈ η

|γ|

∫

γ

E dℓ = Ṽke
2πıαt, (13)
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with

Ṽk = η

(

1

|γ|

∫

γ

f(y) dy

)

.

The ghost cells yieldn new horizontal currentsIp,q, each
of which satisfies an equation of the form (10). Each such
equation involves one unknown and one prescribed voltage.

If the top, right, or bottom boundary ofΩk intersects∂Ω,
then we apply the other boundary condition (1d). Letγ =
∂Ωk ∩ ∂Ω. Then going back to (4), we find

CkV̇k = −
∫

γ

Λ · n dℓ−
∫

∂Ωk\γ
Λ · n dℓ (14)

= −
∫

γ

σE dℓ −
∫

∂Ωk\γ
Λ · n dℓ

The second line integral in (14) can be evaluated in the same
way as (5) above; we focus on the first line integral. We write
∫

γ

σE dℓ ≈
(

1

|γ|

∫

γ

E dℓ

)(∫

γ

σ dℓ

)

≈
(

η

|Ωk|

∫

Ωk

E dx

)(

1

η

∫

γ

σ dℓ

)

≈ VkGk,

whereGk is theconductance

Gk :=
1

η

∫

γ

σ dℓ. (15)

Note that if σ = 0, then (1d) and (1a) imply∇E · n̂ = 0,
a perfectly insulating boundary condition. On the other hand,
if σ = ∞, then (1d) impliesE = 0, a perfectly conducting
boundary condition. In this paper, we chooseσ to approximate
outgoing boundary conditions, which are obtained as follows.

Dotting (1a) with n̂ and then using (1d), we find that on
∂Ω \ Γ,

∂tE +
1

µσ
∇E · n = 0.

At each(x, y) ∈ ∂Ω \ Γ, the value ofσ(x, y) for which this
equation is the Engquist-Majda outgoing condition [32] is

σ(x, y) =
√

ǫ(x, y)/µ(x, y). (16)

B. Remark

In Appendix A, we show that the(H1, H2, E) polarized
mode described by (1) is an exact solution of the fully
three-dimensional Maxwell’s equations for a physical system
described by two horizontally infinite parallel plates thatare
separated vertically by the distanceη > 0. All the definitions
made above (e.g., charge, capacitance, resistance, etc.) can
be derived in a physically consistent fashion using the setup
in Appendix A. One may also make these definitions on the
grounds that the quantities being derived have the correct units.

C. Assembling the discretized system

Discretization gives us a two-dimensional rectangular lattice
with m rows andn columns, which we represent as an oriented
graph, c.f. [33, Chap. 13]. This graph is the dual graph of
the finite volume mesh as shown in Fig. 1. Nodes represent
capacitors and edges represent inductors. The direction or

orientation of the edge represents the direction of positive
current flow through the associated inductor.

In a lattice of sizem× n, there aremn nodes and(2m−
1)n edges,mn horizontal ones and(m − 1)n vertical ones.
We let N = {1, 2, . . . ,mn} denote the set of all nodes, and
E = {1, 2, . . . , (2m − 1)n} denote the set of all edges. Let
C be a vector of sizemn such thatCj is the capacitance at
nodej. Let L be a vector of size(2m− 1)n such thatLj is
the inductance at edgej. We partitionL into horizontal and
vertical inductances by writingL = [Lh,Lv]. At time t, Vj(t)
andIk(t) are, respectively, the voltage across capacitorj and
the current through inductork. By V(t) and I(t) we denote
the vectors of all voltages and currents, respectively.

Of the horizontal edges, there arem boundary edges that
form a subsetΓ ⊂ E, each of which is incident upon only one
node and corresponds to a ghost cell to the left of the domain
Ω. Specifically,Γ is the left-most column of horizontal edges.
All other edges in the graph are incident upon two nodes. In
general, we think of an edge as an ordered pair(i1, i2), where
ik ∈ N. The direction of the edge is given by the ordering
of these numbers, so thati1 is the tail andi2 is the head of
(i1, i2). For a boundary edgej that is incident only upon node
i, we write j = (∅, i).

We letB denote the|N|×|E| = mn×(2m−1)n incidence
matrix of the oriented graph for our circuit. We have

Bij =











1 if j = (i′, i) for somei′ ∈ N ∪ {∅}
−1 if j = (i, i′) for somei′ ∈ N

0 otherwise.

In addition to the structure described already, the latticealso
has resistors and forcing along the boundary. We represent the
set of nodes connected to resistors byG ⊂ N, and letGi be
the conductance of nodei ∈ G. We then extendGi by defining
Gi ≡ 0 for all i ∈ N \ G, so thatG = (G1, . . . , Gmn) is a
vector of size|N| = mn.

Let N = |N| + |E| = (3m − 1)n. Then we define the
|Γ|×N = m×(3m−1)n projection matrixPΓ by (PΓ)ij = 1
if Γi = j and(PΓ)ij = 0 otherwise. Note that becauseΓi ∈ E,
the finalmn columns ofPΓ are all zero. The forcing applied
at edgesΓ is

W(t) = P t
Γfe

2πıαt.

The frequencyα is the sameα in the boundary condition (1c).
The vectorf = (f1, . . . , fm) ∈ C|Γ| is arranged as follows:
each edgei ∈ Γ is of the form(∅, k′) for somek′ ∈ N. We
set fi equal toṼk as defined in (13), whereΩk is the ghost
cell to the left of cellΩk′ .

The finite volume scheme from the previous section, which
we have already noted is equivalent to Kirchhoff’s Laws on an
inductor-capacitor lattice, can now be written in the following
matrix-vector form:

diag(L)
dI

dt
= −B

t
V +W (17a)

diag(C)
dV

dt
= BI− diag(G)V. (17b)
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D. Steady-state solution of the discretized equation

Definez(t) = (I(t),V(t)) so for eacht, z(t) ∈ CN . Define

M =

[

0 −B
t

B −diag(G)

]

,

Then the system (17) can be written in the form

diag(L,C)ż(t) =Mz(t) + P t
Γfe

2πıαt. (18)

Consider the steady-state solutionz(t) = ue2πıαt. Inserting
this into (18), we derive

u = (2πıα diag(L,C) −M)−1P t
Γf . (19)

E. Discussion

1) The matrix (2πıα diag(L,C) − M) will be invert-
ible if and only if 2πıα is not an eigenvalue of
diag(L,C)−1M . Note that if all nodes are resistive, i.e.,
if Gk > 0 for for all i ∈ N, then the spectrum of
diag(L,C)−1M has strictly negative real part, implying
that (19) can be computed for all realα.

2) Using Matlab on a desktop computer with 4GB of RAM,
(19) can easily be solved form,n ≤ 400.

3) We have formulated the circuit as an oriented graph in
order to write the equations compactly and take advan-
tage of the graph-theoretic interpretation of the incidence
matrix B, which appears naturally in Kirchhoff’s laws.
Though we have formulated the problem for anm× n
rectangular lattice, the graph-theoretic framework easily
accommodates other topologies.

4) Inserting (16) into (15), we find that at a boundary node
i ⊂ G, we have the impedance-matched value of the
conductance,

Gi =
|γ|

|Ωi|1/2

√

Ci

Lj
, (20)

wherej ∈ E is the edge incident on nodei that is normal
to the boundary, andγ is the segment that is dual to edge
j. In the case where all cells are identical squares, we
have|γ| = |Ωi|1/2.

III. C ONSERVATION PROPERTIES OF THE CONTINUOUS

AND DISCRETE SYSTEMS

It is instructive to calculate the time evolution of the total
energy for the Maxwell system (1):

d

dt

1

2

∫

Ω

ǫ|E|2 + µ‖Λ‖2 dA = −ℜ
∫

∂Ω

E∗Λ · n dℓ

= −ℜ
∫

Γ

f(y)e−2πıαtH2 dℓ−
∫

∂Ω\Γ
σ|E|2 dℓ. (21)

This says that the rate of change of energy equals the power
forced in through the left boundary minus the power dissipated
through the other three sides of the medium. It is clear that
power is dissipated at a rate proportional toσ.

We also compute the time-evolution of the total charge of
the system

d

dt

∫

Ω

ǫE dx = −
∫

Γ

Λ · n dx−
∫

∂Ω\Γ
σE dx. (22)

The interpretation of this equation is that the rate of change
of charge equals the current entering the domain on the left
boundary minus the current exiting the domain on the other
three sides. Again, the outgoing current is proportional toσ.

The association of the finite volume discretized system as
Kirchhoff’s laws for a circuit allows for natural definitions of
discrete energy and charge. The rate of change of the total
energy of the discrete system can be calculated using (17):

1

2

d

dt

(

V
∗diag(C)V + I

∗diag(L)I

)

= ℜI∗P t
Γfe

2πıαt −V
∗diag(G)V.

The right hand side, which has the form of power in minus
power out, corresponds perfectly with the right hand side of
(21). The calculation shows that the dynamics of energy for
the entire lattice can be understood by observing boundary
phenomena only; this implies that, locally, in the interiorof
the lattice, energy is conserved.

We also compute the time evolution of the total charge of
the discrete system (17):

d

dt
1
tdiag(C)V = 1

t
BI− 1

tdiag(G)V

=
∑

j∈Γ

Ij −
∑

k∈G

GkVk.

This has the form of current in minus current out, correspond-
ing perfectly with the right hand side of (22).

IV. SEPARATION OF VARIABLES SOLUTION

In this section, we use separation of variables to develop
the exact, steady-state solution of (1) for constantǫ andµ. We
begin by assuming harmonic time-dependence of the fields,

E(x, y, t) = Ẽ(x, y)e2πıαt, Λ(x, y, t) = Λ̃(x, y)e2πıαt,

in which case system (1) reduces to

(∇2 + k2)Ẽ = 0 (23a)

Ẽ(0, y) = f(y) (23b)

∂Ẽ

∂n
+ ıkzẼ = 0 on ∂Ω \ Γ, (23c)

wherek2 = µǫ(2πα)2 and z = σ
√

µ/ǫ. We now assume a
solution of the formẼ(x, y) = ρ(x)ψ(y). Inserting this into
the Helmholtz equation (23a), we split the problem as follows:

ρ′′(x)

ρ(x)
+ k2 = −ψ

′′(y)

ψ(y)
= λ. (24)

This yields a non-selfadjoint problem for a complex eigen-
functionψ(y) and a complex eigenvalueλ:

ψ′′(y) = −λψ(y) (25a)

ψ′(L) + ıkzψ(L) = 0 (25b)

−ψ′(0) + ıkzψ(0) = 0 (25c)

We say thatφ(y) solves the adjoint problem if it satisfies:

φ′′(y) = −λφ(y) (26a)

φ′(L)− ıkzφ(L) = 0 (26b)

−φ′(0)− ıkzφ(0) = 0 (26c)
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We list without proof the properties of the eigenvalue problem
that are most relevant to developing a separation of variables
solution. For details, refer to [34], [35].

1) (25) is not a Sturm-Liouville problem because the
boundary conditions are not self-adjoint.

2) If the eigenpair(λ1, ψ) solves (25), the eigenpair(λ2, φ)
solves (26), andλ1 6= λ2, thenψ andφ are orthogonal
with respect to theL2 inner product:

〈ψ, φ〉 :=
∫ L

0

ψ(y)φ(y) dy = 0.

3) If the eigenpair(λ, ψ) solves (25), then the eigenpair
(λ, ψ) solves (26). In this case,〈ψ, ψ〉 6= 0.

4) The eigenvalues are discrete, simple, and live in the first
quadrant ofC.

5) The set{ψn}∞n=1 is a complete basis ofL2([0, L]).
6) As n ↑ ∞, the eigenfunctionsψn are increasingly oscil-

latory and alternatingly even and odd abouty = L/2.

Note that

ψn(y) = eı
√
λny +

√
λn − kz√
λn + kz

e−ı
√
λny (27)

is an eigenfunction of (25) as long asλn solves the transcen-
dental equation

e2ı
√
λL =

(√
λ− kz√
λ+ kz

)2

. (28)

Using this and the above properties, we can derive the solution
of (23). We expand the left-hand side boundary condition via

f(y) =
∞
∑

n=1

cnψn(y).

Taking inner products, we find

cm =
〈f, φm〉
〈ψm, φm〉 .

We return to (24) and see thatρ(x) must satisfy

ρ′′n(x) = (λn − k2)ρn(x) (29a)

ρn(0) = 1 (29b)

ρ′n(M) + ıkzρn(M) = 0 (29c)

The solution of (29) is

ρn(x) =
q

q + 1
e
√
λn−k2x +

1

q + 1
e−

√
λn−k2x,

where

q =

√
λn − k2 − ıkz√
λn − k2 + ıkz

e−2
√
λn−k2M .

The solution of (23) is then

Ẽ(x, y) =

∞
∑

n=1

cnρn(x)ψn(y). (30)

A. Solving (28) for the eigenvalues

Let
√
λ = a + ıb. Taking the square root of both sides of

(28) and then splitting the resulting equation into its realand
imaginary parts leads us to the fixed point iteration scheme

(

aj+1

bj+1

)

= Fn

(

aj
bj

)

,

where

Fn

(

a
b

)

=







nπ

L
+

1

L
tan−1 2bkz

a2 + b2 − k2z2

− 1

2L
log

(a2 + b2 − k2z2)2 + (2bkz)2

((a+ kz)2 + b2)2






.

Let D be the disc{w ∈ C | |w − (kz)2| < 2kz/L}. If
the eigenvalueλn satisfiesλn /∈ D, it can be shown using
the contraction mapping principle thatFn has a unique fixed
point (a, b) whereaL/π ∈ (n − 1/2, n + 1/2). In practice,
we find that this means that applyingFn for 1 ≤ n ≤ N ,
one obtains all eigenvalues with real parts in the interval
(0, ((N +1/2)π/L)2) except possibly for one eigenvalue that
can be found by applying Newton’s method in the discD.

The eigenvalues found in this way constitute the full spec-
trum of (25). Note that asn ↑ ∞, the eigenvalues have the
asymptotic form

√

λn ∼ nπ

L
+ ı

2kz

nπ
. (31)

B. The transfer function on the rectangle

We define the transfer functionT (f) to be the mapping from
the left boundary conditionf(y) to the solutionẼ(M, y) on
the right boundary, i.e.,

T (f) =

∞
∑

n=1

〈ψn, f〉
〈ψn, ψn〉

ρn(x =M)ψn(y). (32)

Let µn =
√
λn − k2. Using (30), we derive

ρn(M) =
2µne

−µnM

(µn + ıkz) + (µn − ıkz)e−2µnM
. (33)

Combining this with (31), we see that for largen,

|ρn(M)| ∼ e−nπM/L. (34)

Since〈ψm, T (f)〉 = 〈ψm, f〉ρn(M), the upshot of (34) is that
the transfer function (32) does not conserve energy, since the
largen modes off(y) are severely damped. Also, the solution
on the right boundary will be much smoother thanf(y).

V. NUMERICAL IMPLEMENTATION AND CONVERGENCE

In this section, we discuss the application of the finite
volume method to two test problems. Throughout the finite
volume solution, we setη = 1. We useV to denote the
components of the finite volume solutionu that represent
voltages at lattice nodes.
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Fig. 2. The left panels show results from simulations of a homogeneous medium withǫ = 9 and µ = 1 as in Sec. V-A. The right panels show results
from simulations of an inhomogeneous medium as in Sec. V-B. The black circles in the upper-right panel mark the parts of the medium within whichǫ = 1;
otherwise,ǫ = 9. Again,µ = 1 everywhere. The same Gaussian boundary forcing at angular frequencyα = 1.9 is applied in both problems. The numerically
computed real part of the electric field is indicated by the color contour plots. Note that the effect of the periodic arraywith linear defect is to confine the
electromagnetic field and not allow it to diffract into the rest of the domain as in the homogeneous medium. The lower panels show the results of a convergence
study in the form of log-log plots of theL2 error between numerically computed solutions and a reference solution, as a function of the number of lattice
rows. In the lower-left panel, the reference solution is a50-mode truncation of the exact solution, while in the lower-right panel, the reference solution is the
finite volume solution on an800× 800 lattice. The lower panels both show four curves, one for eachindicated value of the angular frequencyα. All eight
curves have best-fit slope less than−1, indicating first-order convergence.

A. Homogeneous medium

For the separation of variables solution, we use (30),
truncated atn = 50 modes, to produce a functioñE(x, y).
When we comparẽE(x, y) againstVk, we averageẼ(x, y)
over the cellΩk, following (11)—we denote the the averaged
separation of variables solution byE.

We focus on Gaussian boundary dataf(y) = e−a(y−1/2)2

with a = 150 on the square domain withM = L = 1. We set
ǫ = 9 andµ = 1. The finite volume solution of this problem
at α = 1.9 on a 400 × 400 lattice is given in the upper-left
panel of Fig. 2.

For four different values ofα, we compare the separation
of variables solution to the finite volume solutionVm on an
m×m lattice wherem = 20, 32, 40, 64, 80, 100, 160, 200,
320, 400, and 800. The lower-left panel of Fig. 2 shows a
log-log plot of theL2 error ‖Vm − E‖2 versusm. Whenα
equals0.25, 0.5, 1.0, and1.9, the least squares fit to the data
gives slopes of, respectively,−1.10,−1.09,−1.27, and−1.36,
indicating first-order convergence.
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B. Periodic medium with a linear defect

We now consider a medium, modeled after a photonic
crystal device [36], that consists of a periodic array of low
index circular inclusions with a linear defect. The permittivity
outside the inclusions isǫ = 9 and inside,ǫ = 1. The
domain is the square withM = L = 1. The distance between
the centers of the circles is1/10 and each circle has radius
1/40. The linear defect is created by simply removing a row
of inclusions. The finite volume solution of this problem at
α = 1.9 on a 400 × 400 lattice is given in the upper-right
panel of Fig. 2. As expected, the mode is confined to the
defect, rather than diffracting as in the homogeneous medium.

We study the convergence of the finite volume method for
this inhomogeneous medium by first obtaining a fine-scale
finite volume solutionVfine on an800 × 800 lattice. For the
four values ofα mentioned above, we compare this solution to
the finite volume solutionVm on anm×m lattice form = 50,
100, 200, 400. A log-log plot of ‖Vm − Vfine‖2 versusm is
given in the lower-right panel of Fig. 2. A least squares fit of
the error gives slopes of, respectively,−1.25, −1.39, −1.42,
and−1.39, indicating first-order convergence.

VI. CONCLUSION

We have derived a physically motivated finite volume
method for a planar Maxwell system. The method is easy
to implement. Here we have done so to obtain the fre-
quency domain solution of two problems with harmonic time-
dependence. However, the system (17) obtained after spatial
discretization could be used with a time-stepping scheme to
solve an initial value problem in the time domain. Note that
to find a steady-state solution through time stepping that is
as accurate as the solutions we obtained, one would require
a temporal discretization with first-order global error. This
typically means that the time-stepping scheme must be at least
second-order accurate.

To demonstrate convergence, we compared numerical so-
lutions with a separation of variables solution for constant ǫ
andµ. Note that it is possible to generalize the separation of
variables solution in Sec. IV to handle separableǫ andµ.

The choice of discretization in Sec. II does not require
smoothness ofǫ andµ. In other words, an advantage of the
first-order method proposed here is that discontinuous material
parameters can be handled readily. A goal for future work
is to extensively test how roughness and/or short-wavelength
oscillations in the coefficientsǫ andµ affect the performance
of the finite volume method, and to compare the finite volume
method to other frequency-domain methods for such problems.

APPENDIX A
AN IDEALIZED PHYSICAL CONFIGURATION

In this section, we describe an idealized physical con-
figuration in which the(H1, H2, E) polarized mode is an
exact solution of Maxwell’s equations and interpret the finite
volume method derived in Sec. II in this context. The idea
of formulating more systematic relationships between circuit-
and field-theoretic concepts stems from [37].

We consider two perfectly conducting plates that are infinite
in extent in thêx andŷ directions and separated by a distance
η > 0 in the ẑ direction. Between the plates is a medium with
parametersǫ andµ that may vary in thêx and ŷ directions,
but are constant in thêz direction. Between the plates, the
electric and magnetic fields satisfy Maxwell’s equations with
no free charge or currents. The boundary conditions on the
plates are:

n̂× ~E = 0, n̂ · ~B = 0 (35a)

n̂ · ~D = ρs, n̂× ~H = ~js. (35b)

whereρs and~js are the surface charge and surface current.
Here, n̂ = ẑ for the upper surface and̂n = −ẑ for the
lower surface. The

(

H1(x, y, t), H2(x, y, t), E(x, y, t)
)

polar-
ized mode automatically satisfies (35a). The last two boundary
conditions reduce to

ǫE = ρs, Λ = (j1s , j
2
s ),

where, as before,Λ = (−H2, H1). Evaluating the line integral
of ∇ · (ǫE) connecting(x, y, 0) and(x, y, η), we find that the
charge density on the two plates at fixed(x, y) are equal in
magnitude but have opposite signs. We now identify the charge
Qk(t), defined by (2), with the area integral overΩk of the
surface charge on the top plate. For constantǫ, (3) agrees
with the capacitance between two parallel plates of area|Ωk|
separated by a distanceη: ǫ|Ωk|/η. The electrostatic potential
difference between the two plates at position(x, y) can be
defined by

V (x, y, t) =

∫ η

0

E(x, y, t) dz = ηE(x, y, t).

The approximation of the quantityVk ≡ Qk/Ck in (11) is
precisely the average valueV (x, y, t) on Ωk. Thus the ap-
proximation made in (11) can be interpreted as an electrostatic
approximation.

Continuity of charge requires that for any rectangular region
Ωk on the top conducting plate, we must have

d

dt

∫

Ωk

ρs(x, y) d~x = −
∮

∂Ωk

js dℓ = −
∮

∂Ωk

Λdℓ.

Thus the line integral of the surface current over one segment
of ∂Ωk is equivalent to the current defined by (7), and the
continuity equation is equivalent to Kirchhoff’s law (8).

Suppose there is a surface current between two cells in thex̂
direction. This induces a magnetic field in theŷ direction just
below the top plate. If the current increases (resp. decreases),
then the field will also increase (resp. decrease). By Faraday’s
law of induction, this increasing (resp. decreasing) field will
induce an electromotive force in thêx direction (resp.−x̂
direction) proportional toµ. This is Kirchhoff’s law (12).
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