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Abstract—Beginning with Maxwell’s equations for the A. Relationship to previous work
(H., H2, E) polarized mode in an inhomogeneous planar

medium, we derive a finite volume method that we recognize 14 jgea of demonstrating equivalent circuits whose con-
as Kirchhoff's laws for a corresponding circuit consisting of

inductors, capacitors, and resistors. This association damati- tnuum limit yields Maxwell's equatiqns is quite old [1.]__
cally gives local charge and energy conservation. The metbo [4]. These early works predate the widespread use of digital
is implemented and used to find the steady-state solution for computers to solve differential/integral equations.

two test problems. By .comparison with the exact solution for Since then. when a new numerical method for Maxwell's
the homogeneous medium problem, the method is shown to be ; ! ; .
linearly convergent. equations has been introduced, the corresponding equivale
circuit has been explored, often as a way to gain physical
insight useful for modeling purposes [5, Chap. 1]. One of the
first papers proposing an equivalent circuit for the FDTD dis
cretization was [6]. Equivalent circuits for the Finite Elent
l. INTRODUCTION Method and the Method of Moments have been described in
[7] and [8, Chap. 5], respectively. For the TransmissioneLin
AXWELL'S equations for the(H;, Ho, E) polarized Matrix method [5], [9], [10] and the Spatial Network Method

mode in a planar, inhomogeneous medium with pefi1], [12], equivalent circuits feature prominently.

mittivity e(z,y) and permeability.(z, y) are The finite volume (FV) method appeared in computational
electromagnetics in the late 1980s [13]-[16]. More receorkw
po A =—VE, A= (-H, Hi) (1a) indicates that FV methods may hold an advantage over other
€ E = —divA. (1b) methods for problems with large variations in the material
) . parameters and sub-grid scale variations in the fields [17]-
Let 2 = [0, M] x [0, L] be the rectangular region occupied by,0]. Note that the convergence of at least two versions ef th
the medium. Lef” = {0} x [0, L] be the left boundary of2. £y’ method has been proven rigorously [21]-[24].

Suppose that off, we have harmonic forcing at frequenay Despite the fact that the FV method has been employed
E(0,y,t) = £(0,y)e>™et. (1c) successfully for over 20 years, and unlike the situation for
any of the other popular methods for solving Maxwell's
On the remaining three sides of the boundary, we impog@uations, there has to date been no discussion in thetlitera
impedance or Leontovich boundary conditions: of an equivalent circuit for the FV discretization. We find
two main benefits of carefully deriving an equivalent citcui
Az, y,t) -0 =o(x,y)E(x,y,t), (v,y)€dQ\T, (1d) formulation of the FV discretization. First, we obtain peec
formulas that relate the local inductance, capacitancd, an
whered(, i, ando(z,y) denote the boundary @2, the unit boundary conductance of the circuit spatial averages of
outward normal, and the conductance on the boundary. their continuum counterpartsi(z,y), e(z,y) and o(z,vy),
In this paper, we accomplish the following goals: respectively. Second, relating the FV discretization tocKi

1) We show that a finite volume discretization of (1)10ff's laws for a circuit automatically yields local energpd

results in Kirchhoff's laws of voltage and current folcharge conservation, in addition to global energy and eharg
a particular circuit consisting of inductors, capacitor§P”Ct'°na|5 that are natural discretizations of the cantm

and resistors. energy and charge functionals for Maxwell's equations.

2) By comparing finite volume solutions of (1) for constant From the point of view of using FV to analyze a two-
e and p with exact solutions obtained via separatiodimensional case of Maxwell's equations, our work is most
of variables, we numerically establish first-order corsimilar to [25]. We solve (1) in steady-state for an arbigrar
vergence. frequency2ra in (1c); this amounts to finding the frequency-
domain solution, which is exactly the goal of the frequency-
H. S. Bhat is with the School of Natural Sciences, UniversitZalifornia, domain FV method proposed in [20]. In the present work, we
M%’Cf’g's mercfsd'v;:itﬁ %ﬁi‘%giﬁtﬁgﬁt‘“(t‘bet@‘l)iggmgLCi?édgnd P not concerned with issues related to unstructuredfisdap
Mathematicgsz, Columbia Univgrsity, New Yoprﬁ, NY 1)6027 USA am OF hybridized meshes [26]-{28], though we note here that our
bro2103@columbia.edu derivation can be generalized in this direction.
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Q; 25, then we define theertical current
ik bl Bl I,m-::/Hldé. (7
v

Note that the right-hand sides of (5), (6), and (7) all ineolv
line integrals of scalar fields, which are all independent of
parametrization.

With these conventions, we have

CwVie = Iy — Inj+ Ing + L - (8)
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Note that this equation says that at each lattice node, time su
Lol of incoming currents must equal the sum of outgoing currents
implying local charge conservation.

We define thanductance of the segmenty as

L = i/ude. 9)
vy

Let us check how the currents evolve in time. We compute

Fig. 1. Cell diagram of finite volume discretization for arieirior cell €2;,.
The blue dashed lines indicate the dual graph.
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II. FINITE VOLUME DISCRETIZATION OF PLANAR I = —/ " dl ~ I / O, Edl (10a)
MAXWELL’S EQUATIONS K T

~ N -1 . -1
In this section, we derive a finite volume method discretiza- ~ ~ ~ 7 ('QZ| /Q. E dx — || /Q de) (10b)
tion for (1). We tile our rectangular domaif? with small ' :
square cellsyn in the vertical direction and in the horizontal ~ L_(Vk - Vi). (10c)
v

direction. We define theharge Q. in the cell Q:
Let us explain the sequence of approximations made above:

Qr(t) := / e(x,y)E(z,y,t)dx. (2) « In (10a), we replace: by its segment average, /1.
2 « To approximate the flux between cells in (10a), the
We define thecapacitance Cj, to be the scaled permittivity in integral |_ 9, E d¢ is approximated by the value @&, E
the cellQy: evaluated at the midpoint of, a second-order accurate
Cp = l/ e(z,y) dx 3) finite-difference formula is applied using the valuesfof
nJa, ’ at the center of the cel®, and(2,, and then these values

are replaced by the cell averages. This is the main finite
volume approximation [29].
o To go from (10b) to (10c), we replace by its cell

wheren > 0 is a characteristic length scale in the out-of-plane
direction. Next, we define theoltage Vi (t) = Qx(¢)/Ck, SO

OV = [ O(eB)dx = — / divAdx=—¢ A-ndr. average, which gives us
Qp Qe oQy, ebdx
(4) Vk:%:{?’“izi Edx. (11)
Let us assume for a moment tHa} is an interior cell, so that Ck n ka edx Q] Jo,

09, has no intersection withQ2. As shown in Figure 1)

. : Using analogous approximations, we compute
has four neighboring cells labeled;, ©2;, ©;, and Q,,, the

1

right, up, left, and down neighbors, respectively. We |abel fk,j ~— (Vi — V). (12)
four corners of?, asW, X, Y, andZ. With this notation, L,
For an interior celf, (8), (10), and (12) are Kirchhoff’s laws
CuVie = / Hyde+ /‘%(—Hl) de of voltage and current for a regular square lattice of indrsct
WX XY and capacitors [30], [31].

+/ (—H2)dl+ | Hydl. (5)
vz W A. Boundary conditions

Now let us define the currents. In general, when we have two - —
9 To handle boundary condition (1c) df we use a column

neighboring cells€};, and Q2; that are separated by a vertical S .
segmenty, if O is to the left of Q;, then we define the of ghost cells. Each ghost cell, where the electric field is

horizontal current prescribed, is directly to the left of a cell in the first colam
where the electric field is an unknown. Letc T be the right
L o= /(—Hg)dé. (6) boundary of .the ghost cell. We compute the voltage of the
- ghost cell using (11):

In general, when we have two neighboring célls and €2, . .n ~ i/ _ 7 2mat
that are separated by a horizontal segmenif Q;, is below EE100 Jo, dx =~ EpA Edl = Vie*™  (13)



with orientation of the edge represents the direction of pasitiv

N 1 . .

Vi =n <_ / f(v) dv) ' current flow through the associated inductor.

vl Jy In a lattice of sizem x n, there arenn nodes and2m —
The ghost cells yield: new horizontal currentd,, ,, each 1)n edges,mn horizontal ones andm — 1)n vertical ones.
of which satisfies an equation of the form (10). Each sudffe let9t = {1,2,...,mn} denote the set of all nodes, and
equation involves one unknown and one prescribed voltaget = {1,2,...,(2m — 1)n} denote the set of all edges. Let
If the top, right, or bottom boundary db; intersectsdf, C be a vector of sizenn such thatC; is the capacitance at

then we apply the other boundary condition (1d). het= nodej. Let L be a vector of siz¢2m — 1)n such thatl; is
99 N 0. Then going back to (4), we find the inductance at edge We partitionL into horizontal and

vertical inductances by writing, = [Lj,, L, . At time ¢, V;(t)
CoVi = — / A-ndl— / A-ndl (14) andI(t) are, respectively, the voltage across capagitand
el 9 \y the current through inductdt. By V(t) andI(¢) we denote
_ / cEdl — / A-ndl the vectors O.f all voltages and currents, respectively.
v O\ Of the horizontal edges, there ane boundary edges that

The second line integral in (14) can be evaluated in the safe&m @ subset” C €, each of which is incident upon only one
way as (5) above; we focus on the first line integral. We writaode an_d_ corresponds to a ghost cell to the Ie_ft of the domain
Q. Specifically,I' is the left-most column of horizontal edges.
/oEdé ~ <L / Edé) (/ adé) All other edges in the graph are incident upon two nodes. In
5 vl J, 5 general, we think of an edge as an ordered fairi,), where
(n Bd 1 ) ~ Ve ir € 9. The direction of the edge is given by the ordering
~ m o x 5/70 ~ VeV R of these numbers, so that is the tail andi, is the head of
(i1,12). For a boundary edggthat is incident only upon node
i, we write j = (0,1).
Gy — l/adz. (15)  We let® denote thdl| x |€| = mn x (2m — 1)n incidence
. matrix of the oriented graph for our circuit. We have

where G}, is the conductance

Note that ifo = 0, then (1d) and (1a) implWE - i = 0, o . ,
a perfectly insulating boundary condition. On the otherchan 1 ifj=(i,9) for somei’ € NU {0}
if o = oo, then (1d) impliesE = 0, a perfectly conducting Bij = —1 if j= (i) for somei’ € N
boundary condition. In this paper, we choast approximate 0  otherwise
outgoing boundary conditions, which are obtained as fadlow
Dotting (1a) withia and then using (1d), we find that onin addition to the structure described already, the lattls®
OQ\T, has resistors and forcing along the boundary. We reprelsent t
O.F + LVE ‘n=0. set of nodes connected to resistors®yC 91, and letG; be
1o the conductance of node= &. We then extends; by defining
G; =0forallie M\, sothatG = (G1,...,Gny) IS @
vector of size|9| = mn.
Let N = M| + |€] = (3m — 1)n. Then we define the
o(z,y) = Velz,y)/n(z,y). (16) |I'|x N =mx (3m—1)n projection matrixPr by (Pr);; =1
if I'; = j and(Pr);; = 0 otherwise. Note that becauBe € €,
B. Remark the finalmn columns of Pr are all zero. The forcing applied
at edged” is

At each(z,y) € 9Q\ T, the value ofo(z,y) for which this
equation is the Engquist-Majda outgoing condition [32] is

In Appendix A, we show that théH,, H,, E') polarized
mode described by (1) is an exact solution of the fully W(t) = Pife™et,
three-dimensional Maxwell’s equations for a physical egst
described by two horizontally infinite parallel plates tlrme The frequencyy is the samex in the boundary condition (1c).
separated vertically by the distange> 0. All the definitions The vectorf = (fi,..., fn) € C!'l is arranged as follows:
made above (e.g., charge, capacitance, resistance, atc.)&ach edge € T is of the form (), k) for somek’ € 9. We
be derived in a physically consistent fashion using thepsetget fi equal toV}, as defined in (13), wher@; is the ghost
in Appendix A. One may also make these definitions on tH€ll to the left of cell;.
grounds that the quantities being derived have the corrétstu  The finite volume scheme from the previous section, which
we have already noted is equivalent to Kirchhoff’'s Laws on an
inductor-capacitor lattice, can now be written in the faliog

C. Assembling the discretized system X
matrix-vector form:

Discretization gives us a two-dimensional rectangulaiciat
with m rows andn columns, which we represent as an oriented
graph, c.f. [33, Chap. 13]. This graph is the dual graph of
the finite volume mesh as shown in Fig. 1. Nodes represent diaq C dVv B :

. : L — =8I — diag G)V. 17b
capacitors and edges represent inductors. The direction or lag©) dt g G) (17b)

diag(L)% =-B'V+W (17a)



D. Seady-state solution of the discretized equation The interpretation of this equation is that the rate of clang

Definez(t) = (I(t), V(t)) so for eacht, z(t) € CV. Define ©Of charge equals the current entering the domain on the left
boundary minus the current exiting the domain on the other

M= [0 f%t ] 7 three sides. Again, the outgoing current is proportionat to
B —diagG) The association of the finite volume discretized system as
Then the system (17) can be written in the form Kirchhoff’s laws for a circuit allows for natural definitienof
_ ] f o oriet discrete energy and charge. The rate of change of the total
diagL, C)z(t) = M=(t) + Frfe : (18) energy of the discrete system can be calculated using (17):
Consider the steady-state solutiatt) = ue?™**, Inserting 1d . .
this into (18), we derive 3 d <V diag C)V +1 d'a9(L>I>
u = (2madiagL, C) — M)~ PLf. (19) = RI*PLfe™ — V*diag G)V.
The right hand side, which has the form of power in minus
E. Discussion power out, corresponds perfectly with the right hand side of

1) The matrix (2madiagL,C) — M) will be invert- (21). The calculation shows that the dynamics of energy for
ible if and only if 2ma is not an eigenvalue of the entire lattice can be understood by observing boundary
diag’L, C)~' M. Note that if all nodes are resistive, i.e.phenomena only; this implies that, locally, in the interair
if G, > 0 for for all i € 9N, then the spectrum of the lattice, energy is conserved.
diag’L, C)~' M has strictly negative real part, implying We also compute the time evolution of the total charge of
that (19) can be computed for all real the discrete system (17):

2) Using Matlab on a desktop computer with 4GB of RAM, d_, .. Lt .

(19) can easily be solved fon,n < 400. El diag C)V = 1"BI — 1'diag G)V

3) We have formulated the circuit as an oriented graph in - le _ Z GV
order to write the equations compactly and take advan- e heo
tage of the graph-theoretic interpretation of the incigden '
matrix B, which appears naturally in Kirchhoff's laws
Though we have formulated the problem foranx n
rectangular lattice, the graph-_theoretlc framework gasil IV. SEPARATION OF VARIABLES SOLUTION
accommodates other topologies.

4) Inserting (16) into (15), we find that at a boundary node In this section, we use s_eparation of variables to develop
i C &, we have the impedance-matched value of t Qe exact, steady-state solution of (1) for constaamd ;.. We
egin by assuming harmonic time-dependence of the fields,

Shis has the form of current in minus current out, correspond
"ing perfectly with the right hand side of (22).

conductance,
. T 2miat A 2miat
Gi — |Q|'7|/J/2 %’ (20) E(xvya t) - E(xvy)e 9 A(Ia %t) - A(x,y)e 9
¢ V ~i in which case system (1) reduces to
wherej € € is the edge incident on nodehat is normal (V2 + K)E =0 (23a)
to the boundary, andl is the segment that is dual to edge -
j. In the case where all cells are identical squares, we ~ E(0,y) = f(y) (23b)
= [Q,|1/2 - _
havely] = [€:[7=. Z—E tikzE=0  ondQ\T, (23c)
n
Il. CONSERVATION PROPERTIES OF THE CONTINUOUS  wherek? = pe(2ra)? and z = o\/i/e. We now assume a
AND DISCRETE SYSTEMS solution of the formE(z,y) = p(z)¢(y). Inserting this into
It is instructive to calculate the time evolution of the fotathe Helmholtz equation (23a), we split the problem as folipw
energy for the Maxwell system (1): " "
&5 [BP uinpaa=-n [ Bama olo) o)
dt2 Jo a9 This yields a non-selfadjoint problem for a complex eigen-
_ _%/_f(y)e—zmatHQ dé — _a|E|2 ae.  (21) function(y) and a complex eigenvalue
Thi th trth te of ch fBQ\F Is th V) = M) (252)
is says that the rate of change of energy equals the power " ka(L) = 0 25p
forced in through the left boundary minus the power disgigat v E )+ k29 (L) (250)
through the other three sides of the medium. It is clear that —1"(0) + 2k21p(0) =0 (25¢)
power is dissipated at a rate proportionabto We say thaip(y) solves the adjoint problem if it satisfies:
We also compute the time-evolution of the total charge of ”
the System d) (1/) = _)\¢(U) (263)
¢ (L) —1kzp(L) =0 (26b)

d
o A ekdr = — /FA -ndr — /asz\r ok dx. (22) —¢/(0) — 1kzd(0) = 0 (26¢)



We list without proof the properties of the eigenvalue pesbl A. Solving (28) for the eigenvalues
that are most relevant to developing a separation of va$abl Let VX = a + b. Taking the square root of both sides of

solution. For details, refer to [34], [35]. (28) and then splitting the resulting equation into its readl

1) (25) is not a Sturm-Liouville problem because thgnaginary parts leads us to the fixed point iteration scheme
boundary conditions are not self-adjoint.

2) Ifthe eigenpaif);, 1) solves (25), the eigenpaiiz, ¢) (aj+1) _F (aj)

solves (26), and\; # Ay, thent and ¢ are orthogonal bjt1 b;
with respect to thel.? inner product:
where
L
w.0) = [ vl dy=o. m Lt W
0 () = L L b2 k222
3) If th ves (25), then the eigenpair  \'/ | 1og (0= W e
) e eigenpair(\, ¢) solves (25), then the eigenpair 57 108 (T k22 £ 02)2

(X, %) solves (26). In this casd, ) # 0.
4) The eigenvalues are discrete, simple, and live in the fifsét p pe the disc{w € C | |w — (k2)?| < 2kz/L}. |

quadrant ofC. the eigenvalue\, satisfies), ¢ D, it can be shown usmg
5) The set{y,,};2, is a complete basis at?([0, L]). the contraction mapping principle that, has a unique fixed
6) Asn T oo, the eigenfunctiong, are increasingly oscil- point (a,b) whereaL/m € (n — 1/2,n + 1/2). In practice,

latory and alternatingly even and odd abgut L/2. e find that this means that applying, for 1 < n < N,

Note that one obtains all eigenvalues with real parts in the interval
(0, (N +1/2)7/L)?) except possibly for one eigenvalue that
U (y) = eVAnY VA k’ze—l\/—u (27) can be found by applying Newton’s method in the disc

VAn + k2 The eigenvalues found in this way constitute the full spec-
is an eigenfunction of (25) as long as solves the transcen- rum of (25). Note that as 1 oo, the eigenvalues have the
dental equation asymptotic form

2 nmw 2kz
teﬁL _ \/X —kz . (28) /\n ~ T + ZH (31)
VAt kz

Using this and the above properties, we can derive the salutB. The transfer function on the rectangle

of (23). We expand the left-hand side boundary condition via\ye define the transfer functiah( £) to be the mapping from
the left boundary conditiorf(y) to the solutionE (1M, %) on

Z Cnton(y the right boundary, i.e.,
Taking inner products, we find Z w 1/} > (= M)¥n(y). (32)
_ ([ om) _ .
Cm = Wy Gm) Let u, = v\, — k2. Using (30), we derive
We return to (24) and see thatxz) must satisfy pn(M) = 2ty e HnM (33)
! (tn +1k2) + (i — tkz)e=2un M
Pa(@) = O = E)pn(2) (292) Combining this with (31), we see that for lar
pu(0) = 1 (29b) J ' %
Pl (M) +1kzp, (M) =0 (29¢) |pn(M)] ~ e~ M/L (34)
The solution of (29) is Since(,,, T(f)) = (1,,, f)pn (M), the upshot of (34) is that
1 the transfer function (32) does not conserve energy, simee t
pn(z) = j_ 1 PR e E— 1 e VAo largen modes off (y) are severely damped. Also, the solution
q q

on the right boundary will be much smoother thAfy).

_ VA — k* — Zkze—munszM'

VA — k2 ks
. . In this section, we discuss the application of the finite
The solution of (23) is then volume method to two test problems. Throughout the finite
oo volume solution, we sef)y = 1. We useV to denote the
Z Cnpn (2)n ( (30) components of the finite volume solution that represent
n=1 voltages at lattice nodes.

V. NUMERICAL IMPLEMENTATION AND CONVERGENCE
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Fig. 2. The left panels show results from simulations of a bgemeous medium wita = 9 and . = 1 as in Sec. V-A. The right panels show results
from simulations of an inhomogeneous medium as in Sec. Vi Hlack circles in the upper-right panel mark the parts efrttedium within whiche = 1;
otherwise,e = 9. Again, u = 1 everywhere. The same Gaussian boundary forcing at angelqueéncya = 1.9 is applied in both problems. The numerically
computed real part of the electric field is indicated by th®iceontour plots. Note that the effect of the periodic arveith linear defect is to confine the
electromagnetic field and not allow it to diffract into thestref the domain as in the homogeneous medium. The lower paheiv the results of a convergence
study in the form of log-log plots of th&? error between numerically computed solutions and a referewlution, as a function of the number of lattice
rows. In the lower-left panel, the reference solution iB0amode truncation of the exact solution, while in the lowight panel, the reference solution is the
finite volume solution on ai®00 x 800 lattice. The lower panels both show four curves, one for eaditated value of the angular frequenay All eight
curves have best-fit slope less than, indicating first-order convergence.

A. Homogeneous medium For four different values ofy, we compare the separation
truncated atr = 50 modes, to produce a functioB(z,y). 77 x m lattice wherem = 20, 32, 40, 64, 80, 100, 160, 200,

over the cellQ2;,, following (11)—we denote the the averagedPd-log plot of the L2 error [|V,,, — E|> versusm. Whena
separation of variables solution . equals0.25, 0.5, 1.0, and1.9, the least squares fit to the data

We focus on Gaussian boundary dgta)) = e—2(v—1/2°  gives slopes of, respectively,1.10, —1.09, —1.27, and—1.36,
with a = 150 on the square domain with/ = L = 1. We set indicating first-order convergence.
e =9 andy = 1. The finite volume solution of this problem
at o = 1.9 on a400 x 400 lattice is given in the upper-left
panel of Fig. 2.



B. Periodic medium with a linear defect We consider two perfectly conducting plates that are irdinit
We now consider a medium. modeled after a photonﬁ'a extent in thet andy directions and separated by a distance

crystal device [36], that consists of a periodic array of lof > 0 in the Z direction. Between the plates is a medium with
index circular inclusions with a linear defect. The perivity Parameters and . that may vary in the: andy directions,
outside the inclusions is — 9 and inside.e = 1. The but are constant in thé direction. Between the plates, the
domain is the square with! — L — 1. The distance between €lectric and magnetic fields satisfy Maxwell's equationghwi
the centers of the circles i5/10 and each circle has radius™® free charge or currents. The boundary conditions on the

1/40. The linear defect is created by simply removing a roRlates are:

of inclusions. The finite volume solution of this problem at AxE=0, A-B=0 (35a)

a = 1.9 on a400 x 400 lattice is given in the upper-right . = = =

panel of Fig. 2. As expected, the mode is confined to the D =ps, X H=js. (35b)

defect, rather than diffracting as in the homogeneous mediuyhere j, and j, are the surface charge and surface current.
We study the convergence of the finite volume method ffere, 4 = 2 for the upper surface and = —# for the

this inhomogeneous medium by first obtaining a fine-sca@yer surface. The H, (2, y,t), Ha(2,y,t), E(z,y,t)) polar-

finite volume solutionVsne 0N an800 x 800 lattice. For the jzed mode automatically satisfies (35a). The last two bognda
four values ofo mentioned above, we compare this solution tggnditions reduce to

the finite volume solutio,,, on anm x m lattice form = 50,
100, 200, 400. A log-log plot of ||V;,, — Vinel|2 versusm is eE = ps, A = (ji,42),
given in the lower-right panel of Fig. 2. A least squares fit %here, as before\ = (—Ha, Hy)
the error gives slopes of, respectivelyl.25, —1.39, —1.42, ’
and —1.39, indicating first-order convergence.

. Evaluating the line integral
of V- (eE) connecting(z, y,0) and(z, y,n), we find that the
charge density on the two plates at fixed y) are equal in
magnitude but have opposite signs. We now identify the @harg
VI. CONCLUSION Q(t), defined by (2), with the area integral ov&y, of the

We have derived a physically motivated finite volumél.Jrface charge on the top plate. For constan(3) agrees

method for a planar Maxwell system. The method is ea th the capacita_nce between two parallel pIate_s of m
to implement. Here we have done so to obtain the fr eparated by a distanee €|$2;| /5. The electrostatic potential

guency domain solution of two problems with harmonic timeo_llfference between the two plates at positiony) can be

dependence. However, the system (17) obtained after Ispa%%ﬁned by
discretization could be used with a time-stepping scheme to [ _
solve an initial value problem in the time domain. Note that Viw,y,t) = o Ew,y,t)dz = nE(z,y.1).
to find a steady-state sqluuon throug_h time stepping thatﬁne approximation of the quantity = Qx/Cy in (11) is
as accurate as the solutions we obtained, one would require .
: L o . 'précisely the average valié(x,y,t) on Q. Thus the ap-

a temporal discretization with first-order global error.iSTh S . ; .

. . . roximation made in (11) can be interpreted as an electiosta
typically means that the time-stepping scheme must be st leB

approximation.
second-order accurate. - . .
. Continuity of charge requires that for any rectangularaagi
To demonstrate convergence, we compared numerical $p- .
: . . . . & on the top conducting plate, we must have
lutions with a separation of variables solution for constan
anqu. Note th{;\t it is possible to generalize the separation of _/ po(z,y) AT = _?{ jodl = — Ade
variables solution in Sec. IV to handle separablkend . dt Jo, PN 90

The choice of discretization in Sec. Il does not requirgy s the line integral of the surface current over one segmen

smoothness of and . In other words, an advantage of they g, is equivalent to the current defined by (7), and the
first-order method proposed here is that dlscontmuousmahteContmuity equation is equivalent to Kirchhoff's law (8).

parameters can be handled readily. A goal for future work gy nh0se there is a surface current between two cells i the
is to extensively test how roughness and/or short-wavélengyirection. This induces a magnetic field in thelirection just
oscillations in the coefficients and . affect the performance poiow the top plate. If the current increases (resp. deesas

of the finite volume method, and to compare the finite volumga, the field will also increase (resp. decrease). By Fgiada
method to other frequency-domain methods for such problemgy of induction, this increasing (resp. decreasing) fiell w

induce an electromotive force in the direction (resp.—z
APPENDIXA direction) proportional tq:. This is Kirchhoff’s law (12).
AN IDEALIZED PHYSICAL CONFIGURATION

In this section, we describe an idealized physical con- ACKNOWLEDGMENT
figuration in which the(Hy, H2, E) polarized mode is an  This material is based upon work supported by the National
exact solution of Maxwell’s equations and interpret thetéini Science Foundation (NSF) under Grants DMS09-13048 and
volume method derived in Sec. Il in this context. The ideBMS06-02235, EMSW21-RTG: Numerical Mathematics for
of formulating more systematic relationships betweenutirc Scientific Computing. The authors thank the NSF Institute fo
and field-theoretic concepts stems from [37]. Pure and Applied Mathematics (IPAM) for its hospitality.
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