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Abstract

This paper questions one of the fundamental assumptions made in options pric-
ing: that the daily returns of a stock are independent and identically distributed
(IID). We apply an estimation procedure to years of daily return data for all stocks
in the French CAC-40 index. We find six stocks whose log returns are best modeled
by a first-orderMarkov chain, not an IID sequence. We further propose the Markov
tree (MT) model, a modification of the standard binomial options pricing model,
that takes into account this first-order Markov behavior. Empirical tests reveal that,
for the six stocks found earlier, theMTmodel’s option prices agree very closelywith
market prices.

1 Introduction

In the Black-Scholes model for the price of a European option, one of the main assump-
tions is that the price of the underlying asset follows a geometric Brownian motion
[8]. If St is the underlying asset price at time t, one assumes dSt = μStdt + σStdWt,
where μ and σ are constants and Wt is a Brownian motion. For fixed t > 0, define
Xn = log(S(n+1)t/Snt). Then

Xn =

(
μ− σ2

2

)
t+ σ

(
W(n+1)t −Wnt

)
.

Since Wt is a Brownian motion, W(n+1)t − Wnt is normally distributed with mean 0
and variance t. This implies thatXn is normally distributed with mean (μ−σ2/2)t and
variance σ2t, i.e., the distribution ofXn does not depend on n, so eachXn is identically
distributed. Moreover,Xn+1 is independent ofXn, so

P (Xn|Xn−1) = P (Xn) (1)

for all positive integers n, and hence the {Xn} sequence is IID (independent and iden-
tically distributed).

In fact, (1) follows from assumptions that aremuchmore general than the geometric
Brownian motion assumption; for example, if we take St = S0 exp(Lt) where Lt is
any Lévy process, (1) still holds. The upshot is that most options pricing models in
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Strike Market Black-Scholes Markov Tree
40 34.49 36.57 35.85
48 27.48 29.85 28.09
56 20.90 23.96 20.83
60 17.78 21.36 17.53
64 15.03 18.99 14.53
72 10.00 14.90 9.55
80 6.26 11.60 5.94
88 3.70 8.99 3.53
120 0.32 3.17 0.32
160 0.01 0.87 0.01

Table 1: Market andmodel prices (ine) for a particular European call option on August
24, 2009.

use—including Black-Scholes, binomial, and most jump-diffusion models—implicitly
assume that the daily log returns for any stock are IID. With this in mind, the plan for
this paper is as follows:

1. We first check whether (1) is consistent with real data. To do this, we apply order
estimators to log return time series data for European stocks in the CAC-40 index.
For several stocks, we find that (1) can be rejected in favor of a first-order Markov
model for the stock price process.

2. We modify the standard binomial tree model to formulate a method for pricing
options that is valid when (1) is not. We introduce first-order Markov behavior of
the underlying asset into the tree, by allowing the jumps of the tree to depend on
whether the previous jump was an upward or downward jump. We refer to this
model as the Markov Tree (MT) model.

3. Finally, we test the MT model against the standard Black-Scholes model. We find
that the MTmodel’s option prices are much closer to market prices than the Black-
Scholes model’s prices. As a preview of our results, we present Table 1, which
compares model and market prices on August 24, 2009, for a particular European
call option.

2 Motivation

Let us discuss Table 1 in greater detail. On August 24, 2009, we obtained from eu-
ronext.com the end-of-day market prices for European call options for Air Liquide
(symbol: AI) expiring in September 2010. We have tabulated the market prices to-
gether with prices calculated using the Black-Scholes [1] model and the MT model
introduced in this paper. To calculate prices using the Black-Scholes model, we require
two parameters, the risk-free interest rate r and the volatility σ. Using standard estima-
tion procedures from empirical data1, we obtain r = 0.00905453 and σ = 0.41632. The

1We estimate the risk-free rate using the no-arbitrage futures pricing formula F = Sert; here F is the
futures price, S is the spot price, and t is the time until expiration of the futures contract. On August 24,

2



MT model uses these two parameters together with σ+ and σ−, which are the volatil-
ities on days where the stock’s return increased (for σ+) or decreased (for σ−) relative
to the previous day’s return2.

Examining Table 1, we find that for a strike of e40, the Black-Scholes model’s price
is only 6% greater than the market price, but as the strike increases and exceeds the spot
price of e75.43, the Black-Scholes model’s price diverges considerably. For example, at
a strike of e88, the Black-Scholes model’s price is 143% greater than the market price.
This well-known divergence is usually explained through the dependence of volatility
on the strike price. For each strike, one computes the value of the volatility such that
the Black-Scholes model price matches the market price. When the resulting implied
volatilities are plotted versus strike price, one obtains the classic volatility smile [8,
Chap. 16].

We do not dispute that volatility should vary in some way as a function of option
strike and time until expiry. However, in the absence of an exact form of this quanti-
tative dependence, we ask: do we know for sure that the discrepancy between Black-
Scholes and market prices is due entirely to the volatility smile? Our view is that, for
certain options, the discrepancy is at least partially due to the market’s knowledge that
today’s returns alter or influence the probability distribution of tomorrow’s returns.
Unlike commonly used option pricing models, the MT model accounts for this, and
as shown in Table 1, it is significantly more accurate than Black-Scholes for out-of-the-
money options, with no strike-dependent volatilities used for either model. Though
the MTmodel does not provide an analytical formula for the option price, it is compu-
tationally tractable thanks to a large amount of recombination in the price tree for the
underlying asset. We revisit these implementation issues later in the paper.

3 Past Work

Before continuing with the plan of the paper given in Section 1, we discuss relevant
past work. A k-th order Markov chain is defined as a sequence {Yn}n≥1 of random
variables such that

P (Yn|Yn−1, . . . , Y1) = P (Yn|Yn−1, . . . , Yn−k).

In a k-th orderMarkov chain, the current state Yn is allowed to depend only on the past
k states. The order estimation problem is to take N observations y1, . . . , yN generated by
a Markov chain (of unknown order) and return an estimate k̂ of the chain’s order. The
estimator is consistent if, as the number of observations N goes to infinity, k̂ converges

2009, we found thatS = 75.43 and F = 75.658 for the AI future expiring in December 2009, which also gives
t = 84 trading days = 0.33 years. This yields an annualized risk-free rate of r = 0.0090543. To estimate
the volatility, we start with 252 trading days (or one year) of the adjusted closing price for AI, which we
represent as {S1, S2, . . . , S252}. We then calculate σ̂, the standard deviation of the log return sequence
{logS2/S1, logS3/S2, . . . , logS252/S251}; this yields the annualized volatility σ = σ̂

√
252 = 0.41632.

This follows [8, Chap. 13].
2The parameters σ± are calculated in precisely the same way as σ, except that for σ+ we take the stan-

dard deviation of log returns on days when the stock’s return increased, while for σ− we take the standard
deviation of log returns on days when the stock’s return decreased. This is discussed in greater detail in
Section 6.2.
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to the true order k of the Markov chain. In our work, we make use of the provably
consistent BIC order estimator [3].

In the context of jump-diffusion models, the IID assumption has been examined
recently by Câmara and Li [2], who discuss several empirical studies that have re-
jected that stock jumps are IID. The focus of their paper is the development of a jump-
diffusion options pricing model that does not assume the jumps are IID. Their work
differs from ours in two ways: (1) non-IID behavior is modeled only through the jumps
(and not through the diffusion) of the jump-diffusion process that the underlying asset
is assumed to follow, and (2) the means and variances of the jumps are allowed to be
time-varying. By comparison, because the MT model is discrete in time, every stock
price path is a sequence of jumps—non-IID behavior is not confined to one part of the
model. We make no claims about the limit of the MT model as the number of steps be-
comes infinite. However, we do assume that the magnitudes of possible jumps remain
constant throughout the price tree.

Markov and semi-Markov processes, including processes with finite state spaces,
have been used to price options [9, 4]. Though these works assume that the log re-
turn process log(St/St−1) follows some type of discrete-time Markov or semi-Markov
process, the tree models that are proposed differ from the MT model in one important
regard: starting from any vertex of the tree, the magnitudes of the up and down jumps
are always the same. The same is true in models where a Markov chain is used to
approximate the true underlying process—see [5], for instance. In the MT model, if
we start from a vertex such that the jump leading to that vertex was an upward jump,
then we have different up/down magnitudes as compared with a vertex such that the
jump leading to that vertex was a downward jump. In other words, the magnitudes of
the jumps in the MT model’s tree possess the first-order Markov property. This same
property distinguishes the MT model from other tree models that involve trinomial,
pentanomial, or more general branching at tree vertices—see [11, 15].

4 Order Estimation: Methodology

Here we describe the methods used to test (1) against real data. We begin with a time
series {s0, . . . , sN} consisting of the adjusted daily closing price of a given stock. We
define xn = log(sn/sn−1) and obtain the log return time series {x1, . . . , xN}. Note that
each element of this time series is real-valued. To apply Markov order estimation, we
must first convert the log return time series into a sequence of symbols drawn from a
finite set. As in prior work [10, 14], the simplest way to do this is with just two symbols.
We therefore define

zn =

{
u xn ≥ 0

d xn < 0,
(2)

where the symbols u and d stand for “up” and “down,” respectively. Note that this
transformation erases the magnitudes of the upward/downward movements of the
stock. Now that we have a sequence {zj}Nj=1 of u’s and d’s, we can begin to extract
maximum likelihood estimates (MLE’s) of Markov chain transition probabilities. Let
us describe how this is done.
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By the definition given in Section 3, a zeroth-order Markov chain is simply a se-
quence of IID random variables. Since each zj in our sequence can be in one of only
two possible states, if the sequence was generated by a zeroth-order Markov chain,
then each zj was generated by a Bernoulli random variable with only one parameter:
p = P (u), the probability of obtaining u. In this case, 1 − p = P (d). In this case, we
define the zeroth-order log likelihood

L0(p) = nu log p+ nd log(1− p),

where nu is the number of u’s observed in the sequence, nd = N − nu is the number
of d’s observed in the sequence, and N is the total length of the sequence. Solving
dL0/dp = 0 for p gives the MLE p̂ = nu/N , which is in fact the maximizer of L0(p).
Using this MLE, we can compute the maximum value L0(p̂).

Let us now redo this calculation assuming that the sequence {zj}Nj=1 was generated
by a first-order Markov chain. Now we require three parameters, p1 = P (u), p2 =
P (u|u) and p3 = P (d|d). Note that p1 is necessary to handle z1, the first element of the
sequence. Also note that P (d|u) = 1 − p2 and P (u|d) = 1 − p3. Putting it all together,
we obtain the first-order log likelihood

L1(p1, p2, p3) = m log p1 + (1−m) log(1− p1) (3)
+ nuu log p2 + nud log(1 − p2)

+ ndd log p3 + ndu log(1− p3).

Here m = 1 if z1 = u and m = 0 if z1 = d. The notation nστ denotes, for any choice
σ, τ ∈ {u, d}, the number of times the string στ was observed in the sequence. Now
solving ∂L1/∂pj = 0 for pj , j = 1, 2, 3 yields the MLE’s

p̂1 = m

p̂2 =
nuu

nuu + nud
=

nuu

#of u in first N − 1 slots

p̂3 =
ndd

ndd + ndu
=

ndd

#of d in first N − 1 slots

Using these MLE’s, we can calculate the maximum value L1(p̂1, p̂2, p̂3).
Following the same methodology, we can assume that the sequence {zj}Nj=1 was

generated by a k-th order Markov chain and then write down the k-th order log like-
lihood function Lk of the unknown Markov transition probabilities p = (p1, . . . , pM ).
We plug into Lk the frequencies of different strings found in the actual {zj}Nj=1 se-
quence and then maximize Lk over p. We thereby find both the MLE’s p̂ = (p̂1, . . . p̂M )
as well as the maximum value of the log likelihood Lk(p̂). The calculations are carried
out in the Appendix of this paper, for a sequence that is assumed to be an i-th order
Markov chain over Q states. (In the above discussion, we treated only the Q = 2 case.)

Armed with this information, we employ the BIC (Bayesian Information Criterion)
order estimation method. We calculate f(j,N) = Lj(p̂) − 2j−1 log(N), looping over
values of j from 0 toK . The BIC order estimate k̂ equals the value of j that maximizes
f(j,N). In the limit where the number of data points is infinite, N → ∞, it has been
proven that the BIC estimate converges to the true order of the Markov chain generat-
ing the data [3].
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k̂

0 1 2

k

0 966 33 1

1 180 818 2

2 28 116 856

Table 2: The (k, k̂) entry equals the number of times the BIC order estimator returned
an order of k̂, when applied to a random sequence of length N = 500 generated by a
randomly generated Markov chain of true order k. For results in this table, transition
probabilities were drawn uniformly from (0, 1) ⊂ R.

Though the theoretical results on BIC order estimation with an infinite amount of
data are encouraging, they are obviously not strictly applicable to our situation, where
the length of the time series is finite. To remedy this, we study the performance of BIC
order estimation on finite, synthetic data sets.

For k ∈ {0, 1, 2}, we randomly generate transition probabilities for a k-th order
Markov chain. Each probability is drawn uniformly from the interval (0, 1). Using
this Markov chain, we generate a sequence of length N = 500. We apply BIC order
estimation to this sequence and thereby obtain an estimate k̂ of the Markov chain’s
order. The results are summarized in Table 4. When we apply BIC order estimation,
we loop over possible orders j = 0, 1, 2, . . . , 8. However, in no instance do we find that
the estimate k̂ exceeds two. This can be seen by noting that for each value of k, we
randomly generated exactly 1000 sequences, and each row of the table sums to 1000.
Based on the numbers given in Table 4, we make the following estimates:

P (k ≥ 1 | k̂ = 1) ≈ 818 + 116

33 + 818 + 116
= 0.9659 (4)

P (k = 0 | k̂ = 0) ≈ 966

966 + 180 + 28
= 0.8228 (5)

That is to say, if the BIC order estimator equals one for a given sequence, we find there
is a greater than 95% chance that the sequence was generated by a Markov chain of at
least order one, i.e., a 95% chance that the sequence was in fact not IID. On the other
hand, if the BIC order estimator equals zero for a given sequence, we find that there is
an approximately 80% chance that the sequence was in fact IID.

In our observations, after converting real time series for stocks into u/d sequences,
the maximum likelihood estimates of the transition probabilities are always between
0.4 and 0.6. This motivates us to rerun the above tests. This time, when we randomly
generate transition probabilities for a k-th order Markov chain, we draw each proba-
bility uniformly from the interval (0.4, 0.6). Other parameters of the test remain the
same. The results are summarized in Table 4. Once again, in no instance do we find
that the estimate k̂ exceeds two; we ran 1000 tests for each value of k, and each row
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k̂

0 1 2

k

0 983 17 0

1 686 312 2

2 758 182 60

Table 3: The (k, k̂) entry equals the number of times the BIC order estimator returned
an order of k̂, when applied to a random sequence of length N = 500 generated by a
randomly generated Markov chain of true order k. For results in this table, transition
probabilities were drawn uniformly from (0.4, 0.6) ⊂ R.

sums to 1000. Based on Table 4, we make the following estimates:

P (k ≥ 1 | k̂ = 1) ≈ 312 + 182

17 + 312 + 182
= 0.9667 (6)

P (k = 0 | k̂ = 0) ≈ 983

983 + 686 + 758
= 0.4050 (7)

These results strengthen our conclusion that if the BIC order estimator applied to a se-
quence yields one, there is a greater than 95% chance that the sequence was in fact
not IID. Note, however, that drawing the transition probabilities from the interval
(0.4, 0.6)—centered at 0.5—has made it very easy for the BIC order estimator to un-
derestimate the true order of the Markov chain. This is intuitively clear: if the transition
probabilities for either a first- or second-order Markov chain are all close to 0.5, then
short sequences generated by the Markov chain will appear to be IID. One will require
an extremely long sequence from such a Markov chain in order to distinguish the se-
quence from an IID sequence; N = 500 samples is simply not enough.

The meaning of these results is that we can reliably use the BIC order estimator to
falsify (1), but never to verify (1). In situations where we apply the BIC order estimator
to real financial time series and obtain an estimate of at least one, there is a high prob-
ability that (1) is false; if, on the other hand, we obtain an estimate of zero, we should
discard it.

5 Order Estimation: Results

We apply the BIC order estimation technique to stocks listed on the French CAC-40 in-
dex. Our interest in these stocks stems purely from the fact that European-style options
on these stocks are traded on Euronext, and both the classical Black-Scholes model and
our MT model are designed to price European-style options. For each stock on the
index, we download at least two years of adjusted daily closing prices from Yahoo!
Finance. Note that there are 252 trading days in one year, so at least two years’ worth
of data gives us a time series of length N ≥ 504. We then apply the methodology of
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Figure 1: Illustration of the first three steps of theMarkov tree. An upward edge always
bifurcates into v and w. A downward edge always bifurcates into x and y. In this way,
the tree accounts for the first-order Markov nature of the underlying asset’s log return
time series.

Section 4 and produce BIC order estimates for each time series. We find that there are
six French companies for which the BIC order estimate equals one:

• Air Liquide (Euronext: AI), using data from Jan. 1, 2007 to Oct. 2, 2009.

• AXA Group (Euronext: CS, NYSE: AXA), using NYSE data from Feb. 1, 2007 to
Oct. 2, 2009.

• L’Oréal Group (Euronext: OR), using data from Jan. 1, 2007 to Oct. 2, 2009.
• Pernod Ricard (Euronext: RI), using data from Jan. 1, 2003 to Oct. 2, 2009.
• Sanofi-Aventis (Euronext: SAN, NYSE: SNY), using either Euronext or NYSE
data from June 30, 2007 to June 30, 2009.

• Société Générale (Euronext: GLE), using data from Jan. 1, 2007 to Oct. 2, 2009.
We believe that (1) is false for stock time series for each of these six companies. Later,
when we compare the results of the Black-Scholes and MT models against market
prices for European call options for these six companies, we will add further evidence
to this claim. Note that we could also test (1) by using more traditional time series
methods such as ACF and PACF. However, since our focus is obtaining a discrete tree
model to price options, it seems natural to convert the original time series into a fi-
nite state time series and then test (1). In future work, we shall explore whether there
exist time series whose non-IID behavior can be detected correctly by Markov order
estimators and not by ACF-based methods, and vice versa.
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6 Markov Tree Model: Theory

We now describe a tree model that accounts for the first-order Markov dependence
in the log return time series. We restrict our model to accommodate only first-order
Markov dependence (instead of, say, k-th orderMarkov dependence) not only to obtain
computational tractability but also to maintain parsimony. Like the binomial tree, our
tree is generated by working forward from valuation day to expiration of the option.
Let Sn be the stock’s spot price at time step n. When n = 0, we use one step of the
standard binomial tree

P (S1 = uS0) = q (8a)
P (S1 = dS0) = 1− q. (8b)

For n ≥ 1, let us define two events:

S+
n = {Sn ≥ Sn−1} (9)

S−
n = {Sn < Sn−1}. (10)

In words, the event S+
n is the event that the stock price increased from time step n− 1

to time step n. The event S−
n is the complement of S

+
n , i.e., the event that the stock price

decreased from time step n− 1 to time step n. We can now write down our model for
the evolution of Sn, for n ≥ 1:

P (Sn+1 = vSn|S+
n ) = q+ (11a)

P (Sn+1 = wSn|S+
n ) = 1− q+ (11b)

P (Sn+1 = xSn|S−
n ) = q− (11c)

P (Sn+1 = ySn|S−
n ) = 1− q−. (11d)

Here we have introduced four symbols, v, w, x and y, which represent different factors
by which the stock price at every time step is allowed to change. According to our
model, if the stock price increased from step n − 1 to step n, then the stock price at
step n + 1 is vSn with probability q+ and wSn with probability 1 − q+. If the stock
price decreased from step n− 1 to step n, then the stock price at step n+ 1 is xSn with
probability q− and ySn with probability 1− q−.

We remark that we think of q, q+, and q− as, respectively, risk-neutral versions
of the empirical probabilities P (u), P (u|u), and P (u|d). We shall explain later how,
with respect to these risk-neutral probabilities, the stock price process Sn is in fact a
martingale.

The first three steps of the tree are illustrated in Figure 1. If we let S0 denote the
initial spot price of the stock, then it is clear that S3 ∈ J3 where

J3 = {S0uv
2, S0uvw, S0uwx, S0uwy, S0dxv, S0dxw, S0dyx, S0dy

2}.
In general, let Jn denote the vector of possible states the stock can be in after n steps of
the Markov tree. Let δn : Jn → Z

+ be the function that counts the number of paths in
the tree that lead from S0 to a given element of Jn. For ω ∈ Jn, we refer to δn(ω) as the
duplication number of state ω. We list without proof these facts:
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• Jn contains n2 − n+ 2 unique elements.

That is to say, states do recombine. If the stock decreases from S0uvw, it reaches
the same value as if it increases from S0uwx—in both cases, it reaches S0uvwx.
Because there are two possible paths leading from S0 to S0uvwx, we assign the
duplication number δ4(S0uvwx) = 2. Because states recombine, the number of
states does not increase like 2n. In the standard binomial model, the number of
states grows linearly in the depth of the tree n. In the MT model, the number
of states grows quadratically in the depth of the tree n. This polynomial growth
ensures the tractability of the MT model as a computational method.

• ∑σ∈Jn
δn(σ) = 2n.

One can make sense of this intuitively by recalling that if we do not count the
duplication of states, then a tree of depth n will contain 2n states.

• Let pn denote the polynomial that gives all states in Jn together with their dupli-
cation numbers, i.e.,

pn(u, d, v, w, x, y) =
∑
ω∈Jn

δn(ω)ω.

Then pn may be computed via

pn = u
[
v w 0 0

]
⎡
⎢⎢⎣
v w 0 0
0 0 x y
v w 0 0
0 0 x y

⎤
⎥⎥⎦
n−2

1

+ d
[
0 0 x y

]
⎡
⎢⎢⎣
v w 0 0
0 0 x y
v w 0 0
0 0 x y

⎤
⎥⎥⎦
n−2

1,

where 1 denotes a column vector with each entry equal to one. The above fact
may be derived by writing the adjacency matrix for a directed, weighted graph
related to our Markov tree. For now, we merely mention that once we use the
above iterative matrix formula to compute pn for a given n and thereby generate
a Markov tree of depth n, we can then reuse this tree many times to price many
different options. For different options, S0, u, d, v, w, x, and y will be different,
but the set of states Jn and the duplication numbers δn will always be the same.

For example, carrying out the tree one step further than shown in Figure 1, we find
that

J4 = {S0uv
3, S0uv

2w, S0uvwx, S0uvwy, S0uw
2x, S0uwyx, S0uwy

2,

S0dxv
2, S0dxvw, S0dx

2w, S0dxwy, S0dyxv, S0dy
2x, S0dy

3}.
We have δ4(S0uvwx) = δ4(S0dxwy) = 2 and δ4(σ) = 1 for all other possible states
σ ∈ J4. Note that, as per our formula, there are 42 − 4 + 2 = 14 elements in J4, and∑

σ∈J4
δ4(σ) = 16 = 24.

10



Next, note that it is simple to calculate the probability that the stock’s price path
reaches a given state in Jn, starting at S0. Let σ = S0u

md1−mvawbxcyd denote an
arbitrary state in Jn. (Clearly eitherm = 0 orm = 1, and also the sum of the exponents
must equal n, i.e., 1+ a+ b+ c+ d = n.). Then, by the definitions made in (8) and (11),
the probability of reaching σ starting at S0 is simply equal to

P (σ) = δn(σ)q
m(1− q)1−m × (q+)a (1− q+

)b (
q−
)c (

1− q−
)d

. (12)

Let us now explain how we use the tree to price a European call option. Let K
denote the strike price and let S∗ denote the spot price at the time of expiry. The payoff
of the option is denoted by (S∗ −K)+, which equals zero unless S∗ −K > 0, in which
case it equals S∗ − K . Let T denote the time until expiry. We fix the total number of
steps N in the tree and set Δt = T/N . With these definitions, we can see that S∗ is a
random variable that can take on any of the states σ ∈ JN with probabilities given by
(12). We have enough information to write down the expected value of the option’s
payoff at the time of expiry:

E[(S∗ −K)+] =
∑
σ∈JN

Iσ>K(σ −K)P (σ). (13)

Here Iσ>K is an indicator variable that equals one when σ > K and zero when σ ≤ K .
Now let r equal the risk-free interest rate. Then we define the MT model’s call option
price to be expected payoff at the time of expiry, discounted to the present time:

C = e−rTE[(S∗ −K)+]. (14)

Note that using precisely the same approach, we can price European put options
without making use of put-call parity. The payoff of a European put option equals
(K − S∗)+. The MT model’s put option price is, once again, the discounted expected
payoff:

U = e−rTE[(K − S∗)+]. (15)

6.1 No Arbitrage.

Let us show that our model does not admit arbitrage. We define

q =
exp(rΔt) − d

u− d

q+ =
exp(rΔt) − w

v − w
, q− =

exp(rΔt)− y

x− y
.

One may easily verify that with these three risk-neutral probabilities,

E[S1|S0] = uS0q + dS0(1− q) = erΔtS0,
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and for n ≥ 1,

E[Sn+1|Sn, . . . , S0] = E[Sn+1|Sn, . . . , S0, S
+
n ]P (S+

n )

+ E[Sn+1|Sn, . . . , S0, S
−
n ]P (S−

n )

=
[
vSnq

+ + wSn(1 − q+)
]
P (S+

n )

+
[
xSnq

− + ySn(1− q−)
]
P (S−

n )

= erΔtSnP (S+
n ) + erΔtSnP (S−

n )

= erΔtSn.

This is enough to imply that the discounted stock process S̃n = e−rnΔtSn is a mar-
tingale under the risk-neutral probabilities given by q, q+, and q−. Then, by the first
fundamental theorem of asset pricing (see [13, Chapter 2.4]), there is no arbitrage in
the MT model.

6.2 Implementation Notes.

The parameters u, d, v, w, x, and y are estimated as follows. For each date on which
we wish to value an option, we start with the time series of one prior year’s worth
of adjusted closing daily returns for the stock. We scan through this time series and
form two disjoint time series: each time a given day’s return exceeds or equals the
previous day’s, we add that return to series 1; each time a given day’s return is less
than the previous day’s, we add that return to series 2. We then take the logarithm of
all returns in series 1 and 2 and also in the original time series. Let σ̂+ and l+ denote
the standard deviation and length of log return series 1, and let σ̂− and l− denote the
standard deviation and length of log return series 2. Let σ̂ be the standard deviation of
the entire log return series. The standard deviations are then converted to volatilities
σ, σ+ and σ− using σ =

√
252σ̂ and σ± =

√
l±σ̂±. With these volatilities, we set

u = exp
(
σ
√
Δt
)
,

v = exp
(
σ+

√
Δt
)
, x = exp

(
σ−

√
Δt
)
,

whereΔt is the duration of each time step in the model. We then set d = 1/u, w = 1/v,
and y = 1/x.

7 Tree Model: Results

For 44 trading days from July 17, 2009 to September 17, 2009,we tracked the end-of-day
market prices for European-style call options for the six companies listed in Section 5.
Data was obtained from euronext.com. We emphasize that all of the tests we are about
to describe are out-of-sample tests; at no time did we use past or present market prices
of options as inputs to the MT or Black-Scholes models. The fact that the MT model
requires no calibration with options price data from real markets is in marked contrast
to, say, Rubinstein’s implied binomial tree model [12].

12



On day i of the study, we used stock and futures prices from days before or on day
i to estimate parameters that are fed as inputs to the MT and Black-Scholes options
pricing models. Specifically, we estimated the risk-free rate r and the volatilities σ,
σ+, and σ−, which determine the jumps u, d, v, w, x, and y. With these parameters,
we priced all exchange-traded options using both the MT and Black-Scholes models.
For the MT model, we used N = 501 steps. For each option at hand, we compared the
outputs of these options pricing models on day i to the market price of the same option
on day i.

7.1 Comparison of Model and Market Prices.

We first consider the day-by-day performance of the MT model versus the Black-
Scholes model, averaged across all strikes. Let i be a fixed day. Let bi, mi, and Mi

be the vectors containing Black-Scholes, MT, and market prices on day i for options of
different strikes (but the same expiration date). On each day, we compute

εbi =
‖bi −Mi‖2

‖Mi‖2 , εmi =
‖mi −Mi‖2

‖Mi‖2 . (16)

In each of the six panels of Figure 2, we plot the relative error curves εbi (in red) and
εmi (in blue) versus day i for options from each of the six companies listed in Section 5,
respectively.

We then consider the strike-by-strike performance of the MT model versus the
Black-Scholes model, averaged across all days. Let j be a fixed strike price. Let bj ,
mj , and Mj be the vectors containing Black-Scholes, MT, and market prices for op-
tions with strike j on different days (but the same expiration date). On each day, we
compute

γb
j =

‖bj −Mj‖2
‖Mj‖2 , γm

j =
‖mj −Mj‖2

‖Mj‖2 . (17)

In each of the six panels of Figure 3, we plot the log relative error curves log(γb
j ) (in red)

and log(γm
j ) (in blue) versus strike price j for options from each of the six companies

listed in Section 5, respectively.
In both Figure 2 and Figure 3, the following symbols are used to denote common ex-

piration dates: “◦” means September 2009, “∗” means March 2010, “” means Septem-
ber 2010, and “+” means March 2011.

Comparing Black-Scholes and MT relative errors for options with the same expira-
tion date means comparing blue and red curves with identical symbols in Figure 2 and
Figure 3. For example, in Figure 2, comparing blue and red curves with “+” symbols
shows that the MT model’s prices for options expiring in March 2011 are much closer
to market prices than the Black-Scholes model’s prices for options expiring in March
2011. This is true for all six companies.

In fact, comparing blue and red curves in Figure 2 with identical symbols reveals
that the only expiration date for which the two models produce comparable results is
the September 2009 expiration date, denoted by “◦.” In this case, for all six companies,
the MT model still produces relative errors εmi that are two to ten times smaller than
the relative errors εbi produced by the Black-Scholes model. For all other expiration
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dates, comparing the two models on a day-by-day basis, the MT model’s call option
prices are far closer to market prices than the Black-Scholes model’s prices.

Moving to Figure 3, we see that as the strike price increases, the Black-Scholes
model’s error increases more rapidly than the MT model’s error. Note that each point
on each of the panels in Figure 3 is an aggregate result, averaged (in the sense of the
2-norm) over 44 trading days’ worth of data. For this reason, we believe Figure 3 pro-
vides strong evidence that the discrepancy between Black-Scholes and market prices
for out-of-the-money options is not entirely due to the dependence of volatility on
strike price and time until expiration.

7.2 Comparison of Volatilities.

For each of the six stocks listed in Section 5, we plot in Figure 4 the three volatilities
σ, σ+, and σ− on each of the 44 days. These plots show that for three of the six stocks
(AI, OR, and GLE before day 40), the difference between σ+ and σ− is small, on the
order of 1%. For these three stocks, the MTmodel, in the way we have implemented it
with the formulas from Section 6.2, produces option prices close to those produced by
a binomial model with with volatility given by either σ+, σ−, or perhaps a weighted
average of these values. It is noteworthy that a binomial model with volatility estimated
by splitting past historical data based on whether returns were increasing or decreasing relative
to the previous day does far better at tracking market prices than a vanilla Black-Scholes
(or, equivalently, binomial) model with volatility σ. The formulas given in Section 6.2
for σ± were determined by extensive trial-and-error. In future work, we shall provide
a more rigorous theory for estimating the parameters v, w, x, and y that serve as inputs
to the MT model.

On the other hand, the plots in Figure 4 also indicate that for three of the six stocks
(CS, RI, and SAN), the difference between σ+ and σ− is closer to 10%. In this case, one
can show that the set of states J501 together with (12) yield a probability distribution on
the set of stock prices at the time of expiry that is different from the distribution of final
stock prices provided by a standard binomial model. For these three stocks, the MT
model does not reduce to a binomial model. Depending on the specific values of the
parameters, it is possible for the MT model’s final stock price distribution to feature
heavier tails and interesting asymmetries relative to the lognormal distribution. We
expect that these features, which have been reported elsewhere in the financial time
series literature, will appear when we use better methods for estimating σ±.

8 Conclusion

Over the past two years, many securities have been subject to large fluctations in price,
and financial modeling assumptions that used to be considered standard should now
be called into question. One such assumption is (1). In this paper, we have tested
(1) using the BIC order estimation method. The tests have revealed six stocks in the
French CAC-40 index whose log return time series is not IID. For these six stocks, and
for other stocks whose log return time series is best modeled by a k-th order Markov
chain with k ≥ 1, we propose the MT options pricing model. The number of states in
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the Markov tree grows quadratically in the depth of the tree, giving the model compu-
tational tractability. Implementing the MT model, we find strong agreement between
the MT model’s prices and market prices.

In future work, we shall compare the MT model against more sophisticated op-
tions pricing models, such as those incorporating stochastic volatility. The first-order
Markov dependence of our tree model is a general concept that could be incorporated
into discrete-time stochastic volatility models [6], which could further reduce the er-
ror between model and market prices. Finally, we shall extend the MT model to price
weather derivatives, especially in light of scientific studies that propose Markov chain
models for quantities such as rainfall [7].

9 Appendix: MLE’s for k-th order Markov chain with Q

symbols

Assume that we have a sequence {X1, . . . , XN} generated by a k-th order Markov
chain where every experiment has Q possible outcomes.

Assume that each Xj takes values from a set {Am}Qm=1 of Q distinct symbols. For
a k-th order Markov chain, Xj depends on k outcomes prior to the j-th outcome. As
in the earlier case with two possible outcomes, here also the Markov property kicks in
only if j > k. Let Si be a subsequence of k outcomes prior to the j-th outcome. Since
each of these k outcomes in the subsequence is drawn from the set {Am}Qm=1, there are

Qk possible subsequences Si. Let these sequences be denoted by {Si}Q
k

i=1. Let us scan
the given sequence {Xj}Nj=1 from left to right and record the following Q

k+1 numbers:

{{nSiAm = #of times we observe “SiAm”}Qm=1}Q
k

i=1

For m = 1 to m = Q − 1, let pSiAm = P (Am|Si). Let pSiAQ = P (AQ|Si) = 1 −∑Q−1
m=1 pSiAm and pk = P ({Xj}kj=1). In words, pk is the probability of observing the

first k terms of the {Xj}Nj=1 sequence. Putting everything together, the log likelihood
for the whole sequence is

L = log pk +

Qk∑
i=1

[
Q−1∑
m=1

nSiAm log(pSiAm)

]
+

Qk∑
i=1

nSiAQ log

(
1−

Q−1∑
m=1

pSiAm

)
.

Let us maximize L over all pSiAm . Taking partial derivatives of both sides with respect
to pSiAm for one particular (m, i), we get

1

L

∂L

∂pSiAm

=
nSiAm

pSiAm

− nSiAQ

1−∑Q−1
m=1 pSiAm

.

Setting ∂L/∂pSiAm = 0 to maximize L, we get

nSiAm

pSiAm

=
nSiAQ

1−∑Q−1
m=1 pSiAm

. (18)
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Note that for a particular value of i, the above equation represents a set of Q− 1 linear
equations in Q − 1 unknowns (the probabilities to be estimated), which give us the
following result:

nSiA1

pSiA1

=
nSiA2

pSiA2

= ... =
nSiAQ−1

pSiAQ−1

=
nSiAQ

1−∑Q−1
m=1 pSiAm

. (19)

Solving the linear system given by (18) and (19), we get the MLE for the transition
probability:

p̂SiAm =
nSiAm∑Q

m=1 nSiAm

.

We can then use the collection of all p̂’s to find the maximum value of the log likelihood
L.
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Figure 2: From left to right, top to bottom, we plot model relative errors for the six companies listed in Section 5
in the following order (alphabetical in the Euronext symbols): AI, CS, GLE, OR, RI, and SAN. Each panel displays
relative errors εbi (Black-Scholes error in red) and εmi (MT error in blue) versus day i for options with different
expiration dates. The following symbols are used to denote common expiration dates: “◦” means September 2009,
“∗” means March 2010, “” means September 2010, and “+” means March 2011. Note that for all expiration dates
except September 2009, the MT model’s relative error curves are far below the Black-Scholes relative error curves. For options
expiring in September 2009, both models yield nearly identical results.
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Figure 3: From left to right, top to bottom, we plot model relative errors for the six companies listed in Section 5 in
the following order (alphabetical in the Euronext symbols): AI, CS, GLE, OR, RI, and SAN. Each panel displays log
relative errors log(γb

j ) (Black-Scholes error in red) and log(γm
j ) (MT error in blue) versus strike price j for options

with different expiration dates. The following symbols are used to denote common expiration dates: “◦” means
September 2009, “∗” means March 2010, “” means September 2010, and “+” means March 2011. Note that for all
expiration dates, as the strike price increases, the Black-Scholes model’s relative error curves far exceed the MT model’s relative
error curves.
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Figure 4: From left to right, top to bottom, we plot the volatilities for six companies listed in Section 5 in the
following order (alphabetical in the Euronext symbols): AI, CS, GLE, OR, RI, and SAN. Each panel displays the
volatilies σ, σ+ and σ− in blue, green and red respectively versus day i. These values σ, σ+, and σ− are used to
calculate the jump factors u, v and x, respectively. Recall that the jump factors d, w, and y are the reciprocals of u, v,
and x, respectively. Note that in the MT model, volatility is assumed to be independent of the strike price and the expiration
date of the option.
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