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Abstract—Using a large database of nearly 8 million bib-
liographic entries spanning over 3 million unique authors,
we build predictive models to classify a paper based on its
citation count. Our approach involves considering a diverse
array of features including the interdisciplinarity of authors,
which we quantify using Shannon entropy and Jensen-Shannon
divergence. Rather than rely on subject codes, we model
the disciplinary preferences of each author by estimating the
author’s journal distribution. We conduct an exploratory data
analysis on the relationship between these interdisciplinarity
variables and citation counts. In addition, we model the effects
of (1) each author’s influence in coauthorship graphs, and (2)
words in the title of the paper. We then build classifiers for
two- and three-class classification problems that correspond to
predicting the interval in which a paper’s citation count will
lie. We use cross-validation and a true test set to tune model
parameters and assess model performance. The best model we
build, a classification tree, yields test set accuracies of 0.87 and
0.66, respectively. Using this model, we also provide rankings
of attribute importance; for the three-class problem, these
rankings indicate the importance of our interdisciplinarity
metrics in predicting citation counts.

1. Introduction

Funding agencies and researchers with limited time and
resources increasingly seek metrics and models to quantify
the potential impact of a collaboration, a proposal, or a paper
[1]-[3]. One way of measuring the impact of a paper is
through its citation count, the number of times the paper has
been cited by other papers. In this work, we mine biblio-
graphic data to build predictive models for a paper’s citation
count. We view the problem as a classification problem with
each class corresponding to an interval of citation counts.
As part of our approach, we extract a diverse set of features
from bibliographic data, quantifying the effects of (i) author
interdisciplinarity, (ii) author influence, and (iii) title words.

1 This study is based upon work peformed while Evan Heit was serving
at the National Science Foundation (US). Any opinion, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.
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We use these features in addition to features that are often
used in citation prediction models. The best classifier that
we build has a test set accuracy exceeding 87% and an area
under the ROC curve greater than 0.87.

A distinguishing feature of our work is the way in
which we model the interdisciplinarity of authors. We do not
attempt to tag authors by their discipline, nor do we make
use of subject classifications for either papers or authors.
Instead, we use the massive data set at our disposal to
estimate each author’s distribution of publication outlets, as
a proxy for each author’s scientific domain. In our work, we
seek to quantify interdisciplinarity at the paper and journal
levels, and then to explore statistical relationships between
interdisciplinarity and measures of journal/paper quality
such as impact factors and citation counts. We also identify
an author’s importance in the author network and the quality
of the keywords in the title as important predictors for the
paper’s quality as reflected by its citation count.

After briefly reviewing related work in Section 2, we
describe our data set in Section 3. In Section 4, we give a
detailed account of how we extract features from the data.
Next, Sections 5 and 6 describe, respectively, the exploratory
analysis and predictive modeling we conducted. We discuss
overall conclusions in Section 7.

2. Related Work

We briefly review selected past work on this problem,
focusing on papers that apply machine learning methods to
build predictive models.

A recent paper computes Author Rank, a ranking of
authors based on their average citation counts in previous
years [4]. From Author Rank, other features such as total
past influence for authors, maximum past influence for au-
thors and venue rank are computed. These features are then
used to build predictive models with methods such as logis-
tic regression, support vector machines, linear regression,
support vector regression, and classification and regression
trees. The goal is to predict citation counts for new papers
from past author and venue impact. The main finding is that
a measure based on the citation graph evolution works well
for this prediction.



In [5], Ibéafiez et al. tried to predict the number of cita-
tions of a paper within each of the four years after publica-
tions by comparing classification methods such as Bayesian
networks, logistic regression, decision trees and K -nearest
neighbors. The logistic regression and naive Bayes classi-
fication methods yield good accuracy in predicting citation
counts. Similarly, in [6], regression models were pursued
and Yan et al. noted that Author Rank, Venue Rank are most
predictive in citation counts. Interestingly, by exploring the
content of papers using word tokens in abstracts, they find
that the content of a paper is not predictive of paper citation.

In an especially influential paper, Castillo et al. [1] built
a predictive model for a paper’s citation count based on
features such as a priori author-based, a priori link-based,
and a posteriori information using classification methods.
They showed that prediction accuracy degrades using a pri-
ori information and noticed difficulty in improving baseline
prediction using a priori attributes.

We do not directly compare the performance of these
algorithms in the current study, which is based on a different
dataset and with subtly different goals. These past studies do
provide important context for the present work. We develop
basic measures of interdisciplinarity for a published paper
and explore whether these, too, predict citation count. There
has been considerable discussion of the importance of inter-
disciplinary work, and its likely impact in future scientific
endeavors [7]. Do interdisciplinarity features enhance our
ability to predict citation counts? This is the question we
seek to answer here.

3. Data

Using direct API access to the Thomson Reuters Web of
Knowledge (WOK) database, we assembled a massive set
of bibliographic data. Because the database was previously
known as Web of Science (WOS), we will use WOK and
WOS interchangeably. The data acquisition proceeded in
two levels. In the first level, we formed two lists of journals:
the top 250 journals by impact factor in both the science and
social science sections of Thomson Reuters Journal Citation
Reports (JCR). We then downloaded database entries for all
papers published in the years 2005-2010 in 247 of the top
250 science journals, and 248 of the top 250 social science
journals, because some of these top journals did not have
complete issues yet in our target date range. In what follows,
we refer to this set of journals as the “top 495” journals.
In this way, we obtained entries for over 800,000 papers
involving over 800,000 authors.

Using the list of all authors that appeared in papers from
this first level, we conducted a second level of data collec-
tion. In this second level, we downloaded database entries
for all papers by these authors over the time period 2000—
2006. The total number of bibliographic entries acquired in
the second level exceeds 7 million.

The sum total of all data described in the two-level
process above is contained in 220 GB of JSON files. Our
first step was to import this data into mongoDB, a type of
NoSQL database. Because of the way that we downloaded

the data, it became clear that our raw files sometimes
contained more than one entry for the same paper. Because
the WOS ID for each paper is unique, we used this field as
the mongoDB identification field. In this way, we imported
into mongoDB only one entry for each distinct paper in our
raw data set.

The resulting database consists of bibliographic entries
for Np = 7,957,302 unique papers. These entries contain
a substantial amount of raw information on each paper: the
title, abstract, author names and affiliations, year published,
journal name, times cited, etc. Essentially, for each paper,
we obtain at least as much information as one would obtain
by querying the Web of Knowledge database through its
web interface, familiar to many researchers.

We use the mongoDB data for model training, including
cross-validation to determine model hyperparameters. To
test the model, we use a test set that does not intersect at all
with the training set. To form the test set, we use all papers
from the top 250 journals in science and the top 250 journals
in social science, published during the years 2011-2014.

A key problem in analysis of bibliometric data is the
unique identification of authors. There are at least two
problems: (i) the same name can sometimes be shared by
multiple distinct authors, and (ii) a single author may use
different forms of her/his name on different papers. Our
solution to this problem is to ignore the actual name of
each author and instead identify each author by his/her
DAIS (Distinct Author Identification System) ID. DAIS, a
proprietary system used by WOK, claims to solve problems
(i) and (ii) above.

We have two observations regarding the DAIS ID. First,
not all authors have been assigned a DAIS ID. Using distinct
author names (specifically, WOS standard names repre-
sented as Unicode strings), we counted 3,415,707 unique
authors; counting DAIS IDs, we counted N4 = 3,092, 291
unique authors. Second, all of the author-related features
used in this paper were originally computed using WOS
standard names. Upon recomputing the features using DAIS
IDs, we found the features to be more informative.

4. Feature Extraction

Feature extraction occupies a central role in our ap-
proach. Starting with over 200 GB of raw data, we employ
a diverse array of techniques to extract meaningful informa-
tion. We place our features into four broad categories:

1)  Author Interdisciplinarity. We compute two metrics
(Jensen-Shannon Divergence and Mean Entropy)
that quantify the interdisciplinarity of each paper.

2) Author Influence. We score each paper based on
the authors’ PageRank in two coauthorship graphs.

3) Title Words. For each paper, we find the journal
(in the set of the top 495 journals described above)
whose titles are most similar to the paper’s title.

4) Classical Features. In this category, we include
features such as: number of references cited, age,
length, number of authors, past citations of the



authors, and past number of papers published by
the authors.

We now detail each category.

Author Interdisciplinarity. When one seeks to model
interdisciplinarity, the first question is how to determine
precisely the discipline or field of a single author. Each paper
in our data set is associated with WOS subject codes. Our
primary objection to these codes is that they overly constrain
the vast space of possible domains to which a paper or an
author may belong. For example, consider an author who
publishes in mathematics, computer science, biology, and
physics. While some of the intersections of these fields may
be associated with standard subject codes, e.g., “biophysics”
or “computational biology,” one would find it difficult to
assign one subject code that covers all four of the author’s
scientific domains. Consequently, we argue for a data-driven
approach that captures—in a precise, quantitative way—the
vast range of possible scientific domains to which an author
may belong. Additionally, we seek to avoid an arbitrary
or subjective assignment of either authors or papers to
particular disciplines.

To model an author’s disciplinary interests/preferences,
we consider the author’s journal distribution. That is, for
each author, we estimate the probability that the author
publishes in each of the N; = 11, 829 journals (represented
by ISSN numbers) in our data set. In this way, we build a
journal distribution—actually, a probability mass function
(p.m.f.)—for each author. We represent this p.m.f. as a
sparse vector x with length V;. To estimate x, we compute

number of times author has published in journal j
X i =

total number of publications for this author

This computation is carried out efficiently—on the training
set—using mongoDB’s native Map-Reduce framework.

Having computed a journal distribution for each author,
we can now quantify the interdisciplinarity of a single
author as well as a group of authors. We first compute
the Shannon entropy of each author’s journal distribution.
Entropy measures intrinsic interdisciplinarity, i.e., the spread
of the author’s journal distribution:

Ny
H(x) = *in log(x;). (D)
i=1

For each paper, we compute avgent, the average of the
entropies of the paper’s authors. This is our first metric for
quantifying the interdisciplinarity of each paper.

The second metric for quantifying the interdisciplinarity
of a paper builds on the entropy. For an N-author paper,
suppose the authors have journal distributions x!,...,x".
We compute the Jensen-Shannon divergence (JSD or jsd) of
these distributions:

Iem ;) 1,
DJS=H<N;><>—N;H(X)7 )

with H defined as in (1). The JSD aims to quantify how
mutually different the authors’ journal distributions are from
one another.

Three points regarding entropy and JSD help to increase
intuition about these quantities. First, for a single-author
paper, the JSD is always zero. Such papers can still have a
large mean entropy if the author’s journal distribution is very
spread out. This models an author with a broad background,
disciplinary preferences, and/or interests.

Second, it is possible for the mean entropy of a paper to
be zero while the JSD is positive and large. As a limiting
case, this will happen for an N-author paper in which each
author has published exclusively in one journal, and all of
the journals are mutually distinct. This models a paper in
which multiple monodisciplinary and complementary au-
thors jointly produce a highly interdisciplinary paper.

Third, JSD and mean entropy are bounded below by
zero. Neither has a theoretical upper bound that is indepen-
dent of IV, the number of p.m.f.’s being compared. However,
the empirical distributions—calculated using the JSD and
mean entropy for each paper in our training set—show that
there are effective upper bounds for both quantities.

Author Influence. Our working hypothesis is that au-
thors with a better position in their network of coauthors
will tend to coauthor papers with higher citation counts. By a
better position, we mean (i) knowing more authors interested
in reading/citing their papers, or (ii) knowing more authors
who themselves produce highly cited works.

We quantify these effects by computing the PageRank
[8] of each author in two similar but slightly different
coauthorship graphs. In the first such graph, each vertex is
an author, and two authors are joined by an edge if they have
coauthored at least one paper together. Identifying authors
with their DAIS IDs, the graph has Ny = 3,092,291
vertices and 48,590,127 edges. Using sparse numerical
linear algebra, we form the graph’s adjacency matrix A and
degree matrix D. We then consider the Markov chain in
which at each step, with probability d, a walker follows a
simple random walk on the graph with adjacency matrix A,
while with probability 1 — d, the walker chooses the next
vertex uniformly at random from all vertices. The transition
matrix for this Markov chain is

M =dAD™ ' 4+ (1 —d)(Na)™'1,

where 1 stands for an N4 x N4 matrix of all 1’s, and
D stands for the degree matrix. The matrix D is purely
diagonal; the ¢-th entry on the diagonal is the sum of the
entries in the i-th column (equivalently, row) of A.

We then compute the equilibrium or stationary probabil-
ity distribution for the Markov chain: the vector 7r satisfying
Mm = w. We do this through power iteration, i.e., by
computing 7w/ +! = M#J until |7/t — 7| < 1078, We
compute the matrix-vector product M7/ without storing
the dense matrix M. As an initial guess, we let 70 be
the uniform distribution on all N4 vertices. In practice,
we observe convergence in less than 60 iterations. For
consistency with the literature, in the above Markov chain,
we choose d = 0.85.

The second coauthorship graph is a weighted version
of the first coauthorship graph. In the first graph, we set
A;; = 1 when authors ¢ and j have coauthored at least



one paper together. In the second graph, we introduce an
edge weight based on the decile of the citation count of
the paper that authors ¢ and j have coauthored. These
deciles correspond to the following citation counts (rounded
down): d = (0,2,7,13.8,22.5,28.6, 40, 63.6,102,321). If
the paper coauthored by authors ¢ and j has c citations,
then we set A;; = min; {¢c > d;}. In this scheme, even a
paper with O citations obtains a weight of 1. We therefore
distinguish between pairs of coauthors who have authored a
paper together versus those who have not, even if the paper
in question has never been cited.

Using this adjacency matrix in place of the earlier
one, we obtain a different Markov chain and a different
equilibrium distribution 7r. The vectors 7 and 7, contain
the PageRank and the PageRank-w (short for PageRank
on the weighted graph) for each author. For each paper,
we compute avgpr and maxpr, the average and maximum
PageRank for its authors, respectively. We do the same for
PageRank-w, producing avgprw and maxprw for each paper.

Title Words. There are good reasons for why one might
view a paper’s title as predictive of the paper’s success.
Readers may decide whether to read a paper based on
its title. In 2015, we rarely read printed, bound copies
of journals—instead, we search for papers in databases.
A paper’s title strongly influences whether it appears in
search results on a particular topic. Finally, a sudden burst of
activity in a particular research area can sometimes yield a
collection of highly cited papers that all have similar words
in their titles, e.g., “nonnegative matrix factorization.” In
short, analyzing paper titles is a first step towards analyzing
the actual content of the paper.

For each title, we convert all words to lower-case, re-
move all numbers and punctuation, and then remove stop
words—we use a standard list of 127 stop words such as
“an” and “of.” Next, we apply the Lancaster stemmer [9]
from Python’s Natural Language Toolkit (NLTK). Aggre-
gating the results across all publications, we arrive at a list
of Ny = 1,099,873 unique terms. We let u; denote the
number of publications’ titles that contain the j-th term,
for each j such that 1 < j < Np. For each such j and
each i such that 1 < i < Np, let ¢;; denote the number of
times term j occurs in the i-th document’s title. Then we
define the Np x Np term-document matrix S using term
frequency—inverse document frequency (or TF-IDF) [8]:

Sij = tij log(Np/uj).

Now that we have the matrix S, we form a second term-
document matrix. Let J be a journal from the set of top
495 journals. We take the rows of 7' corresponding to
publications from J. We then keep only those rows for
which the citation count of the corresponding paper is in
the top 90-th percentile of all citation counts for papers
from J. Summing over these rows, we produce one row that
represents the titles from the top papers from J. Performing
this calculation for each J, we obtain a 495 x Np term-
document matrix R.

Now let R and S denote the matrices obtained from R
and S, respectively, by dividing each row by its 2-norm. Let

ST denote the transpose of S. Setting C' = RS, we now
observe that C;; contains the cosine similarity between the
i-th row of R and the j-th row of S. To put this another way,
for each j in 1 < 5 < Np, the j-th column of C contains
the cosine similarities between the j-th publication title and
each of the 495 aggregated titles in the matrix R. Because
Np/u; > 1, we see that S;; > 0. Hence R, S, and C' are
all nonnegative.

For each publication, we take the maximum value in the
corresponding column of C' and call that cossim, the best
cosine similarity score for that publication. The ISSN of the
journal corresponding to the row in which the maximum
value appears is another feature, issn, as is the 5-year impact
factor of that journal, issnboost. The cossim feature models
the effect of the words in the title. The computed value
records how similar a publication’s title words are to title
words from one of the top 495 journals. The identity of the
journal does not itself figure into cossim.

We do not include as a feature the identity of the actual
journal in which a publication has appeared. We do this to
maximize the potential for our model to be used on papers
that have not yet been published. However, we are fully
aware that papers that are published in journals from certain
fields (e.g., biology and medicine) tend to have higher
citation counts than papers published in journals from other
fields (e.g., mathematics). The features issn and issnboost
enable us to model this effect. In effect, we are using a
paper’s title to determine or predict the identity of the journal
where, one might say, it ought to be published.

Classical Features. Here we include features shown to
be predictive in prior work. For each paper, we extract

e numauth, the number of authors.

o numref, the number of papers cited in the paper’s
bibliography.

e age, the paper’s age in years, obtained by subtracting
the year the paper was published from 2014, the year
the data were obtained.

o length, the length in pages.

e avgcit and maxcit, the average and maximum num-
ber of past citations garnered by the authors.

e avgnp and maxnp, the average and maximum num-
ber of prior publications of the authors.

In total, we obtain 2 attributes for author interdisciplinarity,
4 attributes for author influence, 3 attributes from the title
words, and 8 classical attributes. Hence we have a total of 17
attributes or predictors for each of the papers in the database.
We also extract fc, the number of times each paper was cited;
this is used to construct the response variable.

5. Exploratory Modeling

Equipped with the 17 attributes described above, we
first carry out an exploratory analysis. The purpose of this
analysis is to gain insight into the attributes and how they
might be related to the citation count of a paper.

We first compute the Pearson and Spearman correlation
between each attribute and zc, the citation count for each



Feature op pS Feature op ps
avgcit 0.4283  0.5775 | issn 0.0034  -0.0085
maxcit 0.3885  0.5314 | issnboost | 0.0294  0.0903
avgnp 0.0355 0.3847 | age 0.0234  0.0455
maxnp 0.0353  0.3736 | numrefs 0.2865  0.7285
avgpr 0.0312  0.3788 | length 0.0135  0.5382
maxpr 0.0388  0.3825 | numauth | 0.0511  0.0955
avgprw 0.0427  0.4090 | jsd 0.1593  0.4019
maxprw | 0.0468  0.4012 | ent 0.1691  0.4167
cossim 0.0788  0.0334

TABLE 1. CORRELATION—IN BOTH PEARSON (pp) AND SPEARMAN
(ps) SENSES—OF EACH ATTRIBUTE WITH CITATION COUNT.
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Figure 1. Top: empirical probability mass function of citation counts,
plotted on a log-log scale. Bottom: kernel density estimates using the JSD
and mean entropy for all papers in our database.

paper. The results are summarized in Table 1. The results
show that many of the new features we have included are
indeed related to the citation count. In particular, we find
reasonable Spearman correlation for author interdisciplinar-
ity as modeled by JSD and mean entropy, as well as author
influence as encoded by avgprw and maxprw.

Next, we turn to the empirical probability mass function
(p-m.f.) of tc itself. In the top panel of Figure 1, we plot
this p.m.f. on a log-log scale; the resulting plot matches
prior work on a different data set [6]. We conjecture that the
heavy tail of this distribution will lead to occasional, massive
errors in any regression model that seeks to predict a paper’s
exact citation count. Therefore, in this work, we consider
classification problems in which we predict the interval in
which the citation count will fall. This is described in more
detail in Section 6.

The bottom panel of Figure 1 shows kernel density
estimates for the probability density functions of JSD (black)
and mean entropy (blue). These densities are computed
using the JSD and mean entropy values for each paper, not
each author. The spike at O for the jsd density is due to
single-author papers.

As we saw above, though JSD and mean entropy are
correlated with the citation count, the correlation is not

extremely close to 1. Therefore, we attempt to visualize
the relationship between these variables and citation count.
Our first set of graphs are box-and-whisker plots, shown
in Figure 2. We form 10 equispaced bins of mean entropy
and JSD that cover the respective ranges of these variables.
The horizontal axes of these plots list the centers of each
bin. We then plot a box-and-whisker on a log scale for
the citation counts that fall into each bin. The top, middle,
and bottom horizontal lines in each box indicate the upper
quartile, median, and lower quartile of the citation counts
in the corresponding bin. The whiskers are located 10 times
the interquartile range away from the nearest box.

There are three points to make regarding these plots.
First, both mean entropy and JSD are related to citation
count in a nonlinear way. Median citation counts are higher
when mean entropy is near 3, while median citation counts
are higher when JSD is near 2.54. However, citation counts
tend to drop off when mean entropy or JSD is either too
low or too high. We interpret this as saying that a moderate
amount of interdisciplinarity (higher than the average as
shown in the marginal densities plotted in Figure 1) seems
to be related to a higher citation count. Second, we note the
presence of a large number of outliers (points outside the
whiskers) in almost every bin. This echoes the heavy-tailed
distribution of citation counts described above. Finally, there
are a huge number of 0 citation count papers not shown. The
number of such papers is sufficiently high to push the mean
citation count close to zero in each bin.

Next we explore the multivariate relationship between
both measures of author interdisciplinarity and paper citation
count. In the top panel of Figure 3, we plot one point
for each journal in our top 495 subset. The mean entropy
and JSD values for each journal are the averages of the
corresponding values over all papers (in our database) that
were published in that journal. In this plot, the color of the
point indicates impact factor, with red and blue indicating
high and low impact factors, respectively.

In the bottom panel of Figure 3, we produce a plot that
summarizes the relationship between mean entropy, JSD,
and citation count for all Np > 7.9 million papers in our
database. Here the color of the point indicates citation count,
with red and blue signifying high and low citation counts,
respectively. However, for visualization purposes, we have
divided the overall (jsd,ent) space into a 100 x 100 grid
of rectangles. We have averaged the citation count in each
rectangle and plotted one point at each rectangle center.

Overall, the results indicate that journal and paper impact
depend jointly on both interdisciplinarity metrics. For a
journal, if either mean entropy or mean JSD is sufficiently
high, the impact factor of the journal tends to be high. For
a paper, we find two hot spots (patches of red in the bottom
plot in Figure 3). The patch towards the left corresponds
to papers with authors who each possess moderate intrinsic
interdisciplinarity (mean entropy near 3) while being similar
to one another (JSD near 0.25). The patch towards the right
corresponds to papers with authors who are significantly
different from one another (1 < JSD < 2). For these papers,
we find it is probable that authors garner a relatively large
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Figure 2. Box-and-whisker plots show a nonlinear dependence of citation
count on mean entropy and JSD.

number of citations even when they possess an average level
of intrinsic interdisciplinarity (mean entropy near 2).

6. Predictive Modeling

Based on the findings from Section 5, we converted the
problem to a classification problem. We considered a 2-class
problem, in which class “0” consists of papers with zero
citations and class “1” consists of the complement.

Additionally, we considered a 3-class problem. Here
we use the approximate 33-rd and 66-th percentiles of the
citation distribution, 0 and 12, to form three classes: papers
with zero citations (label “0”), papers with citation count
¢ € [1,12] (label “1”), and papers with more than 12
citations (label “27).

For the 2-class problem, the training data is imbalanced,
with approximately 2/3 of the instances in class “1.” We
have deliberately constructed the 3-class problem so that
the training data features an approximately equal number of
instances of each class.

For each problem, we first used the entire training set
to fit a variety of models. To build our models, we used
Apache Spark [10] running on HP workstations with 12-24
cores and 16 GB of RAM. The following table summarizes

o °
S A
° o'.'.':%.. °
o~ Q..’.»..':o,. N °, *~. .;')’ o® R
. o 20, g - °

> ROy o "oi}‘
Q o | S o T i) ;‘x. °
g ° ..'{4‘“00’.‘. ° °
c Comg R & Gele o
) . oS )
c 2 -‘?.“,: “ed
g lame
S o .o *

= e

L]
0
o
T > T T T T
0.0 0.2 0.4 0.6 0.8
mean JSD

© 4

0w 4
>
Q.
S <1
c
()
c .
]
()
E o+

o 4

mean JSD

Figure 3. Top: Relationship between average entropy, JSD, and impact
factor for the top 495 journals. Red indicates high impact factor (max
of 153), while blue indicates low impact factor (min of 2.6). Bottom:
Relationship between average entropy, JSD, and citation count for all papers
in the training set. Red indicates high citation count (max of 4147.5) while
blue indicates low citation count (min of 0).

the best training accuracy we achieved with each of the
following models/algorithms:

Model \ 2-class Accuracy  3-class Accuracy
Naive Bayes 0.645 0.499

Logistic Regression 0.851 0.665

Tree 0.884 0.723

Support Vector Machine (SVM) | 0.677 X

Random Forest 0.874 0.704

Boosted Trees 0.859 X

TABLE 2. RESULTS FROM TRAINING VARIOUS MODELS ON THE ENTIRE
TRAINING SET. X’S INDICATE UNAVAILABILITY OF THE
CORRESPONDING ALGORITHM FOR MULTICLASS PROBLEMS IN APACHE
SPARK V1.3.0.

We have ordered the results by how long it took to fit
each model, with Naive Bayes requiring only a few seconds
and the ensemble methods (forests and boosting) requiring
over an hour depending on particular hyperparameter values.

While we did try different hyperparameter values (num-
ber of boosting iterations, number of trees in the forest,
etc.) for the different models, we did not delve into the
Apache Spark code to change more fundamental details in



@ Training Accuracy
A Training AUC
® Test Accuracy
A Test AUC

Accuracy

060 0.65 070 0.75 0.80
I

® Training Accuracy
A Test Accuracy

T T T T T T T T
5 10 15 20 5 10 15 20

Accuracy (circles) and AUC (triangles)
0.84 0.86 088 090 0.92
L

Tree Depth Tree Depth

Figure 4. Results from 10-fold cross-validation reveal the values of tree
depth beyond which the model overfits the data.

these algorithms. Boosting, in particular, refers to a family of
algorithms, and it is entirely possible that a different flavor
of boosting may yield a significant improvement over the
boosting and single tree results presented here. However,
advantages of the tree model are that its construction is
relatively fast, the final model is easily interpretable, and
the algorithm used to build the tree is completely standard.
Additionally, using a single tree has not resulted in any sig-
nificant reduction in accuracy as compared to an ensembles
of trees (whether in a forest or a boosted model). Based
on all the factors, we decided to proceed using single tree
models.

Note that in our tree model, we treat issn as a categorical
variable. We also choose the entropy splitting criterion rather
than the Gini index.

Cross-Validation. Our next step was to select the opti-
mal value of the depth of the tree, a proxy for the overall
complexity of the classifier. To do this, we carried out 10-
fold cross-validation. We first divided the training set into
10 random subsets or folds. In turn, we used each subset
of 9 folds for training and the held out fold for testing.
Aggregating the results over all 10 folds, and carrying this
out for both 2- and 3-class problems, we obtain the results
shown in Figure 4. Please note that in Figure 4, when
we write “test,” we mean the held out folds from cross-
validation, not the true test set described in Section 3. Also
note that AUC is short for “area under the ROC curve,” a
metric of classifier performance that we only compute for
the 2-class problem.

As expected, the results show that training accuracy and
training AUC increase monotonically as a function of tree
depth: a more complex model fits the training data better.
However, the test error starts decreasing when the model
begins to overfit. For the 2-class problem, test accuracy
(respectively, AUC) is maximized at a tree depth of 10
(respectively, 12). For the 3-class problem, test accuracy is
maximized at a tree depth of 14.

Test Set Results. Based on the cross-validation results
and our preference for parsimony, we choose a tree depth
of 10 for the two-class problem. With this parameter set, we
train the classifier on the entire training set. The resulting
tree has 1731 nodes. We make predictions on the test set—
the true test set described in Section 3—and compare these

predictions against the true class labels. Before we give the
results, we must explain two points.

First, suppose we encounter an author in the test set who
does not appear in the entire training set. In this case, we
have no way of estimating the author’s journal distribution,
PageRank, or past citation/publication record. Therefore,
we ignore this author for the purposes of calculating a
number of features: avgcit, maxcit, avgnp, maxnp, avgpr,
maxpr. These features are computed using information on
the authors who appeared in the training set. If a paper in
the test set contains no such authors, we assign a value of
0 to the features just mentioned.

Second, suppose we encounter a title word in a test set
paper that does not appear in the entire training set. Again,
we ignore the word for the purposes of scoring the title’s
similarity to our reference set of papers from the top 495
journals. We have not encountered a situation where a paper
has zero title words in common with title words found in
our training set.

With these points in mind, the test set confusion matrices
for the two-class tree model (left) and the logistic regression
model (right) are
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with respective accuracies of 0.878 and 0.861. We have
included the logistic regression results because, in our first
models, the logistic regression model performed almost as
well as the tree model (see Table 2).

On the test set, the tree and logistic regression models
yield AUC values of 0.874 and 0.858, respectively. The
areas under the precision-recall curves are 0.917 and 0.908
for the tree and logistic regression models, respectively.
Taken together, the results indicate that the tree model is
slightly but consistently superior to the logistic regression
model for the 2-class problem.

Moving to the 3-class problem, based on the cross-
validation results, we choose a tree depth of 14. We fit a
tree of this depth using the entire training set; the resulting
tree has 23321 nodes. When we make predictions on the
test set, this tree model has the following confusion matrix:
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The accuracy is 0.663. In comparison, the logistic regression
model for this problem yields an accuracy of 0.611. For the
3-class problem, we conclude that the tree model is superior.

We do note from (4) that our model tends to misclassify
papers with a moderate citation count (class 1, the second
row) as highly cited papers (class 2, the third column). In
other words, if the classifier says that the paper is in class
2, there is almost a 50/50 chance that the true class of the
paper is 1 or 2. However, we note that the model succeeds
in identifying papers that have zero citations (the upper-left
corner of the matrix, corresponding to class 0).

Attribute Importance. Starting with the 2-class classi-
fier, we knock out one attribute at a time, refit the model,



Attribute  Acc. Attribute  AUC Attribute  Acc.
1 numrefs .8287 | numrefs 8229 || numrefs .6347
2 numauth .8698 | numauth  .8628 || jsd .6601
3 age 8731 | maxcit .8680 || numauth  .6603
4 maxcit 8747 | avgcit 8680 || length 6627
5 avgprw 8748 | avgprw .8681 ent 6627
6 avgcit .8749 | issn .8682 || issnboost  .6639
7 issn .8750 | avgpr .8684 || age 6710
8 avgpr .8752 | avgnp .8687 avgnp 6739
9 avgnp .8753 | maxprw .8689 || maxpr 6740
10 | maxprw .8754 | maxnp .8693 issn .6762
11 | maxnp .8759 | cossim 8694 || avgcit 6763
12 | cossim .8760 | maxpr 8696 || avgprw 6770
13 | maxpr .8760 | age .8700 || maxcit 6778
14 | issnboost  .8774 | issnboost  .8723 maxprw .6780
15 | length .8786 | length .8734 || maxnp 6789
16 | ent 8787 | jsd 8736 || avgpr 6798
17 | jsd .8788 | ent 8736 || cossim 6819

TABLE 3. WE PRESENT ATTRIBUTES SORTED BY IMPORTANCE FOR THE

2-CLASS (RESP., 3-CLASS) MODEL TO THE LEFT (RESP., RIGHT) OF THE

DOUBLE VERTICAL LINE. IMPORTANCE IS MEASURED BY THE DROP IN
MODEL PERFORMANCE WHEN A GIVEN ATTRIBUTE IS OMITTED.

and examine its performance on the test set. We then sort
the results in order of increasing accuracy/AUC; the idea
is that the most important attribute should, when omitted,
cause the greatest decrease in test set accuracy/AUC.

The results of this procedure are given to the left of the
double vertical line in Table 3. As in many prior studies in
this area, the number of references cited by the paper is the
most important attribute to predict its citation class. Among
the non-classical features introduced in this paper, the most
important ones appear to be avgprw, issn, and avgpr. These
correspond to our models of author influence and the most
similar journal based on title words. Note, however, that JSD
and mean entropy rank last.

We repeat the procedure for the 3-class tree model and
display the results to the right of the double vertical line
in Table 3. There are two interesting findings here. First,
JSD and mean entropy now occupy much higher positions
in the ranking. This is in concert with our earlier findings in
Section 5 that JSD and mean entropy are both related to the
citation count of a paper. Second, note that omitting cossim
actually causes the accuracy of the model to increase beyond
the accuracy we reported when using all 17 attributes.
The increase in accuracy from 0.663 to 0.682 is a relative
increase of roughly 2.8%. Overall, we believe this indicates
that further work on the tree model, in terms of pruning and
variable selection, should improve performance.

7. Discussion

We find that our measures of entropy and JSD contribute
to predictive models of citation count, our measure of a
paper’s impact. Importantly, we find this despite the many
variables we have included in the predictive models. It
should be noted that the 2-class models do not turn up
this predictive contribution of our interdisciplinarity mea-
sures, though the 3-class models indeed show the reverse—
interdisciplinarity measures are near the top of contributing

variables. It seems likely to us that the nonlinear relationship
we see above between entropy and JSD with citation count
may relate to these basic patterns. Given the nonlinearity of
the relationship, the interdisciplinarity features may better
carve out the space of citations when the citation count is
rendered as a 3-class response rather than a 2-class response.

There is a parallel phenomenon in studies of how in-
dividual people reason and make decisions with diverse
evidence [11], [12]. In general, arguments based on diverse
sources of evidence are considered more compelling than
arguments based on homogenous evidence. However, the
overall relationship between diversity and argument strength
is nonlinear: arguments with extremely diverse evidence are
considered less convincing. More broadly, efforts to improve
understanding of team science and to create successful teams
may be informed by studies of how to put together multiple
sources of evidence in a compelling way. New scientific
teams may be assessed for their potential to combine re-
search with the right diversity of past work. The result, we
think, may bridge two domains: what draws the attention of
other researchers who evaluate and cite the work of others,
and the citation patterns that emerge at scale.
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