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Abstract—We provide an algorithm to build quantile re-
gression trees in O(N log N) time, where N is the number
of instances in the training set. Quantile regression trees are
regression trees that model conditional quantiles of the response
variable, rather than the conditional expectation as in standard
regression trees. We build quantile regression trees by using
the quantile loss function in our node splitting criterion. The
performance of our algorithm stems from new online update
procedures for both the quantile function and the quantile
loss function. We test the quantile tree algorithm in three
ways, comparing its running time against implementations of
standard regression trees, demonstrating its ability to recover
a known set of nonlinear quantile functions, and showing that
quantile trees yield smaller test set errors (computed using
mean absolute deviation) than standard regression trees. The
tests include training sets with up to 16 million instances.
Overall, our results enable future use of quantile regression
trees for large-scale data mining.

Keywords-regression trees; quantile regression; online algo-
rithm

I. INTRODUCTION

Decision trees are one of the most widely used methods in

data mining. Trees enjoy various advantages, among which

are interpretability, a natural ability to handle both numerical

and categorical predictors, and well-developed methods to

deal with missing data. Trees are typically constructed using

recursive partitioning algorithms, which can be efficient

and scalable. In the present work, we focus on quantile

regression trees, which are regression trees designed to

model conditional quantiles of the response variable. This

is in contrast to standard regression trees, which model

the conditional expectation. Our primary contribution is

an algorithm that constructs quantile regression trees in

O(N logN) time, where N is the number of instances in

the training set.

We are interested in quantile regression trees for two

reasons. The first reason has to do with robustness. When

tree models are applied to regression problems, the most

widely used splitting criterion employs an ordinary least

squares (OLS) loss function. To generate trees that are

more robust to outliers in the response variable, Breiman

et al. [1, Chap. 8] suggested a splitting criterion based on

least absolute deviation (LAD). In this approach, when we

arrive at a leaf node, the predicted value will be the median

of the response variable for the instances associated with

the leaf. In this paper, we generalize Breiman’s framework

to arrive at quantile trees. The splitting criterion uses a tilted

absolute value loss function (2) that, in a natural way, allows

us to develop a model for the τ th quantile of the response

variable. The LAD tree is included as a special case.

The second reason for our interest in quantile regression

trees is a desire for more informative models than one

obtains with OLS regression trees. Let X be an N×p matrix

of predictors, where each row is a different instance and each

column is a different predictor. Let Y , an N × 1 vector, be

the corresponding response variable. We regard each row of

(X, Y ) as an independent sample from the random vector

(ξ, η). Let

Fη|ξ(a|b) = P (η ≤ a|ξ = b)

denote the conditional cumulative distribution function

(CDF). Then the quantile regression tree with parameter τ
is an approximation of the function y = Φτ (x) that satisfies

Fη|ξ(Φτ (b)|b) = τ.

In short, Φτ is the inverse of the conditional CDF, and the

quantile tree is a piecewise constant approximation of Φτ .

Developing quantile trees for a range of values for τ , we can

approximate the conditional CDF of the response given the

predictors. OLS regression trees seek to model E[η|ξ]. The

difference between quantile and OLS regression trees, there-

fore, can be understood as the difference between estimating

the conditional distribution and conditional expectation. The

additional information in the distribution has proven useful

in various problems [2]–[4].

A classic paper on gradient boosting [5] states: “Squared

error loss is much more rapidly updated than mean-

absolute-deviation when searching for splits during the tree

building process.” We argue that it is for this reason that,

despite the potential advantages outlined above, neither

LAD nor quantile regression trees enjoy widespread use

on massive data sets. In this paper, we detail an algorithm

for updating the quantile loss function ρQT that enables

quantile regression trees to be built in O(N logN) time;



prior implementations of which we are aware run in O(N2)
or even O(N2 logN) time.

Quantile regression trees are, of course, examples of

regression trees; for a recent survey of the regression tree

literature, see [6]. The present paper does not describe a

complete regression tree package; such a package would pro-

vide methods to handle categorical predictors and missing

data, and should also address the bias problem. For trees,

the bias problem is the tendency to split on a predictor that

has more possible splits, even if the predictor is completely

uninformative. The present paper seeks to remedy the algo-

rithmic obstacle identified above, enabling incorporation of

the quantile loss function into more complete tree packages

suitable for real data sets.

In prior work on quantile regression trees [7], [8], a poly-

nomial approximation to the conditional quantile function

is fitted to the instances in each terminal node. In this

scheme, the node splitting criterion is a function of p-values

calculated using linear quantile regression residuals. Hence

these works do not address regression trees built using the

quantile loss function. Trees built using robust M-estimator

loss functions [9] are closer to what we analyze here.

Quantile trees can also be viewed as an example of

a nonlinear, nonparametric method for estimating regres-

sion quantiles. Several such methods have been developed

recently, including quantile regression methods featuring

neural networks [10], additive models with splines [11],

local smoothing [12], [13], expectation maximization [14]

and forests of OLS trees [15]. If one restricts attention

to LAD or median models, there are numerous nonlinear

methods to consider [16]–[19]. The most relevant work is

[20], which explored online algorithms for LAD trees.

II. GENERAL TREE ALGORITHM

Given the predictors X1, . . . , Xp and the response variable

Y , regression trees seek to minimize the deviance

Snode =
∑

i∈node

ρmodel(yi − θmodel), (1)

summed across all leaf nodes. Here ρmodel is a loss function,

i.e.,

ρOLS(x) = x2, ρQT(x) =

{

(τ − 1)x x < 0

τx x ≥ 0,
(2)

and θmodel is the associated M-estimator,

θmodel = argmin
y∗

∑

i∈node

ρmodel(yi − y
∗).

We equate a node with the indices of associated instances,

{i1, . . . , iν}. For the same node, we have an associated

vector of response values, y = (yi1 , . . . , yiν ). The M-

estimators for the two loss functions are

θOLS = µ(y), θQT = F−1
y

(τ).

Here µ(y) is the mean of y and F−1
y

(τ) is the empirical

τ th quantile of y.

Once the model and the loss function ρ have been

chosen, the tree can be built using a recursive algorithm.

Fix δ > 0 and positive integers nm and nc. The parameter

nm decides the minimum number of sample points in yi

required to attempt a split at node i. The parameter nc
is the minimum number of sample points required at any

node. The parameter δ determines a sufficient level of

relative decrease in summed deviance. If one compares with

the tree package [21] in R, our parameters nm, nc, and

δ correspond to the tree package’s minsize, mincut, and

mindev, respectively.

Initially, let all instances be contained in a single node,

the root node. We compute Sroot via (1). Then the recursive

splitting algorithm is:

S1) If |node| ≤ nm, then label node as a leaf. Go to S6.

S2) Calculate the node deviance Snode using (1). When

we split on a fixed predictor Xi, let l and r denote

the sets of instances that branch to the left and right,

respectively. Let L and R denote the collection of all

distinct sets l and r that are obtained by considering

all binary splits over all predictors Xi. Set

φ(l, r) = Snode − (Sl + Sr)

and calculate

(l∗, r∗) = argmax
l∈L,r∈R

φ(l, r), ∆node = φ(l∗, r∗).

S3) If ∆node ≤ δSroot, then label node as a leaf.

S4) If |l∗| ≤ nc or |r∗| ≤ nc, then label node as a leaf.

S5) If node is not yet a leaf, then delete node and split it

by labeling l∗ as node and r∗ as node.

S6) If all nodes are labeled as leaves, then STOP. Else,

move to next node. Go to S1.

The condition in Step 3 prevents the building of deep

trees; this is in contrast to alternative methods that first build

deep trees and later prune them.

The most time-consuming step in the tree-building pro-

cedure above is Step 2. To compute the values of (l∗, r∗)
we need to consider every possible split. The most efficient

way is to first sort the values. If the node has n elements,

this operation takes O(n log n) time. OLS trees can then

compute (l∗, r∗) in linear time using an online algorithm

for updating both the mean and φ(l, r) across all possible

splits. In order to achieve the same time complexity using

the QT loss, we present our algorithm. Note that maximizing

φ(l, r) is equivalent to minimizing Sl+Sr; we will use this

to choose the best split.

III. QUANTILE TREE ALGORITHM

Consider the recursive splitting algorithm from the pre-

vious section using, as two cases, each of the two loss

functions in (2). Aside from the initial calculation of Sroot,



the only real difference between the two cases will occur

at Step 2. Here we provide an algorithm to solve the

optimization problem in Step 2 with the QT loss function

ρQT. We focus on finding the optimal split at one node for

one predictor variable. Given such an algorithm, we obtain

the best predictor among all predictors by direct comparison.

To start, assume we have two vectors X0 and Y0 that

hold, respectively, the predictor and response at all nodes

of the tree. We first find the sort order denoted by ord for

the vector X0 and obtain two vectors X = X0[ord] and

Y = Y0[ord]. In order to break the problem of computing

Sl and Sr into an online algorithm, we will need to compute

the τ th quantile in an online fashion. What we mean by an

online algorithm here is as follows: suppose we have already

computed the value of Sl for a certain number of points.

Now we add a new point into the left child. We would like

to update Sl without having to sort all the values again and

then computing the value of Sl from scratch.

A. Online Update of Quantiles

In general, computing the quantile in an online manner

is considered expensive since it requires at least a partial

sort of the data. However, in the present case, if we are able

to obtain the new quantile for each insertion in logarithmic

time, then the cost incurred overall is of the same order as

sorting. This cost of sorting is incurred even when we use

the OLS loss. We use this already incurred cost to update

the quantile without increasing overall complexity.

The update of quantiles should be done with regards

to efficiency, requiring the use of certain well-studied data

structures. The following two requirements on a data struc-

ture are essential to our algorithm:

• Insertion/deletion time should be at most O(log n).
• Finding the max/min should be at most O(log n).

Any data structure that permits the above bounds will

work for our algorithm. In the present work, we use heap-

based priority queues. Priority queues built with heaps are

a well-studied data structure, offering O(1) access to the

priority element and O(log n) time for insertion/deletion.

We use two heaps denoted by Hlow and Hhigh, which

correspond to max and min heaps, respectively. The max

heap Hlow allows access to the maximum element of the

heap (denoted by Hlow[top]) in O(1) time and the min heap

Hhigh allows access to the minimum element of the heap

(denoted by Hhigh[top]) in O(1) time. We denote by NP the

first P points in Y . We can easily obtain the τ th quantile

if we place N−
P = ⌈(NP − 1)τ⌉ points in Hlow and the

remaining N+
P = NP−N

−
p points in Hhigh. The τ th quantile

can now be computed as

qP = Hlow[top] + [Hhigh[top]−Hlow[top]]

× (τ(NP − 1)− (⌈(NP − 1)τ⌉ − 1)). (3)

The value of the quantile qP is a function of both the set

of points P and the desired quantile τ , but the choice of

quantile is fixed at the start of the algorithm and does not

change. For notational clarity, we refer to q as a function of

P only. Define R = {P ∪s}, where s = Y [N+1] is the new

point we wish to insert. In order to update the quantile when

we insert s, we first check if s ≤ Hlow. If this is true, we

insert s into Hlow, else we insert it into Hhigh. After insertion,

we need to ensure that there are exactly N−
r points in Hlow

and N+
r points in Hhigh such that the τ th quantile can still

be obtained using (3). If this condition is violated, we need

to pop the top value from Hlow and insert it into Hhigh, or

vice versa, to ensure the condition holds. This provides us

with an online algorithm for updating the quantile when we

insert one value at a time. Using (3) we can now obtain the

updated quantile qR. In this manner, starting with a single

point Y [1] inserted into Hlow, we can update the quantile

until we have inserted all the points.

B. Online Update of Quantile Loss Function

We now describe how we can update ρ(x) when we insert

a new point using the previous value. We denote by P−

and P+ the sets of points in Hlow and Hhigh, respectively.

Equation (2) can be written as

QADqP ,P = τ
∑

P+

(yi − qP ) + (τ − 1)
∑

P−

(yi − qP ). (4)

where QADqP ,P corresponds to the general expression

ρ(x). We can now simplify this expression to obtain

QADqp,P = τ
∑

P+

(yi − qp) + (τ − 1)
∑

P−

(yi − qp)

= τ
∑

P+

yi −N
+
p τqp + (τ − 1)

∑

P−

yi −N
−
p (τ − 1)qp

= τ
∑

P+

yi + (τ − 1)
∑

P−

yi − qp
[

N−
p (τ − 1) +N+

p τ
]

Suppose we have already computed QADqp,P and we

now wish to update the value when we insert the data point

s as before with R = {P ∪ s}. Consider first the case

where the point is added to the left heap Hlow. We have

two possibilities to consider to obtain QADqR,R.

Case 1. Addition of the point s does not cause any points

to be moved from Hlow to Hhigh in the update of the quantile.

In this case we obtain

QADqR,R = τ
∑

R+

(yi − qR) + (τ − 1)
∑

R−

(yi − qR)

= τ
∑

P+

(yi − qR) + (τ − 1)
∑

P−

(yi − qR)

+ (τ − 1)(s− qR)

= τ
∑

P+

yi + (τ − 1)
∑

P−

yi

− qR
[

N−
p (τ − 1) +N+

p τ
]

+ (τ − 1)(s− qR)

= QADqP ,P + (qP − qR)
[

N−
p (τ − 1) +N+

p τ
]

+ (τ − 1)(s− qR). (5)



Case 2. When we add the point s to Hlow we need to

rebalance the heaps by moving Hlow[top] to the heap Hhigh

in order to obtain the new quantile. Let ℓ denote the value

of Hlow[top]. We have, analogous to (5):

QADqR,R = τ
∑

R+

(yi − qR) + (τ − 1)
∑

R−

(yi − qR)

= τ
∑

P+

(yi − qR) + τ(ℓ− qR) + (τ − 1)
∑

P−

(yi − qR)

− (τ − 1)(ℓ− qR) + (τ − 1)(s− qR)

= τ
∑

P+

yi + (τ − 1)
∑

P−

yi − qR
[

N−
p (τ − 1) +N+

p τ
]

+ ℓ− qR + (τ − 1)(s− qR)

= QADqP ,P + (qP − qR)
[

N−
p (τ − 1) +N+

p τ
]

+ (ℓ− qR) + (τ − 1)(s− qR) (6)

If the point s to be added is greater than Hlow[top] then

we insert it into Hhigh. Following a similar procedure, we

obtain two update equations for each of two cases.

Case 1. No movement of points from Hhigh to Hlow when

updating the quantile:

QADqR,R = QADqP ,P

+ (qP − qR)
[

(τ − 1)N−
p + τN+

p

]

+ τ(s− qR) (7)

Case 2. Move ℓ = Hhigh[top] to Hlow when updating the

quantile:

QADqR,R = QADqP ,P + (qR − ℓ) + τ(s− qR)

+ (qP − qR)
[

(τ − 1)N−
p + τN+

p

]

(8)

These four cases can be represented compactly using a

single update equation. Let I = 1 if a value has to be moved

from the left heap to the right or vice versa and 0 otherwise.

Let J = 1 if we move a value from the left heap to the right

and J = −1 if we move a value from the right heap to the

left. Let K = 1 if the value was inserted into the left heap

and 0 otherwise. Then all four cases can be summarized by

QADqR,R = QADqP ,P + (1−K)τ(s− qR)

+ (qP − qR)
[

(τ − 1)N−
p + τN+

p

]

+ IJ (ℓ− qR) +K(τ − 1)(s− qR). (9)

Equation (9) provides us with a streaming update equation

to update the value of the QT loss obtained from the left

child, as we move one point at a time.

So far, we have only discussed the case of adding points

sequentially into the heaps. To find (l∗, r∗) we need to

remove points sequentially from the right child, starting with

all the points. Deletion of floating-point values from heaps

can cause trouble; we avoid this problem simply by inserting

points in reverse order.

Given ρ(x) for all splits, we obtain the optimal split

(l∗, r∗) using a linear scan.

procedure LEFTQAD(Y,QAD, τ )

initialize Hlow, Hhigh

set QAD[1] = QAD[2] = 0.0
insert Y [1] into Hlow

set qP = Y [1]
for i = 2, 3, . . . , N + 1 do

if Y [i] ≤ Hlow[top] then

insert Y [i] into Hlow

else

insert Y [i] into Hhigh

end if

RebalanceHeaps(Hlow, Hhigh, τ)
qR = FindQuantile(Hlow, Hhigh, τ)
QAD[i] = QAD[i− 1]+update using (9)

set qP = qR
end for

end procedure

procedure REBALANCEHEAPS(Hlow, Hhigh, τ )

nl ← size(Hlow)
nr ← size(Hhigh)
ψ ← ⌈((nl + nr − 1)τ)
if nl > ψ then

pop Hhigh[top] and insert into Hlow

else if nl < ψ then

pop Hlow[top] and insert into Hhigh

end if

end procedure

procedure FINDQUANTILE(Hlow, Hhigh, τ )

nn ← size(Hlow) + size(Hhigh)
ψ ← ⌈((nn − 1)τ)⌉
q ← Hlow[top]+(Hhigh[top]−Hlow[top])(τ(nn−1)−

(ψ − 1))
end procedure

Figure 1. Pseudocode for the online algorithm LEFTQAD that computes
the QAD vector for the left child.

The pseudocode for computing the QAD vector for the

left child is described in Figure 1. The input Y is the

response vector, sorted based on the sort order of the

predictor vector. QAD is initialized to zero for computing

the left child. After each insertion we need to rebalance the

heaps and obtain the new quantile values. Once rebalanced,

we update the quantile value (see the paragraph after (3), and

we also update the QAD via (9). To start, we set QAD[0]
and QAD[1] equal to zero. In order to compute the complete

QAD vector, i.e., including the right child, the algorithm is

very similar, but we insert points in the reverse order and

add the changes to the QAD vector. In the end, a linear

scan identifies the best possible split.



Housing CT Slices

Size (N ) QT tree rpart Size (N ) QT tree rpart

1.5K 0.0202 0.0136 0.0086 5K 2.5418 0.9476 0.5641
3.5K 0.0383 0.0270 0.0152 10K 5.1707 1.9200 1.1495
5.5K 0.0603 0.0446 0.0232 15K 7.8585 2.9546 1.7697
7.5K 0.0814 0.0596 0.0292 20K 10.6167 4.0779 2.5048
9.5K 0.1016 0.0744 0.0356 25K 13.4323 5.2316 3.2416

11.5K 0.1276 0.1009 0.0488 30K 16.2734 6.4152 4.0386
13.5K 0.1518 0.1129 0.0596 35K 19.1917 7.6866 4.8185
15.5K 0.1734 0.1339 0.0723 40K 22.1166 8.8849 5.6510
17.5K 0.2035 0.1563 0.0751 45K 25.0712 10.2914 6.4583
19.5K 0.2294 0.1710 0.0945 50K 28.0457 11.3384 7.2880

Table I
Average of raw times taken by all three algorithms for the housing

and CT slices data set. (QT = QUANTILE TREE.)

C. Algorithmic Complexity

For each predictor variable, we need to first find the

sort order for the points in the node. This operation takes

O(N logN) time where N is the number of points. The

worst case complexity for the LEFTQAD algorithm (see

Figure 1) involves N insertions, N deletions for rebal-

ancing and N reinsertions. This provides an upper bound

of O(N logN) for both the left and right children, the

same complexity as sorting. Hence the overall complexity

is O(N logN).

IV. COMPUTATIONAL RESULTS

Here we give timing and accuracy results for our quantile

tree algorithm and traditional OLS tree methods. For com-

parison, we use both the tree package and the rpart pack-

age [22] from R. Both of these packages build trees using the

OLS loss. Our implementation of quantile regression trees

is written in C++ using Armadillo [23]; we connect this to

R using RcppArmadillo [24].

A. Scalability

In the preceding section, we showed that the worst-case

asymptotic complexity of our quantile tree algorithm is

O(N logN), the same as for OLS trees. In order to demon-

strate this with practical examples, we test the algorithm

on two data sets. The first is the California housing data

set [25]. This data set has 20640 samples and 8 predictor

variables. The second is the CT slices data set available

at the UCI machine learning repository [26]. This data set

has 53500 samples and 384 predictor variables. For both

tests, we set the following common parameters: ns = 20,

nc = 7, and δ = 0.01. These correspond to the default

settings for rpart. The rpart package can perform 10-fold

cross-validation internally, but we turn it off for this study.

We also set rpart to not search for surrogate variables; this

cuts the time required to build trees.

For the California housing data set, we consider sub-

samples of the data without replacement of increasing

sizes N ∈ {1500, 2500, . . . , 19500}. For the CT slices

data set, the sample sizes are chosen to be N ∈
{5000, 10000, . . . , 50000}. We use all the predictor variables

in both cases. For each sample size we perform 100 runs of

the simulation and present the averaged results. All of the

above tests were performed on a machine with an Intel Core

i7 processor and 4GB of memory.

In Table I, we give all exact running times for this test.

In Figure 2, we plot the running time of each algorithm

against N logN . The plot on the left (respectively, right)

is for the California housing (respectively, CT slices) data

set. The excellent fit of the least squares regression line

to each corresponding set of running times indicates that

our quantile tree algorithm achieves O(N logN) scaling in

practice, not just in theory. This is a significant improvement

from a typical O(N2) or O(N2 logN) implementation of

quantile regression trees.

Returning to Table I, we consider the ratio of the quantile

tree running times to the competing algorithms’ running

times. We compute this ratio for each of the two competing

algorithms (tree and rpart) and each of the two data sets,

California housing (left) and CT slices (right). In this way,

we see that the quantile tree running time is within a factor of

3 (respectively, 5) of the rpart running time for the housing

(respectively, CT slices) data set. In particular, the ratio for

each data set does not increase as a function of N , the

number of training instances.

Taken together, these results confirm that our implemen-

tation of quantile regression trees has the same theoretical

and practical scaling (in terms of running time) as OLS trees

built using rpart and tree.

The tree package was written with the aim of simplicity

while the rpart package is the standard optimized version

for growing OLS trees. When both the rpart and quantile

tree algorithms run, most of the running time is spent

finding splits. Our algorithm requires two passes: once for

computing the left QAD, and then another to obtain the

complete QAD for the right split. OLS trees need only a

single pass over the data and can compute the best split

with O(1) memory.

There is certainly future work to be done to reduce the

implicit constant in front of the N logN time complexity for

our quantile tree algorithm. At the same time, based on the

above, we cannot expect the running time of our algorithm

to be less than a factor of 2 than that of rpart.

B. Nonlinear Quantile Estimation

The goal of a quantile regression tree is to find a piecewise

constant approximation of the nonlinear quantile function Φτ

described in Section I. To our knowledge, the quantile loss

has not been used before to build quantile trees. Therefore, a

natural question that arises is: how well does our algorithm

estimate the nonlinear quantile function Φτ?
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Figure 2. Time taken by all three algorithms plotted versus N logN , where N is the number of instances in the respective data set. The plot on the left
(respectively, right) is for the California housing (respectively, CT slices) data set. For each set of points we have plotted the least squares regression line.
All points are excellent fits for their respective regression lines, indicating that the three algorithms have O(N logN) running times. The results show that
our quantile tree algorithm features greatly improved scalability, as compared to a typical O(N2) or O(N2 logN) implementation of quantile regression
trees. Note that all points in this figure can be plotted using the data from Table I.

We describe here a relatively straightforward statistical

test to provide a first response to this question. We start

by considering two scalar random variables ξ ∈ [0, 1] and

η ∈ [0, 1] with joint probability density function (PDF)

f(ξ, η) = C(1− (ξ − 1/10)2 − (6η/5− 1/10)2)4. (10)

Here C is a normalization constant that can be determined

through a simple but tedious calculation. We have crafted

this PDF so that the conditional quantile function (i) can be

computed exactly and (ii) is a genuinely nonlinear curve the

changes noticeably as a function of τ , the quantile value.

Our first step is to use a Metropolis-Hastings algorithm

to generate 16 million samples from the joint PDF f . To

generate the samples, we use a burn-in period of 1000,

generate 320 million samples after burn-in, and then collect

every 20th sample. In this way, we generate samples with

reasonably low autocorrelation.

We treat each sample of (ξ, η) as a separate row (x, y)
of a data matrix. We then use our quantile tree algorithm to

construct ŷ = Φτ (x̂) for each of the following five quantiles:

τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. For all tests, we use the

following parameters: ns = 20, nc = 10, and δ = 10−5.

Returning to (10), we use calculus and the laws of prob-

ability to calculate the marginal PDF f(ξ), the conditional

PDF f(η|ξ), and the conditional CDF F (η|ξ). For fixed τ
and this particular conditional CDF, it is then possible to

solve F (Φ|ξ) = τ for Φ, yielding an exact conditional quan-

tile function. We carry out this exact symbolic calculation

using Mathematica.

In the left half of Figure 3, we plot the exact nonlin-

ear quantile functions in black and the piecewise constant

approximations (provided by our quantile tree algorithm) in

red. The five black (and corresponding red) curves in the plot

correspond, from bottom to top, to the five increasing values

of τ from 0.05 to 0.95. In this case, we see good agreement

between exact and approximate nonlinear quantile functions.

In the right half of Figure 3, we repeat the test but this

time with a modified, “noisy” y. Specifically, we add Laplace

distributed noise added to y, and then threshold values of y
to ensure they are within the interval [0, 1]. The PDF of the

noise we used is (2b)−1 exp(−|y|/b) with b = 0.1. This

noise has a noticeably heavier tail than the Gaussian noise

with the same standard deviation. For the noisy case, we see

that the middle three quantile curves (τ ∈ {0.25, 0.5, 0.75})
are still computed reasonably well, but that larger errors have

crept into the extreme quantiles (τ ∈ {0.05, 0.95}).

Overall, in both cases, the quantile tree algorithm is

able to recover the broad qualitative shape of the nonlinear

quantile curves. Certainly we can see strong evidence in

the left plot that the quantile tree algorithm produces fairly

accurate approximations to the nonlinear quantile functions

corresponding to the empirical distribution of the data. In



Figure 3. Here we compare exact nonlinear quantile functions (black) versus piecewise constant approximations computed using the quantile tree algorithm
(red). The exact quantile functions, which are the same in both left and right plots, are computed symbolically from a known joint distribution. From
bottom to top, the curves correspond to τ = 0.05, 0.25, 0.5, 0.75, 0.95. In the left plot, the quantile tree algorithm is applied directly to samples from
the joint distribution. In the right plot, the samples from the joint distribution are corrupted with Laplace noise and then thresholded before we apply the
quantile tree algorithm.

the left plot, this empirical distribution coincides with the

known PDF (10), fostering the agreement between red and

black curves. The present results motivate the idea that

quantile regression trees may enable one to develop richer,

more informative models from big data sets than would be

possible using OLS regression trees. In future work, we will

explore further theoretical explanation of these ideas.

Note that better results may be possible in the current al-

gorithm via parameter tuning—the parameters given above,

including the 10−5 minimum reduction in node deviance—

are simply our unoptimized first guesses. Finally, we note

that the algorithm has no problem running on data sets with

16 million instances. In the present implementation, we are

limited only by available RAM.

C. Accuracy

In this section, we contrast the use of LAD trees (the

τ = 0.5 case of quantile trees) against traditional OLS trees.

Different loss functions lead to different trees and different

predictions; here we sketch two factors that may influence

appropriate usage of LAD trees.

In what follows, we define the true and predicted values

by yi and ŷi, respectively. We will use mean-squared error

(MSE), i.e., N−1
∑

i(yi− ŷi)
2, and mean absolute deviation

(MAD), i.e., N−1
∑

i |yi − ŷi|.
We build models using our quantile tree algorithm and

rpart, and we estimate the test error (in both MSE and MAD

metrics) using a standard 10-fold cross-validation procedure.

The internal cross-validation procedure of rpart is turned off

so that we may use the same folds for both the methods.

The data used to perform the tests include:

• Wine [27]: This consists of two data sets both with

11 predictors. The red wine data set has 1599 samples,

and the white wine data set has 4898 samples. The real-

valued response, wine quality, is between 1 and 10.

• Crime [28]: The complete data set consists of 1994
samples with 128 predictors. Eliminating columns with

missing values, we reduce the number of predictors to

96. The real-valued response is a measure of crime rate

that lies between 0 and 1.

• CA housing: This is the same data set used in Section

IV-A. The response is log(median house price).

We use the parameters ns = 20, nc = 7, and δ = 0.01
in our algorithm and analogous values for rpart. All results

are averaged over 100 runs where each run performs 10-fold

cross-validation to estimate test error.

The results are tabulated in Table II. For each data

set, LAD trees outperform OLS trees in the MAD metric.

Similarly, for each data set, OLS trees outperform LAD

trees in the MSE metric. These results show that our initial

objective, i.e., whether it is more appropriate to minimize

MAD or MSE for our particular problem, should play a

role in deciding which method to use. Table II also shows

that, on each data set, the LAD trees are smaller in size than

the OLS trees. Clearly, further work is necessary to explore

these relationships.

V. CONCLUSION

We have presented what, to our knowledge, is the fastest

algorithm to date for fitting a regression tree using the



LAD trees OLS trees

MAD MSE Size MAD MSE Size

Red wine 0.4843 0.5670 7.68 0.5304 0.4619 19.91
White wine 0.5275 0.6553 9.00 0.6041 0.5817 11.84

Crime 0.1022 0.0340 22.39 0.1070 0.0308 34.54
Housing 0.2808 0.1382 24.03 0.2857 0.1370 27.11

Table II
Accuracy results in MAD and MSE metrics, for LAD and OLS trees.

quantile loss function (2). Computational tests verify that

the algorithm runs in O(N logN) time, within a constant

factor of the time required for regression trees that use the

standard OLS loss function. We have verified the algorithm’s

ability (i) to uncover actual nonlinear quantile functions, and

(ii) to produce trees with better test set error (as measured

by the MAD metric) than OLS regression trees.
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