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Two-Dimensional Inductor-Capacitor Lattice
Synthesis

Harish S. Bhat and Braxton Osting

Abstract—We consider a general class of two-dimensional
passive propagation media, represented as a planar graph where
nodes are capacitors connected to a common ground and edges
are inductors. Capacitances and inductances are fixed in time
but vary in space. Kirchhoff’s laws give the time dynamics
of voltage and current in the system. By harmonically forcing
input nodes and collecting the resulting steady-state signal at
output nodes, we obtain a linear, analog device that transforms
the inputs to outputs. We pose the lattice synthesis problem:
given a linear transformation, find the inductances and capac-
itances for an inductor-capacitor circuit that can perform this
transformation. Formulating this as an optimization problem,
we numerically demonstrate its solvability using gradient-based
methods. By solving the lattice synthesis problem for various
desired transformations, we design several devices that can be
used for signal processing and filtering.

Index Terms—lattice synthesis, analog circuit design, device
sizing, Kirchhoff’s laws, inductor-capacitor lattice

I. I NTRODUCTION

W E investigate a general class of two-dimensional pas-
sive propagation media that can be used for signal pro-

cessing and filtering. These media consist of two-dimensional
(2-D) inductor-capacitor (LC) lattices, an example of which
is shown in Fig. 1, with spatially varying inductance and
capacitance. The lattice is a natural generalization of theone-
dimensional transmission line. The 2-D LC lattice was first
explored by Léon Brillouin [1], who showed its equivalence
to 2-D mass-spring lattices used to model crystals.

In this paper, the inputfje2πıαt is applied to nodej on
the left boundary of the lattice and the steady-state output
gje

2πıαt is tapped from nodej on the right boundary. The
choice of inductanceL and capacitanceC vectors defines a
transfer function from the inputs to the outputs. If there arem
rows in the lattice, then for a fixed basis inCm, the transfer
function can be represented by anm × m complex matrix,
denotedT = T (L,C). Note thatT is a linear transformation
from f to g, but T depends nonlinearly onL andC.

The central result of this paper is the derivation and demon-
stration of an algorithm that accepts as input a desired transfer
matrix Td and produces as output a 2-D LC lattice whose
transfer matrix is very close toTd. We formulate this as the
following optimization problem:

(L∗,C∗) = arg min
(L,C)

‖T (L,C)− Td‖2F ,
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Fig. 1. (top) A graph that represents a 2-D LC lattice. (bottom) Each node
represents a capacitor connected to ground. Each edge represents an inductor.
The capacitances and inductances vary throughout the lattice.

where‖ · ‖F is the Frobenius norm. We cannot expect this
optimization problem to be solvable for all possible matrices
Td; however, we demonstrate that a large class of transfer
matrices can be attained, with the norm difference between
the true and desired transfer matrices on the order of10−5.
Our approach to solving the design problem can be generalized
to lattice topologies other than the one chosen here.

The general outline of our paper is as follows. In Section II,
the synthesis problem is formulated as an optimization prob-
lem. The objective function makes use of the transfer matrix
steady-state solution of Kirchhoff’s laws on the lattice. The
gradient and Hessian of the objective function are calculated
analytically in Section III. In Section IV, we define design
variables that reduce the dimensionality of the problem. In
Section V, we present and discuss numerical solutions of the
optimization problem formulated in this paper. We solve the
design problem for four different transfer functions: (A) a
diagonal transfer matrix, (B) a rank-one projection, (C) a low-
pass filter, and (D) a power combiner/funnel. For the low-
pass filter, we present results on the robustness of the optimal
solution. Finally, we present two results on the ill-posedness
of the synthesis problem.

A. Motivation and Context

The motivation for this work stems from a number of analog
devices that operate in the 30-400 GHz range. Earlier work
[2] demonstrated that an inhomogeneous 2-D LC lattice could
be used as a power combiner, which was used to implement



2

a power amplifier that generates 125mW at 85 GHz [3],
more than three times the maximum reported power output
for an amplifier in the same frequency range on a silicon
substrate. Electrical prisms [4], filters that spatially separate
the frequency content of an input signal, have been designed
using 2-D LC lattices, implemented on chip, tested using 30-
50 GHz inputs, and shown to have quality factors from 8 to 12.
Simulations show that these filters should scale up to 200-400
GHz. Other work shows that 2-D LC lattices can be used to
design a 4-bit quantizer that can process2× 1010 samples/sec
consuming 194 mW [5], as well as a device that performs
discrete Fourier transforms in space [6].

Because the 2-D LC lattice consists only of passive compo-
nents, it has the desirable properties of high cut-off frequency,
low latency, and high throughput, especially as compared with
active-device solutions on the same substrate [2].

This paper represents a first step towards automatic synthe-
sis of 2-D LC lattices that can be used in high-frequency ana-
log devices. We develop a framework to study and design these
lattices, potentially including all applications listed above. Of
course, framing the synthesis problem in the language of
optimization does not guarantee its solvability. In this paper,
we give computational evidence that, for a large class of
desired transfer matrices, the synthesis problem is solvable
using gradient-based algorithms.

We now place our problem in the context of problems that
have appeared in the literature.

Analog Circuit Design / Device Sizing. The idea of using
optimization to synthesize analog circuits has been explored
by many authors [7]–[12] for a variety of figures of merit.
One popular approach wraps an optimization method, either
gradient- or stochastic-based, around existing circuit simula-
tion software, such as HSPICE or Spectre. There are several
tools that employ this strategy, such as SPICE OPUS [13] and
DELIGHT.SPICE [14], which can be used for sizing up to
≈ 100 components. There have also been numerous efforts to
use genetic algorithms and neural networks for analog device
synthesis—see,e.g., [15] and [12, Chap 3.3.3].

Another approach is to mathematically model a circuit and
then apply optimization to the model. Examples include [16],
where convex programming is applied to a posynomial model
of an op-amp; [17], [18], where Newton and quasi-Newton
methods are applied to Kirchhoff’s law models of small analog
circuits; and [19], where transistor-level simulations are used
to fit quadratic models that are then optimized using geomet-
ric programming. For larger problems, hierarchical methods,
which build large devices from smaller ones, may be applied
[8], [10], [11]; a key step is the use of device-level simulations
to extract macromodels that can be used for synthesis.

Our focus in this paper on the design of 2-D LC lattices
has important ramifications for the structure and size of the
resulting optimization problem and leads to several differences
from the works cited above.

First, the 2-D LC lattice is, by definition, a multiple-input,
multiple-output (MIMO) device. A vector of inputs applied
to the left boundary is transformed spatially into a vector
of outputs at the right boundary. While [17], [18] do use

Kirchhoff’s law models and gradient-based optimization in
much the same way we do, these works synthesize single-
input, single-output (SISO) devices. Such devices operatein
the time domain, and a typical application is pulse shaping.

One way that the difference between SISO and MIMO
design manifests itself is that the optimization problem framed
in this paper involves more degrees of freedom than considered
in the above works. For a 2-D LC lattice of sizem×n, there
areN = (3m− 1)n unknown lattice components; note that in
Section V-D, we design a31× 31 lattice whereN = 2, 852.

Second, the structure of our optimization problem allows
us to fruitfully derive and apply analytical expressions for (i)
the solution of the forward problem and (ii) the derivatives
of the objective function. Using these analytical expressions
in conjunction with quasi-Newton methods is what makes
the design problem tractable, especially at large lattice sizes.
Other analytical approaches for the forward problem have been
explored [20]–[22] and may, in future works, be applied to the
optimization problem as well.

Finally, we seek to synthesize a 2-D LC lattice from
scratch, rather than improve upon an existing design, in
contrast to some of the above papers and also,e.g., [23]–[26].

Inverse Problems.We first mentiontransmission line synthe-
sis: given a finite 1-D LC lattice, an inputf(t), and an output
g(t), solve for(L,C) such that when we applyf(t) to one side
of the 1-D LC lattice, we obtaing(t) at the other side. This
problem was solved 30 years ago using inverse scattering [27]–
[29]—here,f(t) and g(t) are prescribed for allt, including
both transient and steady-state responses. In contrast, for 2-
D LC lattice synthesis, we assume time-harmonic inputs and
consider only the steady-state output.

Two-dimensional electromagnetic inverse problems have
been considered by numerous authors,e.g., [30]–[33]. These
problems are posed on infinite, continuous domains. Far-field
scattering data is used to reconstruct unknown parameters
ε(x, y) and/orµ(x, y), assumed to be inhomogeneous within
a compact region. Related work [34]–[36] seeks to design
electromagnetic devices that either have prescribed radiative
behavior in the far field, or that have optimal values of various
far-field figures of merit,e.g., directivity, gain, and signal-to-
noise ratio. In 2-D LC lattice synthesis, the domain is discrete
and finite, and the output signal is collected immediately ad-
jacent to the scattered obstacle, a completely different regime.

Inverse problems on lattices of resistors have been ex-
tensively studied by,e.g., [37], [38]. Like 2-D LC lattice
synthesis, these problems are discrete inverse problems on
finite domains. The goal is to reconstruct the conductivity in
the interior of the lattice using measurements made using DC
sources on the boundary. The resistor lattice is fundamentally
different from the LC lattice: the forward problem for a resistor
lattice is a discretization of the heat equation, and its steady-
state solution is a smooth distribution. For 2-D LC lattices,
on the other hand, the forward problem is a discretization of
Maxwell’s equations for spatially varyingǫ and µ [39], and
the steady-state solution is a superposition of standing waves.
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II. FORMULATION OF THE SYNTHESIS/ DESIGN PROBLEM

The notation and formulation developed in this section is
similar to that in [39], where we discuss the continuum limit
of Kirchhoff’s laws on a lattice.

We consider a 2-D rectangular LC lattice, as shown in Fig.
1, which we represent as an oriented, planar graph, c.f. [40,
Chap. 13]. Nodes represent capacitors and edges represent
inductors. The orientation of the edge represents the direction
of positive current flow through the associated inductor.

In a lattice of sizem×n, there aremn nodes and(2m−1)n
edges,mn horizontal ones and(m − 1)n vertical ones. Let
N = {1, 2, . . . ,mn} denote the set of all nodes, andE =
{1, 2, . . . , (2m− 1)n} the set of all edges. LetC be a vector
of sizemn such thatCj is the capacitance at nodej. LetL be
a vector of size(2m− 1)n such thatLj is the inductance at
edgej. We decomposeL = [Lh,Lv] into the horizontal and
vertical inductors, respectively. We denote byVj(t) the voltage
across capacitorj and byIk(t) the current across inductork at
time t. By V(t) andI(t) we denote the vectors of all voltages
and currents, respectively.

Of the horizontal edges, there arem boundary edges that
form a subsetΓ ⊂ E, each of which is incident upon only
one node. In Fig. 1,Γ is the left-most column of horizontal
edges. All other edges in the graph are incident upon two
nodes. In general, an edge is an ordered pair(i1, i2), where
ik ∈ N. The direction of the edge is given by the ordering of
these numbers, so thati1 is the tail andi2 is the head. For a
boundary edgej that is incident only upon nodei, we write
j = (∅, i).

Let B denote the|N| × |E| = mn× (2m− 1)n incidence
matrix for the oriented graph that represents our circuit. Then

Bij =











1 if j = (i′, i) for somei′ ∈ N ∪ {∅}
−1 if j = (i, i′) for somei′ ∈ N

0 otherwise.

The matrixB will be used shortly to write Kirchhoff’s laws
in a compact form.

In addition to the structure described already, the 2-D
rectangular LC lattice also has resistors and forcing alongthe
boundary. We represent the set of nodes connected to resistors
by G ⊂ N, and letGi be the conductance of nodei ∈ G. We
then extendGi by definingGi ≡ 0 for all i ∈ N \G, so that
G = (G1, . . . , Gmn) is a vector inR|N|.

Let N = |N| + |E| = (3m − 1)n. Then we define the
|Γ|×N = m×(3m−1)n projection matrixPΓ by (PΓ)ij = 1
if Γi = j and(PΓ)ij = 0 otherwise. Note that becauseΓi ∈ E,
the finalmn columns ofPΓ are all zero. The forcing applied
at edgesΓ is given byW(t) = P t

Γfe
2πıαt, wheref ∈ C|Γ|.

Kirchhoff’s Laws on this inductor-capacitor lattice can now
be written in the following matrix-vector form:

diag(L)
dI

dt
= −B

tV +W (1a)

diag(C)
dV

dt
= BI− diag(G)V (1b)

Definez(t) = (I(t),V(t)) so for eacht, z(t) ∈ C
N . Define

M(G) =

[

0 −Bt

B − diag(G)

]

.

Then the system (1) can be written in the form

diag(L,C)ż(t) =M(G)z(t) + P t
Γfe

2πıαt. (2)

Let Υ ⊂ G denote the vector of right boundary nodes. Let
PΥ be the|Υ|×N projection matrix defined by(PΥ)ij = 1 if
Υi = j and(PΥ)ij = 0 otherwise. Note that becauseΥi ∈ N,
columns1 to |E| = (2m− 1)n of PΥ are all zero.

Forward Problem. Let z(t) = ue2πıαt. Then the forward
problem is to findg = PΥu given f , L, C, andG. Using
the Fourier transform, one can show that the solution of the
forward problem is

f 7→ g = PΥ

(

2πıα diag(L,C) −M(G)
)−1

P t
Γf . (3)

Givendiag(L,C,G), we define thetransfer matrixto be:

T (L,C,G) := PΥ

(

2πıα diag(L,C) −M(G)
)−1

P t
Γ. (4)

We have formulated the circuit as an oriented graph in
order to write the equations compactly and take advantage
of the graph-theoretic interpretation of the incidence matrix
B, which appears naturally in Kirchhoff’s laws. Though we
have formulated the problem for anm×n rectangular lattice,
the beauty of the graph-theoretic framework outlined aboveis
that it easily accommodates other lattice topologies.

Note that since (3) is invariant under the transformation

α 7→ τα and (L,C) 7→ τ−1(L,C), (5)

a lattice with values(L,C) which performs a transfer function
at frequencyα can be rescaled by a factor ofα′/α to create
a lattice that performs the same function at frequencyα′.

Design / Synthesis Problem.We define the admissible set

A := {(L,C,G) : L < Li < L for all i ∈ E,

C < Cj < C for all j ∈ N, and

G < Gj < G for all j ∈ G ⊂ N}
whereL, L, C, C, G, andG are constants. Let

{(f i,gi) | 1 ≤ i ≤ p}
be a collection of desired input-output pairs. The design
problem is: find(L,C,G) ∈ A such that for eachi, the
steady-state outputT f i generated by inputf i is equal togi.
We formulate this as the constrained optimization problem:

min
(L,C,G)∈A

J (ui) :=
1

2

p
∑

i=1

∥

∥

∥PΥu
i − gi

∥

∥

∥

2

(6a)

s.t.
(

2πıα diag(L,C)−M(G)
)

ui = P t
Γf

i, 1 ≤ i ≤ p.

(6b)

It is convenient to setp = m and choose the input basis
vectors to be(f i)j = δij . The desired transfer matrixis then

Td = [g1|g2| · · · |gm].

We can then write the solution of (6b) using (4) and rewrite
the optimization problem (6) in the following compact form:

min
(L,C,G)∈A

J̃ (L,C,G) :=
1

2
‖T (L,C,G)− Td‖2F . (7)
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As written, the objective functionJ (ui) in (6a) does not
depend explicitly on (L,C,G), only implicitly through
the constraint (6b). We use the notatioñJ (L,C,G) =
J (ui(L,C,G)) to refer to the composition that explicitly
depends on(L,C,G).

We consider two different choices of boundary conditions:

(BC1) The resistive boundaryG consists of all nodes on the
top, right, and bottom boundaries of the lattice. For each
i ∈ G, we prescribe the locally impedance-matched
conductance

Gi =
√

Ci/Lj, (8)

where j ∈ E is the edge incident on nodei that
is normal to the boundary. This impedance boundary
condition can be viewed as a first-order discretization
of the Silver-Müller outgoing boundary condition for
Maxwell’s equations, as described in [39].

(BC2) The resistive boundaryG consists only ofΥ, i.e., the
nodes on the right boundary of the lattice. For eachi ∈
G, we setGi according to (8), as before. Unlike the
previous case,Gi = 0 along top/bottom boundaries.

Slightly abusing notation, we takẽJ (L,C) to be the
composition ofJ̃ (L,C,G) with (8). We thus arrive at the
following N -dimensional optimization problem:

min
(L,C)∈A

J̃ (L,C) (9)

whereA is also modified to reflect (8) by lettingGj = 0 and
Gj = ∞ for all j ∈ G. Thus the only constraints in (9) are
box constraints on the design variablesL andC.

Numerical tests show (9) is not convex, which implies that
the solution to (9) is not guaranteed to be unique.

III. C OMPUTATION OF THEGRADIENT AND HESSIAN

In this section, we compute the gradient and Hessian of
J̃ (ǫ) in preparation for quasi-Newton and Newton numerical
solutions of the optimization problem (6).

A. Computation of the Gradient via the Adjoint Method

Here we sets = (L,C) andA = 2πıα diag(s) −M . We
introduce the dual variablesvi ∈ C

p and the Lagrangian

L(ui,vi, s) = J (ui) +

p
∑

i=1

ℜ〈vi, Aui − P t
Γf

i〉. (10)

The state equations (6b) are obtained by setting the derivative
of (10) with respect tovi∗ equal to zero. The adjoint equations
are obtained by setting the derivative of (10) with respect to
the state variablesui equal to zero:

∂L
∂ui

=
∂J
∂ui

+
1

2
v∗
iA = 0. (11)

Here we use

∂J
∂ui

=
1

2
(PΥu

i − gi)∗PΥ. (12)

The decision equations are obtained by setting the derivative
of (10) with respect to the design variabless equal to zero

and recalling
∂J
∂sk

= 0 for all k.

∂L
∂sk

=

p
∑

i=1

ℜ
〈

vi,
∂A

∂sk
ui

〉

= 0 (13)

To compute∂A/∂sk, we must compute

∂ diag(s)ij
∂sk

= δijδik and
∂M

∂sk
=





0 0

0 − ∂G

∂sk



 .

It is easy to show that∂Gij/∂sk = 0 unless the nodek is a
top, right, or bottom boundary node. There are three cases for
the non-zero entries: non-corner top/bottom, non-corner right,
and corners, each of which can be computed using (8).

The KKT equations consist of (6b), (11), and (13). A full
space method involves the simultaneous solution of these three
nonlinear equations. Alternatively, the reduced space method
consists of takingJ̃ (s) = J (ui(s)). Then we have

∂J̃
∂sk

= ℜ
p

∑

i=1

〈

vi,
∂A

∂sk
ui

〉

, (14)

wherevi andui are solutions of (6b) and (11).

B. Direct Computation of the Gradient

Here we compute

∂J̃
∂sk

=
∂J
∂sk

+

p
∑

i=1

∂J
∂ui

∂ui

∂sk
+

∂J
∂ui∗

∂ui∗

∂sk

= 2ℜ
p

∑

i=1

∂J
∂ui

(

−A−1 ∂A

∂sk
ui

)

(15)

where we have used

∂A

∂sk
ui +A

∂ui

∂sk
= 0, (16)

obtained from differentiating (6b). We now see that (14)
and (15) are the same by (11). The advantage to computing
vi first and then computing the gradient via (14) is that
only p adjoint solves are required (one for each input-output
pair). Computing (15) literally (i.e., computing the expression
in parentheses first and then computing the vector-matrix
product) would requireN · p state solves [41].

C. Computation of the Hessian

Differentiating (14) enables us to write the Hessian

∂2J̃
∂sj∂sk

= ℜ
p

∑

i=1

vi∗

[

∂2A

∂sj∂sk

]

ui

+
∂vi∗

∂sj

[

∂A

∂sk

]

ui + v∗

[

∂A

∂sk

]

∂ui

∂sj
.
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Differentiating the adjoint eq. (11) with respect tosj , gives

∂vi∗

∂sj
= −

(

2
∂

∂sj

∂J
∂ui

+ vi∗

[

∂A

∂sj

])

A−1

= −
(

∂ui∗

∂sj
P t
ΥPΥ + vi∗

[

∂A

∂sj

])

A−1.

Combining the previous two equations with (16), and defining

hji = PΥA
−1 ∂A

∂sj
ui, we have the Hessian

∂2J̃
∂sj∂sk

= ℜ
p

∑

i=1

h∗jihki

+ vi∗

[

∂2A

∂sj∂sk
− ∂A

∂sj
A−1 ∂A

∂sk
− ∂A

∂sk
A−1 ∂A

∂sj

]

ui. (17)

IV. D ESIGN VARIABLES

To reduce the size of the optimization problem (9), we
introducedesign variables, a reduced representation forL and
C. There are many natural choices for the design variablesr.
The following choices are labeled for future reference.

(D1) If L andC are symmetric in the sense that

Lh
i,j = Lh

m+1−i,j, Lv
i,j = Lv

m+1−i,j,

Ci,j = Cm+1−i,j ,

then the transfer matrix satisfiesTi,j = Tm+1−i,m+1−j.
Thus, if the desired transfer matrix has this property,r

can be chosen to enforce this symmetry onL andC. This
reduces the dimension of the design variable space by a
factor of approximately two.

(D2) The vectorsLh andLv can be chosen as a discretization
of a single continuous functionµ(x) as in [39]. This im-
poses a compatibility condition onLh andLv, reducing
the dimension of the design space by approximately three.
Specifically, we letµ be am+1×n+1 matrix and set

Lh
ij =

1

2
(µij + µi+1,j) , 1 ≤ i ≤ m, 1 ≤ j ≤ n (18a)

Lv
ij =

1

2
(µij + µi,j+1) , 2 ≤ i ≤ m, 1 ≤ j ≤ n. (18b)

The design variables then consist ofC andµ.
(D3) Restricting to lattices withL = 1 reduces the dimension

of the design space by a factor of three. This is analogous
to considering media with constant permeability [39].

(D4) Combining the ideas in (D1) and (D3), we takeL = 1
and forceC to have symmetry. This reduces the design
variable space by a factor of six.

(D5) The vectorsL andC can also be represented in terms of
a truncated basis, such as the Fourier, wavelet, or block
bases, but we do not pursue this here.

For a (BC1) lattice, energy leaks out of the top/bottom
boundaries, so the total energy collected at the output is less
than the input energy. Since we are primarily interested in the
shape of the outputg(y), we include an extra design variable
δ in the objective function (9), replacingTd by δTd. For all
design variable choices, we letr1 = δ.

Let s = s(r) denote the dependence ofs on a set of design
variablesr. Then the gradient and Hessian can be computed

g ≡ ∇rJ̃ (s(r)) = sr∇sJ̃
H ≡ ∇r∇rJ̃ (s(r)) = sr∇s∇sJ̃ str,

wheresr denotes the Jacobian and∇sJ̃ and ∇s∇sJ̃ were
computed in (14) and (17) respectively.

Once the design variables are chosen, the optimization
problem (9) can be written

min
r∈Ar

J̃ (r) :=
1

2
‖T (r)− r1Td‖2F (20)

whereAr is an admissible set for the design variablesr,

Ar := {r : r ≤ rj ≤ r for all j}.

V. COMPUTATIONAL RESULTS

In Sections V-A through V-D, we apply gradient-based
optimization tools [42] to solve the lattice synthesis problem
(20) for four desired transfer matrices. In Section V-A, we
also compare the performance of several different optimization
methods. In Sec. V-C we compare the two choices of boundary
conditions given in Sec. II. In all other sections, we use (BC1).
In Section V-E, we discuss the sensitivity of the transfer matrix
of an inductor-capacitor lattice to small perturbations inL or
C. Finally, in Sections V-F and V-G, we study numerically
the well-posedness of the synthesis problem.

A. Diagonal Transfer Matrix

In this section, we define the desired transfer matrix to be
the diagonal matrixTd = diag(t). For a lattice withm rows,
let jc = (m+1)/2 andtj = exp(−2(j− jc)2), j = 1, . . . ,m.
We setα = .08 and choose (D1) design variables with lower
and upper bounds0.05 and5.

We now solve the synthesis problem (20) for anm × m
lattice for m = 8 (N = 184) and m = 16 (N = 752)
using several different numerical methods. For eachm and
numerical method used, in Fig. 2, we plot both iteration
number and wall time vs. the objective function value. In
what follows, we describe the methods compared in Fig. 2.
All computations were done using Matlab 7.11 on a 2.4 GHz
Intel Core 2 Duo desktop computer with 2GB of RAM. In each
case, the convergence criteria was set using the Matlab options:
MaxIter = 2000, TolX = 10−14, andTolFun = 10−13.
In all examples here and below, the optimization method
is initialized with constant design variables,r. We compare
Matlab’sfmincon implementation of the following nonlinear
constrained optimization algorithms:

(SQ) sqp: The sequential quadratic programming (SQP) ap-
proach is to approximate (20) by a quadratic minimization
problem at each iteration. This quadratic form involves
the Hessian of the objective function, which is approxi-
mated using the BFGS method [42, Ch. 18].

(AS) active-set: The active set method solves a sequence
of unconstrained optimization problems. The optimiza-
tion variables do not necessarily satisfy the bounds at
each iteration.
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(IP) interior-point: This line-search based quasi-
Newton method uses the BFGS method to update the
approximate Hessian at each iteration. The constraints are
enforced using a logarithmic barrier function.

(TR) trust-region-reflective: We use this subspace
trust-region method withlarge-scale = off.

From Fig. 2, we conclude that all tested methods are
able to find solutions with low objective values. The other
methods perform approximately the same in both iteration
count and wall time. The interior point method (IP) performs
best; however, the solution obtained tends to be less smooth
than that obtained via the other methods. In what follows, we
primarily use the (AS) method. In addition to the four methods
described above, we also tried Newton’s method, but found
that the cost of computing the Hessian (17) was prohibitively
large for lattice sizes of interest.

Let us return to the design problem for the diagonal transfer
matrixTd. The optimal solution(L∗,C∗) form = 16 obtained
using (SQ) is plotted in Fig. 3 and has objective value
J = 7.3× 10−5. The method terminated when the maximum
number of iterations,MaxIter = 2000, was reached.

For this transfer function andall transfer functions consid-
ered in the subsequent sections, the design variabler1 = δ
attains the lower bound constraint ofr1 = .6. This indicates
it is easier to synthesize energy-dissipative lattices.

B. Waveguide Filter / Rank-One Projection

In this section, we define

Td =

















. . .
...

...
...

... . .
.

· · · 0 0 0 0 · · ·

· · · 0 1 1 0 · · ·

· · · 0 1 1 0 · · ·

· · · 0 0 0 0 · · ·

. .
. ...

...
...

...
. . .

















,

the discrete analogue of a waveguide transfer functionf 7→
〈ψ, f〉ψ, whereψ is a desired bound state.

With α = .32, we use (D1) design variables with lower
and upper bounds given by0.05 and 50. For a 24 × 24
lattice, we use the active set method (AS) to obtain the
optimal solution(L∗,C∗) plotted in Fig. 4 with objective value
J = 6 × 10−6. The method terminated after547 iterations
because the predicted change in the objective function was
less thanTolFun = 10−13.

The optimal solution, plotted in Fig. 4, has horizontal
inductorsLh and capacitorsC which take large values in
a strip from the center inputs to the center outputs. Outside
of this strip, theC matrix has periodic structure arranged to
impede an incoming wave. The fact that we can recognize
structure in the solution to an optimization problem inR1704

is remarkable, and suggests rigidity in the synthesis problem.

C. A Low-Pass Filter / Smoothing Convolution

In [39], we used separation of variables to obtain the
exact solution for the continuous analogue of the forward
problem (3) for a homogeneous lattice. We concluded that
a homogenous lattice strongly damps oscillatory input, which
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Fig. 2. We plot (left) iteration number vs. objective function value and (right)
wall time vs. objective function value for the solution of (20) on anm×m

lattice for m = 8 (top) andm = 16 (bottom) and various optimization
methods (see Sec. V-A for method abbreviation definitions).

suggests that this type of lattice is well-suited for performing
low-pass filtering functions. We investigate this intuition here
by constructing a circuit that behaves as a low-pass filter.

For an8× 6 lattice, we define the transfer matrix:

Td =
1

44



















2 1 0 0

4 2 1 0

8 4 2 1

4 8 4 2

2 4 8 4

1 2 4 8

0 1 2 4

0 0 1 2



















. (21)

The matrixTd can be obtained by removing the first two and
last two columns from an8 × 8 Toeplitz matrix. We also
remove the first and last two columns of the transfer matrix
T in (20). With α = 0.16 and (D1) design variables with
lower and upper bounds given by.05 and 50, we use the
active set method (AS) for each of the boundary conditions
given in Sec. II. For (BC1), the final objective function value
is J = 6.24 × 10−7 and for (BC2), the final objective value
is J = 2.98 × 10−5. In both cases, the method terminated
because the predicted change in the objective function was
less thanTolFun = 10−13. In Fig. 5, we plot the optimal
solution(L∗,C∗) for both choices of boundary conditions.

D. Power Combiner / Funnel

Motivated by the power combiner introduced in [2], [3], we
consider the transfer matrix that maps all inputs to the center
output. The desired transfer matrixTd of sizem×m (where
m = 2j + 1 is odd) consists of a matrix where rowj + 1 has
a 1 in each column, and all other rows are identically zero.

We setα = 0.08 and choose (D2) design variables. The
upper and lower bounds were.05 and20. In Fig. 6, we plot the
optimal solution(L∗,C∗) for the synthesis problem attained
using the active set method (AS). The solution is plotted for
m × m lattices wherem = 11, 21, and 31 with respective
objective function values2 × 10−5, 3× 10−5, and3× 10−5.
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12

24
12

24
0
2
4

L
h

12

24
12

0
2
4

L
v

12

24
12

24
0
2
4

C

Fig. 4. The(L,C) matrices for the24× 24 waveguide in Section V-B with objective valueJ = 6× 10−6.
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Fig. 5. The(L,C) matrices for the low-pass filter in Section V-C for the8× 6 lattice for boundary conditions as described by (BC1) in thetop panel and
(BC2) in the lower panel with resp. objective valuesJ = 6.24× 10−7 andJ = 2.98× 10−5 .

In each case, the method terminated because the maximum
number of iterations,MaxIter = 3000, was reached.

E. Robustness / Sensitivity of Optimal Devices

In this section, we consider the sensitivity of optimal devices
to small changes in(L,C,G). We begin with a proposition
that is proved in Appendix A.
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Fig. 6. The(L,C) surfaces for the funnel in Sec. V-D for them×m lattice form = 11, 21, 31 with objective values2×10−5 , 3×10−5, and3×10−5.

Proposition 1. Let Tj = PΥA
−1
j P t

Γ, j = 1, 2 be the
transfer matrices for two different circuits with capacitances,
inductances, and conductances given by(Cj ,Lj ,Gj), where

Aj := 2πıα diag(Lj ,Cj)−M(Gj).

Assumeρ := ‖A−1
1 (A2 − A1)‖2 < 1, and defineγ =

1/σ1(A1) whereσ1(A1) > 0 is the smallest singular value
of A1. Then

‖T1 − T2‖F ≤ mNγ2

1− ρ

[

2πα (‖L2 − L1‖2 + ‖C2 −C1‖2)

+ ‖G2 −G1‖2
]

.

The upshot of this proposition is that if a circuit is perturbed
by modifying(L,C,G), then the change in the transfer matrix
for the circuit is bounded by the size of the perturbation.
However, the bounding constant could be large and increases
with increasing circuit size.

We conduct a numerical experiment to further investigate
this dependence for the low-pass filtering device introduced
in Section V-C. Let(L∗,C∗) denote the8 × 6 device with
(BC1) boundary conditions plotted in Fig. 5(top panel) that

minimizes J for the desired transfer matrix in (21) with
objective valueJ (L∗,C∗) = 6.24× 10−7. We now evaluate
J for a distribution of perturbations to(L∗,C∗). Specifically,
we consider multiplicative noise and evaluateJ (L.u,C.v),
wherea.b denotes entry-wise multiplication of the vectorsa
andb, and(u,v) have entries which are normally distributed
with mean1 and standard deviation0.02. We interpret a struc-
ture(L.u,C.v) to be a low-pass filtering device manufactured
with 2% tolerance. In Fig. 7, we plot a histogram of the
objective function value evaluated on a sample size of100, 000
drawn from this distribution. The10th, 50th and90th quantiles
are1.8× 10−3, 6.9× 10−3, and3.9× 10−2.

We might also consider the sensitivity of optimal devices to
small changes inα. However, since (6) is invariant under the
transformation in (5), perturbingα is equivalent to choosing a
multiplicative perturbation(u,v) from a skewed distribution.

F. Known Lattice Recovery / Inverse Crime Study

In the preceding sections, our goal was to obtain useful
circuits. Here and in the next section, we conduct numerical
experiments to quantify the ill-posedness of the problem.
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Fig. 7. A histogram of the objective function evaluated for100, 000 low-
pass filters (see Fig. 5) with2% normally-distributed, multiplicative noise.
The vertical lines indicate the10th, 50th and90th quantiles. See Sec. V-E.

In this first numerical experiment, we commit a so-called
“inverse crime.” We takep = m and generate a transfer
matrix Td by solving the forward problem forknownvalues
of (L0,C0). We then set aside(L0,C0) and solve the design
problem for the transfer matrixTd, giving us a computed
solution (L∗,C∗).

This is refered to as an “inverse crime” since the model
of the forward problem used to generate the transfer matrix
is precisely the same model assumed in the solution of the
design problem. For these transfer matrices, we happen to
know that there is a point—namely(L0,C0)—where the
objective function is zero. We can then measure how well
our algorithm does by comparingJ (L∗,C∗) with zero. We
can also characterize the solution space by checking how
J (L∗,C∗) depends on the known solution(L0,C0).

Let us describe how we generate a random matrixC0. We
fix integer parametersν > 0 andσ as well as real parameters
ρmin andρmax. We choose two random vectors of Fourier sine
coefficientskx andky, both of sizeν× 1. Thej-th entryk(·)j

is sampled from aU(0, 1) distribution and then multiplied by

j−σ. We sampleP (x, y) =
ν

∑

i=1

ν
∑

j=1

kxi k
y
j sin(ix) sin(jy) to

create anm× n matrix C0 that is then scaled and translated
so its max/min values are, respectively,ρmax andρmin.

For Lh andLv, we follow (18) after generating an(m +
1) × (n + 1) matrix µ by samplingP (x, y). We scale and
translate the matricesLh andLv so their max/min values are,
respectively,ρmax andρmin. In all cases, sampling ofP (x, y)
is performed on a regular grid in the square[0, 2π]2.

Using the above approach for generating random pairs
(L0,C0), we solved the design problem 750 times on an
8 × 8 lattice. We used the active set method (AS) with
TolX = 10−14, TolFun = 10−13, and (D2) design variables
with lower and upper bounds of.05 and50. For all 750 runs,
the code terminated because the magnitude of the directional
derivative in the search direction was less than2TolFun.

We steppedν from 0 to 5 andσ from 1 to 5. We stepped
ρ through 25 equispaced values in the interior of(0, 2), and
setρmax = 1 + ρ/2, ρmin = 1− ρ/2.

In the left panel of Fig. 8, we plot the objective function
valueJ (L∗,C∗) versus amplitudeρ for all 750 runs. The plot

0 1 2
0

0.5

1x 10
−7

Amplitude

E
rr

or
 in

 J

0 0.5 1 1.5
0

0.5

1x 10
−7

Reconstruction Error

E
rr

or
 in

 J

Fig. 8. Objective function valueJ (L∗,C∗) versusρ (left panel) and versus
‖(L∗,C∗) − (L0,C0)‖∞ (right panel) for 750 runs, all on8 × 8 lattices.
See Section V-F.
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Fig. 9. A plot of the capacitance matricesC40 (left) andC40 (right) as
defined in Section V-G.

shows that the code performed very well across all runs, with
the maximum value ofJ (L∗,C∗) less than10−7. The plot
also reflects a correlation coefficient of0.82, which indicates
that the larger the amplitude of spatial oscillations inL0 and
C0, the poorer the quality of the local optimum reached.

In the right panel of Fig. 8, we plot the objective function
value J (L∗,C∗) versus reconstruction error‖(L∗,C∗) −
(L0,C0)‖∞ for all 750 runs. The plot reflects that, as we
move further away from the global minimum(L∗,C∗), we
are still able to achieve transfer matrices that are very close to
what is desired. However, the correlation coefficient of0.80
indicates a small degradation in the quality of the local optima
as a function of distance from a global optimum.

G. Lattice Refinement and Coarsening

For a lattice with homogeneous(L,C) the Nyquist principle
states thatα

√
LC <

√
2/π. In [21], we found that Kirchhoff’s

laws (3) behave like their continuum limit ifα
√
LC < 1/(2π),

which is roughly one-third of the Nyquist frequency. In [39]
we showed that the continuum limit is precisely the system of
equations for the(H1, H2, E) polarized mode for Maxwell’s
equations in a planar medium. Thus we expect that forα
sufficiently small, even if(L,C) is inhomogeneous, one may
increase the size of the lattice and rescale(L,C) so that both
problems are a discretization of the same continuum problem.

In this section, we use this principle to provide quantita-
tive estimates on the ill-posedness of the synthesis problem.
Throughout, we setL = 1 andα = 1.

On a 40 × 40 lattice, we set Cij = 1 +
sech2γ

(

i− 20.5)2 + (j − 20.5)2
)

for γ = 25/392. Using
this C40, we solve (3) for the transfer matrixT40.

We then average2 × 2 subblocks of bothT40 andC40 to
obtain a transfer functionT20 and capacitancesC20 on a20×
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20 lattice. The vectorC20 is divided by4 based on the finite
volume derivation in [39]. The synthesis problem with desired
transfer functionT20 is then initialized usingC20 and solved
using (D4) decision variables. We denote this solutionC̃20

and note that the objective function value isJ = 3.7× 10−3.
We now refineC̃20 to a 40× 40 lattice by repeating2× 2

blocks of C̃20. We denote these capacitances byC̃40. The
synthesis problem with transfer functionT40 is initialized
usingC̃40 and solved to obtainC40. Both surfaces are plotted
in Fig. 9. The final value of the objective function is9.5×10−8

and‖C40 −C40‖F = 11.1. Thus,C40 andC40 are far apart
in the Frobenius norm but achieve almost the same transfer
function. Although the problem is ill-posed and the solution
obtained is different thanC40, we emphasize that we view
C40 as a excellent solution to the synthesis problem since it
achieves a phenomenally low objective function value.

In inverse problems, one applies regularization methods
to enforcea priori known information such as smoothness.
Similarly, in the design problem considered here, where the
“data” (i.e., desired transfer matrix) is known perfectly, one
could apply regularization methods to forceL andC to have
desired properties. We do not pursue this direction here.

VI. CONCLUSION / DISCUSSION

We have formulated the two-dimensional transmission lat-
tice synthesis problem as an optimization problem, the solution
of which yields inductor-capacitor lattices that can be fabri-
cated for custom/novel applications in analog signal processing
and filtering. For several chosen transfer functions, we have
demonstrated that gradient-based optimization methods can be
used to obtain excellent solutions to the synthesis problem.

In other contexts, the ideas presented in this paper are
familiar: one can engineer the permittivityε and permeability
µ of a medium to control the propagation of EM waves [43],
[44], and in quantum mechanics, one may engineer a potential
to have desired scattering properties [45]. As the frequency of
analog circuits marches into the THz range, it is increasingly
important that the circuit model be related, both qualitatively
and quantitatively, to Maxwell’s equations. Ultimately, if one
is interested in designing a microwave frequency device,
one performs a direct numerical simulation of Maxwell’s
equations to confirm that the circuit model accurately predicts
the device’s behavior. Based on our findings in [39], these
connections can be made more precise. Kirchhoff’s laws for
the 2-D LC lattice (1) can be viewed as a finite volume
discretization of Maxwell’s equations for a planar, inhomo-
geneous medium. For large circuits with smoothly varying
(C,L), this discretization is accurate, and one can interpret the
present work as a discretize-then-optimize approach to solving
the (ε, µ) synthesis problem for Maxwell’s equations. This is
the subject of forthcoming work.

APPENDIX A
PROOF OF THE PROPOSITION INSECTION V-E

The matrix identityA−1 −B−1 = A−1(B −A)B−1 gives

T1 − T2 = PΥA
−1
1 (A2 −A1)A

−1
2 P t

Γ.

Taking the Frobenius norm of both sides and using the the
sub-multiplicative property of the Frobenius norm we obtain

‖T1 − T2‖F ≤ ‖PΥA
−1
1 ‖F ‖A2 −A1‖F‖A−1

2 P t
Γ‖F . (22)

We treat the 3 pieces on the right hand side of (22) in turn. First
note‖PΥ‖F = |Υ|1/2 =

√
m and‖PΓ‖F = |Γ|1/2 =

√
m.

1. We compute

‖PΥA
−1
1 ‖F ≤ ‖PΥ‖F ‖A−1

1 ‖F ≤ √
m
√
N‖A−1

1 ‖2 =
√
mNγ.

Here we used the norm relation:‖A‖F ≤ √
r‖A‖2 wherer

is the rank ofA and‖A−1
1 ‖2 = σN (A−1

1 ) = 1/σ1(A1) = γ.
2. We compute

‖A2 −A1‖F ≤ 2πα‖ diag(L2,C2)− diag(L1,C1)‖F
+ ‖M(G2)−M(G1))‖F

= 2πα (‖L2 − L1‖2 + ‖C2 −C1‖2)
+ ‖G2 −G1‖2.

3. As above, we compute

‖A−1
2 P t

Γ‖F ≤ ‖A−1
2 ‖F ‖P t

Γ‖F ≤
√
mN‖A−1

2 ‖2.
Our goal now is to estimate‖A−1

2 ‖2 in terms ofγ. We compute

‖A−1
2 ‖2 = ‖

[

A1

(

Id +A−1
1 (A2 −A1)

)]−1 ‖2
= ‖

(

Id +A−1
1 (A2 −A1)

)−1
A−1

1 ‖2
≤ γ‖

(

Id +A−1
1 (A2 −A1)

)−1 ‖2

Note that
(

Id +A−1
1 (A2 −A1)

)−1
exists by the assumption

ρ < 1. Summing the Neumann series for this expression gives

‖
(

Id +A−1
1 (A2 −A1)

)−1 ‖2 ≤
∞
∑

j=0

‖A−1
1 (A2 −A1)‖j2

=

∞
∑

j=0

ρj =
1

1− ρ
.

Putting these 3 pieces together yields the desired result.
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[13] J. Olenšek, A. Bűrmen, J. Puhan, and T. Tuma, “Automated analog
electronic circuits sizing,” inDifferential Evolution, A. Qing, Ed. Wiley,
2009, pp. 353–367.

[14] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A.L. Tits,
“DELIGHT.SPICE: an optimization-based system for the design of
integrated circuits,”IEEE Trans. Comput.-Aided Design, vol. 7, no. 4,
pp. 501–519, 1988.

[15] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap,
“Automated synthesis of analog electrical circuits by means of genetic
programming,”IEEE Trans. Evol. Comput., vol. 1, no. 2, pp. 109–128,
1997.

[16] M. D. Hershenson, S. P. Boyd, and T. H. Lee, “Optimal design of a
CMOS op-amp via geometric programming,”IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 20, no. 1, pp. 1–21, 2001.

[17] V. L. Chechurin, N. V. Korovkin, and M. Hayakawa,Inverse Problems
in Electric Circuits and Electromagnetics. Springer, 2007.

[18] O. Wing, Classical Circuit Theory. Springer, 2008.
[19] X. Li, P. Gopalakrishnan, Y. Xu, and L. T. Pileggi, “Robust ana-

log/RF circuit design with projection-based performance modeling,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 1,
pp. 2–15, 2007.

[20] B. Osting and H. S. Bhat, “Dispersive diffraction in a two-dimensional
hexagonal transmission lattice,” inProceedings of the International
Symposium on Antennas and Propagation (ISAP ’08), Taipei, Taiwan,
Oct. 2008.

[21] H. S. Bhat and B. Osting, “Diffraction on the two-dimensional square
lattice,” SIAM J. Appl. Math., vol. 70, no. 5, pp. 1389–1406, 2009.

[22] ——, “Discrete diffraction in two-dimensional transmission line meta-
materials,”Microwave and Optical Technology Letters, vol. 52, no. 3,
pp. 721–725, 2010.

[23] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, “The sparse tableau
approach to network analysis and design,”IEEE Trans. Circuit Theory,
vol. 18, no. 1, pp. 101–113, 1973.

[24] R. K. Brayton, S. W. Director, G. D. Hachtel, and L. M. Vidigal, “A new
algorithm for statistical circuit design based on quasi-Newton methods
and function splitting,”IEEE Trans. Circuits Syst., vol. 26, no. 9, pp.
784–794, 1979.

[25] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, “A
survey of optimization techniques for integrated-circuitdesign,” Proc.
IEEE, vol. 69, no. 10, pp. 1334–1362, 1981.

[26] J. Bandler and S. Chen, “Circuit optimization: the state of the art,”IEEE
Trans. Microw. Theory Tech., vol. 36, no. 2, pp. 424–443, 1988.

[27] R. E. Caflisch, “An inverse problem for Toeplitz matrices and the synthe-
sis of discrete transmission lines,”Linear Algebra and its Applications,
vol. 38, pp. 207–225, 1981.

[28] B. W. Dickinson, “An inverse problem for Toeplitz matrices,” Linear
Algebra and its Applications, vol. 59, pp. 79–83, 1984.

[29] A. M. Bruckstein and T. Kailath, “Inverse scattering for discrete
transmission-line models,”SIAM Review, vol. 29, no. 3, pp. 359–389,
1987.

[30] D. Colton and R. Kress,Inverse Acoustic and Elecromagnetic Scattering
Theory, Second Edition. Springer, 1998.

[31] J. L. Frolik and A. E. Yagle, “A discrete-time formulation for the variable
wave speed scattering problem in two dimensions,”Inverse Problems,
vol. 12, pp. 909–924, 1996.

[32] ——, “Forward and inverse scattering for discrete layered lossy and
absorbing media,”IEEE Trans. Circuits Syst. II, Analog Digit. Signal,
vol. 44, pp. 710–722, 1997.

[33] A. E. Yagle and J. L. Frolik, “On the feasibility of impulse reflection
response data for the two-dimensional inverse scattering problem,” IEEE
Trans. Antennas Propag., vol. 44, pp. 1551–1564, 1996.

[34] T. S. Angell and A. Kirsch,Optimization Methods in Electromagnetic
Radiation, ser. Springer Monographs in Mathematics. Springer, 2004.

[35] C. A. Balanis,Antenna Theory: Analysis and Design. Wiley, 2005.
[36] W. L. Stutzman and G. A. Thiele,Antenna Theory and Design. Wiley,

1998.
[37] E. B. Curtis and J. A. Morrow,Inverse Problems for Electrical Networks,

ser. Series on applied mathematics. World Scientific, 2000.
[38] L. Borcea, V. Druskin, A. V. Mamonov, and F. G. Vasquez, “Pyramidal

resistor networks for electrical impedance tomography with partial
boundary measurements,”Inverse Problems, vol. 26, no. 10, p. 105009,
2010.

[39] H. S. Bhat and B. Osting, “Kirchhoff’s laws as a finite volume method
for a planar Maxwell system,”IEEE Trans. Antennas Propag., 2011,
accepted and in press.

[40] L. R. Foulds,Graph Theory Applications. Springer, 1992.
[41] G. Strang, Computational Science and Engineering. Wellesley-

Cambridge Press, 2007.
[42] J. Nocedal and S. Wright,Numerical Optimization, 2nd ed. Springer,

2006.
[43] M. Burger, S. Osher, and E. Yablonovitch, “Inverse problem techniques

for the design of photonic crystals,”IEICE Trans. Electron., vol. 87, pp.
258–265, 2004.

[44] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade,
Photonic Crystals: Molding the Flow of Light, 2nd ed. Princeton,
NJ: Princeton University Press, 2008.

[45] B. Osting and M. I. Weinstein, “Emergence of periodic structure from
maximizing the lifetime of a bound state coupled to radiation,” SIAM
Multiscale Model Simul., 2011, in press.


