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Abstract—We consider a general class of two-dimensional

passive propagation media, represented as a planar graph vene n > - $
i Q
nodes are capacitors connected to a common ground and edges S - _}'8
are inductors. Capacitances and inductances are fixed in tim o c
but vary in space. Kirchhoff's laws give the time dynamics E - -
of voltage and current in the system. By harmonically forcirg ) 8_
input nodes and collecting the resulting steady-state sigh at 8—» -5
output nodes, we obtain a linear, analog device that transfons = - (e}

the inputs to outputs. We pose the lattice synthesis problem
given a linear transformation, find the inductances and cape-
itances for an inductor-capacitor circuit that can perform this
transformation. Formulating this as an optimization problem,
we numerically demonstrate its solvability using gradientbased
methods. By solving the lattice synthesis problem for varios —

desired transformations, we design several devices that sabe ?
used for signal processing and filtering.

Index Terms—Ilattice synthesis, analog circuit design, device

sizing, Kirchhoff's laws, inductor-capacitor lattice Fig. 1. (top) A graph that represents a 2-D LC lattice. (bojt@€ach node
represents a capacitor connected to ground. Each edgeeamean inductor.
The capacitances and inductances vary throughout theelatti
I. INTRODUCTION

E investigate a general class of two-dimensional pas-

I sive propagation media that can be used for signal pigmere || - || is the Frobenius norm. We cannot expect this
cessing and filtering. These media consist of two-dimemgion, imization problem to be solvable for all possible matsic
(2-D) inductor-capacitor (LC) lattices, an example of whic - nowever, we demonstrate that a large class of transfer
is shown in Fig. 1, with spatially varying inductance an¢hatrices can be attained, with the norm difference between
capacitance. The lattice is a natural generalization obt® e true and desired transfer matrices on the order0of.
dimensional transmls_smn line. The 2-D LC I_att|ce was f'rséurapproach to solving the design problem can be genedalize
explored by L’eoln Brlllo_um [1], who showed its equivalencgy |attice topologies other than the one chosen here.
to 2-D mass-spring lattices used to model crystals. The general outline of our paper is as follows. In Section II,

In this paper, the inpuff;e*™* is applied to nodej O he synthesis problem is formulated as an optimization prob
the left boundary of the Iattlge and the steady-state outQuly The objective function makes use of the transfer matrix
91'62_7”“ is tapped from nodg on the right boundary. The geady-state solution of Kirchhoff's laws on the latticeheT
choice of inductancd. and capacitanc€ vectors defines a gragient and Hessian of the objective function are caledlat
transfer function from the inputs to the outputs. If therear  pajytically in Section Ill. In Section IV, we define design
rows in the lattice, then for a fixed basis @f", the transfer \araples that reduce the dimensionality of the problem. In

function can be represented by anx m complex matrix, gection V, we present and discuss numerical solutions of the
denotedl” = T'(L, C). Note thatT" is a linear transformation gntimization problem formulated in this paper. We solve the
from f to g, but 7" depends nonlinearly ob and C. design problem for four different transfer functions: (A) a
The central result of this paper is the derivation and demoél‘ragonal transfer matrix, (B) a rank-one projection, (Cha-
strati_on of an algorithm that accepts as input a des!red;itean pass filter, and (D) a power combiner/funnel. For the low-
matrix T; and produces as output a 2-D LC lattice whosg;ss filter, we present results on the robustness of the alptim

transfer matrix is very close t@;. We formulate this as the gq,tion. Finally, we present two results on the ill-posesin
following optimization problem: of the synthesis problem.

(L*a C*) = arg IEII(I}I HT(La C) - TdH%‘v o
(.0 A. Motivation and Context
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Mathematics, Columbia University, New York, NY 10027 USA a@h [2] demonstrated that an inhomogeneous 2-D LC lattice could
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a power amplifier that generates 125mwW at 85 GHz [3Kirchhoff's law models and gradient-based optimization in
more than three times the maximum reported power outputich the same way we do, these works synthesize single-
for an amplifier in the same frequency range on a silicdnput, single-output (SISO) devices. Such devices opdrate
substrate. Electrical prisms [4], filters that spatiallypaeate the time domain, and a typical application is pulse shaping.

the frequency content of an input signal, have been designegy,o way that the difference between SISO and MIMO

using 2-D LC lattices, implemented on chip, tested using 3Qagjgn manifests itself is that the optimization probleanfed

50 GHz inputs, and shown to have quality factors from 8 t0 1¢, this paper involves more degrees of freedom than coresider
Simulations show that these filters should scale up to 2@-4Q ihe above works. For a 2-D LC lattice of sizex n. there
GHz. Other work shows that 2-D LC lattices can be used g, n — (3m — 1)n unknown lattice components; note that in

design a 4-bit quantizer that can proc@ss10'° samples/sec Section V-D, we design 41 x 31 lattice whereN = 2, 852.

consuming 194 mW [5], as well as a device that performs .
discrete Fourier transforms in space [6]. Second, the structure of our optimization problem allows

Because the 2-D LC lattice consists only of passive comps 0 fruitfully derive and apply analytical expressions ()
nents, it has the desirable properties of high cut-off feswy, the solut|_0n pf the fo_rward problem and (i) _the derlvatl\_/es
low latency, and high throughput, especially as comparad wP the objective function. Using these analytical exprassi
active-device solutions on the same substrate [2]. in conjunction with quasi-Newton methods is what makes

This paper represents a first step towards automatic syntf{ design problem tractable, especially at large lattizess
sis of 2-D LC lattices that can be used in high-frequency an@ther analytical approaches for the forward problem haeabe
log devices. We develop a framework to study and design thégglored [20]-[22] and may, in future works, be applied te th
lattices, potentially including all applications listedave. Of OPtimization problem as well.
course, framing the synthesis problem in the language ofFinally, we seek to synthesize a 2-D LC lattice from
optimization does not guarantee its solvability. In thipga scratch, rather than improve upon an existing design, in
we give computational evidence that, for a large class obntrast to some of the above papers and a&sp,[23]-[26].
desired transfer matrices, the synthesis problem is sk@vab

using gradient-based algorlthms. Inverse Problems.We first mentiorntransmission line synthe-
We now place our problem in the context of problems thafs given a finite 1-D LC lattice, an inpuf(¢), and an output
have appeared in the literature. g(t), solve for(L, C) such that when we applf/(t) to one side
L . ) . i _of the 1-D LC lattice, we obtaig(t) at the other side. This
Analog Circuit Design / Device Sizing. The idea of using prohlem was solved 30 years ago using inverse scatterirg [27
optimization to synthesize analog circuits has been egmor[29]—here,f(t) and ¢(t) are prescribed for all, including
by many authors [7]-[12] for a variety of figures of merity i, yransient and steady-state responses. In contras?- fo

One popular approach wraps an optimization method, €ith§r ¢ |attice synthesis, we assume time-harmonic inputs and
gradient- or stochastic-based, around existing circauid- . nsider only the steady-state output.

tion software, such as HSPICE or Spectre. There are several ) ] o

tools that employ this strategy, such as SPICE OPUS [13] andTwo—dlm_ensmnaI electromagnetic inverse problems have

DELIGHT.SPICE [14], which can be used for sizing up t&€€n considered by numerous authers, [30]-[33]. These

~ 100 components. There have also been numerous effortsf@PIEMS are posed on infinite, continuous domains. Fai-fiel

use genetic algorithms and neural networks for analog devii€altering data is used to reconstruct unknown parameters

synthesis—seee.g, [15] and [12, Chap 3.3.3]. e(z,y) and/orugx,y), assumed to be inhomogeneous W|th.|n
Another approach is to mathematically model a circuit arff €OmPact region. Related work [34]-[36] seeks to design

then apply optimization to the model. Examples include [16f/€Ctromagnetic devices that either have prescribed treelia

where convex programming is applied to a posynomial mo éphawor_m the far fleld_, or tha_t ha\_/e_ optlm_al values_ of vasio

of an op-amp: [17], [18], where Newton and quasi-NewtoF"f‘r,'f'eld f_|gures of mente._g, d|rect|V|t_y, gain, and_3|gna!-to-

methods are applied to Kirchhoff's law models of small agald?CiSe ratio. In 2-D LC lattice synthesis, the domain is diser

circuits; and [19], where transistor-level simulations aised 2nd finite, and the output signal is collected immediately ad

to fit quadratic models that are then optimized using geomCent to the scattered obstacle, a completely differegite.

ric programming. For larger problems, hierarchical method Inverse problems on lattices of resistors have been ex-
which build large devices from smaller ones, may be appli¢ensively studied byge.g, [37], [38]. Like 2-D LC lattice
[8], [10], [11]; a key step is the use of device-level simidat synthesis, these problems are discrete inverse problems on
to extract macromodels that can be used for synthesis.  finite domains. The goal is to reconstruct the conductivity i
Our focus in this paper on the design of 2-D LC latticethe interior of the lattice using measurements made using DC
has important ramifications for the structure and size of tlseurces on the boundary. The resistor lattice is fundartignta
resulting optimization problem and leads to several diifees different from the LC lattice: the forward problem for a 1&er
from the works cited above. lattice is a discretization of the heat equation, and itadyte
First, the 2-D LC lattice is, by definition, a multiple-input state solution is a smooth distribution. For 2-D LC lattices
multiple-output (MIMO) device. A vector of inputs appliedon the other hand, the forward problem is a discretization of
to the left boundary is transformed spatially into a vectdvlaxwell’s equations for spatially varying and x [39], and
of outputs at the right boundary. While [17], [18] do usdhe steady-state solution is a superposition of standingsa



[l. FORMULATION OF THE SYNTHESIS/ DESIGN PROBLEM  Then the system (1) can be written in the form

_T.he notatioq and formulation dgveloped in thig sectiqn _is diag(L, C)z(t) = M(G)z(t) + PLfe?™ot, @)
similar to that in [39], where we discuss the continuum limit
of Kirchhoff's laws on a lattice. Let T C & denote the vector of right boundary nodes. Let

We consider a 2-D rectangular LC lattice, as shown in Fig’x be the|T|x N projection matrix defined byPr);; =1 if
1, which we represent as an oriented, planar graph, c.f. [40; = j and(Pr);; = 0 otherwise. Note that becau3g € 91,
Chap. 13]. Nodes represent capacitors and edges repre§emnsl to |€| = (2m — 1)n of Py are all zero.
inductors. The orientation of the edge represents thetibrec Forwvard Problem. Let z(t) = ue?™et. Then the forward
of positive current flow through the associated inductor. problem is to findg = Pru given f, L, C, and G. Using

In a lattice of sizen xn, there arenn nodes and2m—1)n  the Fourier transform, one can show that the solution of the
edges,mn horizontal ones andm — 1)n vertical ones. Let t5nvard problem is

N = {1,2,...,mn} denote the set of all nodes, am@d = .
{1,2,...,(2m — 1)n} the set of all edges. L&t be a vector fg=Pr (2ma diag(L, C) — M(G)) PLE.  (3)

of sizemn such thatC; is the capacitance at nodeLet L be

a vector of size(2m — 1)n such thatl; is the inductance at Givendiag(L, C, G), we define thdransfer matrixto be:
edge;j. We decomposé& = [L;, L,] into the horizontal and ) -1,

vertical inductors, respectively. We denotey¢) the voltage I(L,C,G):= Py (27”a diag(L, C) — M(G)) Pr. (4)
across capacitgr and byl (t) the current across inductérat We have formulated the circuit as an oriented graph in

time ¢. By V(¢) andI(t) we denote the vectors of all voltagesyrder to write the equations compactly and take advantage
and currents, respectively. of the graph-theoretic interpretation of the incidencerirat

Of the horizontal edges, there ane boundary edges thatsg \yhich appears naturally in Kirchhoff's laws. Though we
form a subsel’ C &, each of which is incident upon only haye formulated the problem for an x n rectangular lattice,
one node. In Fig. 1I' is the left-most column of horizontal \he pheauty of the graph-theoretic framework outlined atisve
edges. All other edges in the graph are incident upon tWox; it easily accommodates other lattice topologies.

nodes. In general, an edge is an ordered pairiz), where — Note that since (3) is invariant under the transformation
i, € M. The direction of the edge is given by the ordering of

these numbers, so that is the tail andi, is the head. For a a—~7a and (L,C)~ 7 '(L,C), (%)
pourg(;iar)y edgg that is incident only upon nodg we write 5 aice with valuesL, C) which performs a transfer function
J =W,

at frequencyw can be rescaled by a factor af /a to create

Let B denote thedl| x [€] = mn x (2m — 1)n incidence | ice that performs the same function at frequemtcy

matrix for the oriented graph that represents our circuie™

Design / Synthesis ProblemWe define the admissible set
1 if j=(¢,4) for somei’ € NU {0} J Y

%ij ={_1 if j= (2-72-/) for somei’ € N A = {(L, C, G) L<L;< Z_ for all i € €,
0  otherwise C<Cj<C forall jeMN, and
The matrix® will be used shortly to write Kirchhoff's laws G<G; <G forallje& iy
in a compact form. _ whereL, L, C, C, G, andG are constants. Let
In addition to the structure described already, the 2-D o '
rectangular LC lattice also has resistors and forcing atbeg {(f*,g") |1 <i<p}

boundary. We represent the set of nodes connected to nesis% a collection of desired input-output pairs. The design
by & C 91, and letG; be the cgnductancg of nodes &. We problem is: find(L,C,G) € 2 such that for each, the
then extend=; by definingG; = 0 for all i € 91\ &, so that steady-state outpUEf generated by inpuf’ is equal tog'.

_ H i n
G = (G1,...,Gmn) is a vector inR. _ We formulate this as the constrained optimization problem:
Let N = |91 + |€] = (3m — 1)n. Then we define the

IT| x N = m x (3m—1)n projection matrixPr by (Pr);; =1 : a1 il

if I'; = j and(Pr);; = 0 otherwise. Note that becauBe € €, (L,g,lgl)em J(u') = 2 ZHPTU ~8 (6a)

the finalmn columns of Pr are all zero. The forcing applied = . )

at edged’ is given by W (t) = Ptfe?mat, wheref € CIT, s.t. (27ma diag(L,C) — ]V[(G))ul =Pif', 1<i<p.
Kirchhoff’s Laws on this inductor-capacitor lattice carmno (6b)

be written in the following matrix-vector form: It is convenient to sep = m and choose the input basis

diag(L)% - _BVIW (1a) Vectorsto be(f%); = d;;. Thedesired transfer matrixs then
. dv . To=[g'lg’] - Ig™]
dlag(C)E = BI — diag(G)V (1b)

We can then write the solution of (6b) using (4) and rewrite
Definez(t) = (I(t), V(t)) so for eacht, z(t) € CV. Define the optimization problem (6) in the following compact form:
0 — B! . . 1

D diag(G)} : min j(L, C, G) = §||T(L, C, G) - TdH%" (7)

M(G) = [
(L,C,G)e



As written, the objective function7(u‘) in (6a) does not The decision equations are obtained by setting the derévati
depend explicity on(L,C,G), only implicitly through of (10) with respect to the design variablesqual to zero
the constraint (6b). We use the notatigh(L,C,G) =
J((L,C,G)) to refer to the composition that explicitly
depends oL, C, G). »
We consider two different choices of boundary conditions: % - Zg}g <Vi, %ui> =0 (13)
(BC1) The resistive boundarg consists of all hodes on the Ds i=1 Ds
top, right, and bottom boundaries of the lattice. For eacf, computed A/dsy,,
i1 € &, we prescribe the locally impedance-matched

and recallinga— =0 for all &.
Sk

we must compute

conductance . 0 0
Odiag(s)ij . . oM
Gi=1/Ci/Ly, (8) " osn dij0i,  and s, |0 _gf
k

where j € € is the edge incident on nodg that ) )
is normal to the boundary. This impedance boundary 't 1S €8sy to show thatG;;/9s), = 0 unless the nodg is a
condition can be viewed as a first-order discretizatidQP: fight, or bottom boundary node. There are three cases fo
of the Silver-Miller outgoing boundary condition forth€ Non-zero entries: non-corner top/bottom, non-corgét,r
Maxwell's equations, as described in [39]. and corners, each of which can be computed using (8).
(BC2) The resistive boundarg consists only ofY, i.e, the ~ The KKT equations consist of (6b), (11), and (13). A full
nodes on the right boundary of the lattice. For eaeh SPace method involves the simultaneous solution of these th
®, we setG; according to (8), as before. Unlike thehonlinear equations. Alternatively, the reduced spacehatkt
previous case(; = 0 along top/bottom boundaries. ~ CONSists of taking7(s) = J(u’(s)). Then we have

Slightl_y abusing notation,. we takef(L, C) to_ be the 0.7 P S 9A
composition of 7(L, C, G) with (8). We thus arrive at the Do %Z Vi W) (14)
following N-dimensional optimization problem: F i=1 k
min (L, C) ) wherev® andu’ are solutions of (6b) and (11).
(L,C)eA ’
ﬂherem is also modified to reflect (8) by letting; = 0 and B, Direct Computation of the Gradient
G; = oo for all j € &. Thus the only constraints in (9) are Here we compute
box constraints on the design variablesand C. P
A Nurr|1er_ical tests _show (9) is not cgnveg, wh?ch implies that 6_j B 3_j . P 07 oul . 0F ou'*
the solution to (9) is not guaranteed to be unique. Dsn sy - Jui 9s. | ou Osy
p
[1l. COMPUTATION OF THEGRADIENT AND HESSIAN = 28%2 8‘7_ (—A‘lﬁui) (15)
=1 out 6sk
_In this section, we compute the gradient and Hessian of
J (¢) in preparation for quasi-Newton and Newton numericavhere we have used
solutions of the optimization problem (6). 0A ou’
—u'+ A =0, (16)
6sk Bsk

A. Computation of the Gradient via the Adjoint Method  gpiained from differentiating (6b). We now see that (14)

Here we set = (L, C) and A = 2mu diag(s) — M. We and (15) are the same by (11). The advantage to computing
introduce the dual variables’ € C? and the Lagrangian V' first and then computing the gradient via (14) is that
only p adjoint solves are required (one for each input-output
pair). Computing (15) literallyi(e., computing the expression
in parentheses first and then computing the vector-matrix
product) would requiréV - p state solves [41].

The state equations (6b) are obtained by setting the dievat
of (10) with respect tor** equal to zero. The adjoint equations ) )
are obtained by setting the derivative of (10) with respect £: Computation of the Hessian

P
L', vis)=Ju)+> R(v, Au' — Pif').  (10)
i=1

the state variablea’ equal to zero: Differentiating (14) enables us to write the Hessian
oL oJ 1 -
IE _ 9 L SrA= 2 P 2
= g 5 ViA=0. A 2F [P
0s;0sy, 0s;0sy;
Here we use ' i=1 '

oJ
ou’

1 v ToA] 04T aw
:§(Pyui—gi)*Py. (12) 0s; | Osk Jsi | Os;°




Differentiating the adjoint eq. (11) with respect 49, gives Let s = s(r) denote the dependence©bn a set of design
. variablesr. Then the gradient and Hessian can be computed
ovit <2 0 0J 4y [%])A_l

0s; 8_33 ou’ 0s; g= Vrj(s(r)) =s,VsJ
1% — 7 — 7t
_ <(?9u PLPy +vi* {%}) e H=V.V.J(s(r)) =s:VsVsTsy,
Sj Sj

wheres, denotes the Jacobian and,7 and VsVsJ were
Combining the previous two equations with (16), and definingpmputed in (14) and (17) respectively.

h;i = PrA~'=—u’, we have the Hessian Once the design variables are chosen, the optimization
s problem (9) can be written
>J S min  J(r) := 1HT(r) r1Ty|%
- s =3 —rTall7 (20)
Ds;j0sp, %;hﬂhkz rety 2
Ly 92A L 9A L, 0A %A*% . @ where®l,. is an admissible set for the design variahtes
0s;0s,  0s; Osi  Osy, 0s; ' A, :={r: r<r; <7 forall j}.

IV. DESIGN VARIABLES V. COMPUTATIONAL RESULTS

To reduce the size of the optimization problem (9), we In Sections V-A through V-D, we apply gradient-based
introducedesign variablesa reduced representation fbrand optimization tools [42] to solve the lattice synthesis pgenl
C. There are many natural choices for the design variables(20) for four desired transfer matrices. In Section V-A, we
The following choices are labeled for future reference. also compare the performance of several different optiticiza
methods. In Sec. V-C we compare the two choices of boundary
conditions given in Sec. Il. In all other sections, we use IRC
Iho—h N v v N In Sec_tion V-E, we di;cuss the sensitivity of the tra_nsfe'grma

b ml=i,g “J ml=ig of an inductor-capacitor lattice to small perturbationd.iror
C. Finally, in Sections V-F and V-G, we study numerically
then the transfer matrix satisfiés,; = Ti1—ims1. the well-posedness of the synthesis problem.

Thus, if the desired transfer matrix has this property,
can be chosen to enforce this symmetryloandC. This A. Diagonal Transfer Matrix

reduces the dimension of the design variable space by 3p this section, we define the desired transfer matrix to be

factor of approximately two. ~ the diagonal matrix; = diag(t). For a lattice withm rows,
(D2) The vectord., andL, can be chosen as a discretizatiofet j, = (m +1)/2 andt; = exp(—2(j —jo)%), i =1,...,m.

of a single continuous function(x) as in [39]. This im- e setn = .08 and choose (D1) design variables with lower
poses a compatibility condition ab,, andL,, reducing and upper boundg.05 and5.

the dimension of the design space by approximately three\ye now solve the synthesis problem (20) for anx m
Specifically, we let be am + 1 x n+1 matrix and set |attice form = 8 (N = 184) andm = 16 (N = 752)

! _ _ using several different numerical methods. For eachrand
Ly = o (pij + pig15), 1 <i<m, 1 <j<n (18a)

(D1) If L andC are symmetric in the sense that

Cij = Cmi1-ijs

D) numerical method used, in Fig. 2, we plot both iteration
v 1 . ) b number and wall time vs. the objective function value. In
Li; =5 (uij + Higr1), 2<i<m, 1 <j<mn. (18D) \hat follows, we describe the methods compared in Fig. 2.

The design variables then consist@fand . All computations were done using Matlab 7.11 on a 2.4 GHz

(D3) Restricting to lattices witl. = 1 reduces the dimension Intel Core 2 Duo desktop computer with 2GB of RAM. In each

of the design space by a factor of three. This is analogoﬁ%se’ the convergence criteria was set using the Matlabrepti

to considering media with constant permeability [39]. MaxI ter = 2000, Tol X = 10", and Tol Fun = 10 .
(D4) Combining the ideas in (D1) and (D3), we take= 1 _In _a!l_ e_xampIQS here and be!ow, th? optimization method
and forceC to have symmetry. This reduces the desigﬁ] |n|t|a,I|zeq with c_onstant des_lgn variables, We compare
variable space by a factor of six. atlab §f i nC(_)n_lmp.IementaFlon of the following nonlinear
(D5) The vectord. andC can also be represented in terms Ot?onstramed optimization algorithms:
a truncated basis, such as the Fourier, wavelet, or bi®) Sdp: The sequential quadratic programming (SQP) ap-
bases, but we do not pursue this here. proach is to approximate (20) by a quadratic minimization
problem at each iteration. This quadratic form involves
For a (BC1) lattice, energy leaks out of the top/bottom the Hessian of the objective function, which is approxi-
boundaries, so the total energy collected at the outputsis le  mated using the BFGS method [42, Ch. 18].
than the input energy. Since we are primarily interestedhén {AS) acti ve- set: The active set method solves a sequence
shape of the outpuj(y), we include an extra design variable of unconstrained optimization problems. The optimiza-
0 in the objective function (9), replacing, by 67y. For all tion variables do not necessarily satisfy the bounds at
design variable choices, we let = J. each iteration.



(IP) interior-point: This line-search based quasi- 10

Newton method uses the BFGS method to update t7} ., e
approximate Hessian at each iteration. The constraints ig E
enforced using a logarithmic barrier function. 2 . 2
(TR) trust-region-reflective: We use this subspace g10° -
trust-region method with ar ge- scal e = of f . o °
From Fig. 2, we conclude that all tested methods a 500 1000 1500 2000 O'Swanltime%h?m) 2
able to find solutions with low objective values. The othe _ . 10°
methods perform approximately the same in both iteratic_ —AS m=16 —AS, m=16
count and wall time. The interior point method (IP) perform ¢ 107" :ﬁ?}nnllée g 07 I?Ff?;n”;‘l?
best; however, the solution obtained tends to be less smo £ 10 2107 : TR, m=16
than that obtained via the other methods. In what follows, v§ ., - g0
primarily use the (AS) method. In addition to the four meﬂ;noc% . % .
described above, we also tried Newton’s method, but four *° 10 o

that the cost of computing the Hessian (17) was prohibitive 500 1000 , 1500 2000 % wall tme (mimy 22

large for lattice sizes of interest.
Let us return to the design problem for the diagonal transfeip- 2. We plot (left) iteration number vs. objective furectivalue and (right)
ixT:. Th imal solutiorfL*. C*) f - btained wall time vs. objective function value for the solution of0j2on anm x m
m"’_‘mx d- (_:"om'ma SQ utIO_I'ﬁ ’ ) orm = 16_ 0 _ta'ne lattice form = 8 (top) andm = 16 (bottom) and various optimization
using (SQ) is plotted in Fig. 3 and has objective valugethods (see Sec. V-A for method abbreviation definitions).
J = 7.3 x 1075, The method terminated when the maximum
number of iterationslvax| t er = 2000, was reached. ) o . )
For this transfer function analll transfer functions consid- Suggests that this type of lattice is well-suited for parforg

attains the lower bound constraint of = .6. This indicates by constructing a circuit that behaves as a low-pass filter.

it is easier to synthesize energy-dissipative lattices. For an8 x 6 lattice, we define the transfer matrix:
2 1 0 0
B. Waveguide Filter / Rank-One Projection 4 2 1 0
In this section, we define 1 8 4 21
oo L4842 (21)
o d= a2 4 8 4
. . . . 1 2 4 8
00 00 0 1 2 4
_ 0 1 10 00 1 2
Ta= 0110 ’ . - - -
00 0 O The matrixT,; can be obtained by removing the first two and

last two columns from ar8 x 8 Toeplitz matrix. We also
remove the first and last two columns of the transfer matrix
the discrete analogue of a waveguide transfer funcfior» T in (20). With « = 0.16 and (D1) design variables with
(¥, f)v, wherey is a desired bound state. lower and upper bounds given h95 and 50, we use the
With « = .32, we use (D1) design variables with loweractive set method (AS) for each of the boundary conditions
and upper bounds given b§.05 and 50. For a 24 x 24 given in Sec. Il. For (BC1), the final objective function valu
lattice, we use the active set method (AS) to obtain the J = 6.24 x 10~7 and for (BC2), the final objective value
optimal solution(L*, C*) plotted in Fig. 4 with objective value is J = 2.98 x 1075, In both cases, the method terminated
J = 6 x 1075, The method terminated aftér7 iterations because the predicted change in the objective function was
because the predicted change in the objective function wass thanTol Fun = 10~!3. In Fig. 5, we plot the optimal
less thanTol Fun = 1013, solution (L*, C*) for both choices of boundary conditions.
The optimal solution, plotted in Fig. 4, has horizontal
inductors " and capacitorsC which take large values in p. power Combiner / Funnel

a strip from the center inputs to the center outputs. OUts'deMotivated by the power combiner introduced in [2], [3], we

of this strip, theC’ matrix has periodic structure arranged Ronsider the transfer matrix that maps all inputs to thearent

|Tpe?e an 't?lcom'F?. watve. Thet_fa<_:t tpat we éa%igﬁgn'sﬁtput. The desired transfer matfy of sizem x m (where
structure in e soiltion to an optimization probie m = 2j + 1 is odd) consists of a matrix where rgiw- 1 has

is remarkable, and suggests rigidity in the synthesis prabl a1l in each column, and all other rows are identically zero.

] . . We seta = 0.08 and choose (D2) design variables. The
C. A Low-Pass Filter / Smoothing Convolution upper and lower bounds wer@ and20. In Fig. 6, we plot the
In [39], we used separation of variables to obtain theptimal solution(L*, C*) for the synthesis problem attained
exact solution for the continuous analogue of the forwanging the active set method (AS). The solution is plotted for
problem (3) for a homogeneous lattice. We concluded thet x m lattices wherem = 11, 21, and 31 with respective
a homogenous lattice strongly damps oscillatory input,ciwhi objective function valueg x 1072, 3 x 1072, and3 x 107°.
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Fig. 4. The(L, C) matrices for the24 x 24 waveguide in Section V-B with objective valug= 6 x 10~5.

I_h Lv C

Fig. 5. The(L, C) matrices for the low-pass filter in Section V-C for tRex 6 lattice for boundary conditions as described by (BC1) inttye panel and
(BC2) in the lower panel with resp. objective valugs= 6.24 x 10~7 and J = 2.98 x 1072,

In each case, the method terminated because the maximamRobustness / Sensitivity of Optimal Devices
number of iterationsivax! t er = 3000, was reached.

In this section, we consider the sensitivity of optimal des
to small changes ifL, C, G). We begin with a proposition
that is proved in Appendix A.



Fig. 6. The(L, C) surfaces for the funnel in Sec. V-D for the x m lattice form = 11, 21, 31 with objective value x 105, 3 x 1075, and3 x 107°.

Proposition 1. Let T; = PTAJ.‘lP;, j = 1,2 be the minimizes 7 for the desired transfer matrix in (21) with
transfer matrices for two different circuits with capacites, objective value7 (L*,C*) = 6.24 x 10~". We now evaluate
inductances, and conductances given(iy;, L;, G;), where 7 for a distribution of perturbations td.*, C*). Specifically,
. we consider multiplicative noise and evaluaféL.u, C.v),
Aj = 2madiag(Ly, C;) — M(Gy). wherea.b denotes entry-wise multiplication of the vecters

Assumep := ||A7'(As — A1)|]2 < 1, and definey = andb, and(u,v) have entries which are normally distributed
1/01(A;) whereoi(A;) > 0 is the smallest singular value with meanl and standard deviatian02. We interpret a struc-
of A;. Then ture (L.u, C.v) to be a low-pass filtering device manufactured

N2 with 2% tolerance. In Fig. 7, we plot a histogram of the
Ty — Tal|r < MY ora (|Le — Lil|2 + ||C2 — Cq|2) objective function value evaluated on a sample siz&)6f 000
L=p drawn from this distribution. Th&0th, 50th and90th quantiles
+||G2 — Gil|2|- are1.8 x 1073, 6.9 x 1073, and3.9 x 1072
_ o _ o We might also consider the sensitivity of optimal devices to
The upshot of this proposition is that if a circuit is per®edd gy changes im. However, since (6) is invariant under the
by modifying (L, C, G), then the change in the transfer matrix,ansformation in (5), perturbing is equivalent to choosing a

for the circuit is bounded by the size of the perturbation, iplicative perturbatior{u, v) from a skewed distribution.
However, the bounding constant could be large and increases

with increasing circuit size. . ]

We conduct a numerical experiment to further investigafe Known Lattice Recovery / Inverse Crime Study
this dependence for the low-pass filtering device introduce In the preceding sections, our goal was to obtain useful
in Section V-C. Let(L*, C*) denote the8 x 6 device with circuits. Here and in the next section, we conduct numerical
(BC1) boundary conditions plotted in Fig. 5(top panel) thaxperiments to quantify the ill-posedness of the problem.
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Fig. 8. Obijective function valugZ (L*, C*) versusp (left panel) and versus

3 -2 -1 0 1 I(L*, C*) — (LY, C%)||oc (right panel) for 750 runs, all 08 x 8 lattices.
|Oglo(J) See Section V-F.

Fig. 7. A histogram of the objective function evaluated 1®0, 000 low-
pass filters (see Fig. 5) with% normally-distributed, multiplicative noise.
The vertical lines indicate th&0Oth, 50th and90th quantiles. See Sec. V-E.

In this first numerical experiment, we commit a so-calle
“inverse crime.” We takep = m and generate a transfer
matrix Ty by solving the forward problem foknownvalues
of (L%, C). We then set asideL.’, C°) and solve the design
problem for the transfer matrid,;, giving us a computed _ _ _ .

Fig. 9. A plot of the capacitance matric€S,o (left) and C4o (right) as

SOlun_On_(L*v C*)' ) ) ) defined in Section V-G.
This is refered to as an “inverse crime” since the model

of the forward problem used to generate the transfer matrix
is precisely the same model assumed in the solution of thleows that the code performed very well across all runs, with
design problem. For these transfer matrices, we happenthe maximum value of7 (L*, C*) less thanl0~". The plot
know that there is a point—namel¢L.’, C°)—where the also reflects a correlation coefficient @82, which indicates
objective function is zero. We can then measure how wdhat the larger the amplitude of spatial oscillationsLit and
our algorithm does by comparing (L*, C*) with zero. We CY, the poorer the quality of the local optimum reached.
can also characterize the solution space by checking hown the right panel of Fig. 8, we plot the objective function
J(L*,C*) depends on the known solutigi.’, C°). value J(L*,C*) versus reconstruction errgf(L*,C*) —
Let us describe how we generate a random maifix We (L°, C?)|| for all 750 runs. The plot reflects that, as we
fix integer parameters > 0 ando as well as real parametersmove further away from the global minimugL*, C*), we
Pmin @and pmax. We choose two random vectors of Fourler smare still able to achieve transfer matrices that are vergecto
coefficientsk® andk¥, both of sizev x 1. Thej-th entryk what is desired. However, the correlation coefficientOGf0
is sampled from d/(0, 1) distribution and then multipiied by indicates a small degradation in the quality of the localrot

as a function of distance from a global optimum.
j77. We sampleP(z,y) ZZkku sin(iz) sin(jy) to

=1 j=1 . : i
create ann x n matrix C° that is then scaled and translated>. Lattice Refinement and Coarsening
so its max/min values are, respectivehyax and pmin. For a lattice with homogeneo(k, C) the Nyquist principle

For L" and LY, we follow (18) after generating afm + states thatv/LC < v/2/. In [21], we found that Kirchhoff’s
1) x (n + 1) matrix g by sampling P(z,). We scale and laws (3) behave like their continuum limitifv/LC < 1/(27),
translate the matrices” andL¥ so their max/min values are, which is roughly one-third of the Nyquist frequency. In [39]
respectively,omax and pmin. In all cases, sampling aP(z,y) we showed that the continuum limit is precisely the system of
is performed on a regular grid in the squébe2r]?. equations for thé H,, H,, E) polarized mode for Maxwell's

Using the above approach for generating random paiguations in a planar medium. Thus we expect thatdor
(LY, C?%), we solved the design problem 750 times on asufficiently small, even i{L, C) is inhomogeneous, one may
8 x 8 lattice. We used the active set method (AS) witincrease the size of the lattice and resqdleC) so that both
Tol X =107, Tol Fun = 10713, and (D2) design variables problems are a discretization of the same continuum problem

with lower and upper bounds of5 and50. For all 750 runs,  In this section, we use this principle to provide quantita-
the code terminated because the magnitude of the direttiotige estimates on the ill-posedness of the synthesis pmoble
derivative in the search direction was less tl2arol Fun. Throughout, we seL. = 1 anda = 1.

We stepped’ from 0 to 5 ando from 1 to 5. We stepped On a 40 x 40 lattice, we setC; = 1 +
p through 25 equispaced values in the interior(0f2), and sechi~y (i — 20.5)? + (j — 20.5)2) for v = 25/39%. Using
setpmax= 1+ p/2, pmn=1—p/2. this C49, we solve (3) for the transfer matriky.

In the left panel of Fig. 8, we plot the objective function We then average x 2 subblocks of bothlyy, and C4q to
value J (L*, C*) versus amplitude for all 750 runs. The plot obtain a transfer functiofix, and capacitanceSs, on a20 x
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20 lattice. The vectolCy is divided by4 based on the finite Taking the Frobenius norm of both sides and using the the
volume derivation in [39]. The synthesis problem with dedir sub-multiplicative property of the Frobenius norm we oibtai
transfer functiorilsq is then initialized usingC,, and solved _ _
using (D4) decision variables. We denote this solut©, 1T = Tallr < [ PeA | p ] A2 = Aulle | Ay Pelle. - (22)
and note that the objective function valuefs= 3.7 x 107> We treat the 3 pieces on the right hand side of (22) in turist Fir
We now refineCy to a40 x 40 lattice by repeatin@ x 2 note || Pr||r = |Y|"/? = /m and || Pr||r = |T|Y/? = /m.
blocks of Cyy. We denote these capacitances Gy,. The 1, We compute
synthesis problem with transfer functidfy, is initialized _ B _
usingC.o and solved to obtailC,. Both surfaces are plotted IPe AT |7 < IPel el AL e < VmVN|AT |2 = VimNy.
in Flg_g The final value of the ObjeCtive flﬂctiongﬁx 10-8 Here we used the norm re|ati0ﬂ|AHF < \/FHAHQ wherer
and||Cyo — Cyol|F = 11.1. Thus,Cy4 and Cyq are far apart s the rank of4 and AT |2 = on(ATY) = 1/o1(A1) = 7.
in the Frobenius norm but achieve almost the same transfefye compute
function. Although the problem is ill-posed and the solntio
obtained is different thai€,, we emphasize that we view |42 — Ai|r < 2ma|| diag(Lg, C2) — diag(Ly, C1)||r
C, as a excellent solution to the synthesis problem since it + | M(Gz2) — M(G))|lr
achieves a phenomenally low objective function value. =21 (||Ly — Li||2 + ||C2 — C1l2)
In inverse problems, one applies regularization methods + G- G|
to enforcea priori known information such as smoothness. 27 iz
Similarly, in the design problem considered here, where ti3¢ As above, we compute
“data” (i.e. desired transfer matrix) is known perfectly, one _ _ —
could apply regularization methods to forkeand C to have 1421 Prlle < (142 el PElle < VmN A5 |2

desired properties. We do not pursue this direction here. Our goal now is to estimated; ! | in terms ofy. We compute
— - -1
142 12 = Il [As (1d + AT (A2 = A1)] 12

-1
We have formulated the two-dimensional transmission lat- = ('d + AT (A2 — Al)) A2
tice synthesis problem as an optimization problem, thetswiu <7l ('d + Afl(A2 - /11))71 ll2
of which yields inductor-capacitor lattices that can berifab .
cated for custom/novel applications in analog signal pssicey  Note that(ld + A7 (A; — A1)~ exists by the assumption
and filtering. For several chosen transfer functions, weshag < 1. Summing the Neumann series for this expression gives
demonstrated that gradient-based optimization methaubea oo _
used to obtain excellent solutions to the synthesis problem || (Id + A7 ' (A; — Al))_1 Il < Z AT (A — A3
In other contexts, the ideas presented in this paper are j=0
familiar: one can engineer the permittivityand permeability o 1
1 of a medium to control the propagation of EM waves [43], = ZPJ =1
[44], and in quantum mechanics, one may engineer a potential 3=0 r
to have desired scattering properties [45]. As the frequefic Putting these 3 pieces together yields the desired result.
analog circuits marches into the THz range, it is incredging
important that the circuit model be related, both qualrlsi ACKNOWLEDGMENT
and quantitatively, to Maxwell's equations. Ultimatelf/,one
is interested in designing a microwave frequency devic§

one performs a direct numerical simulation of Maxwell’%MSOG_02235 EMSW21-RTG: Numerical Mathematics for
equations to confirm that the circuit model accurately prsdi Scientific Combuting. Any opinié)ns findings, and conclusio

the dew_ces behavior. Based on our f'”d'”.gs n [,39]’ thesoer recommendations expressed in this material are thogeof t
connections can be made more precise. Kirchhoff’'s laws f

the 2-D LC lattice (1) can be viewed as a finite Volumg[ﬂhor(s) and do not necessarily reflect the views of the NSF.

. o i . . he authors would like to thank the NSF Institute for Pure
discretization of Maxwell's equations for a planar, inhemo
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(C, L), this discretization is accurate, and one can interpret the

present work as a discretize-then-optimize approach torgpl

the (e, u) synthesis problem for Maxwell’s equations. This is[1] L. Brillouin, Wave Propagation in Periodic Structures. Electric Filters
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