Noemi Petra

  • Home
  • Research
  • Publications
  • Teaching
  • CV
  • VIP-PDE
  • hIPPYlib
  • Misc
  • My Google Scholar Citations

    Journal Papers

  • U. Villa, N. Petra, O. Ghattas, "hIPPYlib: An extensible software framework for large-scale inverse problems; Part I: Deterministic inversion and linearized Bayesian inference". To appear in TOMS. [arXiv]

  • N. Petra, E. Sachs. "Second-Order Adjoints in Optimization", Research Developments in Theory and Algorithms of Numerical Analysis and Optimization: Proceedings from the Fifth Conference on Numerical Analysis and Optimization (NAOV 2020), Springer (To appear.)

  • A. Alexanderian, N. Petra, G. Stadler, I. Sunseri. "Optimal design of large-scale Bayesian linear inverse problems under reducible model uncertainty: good to know what you don't know", SIAM/ASA Journal on Uncertainty Quantification (To appear.)

  • R. G. Vuchkov, C. G. Petra and N. Petra. “On the Derivation of Quasi-Newton Formulas for Optimization in Function Spaces”, Numerical Functional Analysis and Optimization, 41:13, 1564-1587 (2020)

  • E. M. Constantinescu, N. Petra, J. Bessac and C. G. Petra, "Statistical Treatment of Inverse Problems Constrained by Differential Equations-Based Models with Stochastic Terms". SIAM/ASA J. Uncertainty Quantification, 8(1), 170–197 (2020). [arXiv]

  • R. Nicholson, N. Petra and Jari P. Kaipio. "Estimation of the Robin coefficient field in a Poisson problem with uncertain conductivity field", Inverse Problems, Volume 34, Number 11, (2018). [IP, arXiv]

  • A. Alexanderian, N. Petra, G. Stadler and O. Ghattas. "Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations", SIAM/ASA Journal Uncertainty Quantification, 5(1), pp. 1166-1192, (2017). [SIAM link, arXiv]

  • N. Petra, C. G. Petra, Z. Zheng, E. Constantinescu and M. Anitescu. "A Bayesian Approach for Parameter Estimation with Uncertainty for Dynamic Power Systems", IEEE Transactions on Power Systems, 32(4), (2017). [IEEE link, arXiv]

  • H. Zhu, N. Petra, G. Stadler, T. Isaac, T. J. R. Hughes, and O. Ghattas. "Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model", The Cryosphere, 10, 1477-1494 (2016). [discussion, reviews, Cryosphere link]

  • A. Alexanderian, N. Petra, G. Stadler and O. Ghattas. "A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems", SIAM J. Sci. Comput., 38(1), A243–A272 (2016). [SISC link, arXiv]

  • T. Isaac, N. Petra, G. Stadler, and O. Ghattas. "Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet", Journal of Computational Physics, 296, 348-368 (2015). [link]

  • N. Petra, J. Martin, G. Stadler and O. Ghattas. "A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems", SIAM J. Sci. Comput., 36(4), pp. A1525-1555 (2014). [SISC link, arxiv.org/1308.6221]

  • A. Alexanderian, N. Petra, G. Stadler and O. Ghattas. "A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized l_0-sparsification", SIAM J. Sci. Comput., 36(5), A2122–A2148 (2014). [SISC link, arxiv.org/abs/1308.4084]

  • J. Worthen, G. Stadler, N. Petra, M. Gurnis and O. Ghattas: "Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow", Physics of the Earth and Planatery Interiors, 234, pp. 23-34 (2014).[link]

  • N. Petra, H. Zhu, G. Stadler, T. J. R. Hughes and O. Ghattas. "An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model". Journal of Glaciology, Vol. 58, No. 211, pp. 889-903 (2012). [view pdf]

  • N. Petra, J. Zweck, S. E. Minkoff, A. A. Kosterev, and J. H. Doty III. "Modeling and Design Optimization of a Resonant Optothermoacoustic Trace Gas Sensor". SIAM Journal on Applied Mathematics, vol. 71, no. 1, pp. 309-332 (2011). [view pdf]

  • N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy. "Theoretical Analysis of a Quartz-Enhanced Photoacoustic Spectroscopy Sensor", Applied Physics B: Lasers and Optics, vol. 94, no. 4, pp. 673-680 (2009). [view pdf]

     

    Proceedings and Technical Reports

  • S. Fatehiboroujeni, N. Petra and S. Goyal. "Towards Adjoint-Based Inversion of the Lamé Parameter Field for Slender Structures With Cantilever Loading", ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 8: 28th Conference on Mechanical Vibration and Noise Charlotte, North Carolina, USA, August 21–24, 2016. [link]

  • N. Petra and G. Stadler, 2011. "Model variational inverse problems governed by partial differential equations", ICES Report No. 11-05, The Institute for Computational Engineering and Sciences, The University of Texas at Austin. [view pdf]
    The model problems and related .m files can be downloaded from here.

  • N. Petra, J. Zweck, S. E. Minkoff, A. A. Kosterev, and J. H. Doty III. "Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor". Proceedings of the Lasers and Electro-Optics (CLEO) Conference 2011, Baltimore, Maryland, May 1-6, 2011.

  • N. Petra, A. A. Kosterev, J. Zweck, S. E. Minkoff, and J. H. Doty III. "Numerical and Experimental Investigation of a Resonant Optothermoacoustic Sensor". Proceedings of the Lasers and Electro-Optics (CLEO) Conference 2010, San Jose, California, May 16-21, 2010. (pages 1-2). [view pdf]

  • N. Petra and M. K. Gobbert. "Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing". In: Yeswanth Rao, editor, Proceedings of the COMSOL Conference 2009, Boston, MA, 2009 (pages 1-6). [view pdf]

  • N. Petra and M. K. Gobbert. "Performance Studies with COMSOL Multiphysics via Scripting and Batch Processing". Technical Report number HPCF20094, UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2009 (pages 1-13). [view pdf]