70. A. Y. Zamani and H. P. Hratchian, "Estimating vertical core-excitation energies from Møller-Plesset theory with spin projection", Mol. Phys. (Sanibel Conference special issue), Early Access. [DOI: 10.1080/00268976.2024.2398142]
69. S. Vaish, A. O. Gyamfi, C. D. Huizenga, H. P. Hratchian, and C. C. Jarrold, "Electronic structures of small stoichiometric ZnxOx clusters", J. Phys. Chem. A 128, 6450–6461 (2024). [DOI: 10.1021/acs.jpca.4c03613]
68. H. P. Hratchian, A. Karton, N. J. Mayhall, “Tribute to Krishnan Raghavachari”, J. Phys. Chem. A 13, 2523-2325 (2024). [DOI: 10.1021/acs.jpca.4c01320]
67. A. Y. Zamani, H. P. Hratchian, “∆-based composite models for calculating x-ray absorption and emission energies”, J. Chem. Phys. 159, 224109 (2023). [DOI: 10.1063/5.0178052]
66. A. Abou Taka, H. H. Corzo, A. Pribram-Jones, and H. P. Hratchian, “Good Vibrations: Calculating Excited State Frequencies Using Ground State Self-Consistent Field Models”, J. Chem. Theory Comput. 18, 7286–7297 (2022). [DOI: 10.1021/acs.jctc.2c00672]
65. J. M. Herbert, M. Head-Gordon, H. P. Hratchian, T. Head-Gordon, R. Amaro, A. Aspuru-Guzik, R. Hoffmann, C. Parish, C. M. Payne, and T. Van Voorhis, “Words Matter: On the Debate over Free Speech, Inclusivity, and Academic Excellence”, J. Phys. Chem. Lett. 13, 7100–7104 (2022). Guest Commentary [DOI: 10.1021/acs.jpclett.2c02242]
64. A. Y. Zamani, H. P. Hratchian, “Assessing the performance of ∆SCF and the diagonal second-order self-energy approximation for calculating vertical core excitation energies”, J. Chem. Phys. 157, 084115 (2022). [DOI: 10.1063/5.0100638]
63. S. I. Baker, M. Yaghoubi, S. Bidwell, S. L. Pierce, H. P. Hratchian, and R. .D. Baxter, “Enhanced Reactivity for Aromatic Bromination via Halogen-Bonding with Lactic Acid Derivatives”, J. Org. Chem. 87, 8492–8502 (2022). [DOI: 10.1021/acs.joc.2c00611]
62. A. Abou Taka, S. Lu, D. Gowland, T. J. Zuehlsdorff, H. H. Corzo, A. Pribram-Jones, L. Shi, H. P. Hratchian, and C. M. Isborn, “Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics Based Vibronic Spectra: The Case of Methylene Blue”, J. Chem. Theory Comput. 18, 3039–3051 (2022). [DOI: 10.1021/acs.jctc.1c01127]
61. H. Harb and H. P. Hratchian, “A Density Functional Theory Investigation of the Reaction of Water with Ce2O–”, Comput. Theor. Chem., 1209, 113603 (2022). [DOI: 10.1016/j.comptc.2022.113603]
60. H. H. Corzo, A. Abou Taka, A. Pribram-Jones, and H. P. Hratchian, “Using Projection Operators With Maximum Overlap Methods to Simplify Challenging Self- Consistent Field Optimization”, J. Comp. Chem. 43, 382–390 (2022). [DOI: 10.1002/jcc.26797]
59. J. L. Mason, H. Harb, A. Abou Taka, C. D. Huizenga, H. Corzo, H. P. Hratchian, and C. C. Jarrold, “New Photoelectron–Valence Electron Interactions Evident in the Photoelectron Spectrum of Gd2O– ”, J. Phys. Chem. A 125, 9892–9903 (2021). [DOI: 10.1021/acs.jpca.1c07818]
58. C. D. Huizenga, H. P. Hratchian, and C. C. Jarrold, “Lanthanide oxides: From diatomics to high-spin, strongly correlated homo- and heterometallic clusters”, J. Phys. Chem. A 125, 6315–6331 (2021). [DOI: 10.1021/acs.jpca.1c04253]
57. J. D. Galloway, C. Sarabia, J. C. Fettinger, H. P. Hratchian, and R. D. Baxter, "Versatile new reagent for nitrosation under mild conditions", Org. Lett. 23, 3253-3258 (2021). [DOI: 10.1063/5.0040454]
56. H. Harb and H. P. Hratchian, "ΔSCF Dyson orbitals and pole strengths from natural ionization orbitals", J. Chem. Phys. 154, 084104 (2021). [DOI: 10.1063/5.0040454]
55. J. L. Mason, H. Harb, A. Abou Taka, A. J. McMahon, C. D. Huizenga, H. Coro, H. P. Hratchian, and C. C. Jarrold, “Photoelectron spectra of Gd2O2– and nonmonotonic photon-energy-dependent variations in populations of close-lying neutral states", J. Phys. Chem. A 125, 857-866 (2021). Selected as an ACS Editors Choice. [DOI: 10.1021/acs.jpca.0c11002]
54. A. Abou Taka, M. C. Babin, X. Sheng, J. A. DeVine, D. M. Neumark, and H. P. Hratchian, “Unveiling the Coexistence of Cis and Trans Isomers in the Hydrolysis of ZrO2: A Coupled DFT and High-Resolution Photoelectron Spectroscopy Study”, J. Chem. Phys. 153, 244308 (2020). [DOI: 10.1063/5.0037636]
53. X. Sheng, L. M. Thompson, and H. P. Hratchian, “Predicting spin crossover gaps and exchange coupling constants for transition metal complexes: Improving Density Functional Theory with Approximate Projection”, J. Chem. Theory Comput. 16, 154-163 (2020). [DOI: 10.1021/acs.jctc.9b00387]
52. J. L. Mason, H. Harb, J. E. Topolski, H. P. Hratchian, and C. C. Jarrold, “Exceptionally Complex Electronic Structures of Lanthanide Oxides and Small Molecules”, Acc. Chem. Res. 52, 3265-3273 (2019). [DOI: 10.1021/acs.accounts.9b00474]
51. H. Harb, L. M. Thompson, and H. P. Hratchian, “On the Linear Geometry of Lanthanide Hydroxides (Ln−OH, Ln=La-Lu)”, Phys. Chem. Chem. Phys. 21, 21890-21897 (2019). [DOI: 10.1039/C9CP01560D]
50. L. C. Reimer, J. M. Leslie, S. L. Bidwell, C. M. Isborn, D. Lair, E. Menke, B. J. Stokes, and H. P. Hratchian, "Aiming Toward an Effective Hispanic Serving Chemistry Curriculum", In ACS Symposium Series. Growing Diverse STEM Communities: Methodology, Impact, and Evidence. edited by L. L. Winfield, G. Thomas, L. M. Watkins, and Z. S. Wilson-Kennedy (American Chemical Society, Washington, D.C.), 29-66 (2019) [DOI: 10.1021/bk-2019-1328.ch004]
49. L. M. Thompson and H. P. Hratchian, "On approximate projection models", Mol. Phys. 117, 1412-1429 (2019). (Dieter Cremer Memorial Issue). [DOI 10.1080/00268976.2018.1554828]
48. A. M. Hua, S. L. Bidwell, S. I. Baker, H. P. Hratchian, and R. D. Baxter, "Experimental and Theoretical Evidence for Nitrogen-Fluorine Halogen Bonding in Silver-Initiated Radical Flourinations", ACS Catal. 9, 3322-3326 (2019). [DOI: 10.1021/acscatal.9b00623]
47. J. L. Mason, H. Harb, C. D. Huizenga, J. C. Ewigleben, J. E. Topolski, H. P. Hratchian, C. C. Jarrold, “Electronic and Molecular Structures of the CeB6 Monomer” J. Phys. Chem. A 123, 2040-2048, (2019). (Hanna Reisler Festschrift) [DOI: 10.1021/acs.jpca.8b12399]
46. X. Cai, A. Tohti, C. Ramirez, H. Harb, J. Fettinger, H. P. Hratchian, B. Stokes, "Dispersion-Controlled Regioselective Acid-Catalyzed Intramolecular Hydroindolation of cis-Methindolylstyrenes to Access Tetrahydrobenzo[cd]indoles", Org. Lett. 21, 1574-1577 (2019). [DOI: 10.1021/acs.orglett.9b00043]
45. J. L. Mason, H. Harb, J. E. Topolski, H. P. Hratchian, C. C. Jarrold, “A tale of two stabilities: How one boron atom affects a switch in bonding motifs in CeO2Bx– (x = 2, 3) complexes,” J. Phys. Chem. A 122, 9879-9885. (2018) [DOI: 10.1021/acs.jpca.8b10446]
44. J. E. Topolski, J. O. Kafader, V. Marrero-Collon, S. S. Iyengar, H. P. Hratchian, and C. C. Jarrold, "Exotic electronic structures of SmxCe3-xOy (x = 0-3; y = 2-4) clusters, and the effect of high neutral density of low-lying states on photodetachment transition intensities", J. Chem. Phys. 149, 054305 (2018). [DOI: 10.1063/1.5043490]
43. J. A. DeVine, A. Abou Taka, M. C. Bablin, M. L. Weichman, H. P. Hratchian, and D. M.Neumark, “High-resolution photoelectron spectroscopy of TiO3H2–: Probing the TiO2– + H2O dissociative adduct”, J. Chem. Phys. 148, 222810 (2018). [DOI: 10.1063/1.5018414]
42.L. M. Thompson, C. C. Jarrold, and H. P. Hratchian, “Simulation of low energy photoelectron transitions in MoVO–”, J. Chem. Phys. 146, 104301 (2017). [DOI: 10.1063/1.4977418]
41. M. J. Frisch, et al., “GAUSSIAN 16”, Gaussian, Inc., Wallingford, CT (2016). [Visit Gaussian.com for more info.]
40. A. Petrone, P. Cimino, G. Donati, H. P. Hratchian, M. J. Frisch, and N. Rega, “On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path”, J. Chem. Theory Comput. 12, 4925–4933 (2016).[DOI: 10.1021/acs.jctc.6b00402]
39. L. M. Thompson, H. Harb, and H. P. Hratchian, “Natural Ionization Orbitals for interpreting electron detachment processes”, J. Chem. Phys. 144, 204117 (2016). [DOI: 10.1063/1.4951738]
38. D. Presti, F. Labat, A. Pedone, M. J. Frisch, H. P. Hratchian, I. Ciofini, M. C. Menziani, and C. Adamo, “Modeling emission features of salicylidene aniline molecular crystals: A QM/QM’ approach”, J. Comp. Chem. 37, 861-870 (2016). [DOI: 10.1002/jcc.24282]
37. S. Cummings, H. P. Hratchian, C. A. Reed, “The strongest acid: Protonation of carbon dioxide”, Angew. Chem. 128, 1404-1408 (2016). [DOI: 10.1002/ange.201509425]
36. L. M. Thompson and H. P. Hratchian, “Modeling the photoelectron spectra of MoNbO2– accounting for spin contamination in density functional theory”, J. Phys. Chem. A 119, 8744-8751 (2015). [DOI: 10.1021/acs.jpca.5b04625]
35. L. M. Thompson and H. P. Hratchian, “Second derivatives for approximate spin projection methods”, J. Chem. Phys. 142, 054106 (2015). [DOI: 10.1063/1.4907269]
34. D. Presti, F. Labat, A. Pedone, M. J. Frisch, H. P. Hratchian, M. C. Menziani, I. Ciofini, and C. Adamo, “A computational protocol for modeling thermochromic molecular crystals: Salicylidene aniline as a case study”, J. Chem. Theory Comput. 10, 5577-5585 (2014). [DOI: 10.1021/ct500868s]
33. L. M. Thompson and H. P. Hratchian, “Spin projection with double hybrid density functional theory”, J. Chem. Phys. 141, 034108 (2014). [DOI: 10.1063/1.4887361]
32. B. C. Gamoke, U. Das, H. P. Hratchian, and K. Raghavachari, "Divalent pseudoatoms for modeling of Si(100) surfaces", J. Chem. Phys. 139, 164708 (2013). [DOI: 10.1063/1.4825402]
31. H. P. Hratchian, “An efficient analytic gradient theory for approximate spin projection methods”, J. Chem. Phys. 138, 101101 (2013). [DOI: 10.1063/1.4795429]
30. H. P. Hratchian and E. Kraka, “Improved predictor-corrector integrators for evaluating reaction path curvature”, J. Chem. Theory Comput. 9, 1481-1488 (2013). [DOI: 10.1021/ct301021y]
29. H. P. Hratchian and X. S. Li, “Thirty years of geometry optimization in quantum chemistry and beyond: A tribute to Berny Schlegel”, J. Chem. Theory Comput. 8, 4853-4855 (2012). Invited Guest Editorial. [DOI: 10.1021/ct300950r]
28. H. P. Hratchian, “Using efficient predictor-corrector reaction path integrators for studies involving projected frequencies”, J. Chem. Theory Comput. 8, 5013-5019 (2012). [DOI: 10.1021/ct300407g]
27. H. P. Hratchian and M. J. Frisch, “Integrating steepest-descent reaction pathways for large molecules”, J. Chem. Phys. 134, 204103 (2011). [DOI: 10.1063/1.3593456]
26. H. P. Hratchian, A. V. Krukau, P. V. Parandekar, K. Raghavachari, M. J. Frisch, and T. Vreven, “QM:QM embedding using electronic densities within and ONIOM framework. Energies and analytic gradients”, J. Chem. Phys. 135, 014105 (2011). [DOI: 10.1063/1.3603450]
25. Labat, I. Coifini, H. P. Hratchian, K. Raghavachari, M. J. Frisch, and C. Adamo, “Insights into working principles of N3/TiO2 dye-sensitized solar cells from first principles modeling”, J. Phys. Chem. C 115, 4297-4306 (2011). [DOI: 10.1021/jp108917c]
24. H. P. Hratchian, M. J. Frisch, and H. B. Schlegel, “Steepest descent reaction path integration using a first-order predictor-corrector method”, J. Chem. Phys. 133, 224101 (2010). [DOI: 10.1063/1.3514202]
23. N. J. Mayhall, K. Raghavachari, and H. P. Hratchian, “ONIOM-based QM:QM electronic embedding method using Löwdin atomic charges: Energies and analytic gradients”, J. Chem. Phys. 132, 114107 (2010). [DOI: 10.1063/1.3315417]
22. J. L. Sonnenberg, H. P. Hratchian, and H. B. Schlegel, “Spin contamination in inorganic chemistry calculations”, In Computational Inorganic and Bioinorganic Chemistry, edited by E. I. Solomon, R. B. King, and R. A. Scott (Wiley, Chichester, U.K.), 173-186 (2009). [DOI: 10.1002/0470862106.ia617]
21. F. Labat, I. Ciofini, H. P. Hratchian, M. J. Frisch, K. Raghavachari, and C. Adamo, “First principles modeling of eosin-loaded ZnO films: A step toward the understanding of a dye-sensitized solar cell performances”, J. Am. Chem. Soc. 131, 14290-14298 (2009). [DOI: 10.1021/ja902833s]
20. M. J. Frisch, et al., “GAUSSIAN 09”, Gaussian, Inc., Wallingford, CT (2009). [Visit Gaussian.com for more info.]
19. P. V. Parandekar, H. P. Hratchian, and K. Raghavachari, “Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges”, J. Chem. Phys. 129, 145101 (2008). [DOI: 10.1063/1.2976570]
18. H. P. Hratchian, P. V. Parandekar, K. Raghavachari, M. J. Frisch, and T. Vreven, “QM:QM electronic embedding using Mulliken atomic charges. Energies and analytic gradients in an ONIOM framework”, J. Chem. Phys. 128, 034107 (2008). [DOI: 10.1063/1.2814164]
17. R. Shakya, S. S. Hindo, L. Wu, M. Allard, M. J. Heeg, H. P. Hratchian, B. R. McGarvey, S. R. P. da Rocha, and C. N. Verani, “Archetypical modeling and amphiphilic behavior of cobalt(II)-containing soft-materials with asymmetric tridentate ligands”, Inorg. Chem. 46, 9808-9818 (2007). [DOI: 10.1021/ic7011815]
16. R. Shakya, S. S. Hindo, L. Wu, S. Ni, M. Allard, M. J. Heeg, S. R. P. da Rocha, G. T. Yee, H. P. Hratchian, and C. N. Verani, “Amphiphilic and magnetic properties of a new class of cluster-bearing [L2Cu4(μ4-O)(μ2-carboxylato)4] soft materials”, Chem. Eur. J. 13, 9948-9956 (2007). [DOI: 10.1002/chem.200700875]
15. H. E. Herbert, M. D. Halls, H. P. Hratchian, and K. Raghavachari, “Hydrogen-bonding interactions in peptide nucleic acid: A comparative study”, J. Phys. Chem. B, 110, 3336-3343 (2006). [DOI: 10.1021/jp055865j]
14. R. Shakya, C. Imbert, H. P. Hratchian, M. Lanznaster, M. J. Heeg, H. B. Schlegel, B. R. McGarvey, and C. N. Verani, “Structural, spectroscopic, and electrochemical behavior of trans-phenolato cobalt(III) complexes of asymmetric NN’O ligands as archetypes for metallomesogens”, Dalton Trans. 2517–2525 (2006). (Selected as the issue’s “Hot Article”.) [DOI: 10.1039/b514190g]
13. J. E. Knox, M. D. Halls, H. P. Hratchian, H. B. Schlegel, “Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis”, Phys. Chem. Chem. Phys. 8, 1371–1377 (2006). [DOI: 10.1039/b514898g]
12. M. Lanznaster, H. P. Hratchian, M. J. Heeg, L. M. Hryhorczuk, B. R. McGarvey, H. B. Schlegel, and C. N. Verani, “Structural and electronic behavior of unprecedented five-coordinate iron(III) and gallium(III) complexes with a new phenol-rich electroactive ligand”, Inorg. Chem. 45, 955–957 (2006). [DOI: 10.1021/ic050809i]
11. H. P. Hratchian, J. L. Sonnenberg, P. J. Hay, R. L. Martin, B. E. Bursten, and H. B. Schlegel, “Theoretical investigation of uranyldihydroxide: Oxo ligand exchange, water catalysis, and vibrational spectra”, J. Phys. Chem. A 109, 8579–8586 (2005). [DOI: 10.1021/jp052616m]
10. C. Imbert, H. P. Hratchian, M. Lanznaster, M. J. Heeg, L. M. Hryhorczuk, B. R. McGarvey, H. B. Schlegel, and C. N. Verani, “Influence of ligand rigidity and ring substitution on the structural and electronic behavior of trivalent iron and gallium complexes with asymmetric tridentate ligands”, Inorg. Chem. 44, 7414– 7422 (2005). [DOI: 10.1021/ic050658j]
9. H. P. Hratchian and H. B. Schlegel, “Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces”, In Theory and Applications of Computational Chemistry: The First 40 Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam), 195–249 (2005). [Link]
8. H. P. Hratchian and H. B. Schlegel, “Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method”, J. Chem. Theory Comput. 1, 61–69 (2005). [DOI: 10.1021/ct0499783]
7. H. P. Hratchian and M. C. Milletti, “First principles determination of 99Ru chemical shifts using moderately sized basis sets”, J. Mol. Struc. 724, 45–52 (2005). [DOI: 10.1016/j.theochem.2004.12.020]
6. H.P.Hratchian, S. K. Chowdury, V. M. Gutierrez-Garcia, H. B. Schlegel, and J. Montgomery, “Combined experimental and computational investigation of the mechanism of nickel-catalyzed three-component addition processes”, Organometallics 23, 4636–4646 (2004). [Addition/Correction: 23, 5652 (2005)] [DOI: 10.1021/om049471a]
5. H. P. Hratchian and H. B. Schlegel, “Reaction path following using a Hessian based predictor-corrector algorithm”, J. Chem. Phys. 120, 9918–9924 (2004). [DOI: 10.1063/1.1724823]
4. J. E. Knox, H. P. Hratchian, N. Trease, J. Struble, H. B. Schlegel, and H. Holmes, “Using stationary points on potential energy surfaces to model intermolecular interactions and retention in gas chromatography”, Chromatographia 59, 329–334 (2004). [DOI: 10.1365/s10337-003-0161-0]
3. M. J. Frisch, et al., “GAUSSIAN 03”, Gaussian, Inc., Wallingford, CT (2004). [Visit Gaussian.com for more info.]
2. H. P. Hratchian and H. B. Schlegel, “Following reaction pathways using a damped classical trajectory algorithm”, J. Phys. Chem. A 106, 165–169 (2002). [DOI: 10.1021/jp012125b]
1. H. P. Hratchian, T. Prendergast, and M. C. Milletti, “Theoretical investigation of substituent effects on the silicon-metal bond for a series of transition metal-substituted base-stabilized silylene complexes”, Polyhedron 20, 209–213 (2001). [DOI: 10.1016/S0277-5387(00)00633-1]
69. S. Vaish, A. O. Gyamfi, C. D. Huizenga, H. P. Hratchian, and C. C. Jarrold, "Electronic structures of small stoichiometric ZnxOx clusters", J. Phys. Chem. A 128, 6450–6461 (2024). [DOI: 10.1021/acs.jpca.4c03613]
68. H. P. Hratchian, A. Karton, N. J. Mayhall, “Tribute to Krishnan Raghavachari”, J. Phys. Chem. A 13, 2523-2325 (2024). [DOI: 10.1021/acs.jpca.4c01320]
67. A. Y. Zamani, H. P. Hratchian, “∆-based composite models for calculating x-ray absorption and emission energies”, J. Chem. Phys. 159, 224109 (2023). [DOI: 10.1063/5.0178052]
66. A. Abou Taka, H. H. Corzo, A. Pribram-Jones, and H. P. Hratchian, “Good Vibrations: Calculating Excited State Frequencies Using Ground State Self-Consistent Field Models”, J. Chem. Theory Comput. 18, 7286–7297 (2022). [DOI: 10.1021/acs.jctc.2c00672]
65. J. M. Herbert, M. Head-Gordon, H. P. Hratchian, T. Head-Gordon, R. Amaro, A. Aspuru-Guzik, R. Hoffmann, C. Parish, C. M. Payne, and T. Van Voorhis, “Words Matter: On the Debate over Free Speech, Inclusivity, and Academic Excellence”, J. Phys. Chem. Lett. 13, 7100–7104 (2022). Guest Commentary [DOI: 10.1021/acs.jpclett.2c02242]
64. A. Y. Zamani, H. P. Hratchian, “Assessing the performance of ∆SCF and the diagonal second-order self-energy approximation for calculating vertical core excitation energies”, J. Chem. Phys. 157, 084115 (2022). [DOI: 10.1063/5.0100638]
63. S. I. Baker, M. Yaghoubi, S. Bidwell, S. L. Pierce, H. P. Hratchian, and R. .D. Baxter, “Enhanced Reactivity for Aromatic Bromination via Halogen-Bonding with Lactic Acid Derivatives”, J. Org. Chem. 87, 8492–8502 (2022). [DOI: 10.1021/acs.joc.2c00611]
62. A. Abou Taka, S. Lu, D. Gowland, T. J. Zuehlsdorff, H. H. Corzo, A. Pribram-Jones, L. Shi, H. P. Hratchian, and C. M. Isborn, “Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics Based Vibronic Spectra: The Case of Methylene Blue”, J. Chem. Theory Comput. 18, 3039–3051 (2022). [DOI: 10.1021/acs.jctc.1c01127]
61. H. Harb and H. P. Hratchian, “A Density Functional Theory Investigation of the Reaction of Water with Ce2O–”, Comput. Theor. Chem., 1209, 113603 (2022). [DOI: 10.1016/j.comptc.2022.113603]
60. H. H. Corzo, A. Abou Taka, A. Pribram-Jones, and H. P. Hratchian, “Using Projection Operators With Maximum Overlap Methods to Simplify Challenging Self- Consistent Field Optimization”, J. Comp. Chem. 43, 382–390 (2022). [DOI: 10.1002/jcc.26797]
59. J. L. Mason, H. Harb, A. Abou Taka, C. D. Huizenga, H. Corzo, H. P. Hratchian, and C. C. Jarrold, “New Photoelectron–Valence Electron Interactions Evident in the Photoelectron Spectrum of Gd2O– ”, J. Phys. Chem. A 125, 9892–9903 (2021). [DOI: 10.1021/acs.jpca.1c07818]
58. C. D. Huizenga, H. P. Hratchian, and C. C. Jarrold, “Lanthanide oxides: From diatomics to high-spin, strongly correlated homo- and heterometallic clusters”, J. Phys. Chem. A 125, 6315–6331 (2021). [DOI: 10.1021/acs.jpca.1c04253]
57. J. D. Galloway, C. Sarabia, J. C. Fettinger, H. P. Hratchian, and R. D. Baxter, "Versatile new reagent for nitrosation under mild conditions", Org. Lett. 23, 3253-3258 (2021). [DOI: 10.1063/5.0040454]
56. H. Harb and H. P. Hratchian, "ΔSCF Dyson orbitals and pole strengths from natural ionization orbitals", J. Chem. Phys. 154, 084104 (2021). [DOI: 10.1063/5.0040454]
55. J. L. Mason, H. Harb, A. Abou Taka, A. J. McMahon, C. D. Huizenga, H. Coro, H. P. Hratchian, and C. C. Jarrold, “Photoelectron spectra of Gd2O2– and nonmonotonic photon-energy-dependent variations in populations of close-lying neutral states", J. Phys. Chem. A 125, 857-866 (2021). Selected as an ACS Editors Choice. [DOI: 10.1021/acs.jpca.0c11002]
54. A. Abou Taka, M. C. Babin, X. Sheng, J. A. DeVine, D. M. Neumark, and H. P. Hratchian, “Unveiling the Coexistence of Cis and Trans Isomers in the Hydrolysis of ZrO2: A Coupled DFT and High-Resolution Photoelectron Spectroscopy Study”, J. Chem. Phys. 153, 244308 (2020). [DOI: 10.1063/5.0037636]
53. X. Sheng, L. M. Thompson, and H. P. Hratchian, “Predicting spin crossover gaps and exchange coupling constants for transition metal complexes: Improving Density Functional Theory with Approximate Projection”, J. Chem. Theory Comput. 16, 154-163 (2020). [DOI: 10.1021/acs.jctc.9b00387]
52. J. L. Mason, H. Harb, J. E. Topolski, H. P. Hratchian, and C. C. Jarrold, “Exceptionally Complex Electronic Structures of Lanthanide Oxides and Small Molecules”, Acc. Chem. Res. 52, 3265-3273 (2019). [DOI: 10.1021/acs.accounts.9b00474]
51. H. Harb, L. M. Thompson, and H. P. Hratchian, “On the Linear Geometry of Lanthanide Hydroxides (Ln−OH, Ln=La-Lu)”, Phys. Chem. Chem. Phys. 21, 21890-21897 (2019). [DOI: 10.1039/C9CP01560D]
50. L. C. Reimer, J. M. Leslie, S. L. Bidwell, C. M. Isborn, D. Lair, E. Menke, B. J. Stokes, and H. P. Hratchian, "Aiming Toward an Effective Hispanic Serving Chemistry Curriculum", In ACS Symposium Series. Growing Diverse STEM Communities: Methodology, Impact, and Evidence. edited by L. L. Winfield, G. Thomas, L. M. Watkins, and Z. S. Wilson-Kennedy (American Chemical Society, Washington, D.C.), 29-66 (2019) [DOI: 10.1021/bk-2019-1328.ch004]
49. L. M. Thompson and H. P. Hratchian, "On approximate projection models", Mol. Phys. 117, 1412-1429 (2019). (Dieter Cremer Memorial Issue). [DOI 10.1080/00268976.2018.1554828]
48. A. M. Hua, S. L. Bidwell, S. I. Baker, H. P. Hratchian, and R. D. Baxter, "Experimental and Theoretical Evidence for Nitrogen-Fluorine Halogen Bonding in Silver-Initiated Radical Flourinations", ACS Catal. 9, 3322-3326 (2019). [DOI: 10.1021/acscatal.9b00623]
47. J. L. Mason, H. Harb, C. D. Huizenga, J. C. Ewigleben, J. E. Topolski, H. P. Hratchian, C. C. Jarrold, “Electronic and Molecular Structures of the CeB6 Monomer” J. Phys. Chem. A 123, 2040-2048, (2019). (Hanna Reisler Festschrift) [DOI: 10.1021/acs.jpca.8b12399]
46. X. Cai, A. Tohti, C. Ramirez, H. Harb, J. Fettinger, H. P. Hratchian, B. Stokes, "Dispersion-Controlled Regioselective Acid-Catalyzed Intramolecular Hydroindolation of cis-Methindolylstyrenes to Access Tetrahydrobenzo[cd]indoles", Org. Lett. 21, 1574-1577 (2019). [DOI: 10.1021/acs.orglett.9b00043]
45. J. L. Mason, H. Harb, J. E. Topolski, H. P. Hratchian, C. C. Jarrold, “A tale of two stabilities: How one boron atom affects a switch in bonding motifs in CeO2Bx– (x = 2, 3) complexes,” J. Phys. Chem. A 122, 9879-9885. (2018) [DOI: 10.1021/acs.jpca.8b10446]
44. J. E. Topolski, J. O. Kafader, V. Marrero-Collon, S. S. Iyengar, H. P. Hratchian, and C. C. Jarrold, "Exotic electronic structures of SmxCe3-xOy (x = 0-3; y = 2-4) clusters, and the effect of high neutral density of low-lying states on photodetachment transition intensities", J. Chem. Phys. 149, 054305 (2018). [DOI: 10.1063/1.5043490]
43. J. A. DeVine, A. Abou Taka, M. C. Bablin, M. L. Weichman, H. P. Hratchian, and D. M.Neumark, “High-resolution photoelectron spectroscopy of TiO3H2–: Probing the TiO2– + H2O dissociative adduct”, J. Chem. Phys. 148, 222810 (2018). [DOI: 10.1063/1.5018414]
42.L. M. Thompson, C. C. Jarrold, and H. P. Hratchian, “Simulation of low energy photoelectron transitions in MoVO–”, J. Chem. Phys. 146, 104301 (2017). [DOI: 10.1063/1.4977418]
41. M. J. Frisch, et al., “GAUSSIAN 16”, Gaussian, Inc., Wallingford, CT (2016). [Visit Gaussian.com for more info.]
40. A. Petrone, P. Cimino, G. Donati, H. P. Hratchian, M. J. Frisch, and N. Rega, “On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path”, J. Chem. Theory Comput. 12, 4925–4933 (2016).[DOI: 10.1021/acs.jctc.6b00402]
39. L. M. Thompson, H. Harb, and H. P. Hratchian, “Natural Ionization Orbitals for interpreting electron detachment processes”, J. Chem. Phys. 144, 204117 (2016). [DOI: 10.1063/1.4951738]
38. D. Presti, F. Labat, A. Pedone, M. J. Frisch, H. P. Hratchian, I. Ciofini, M. C. Menziani, and C. Adamo, “Modeling emission features of salicylidene aniline molecular crystals: A QM/QM’ approach”, J. Comp. Chem. 37, 861-870 (2016). [DOI: 10.1002/jcc.24282]
37. S. Cummings, H. P. Hratchian, C. A. Reed, “The strongest acid: Protonation of carbon dioxide”, Angew. Chem. 128, 1404-1408 (2016). [DOI: 10.1002/ange.201509425]
36. L. M. Thompson and H. P. Hratchian, “Modeling the photoelectron spectra of MoNbO2– accounting for spin contamination in density functional theory”, J. Phys. Chem. A 119, 8744-8751 (2015). [DOI: 10.1021/acs.jpca.5b04625]
35. L. M. Thompson and H. P. Hratchian, “Second derivatives for approximate spin projection methods”, J. Chem. Phys. 142, 054106 (2015). [DOI: 10.1063/1.4907269]
34. D. Presti, F. Labat, A. Pedone, M. J. Frisch, H. P. Hratchian, M. C. Menziani, I. Ciofini, and C. Adamo, “A computational protocol for modeling thermochromic molecular crystals: Salicylidene aniline as a case study”, J. Chem. Theory Comput. 10, 5577-5585 (2014). [DOI: 10.1021/ct500868s]
33. L. M. Thompson and H. P. Hratchian, “Spin projection with double hybrid density functional theory”, J. Chem. Phys. 141, 034108 (2014). [DOI: 10.1063/1.4887361]
32. B. C. Gamoke, U. Das, H. P. Hratchian, and K. Raghavachari, "Divalent pseudoatoms for modeling of Si(100) surfaces", J. Chem. Phys. 139, 164708 (2013). [DOI: 10.1063/1.4825402]
31. H. P. Hratchian, “An efficient analytic gradient theory for approximate spin projection methods”, J. Chem. Phys. 138, 101101 (2013). [DOI: 10.1063/1.4795429]
30. H. P. Hratchian and E. Kraka, “Improved predictor-corrector integrators for evaluating reaction path curvature”, J. Chem. Theory Comput. 9, 1481-1488 (2013). [DOI: 10.1021/ct301021y]
29. H. P. Hratchian and X. S. Li, “Thirty years of geometry optimization in quantum chemistry and beyond: A tribute to Berny Schlegel”, J. Chem. Theory Comput. 8, 4853-4855 (2012). Invited Guest Editorial. [DOI: 10.1021/ct300950r]
28. H. P. Hratchian, “Using efficient predictor-corrector reaction path integrators for studies involving projected frequencies”, J. Chem. Theory Comput. 8, 5013-5019 (2012). [DOI: 10.1021/ct300407g]
27. H. P. Hratchian and M. J. Frisch, “Integrating steepest-descent reaction pathways for large molecules”, J. Chem. Phys. 134, 204103 (2011). [DOI: 10.1063/1.3593456]
26. H. P. Hratchian, A. V. Krukau, P. V. Parandekar, K. Raghavachari, M. J. Frisch, and T. Vreven, “QM:QM embedding using electronic densities within and ONIOM framework. Energies and analytic gradients”, J. Chem. Phys. 135, 014105 (2011). [DOI: 10.1063/1.3603450]
25. Labat, I. Coifini, H. P. Hratchian, K. Raghavachari, M. J. Frisch, and C. Adamo, “Insights into working principles of N3/TiO2 dye-sensitized solar cells from first principles modeling”, J. Phys. Chem. C 115, 4297-4306 (2011). [DOI: 10.1021/jp108917c]
24. H. P. Hratchian, M. J. Frisch, and H. B. Schlegel, “Steepest descent reaction path integration using a first-order predictor-corrector method”, J. Chem. Phys. 133, 224101 (2010). [DOI: 10.1063/1.3514202]
23. N. J. Mayhall, K. Raghavachari, and H. P. Hratchian, “ONIOM-based QM:QM electronic embedding method using Löwdin atomic charges: Energies and analytic gradients”, J. Chem. Phys. 132, 114107 (2010). [DOI: 10.1063/1.3315417]
22. J. L. Sonnenberg, H. P. Hratchian, and H. B. Schlegel, “Spin contamination in inorganic chemistry calculations”, In Computational Inorganic and Bioinorganic Chemistry, edited by E. I. Solomon, R. B. King, and R. A. Scott (Wiley, Chichester, U.K.), 173-186 (2009). [DOI: 10.1002/0470862106.ia617]
21. F. Labat, I. Ciofini, H. P. Hratchian, M. J. Frisch, K. Raghavachari, and C. Adamo, “First principles modeling of eosin-loaded ZnO films: A step toward the understanding of a dye-sensitized solar cell performances”, J. Am. Chem. Soc. 131, 14290-14298 (2009). [DOI: 10.1021/ja902833s]
20. M. J. Frisch, et al., “GAUSSIAN 09”, Gaussian, Inc., Wallingford, CT (2009). [Visit Gaussian.com for more info.]
19. P. V. Parandekar, H. P. Hratchian, and K. Raghavachari, “Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges”, J. Chem. Phys. 129, 145101 (2008). [DOI: 10.1063/1.2976570]
18. H. P. Hratchian, P. V. Parandekar, K. Raghavachari, M. J. Frisch, and T. Vreven, “QM:QM electronic embedding using Mulliken atomic charges. Energies and analytic gradients in an ONIOM framework”, J. Chem. Phys. 128, 034107 (2008). [DOI: 10.1063/1.2814164]
17. R. Shakya, S. S. Hindo, L. Wu, M. Allard, M. J. Heeg, H. P. Hratchian, B. R. McGarvey, S. R. P. da Rocha, and C. N. Verani, “Archetypical modeling and amphiphilic behavior of cobalt(II)-containing soft-materials with asymmetric tridentate ligands”, Inorg. Chem. 46, 9808-9818 (2007). [DOI: 10.1021/ic7011815]
16. R. Shakya, S. S. Hindo, L. Wu, S. Ni, M. Allard, M. J. Heeg, S. R. P. da Rocha, G. T. Yee, H. P. Hratchian, and C. N. Verani, “Amphiphilic and magnetic properties of a new class of cluster-bearing [L2Cu4(μ4-O)(μ2-carboxylato)4] soft materials”, Chem. Eur. J. 13, 9948-9956 (2007). [DOI: 10.1002/chem.200700875]
15. H. E. Herbert, M. D. Halls, H. P. Hratchian, and K. Raghavachari, “Hydrogen-bonding interactions in peptide nucleic acid: A comparative study”, J. Phys. Chem. B, 110, 3336-3343 (2006). [DOI: 10.1021/jp055865j]
14. R. Shakya, C. Imbert, H. P. Hratchian, M. Lanznaster, M. J. Heeg, H. B. Schlegel, B. R. McGarvey, and C. N. Verani, “Structural, spectroscopic, and electrochemical behavior of trans-phenolato cobalt(III) complexes of asymmetric NN’O ligands as archetypes for metallomesogens”, Dalton Trans. 2517–2525 (2006). (Selected as the issue’s “Hot Article”.) [DOI: 10.1039/b514190g]
13. J. E. Knox, M. D. Halls, H. P. Hratchian, H. B. Schlegel, “Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis”, Phys. Chem. Chem. Phys. 8, 1371–1377 (2006). [DOI: 10.1039/b514898g]
12. M. Lanznaster, H. P. Hratchian, M. J. Heeg, L. M. Hryhorczuk, B. R. McGarvey, H. B. Schlegel, and C. N. Verani, “Structural and electronic behavior of unprecedented five-coordinate iron(III) and gallium(III) complexes with a new phenol-rich electroactive ligand”, Inorg. Chem. 45, 955–957 (2006). [DOI: 10.1021/ic050809i]
11. H. P. Hratchian, J. L. Sonnenberg, P. J. Hay, R. L. Martin, B. E. Bursten, and H. B. Schlegel, “Theoretical investigation of uranyldihydroxide: Oxo ligand exchange, water catalysis, and vibrational spectra”, J. Phys. Chem. A 109, 8579–8586 (2005). [DOI: 10.1021/jp052616m]
10. C. Imbert, H. P. Hratchian, M. Lanznaster, M. J. Heeg, L. M. Hryhorczuk, B. R. McGarvey, H. B. Schlegel, and C. N. Verani, “Influence of ligand rigidity and ring substitution on the structural and electronic behavior of trivalent iron and gallium complexes with asymmetric tridentate ligands”, Inorg. Chem. 44, 7414– 7422 (2005). [DOI: 10.1021/ic050658j]
9. H. P. Hratchian and H. B. Schlegel, “Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces”, In Theory and Applications of Computational Chemistry: The First 40 Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam), 195–249 (2005). [Link]
8. H. P. Hratchian and H. B. Schlegel, “Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method”, J. Chem. Theory Comput. 1, 61–69 (2005). [DOI: 10.1021/ct0499783]
7. H. P. Hratchian and M. C. Milletti, “First principles determination of 99Ru chemical shifts using moderately sized basis sets”, J. Mol. Struc. 724, 45–52 (2005). [DOI: 10.1016/j.theochem.2004.12.020]
6. H.P.Hratchian, S. K. Chowdury, V. M. Gutierrez-Garcia, H. B. Schlegel, and J. Montgomery, “Combined experimental and computational investigation of the mechanism of nickel-catalyzed three-component addition processes”, Organometallics 23, 4636–4646 (2004). [Addition/Correction: 23, 5652 (2005)] [DOI: 10.1021/om049471a]
5. H. P. Hratchian and H. B. Schlegel, “Reaction path following using a Hessian based predictor-corrector algorithm”, J. Chem. Phys. 120, 9918–9924 (2004). [DOI: 10.1063/1.1724823]
4. J. E. Knox, H. P. Hratchian, N. Trease, J. Struble, H. B. Schlegel, and H. Holmes, “Using stationary points on potential energy surfaces to model intermolecular interactions and retention in gas chromatography”, Chromatographia 59, 329–334 (2004). [DOI: 10.1365/s10337-003-0161-0]
3. M. J. Frisch, et al., “GAUSSIAN 03”, Gaussian, Inc., Wallingford, CT (2004). [Visit Gaussian.com for more info.]
2. H. P. Hratchian and H. B. Schlegel, “Following reaction pathways using a damped classical trajectory algorithm”, J. Phys. Chem. A 106, 165–169 (2002). [DOI: 10.1021/jp012125b]
1. H. P. Hratchian, T. Prendergast, and M. C. Milletti, “Theoretical investigation of substituent effects on the silicon-metal bond for a series of transition metal-substituted base-stabilized silylene complexes”, Polyhedron 20, 209–213 (2001). [DOI: 10.1016/S0277-5387(00)00633-1]