Tutorials - MSER

Maximally Stable Extremal Regions (MSER) is a feature detector; Like the SIFT detector, the MSER algorithm extracts from an image I a number of co-variant regions, called MSERs. An MSER is a stable connected component of some level sets of the image I. Optionally, elliptical frames are attached to the MSERs by fitting ellipses to the regions. For a more in-depth explanation of the MSER detector, see our API reference for MSER

Extracting MSERs

Each MSERs can be identified uniquely by (at least) one of its pixels x, as the connected component of the level set at level I(x) which contains x. Such a pixel is called seed of the region.

To demonstrate the usage of the MATLAB command vl_mser we open MATLAB and load a test image

pfx = fullfile(vl_root,'data','spots.jpg') ;
I = imread(pfx) ;
image(I) ; 
A test image.

We then convert the image to a format that is suitable for the vl_mser command.

I = uint8(rgb2gray(I)) ;

We compute the region seeds and the elliptical frames by

[r,f] = vl_mser(I,'MinDiversity',0.7,...
                'MaxVariation',0.2,...
                'Delta',10) ;

We plot the region frames by

f = vl_ertr(f) ;
vl_plotframe(f) ;

vl_ertr transposes the elliptical frame and is required here because the vl_mser code assumes that the row index is the first index, but the normal image convention assumes that this is the x (column) index.

Plotting the MSERs themselves is a bit more involved as they have arbitrary shape. To this end, we exploit two functions: vl_erfill, which, given an image and a region seed, returns a list of the pixels belonging to that region, and the MATLAB built-in contour, which draws the contour lines of a function. We start by

M = zeros(size(I)) ;
for x=r'
 s = vl_erfill(I,x) ;
 M(s) = M(s) + 1;
end

which computes a matrix M whose value are equal to the number of overlapping extremal regions. Next, we use M and contour to display the region boundaries:

figure(2) ;
clf ; imagesc(I) ; hold on ; axis equal off; colormap gray ;
[c,h]=contour(M,(0:max(M(:)))+.5) ;
set(h,'color','y','linewidth',3) ;
Extracted MSERs (left) and fitted ellipses (right).

MSER parameters

In the original formulation, MSERs are controlled by a single parameter Δ, which controls how the stability is calculated. Its effect is shown in the figure below.

Effect of Δ. We start with a synthetic image which has an intensity profile as shown. The bumps have heights equal to 32, 64, 96, 128 and 160. As we increase Δ, fewer and fewer regions are detected until finally at Δ=160 there is no region R which is stable at R(+Δ).

The stability of an extremal region R is the inverse of the relative area variation of the region R when the intensity level is increased by Δ. Formally, the variation is defined as: