Frequency and solvent dependence of nonlinear optical properties of molecules

Takimoto Y, Isborn CM, Eichinger BE, Rehr JJ, Robinson BH. Frequency and solvent dependence of nonlinear optical properties of molecules. Journal of Physical Chemistry C. 2008;112:8016–8021.

Abstract

Real-time, time-dependent density functional theory (RT-TDDFT) is used for the evaluation of the frequency dependence of the polarizability and hyperpolarizability of molecules intended for application in electro-optic devices. These first-principles computational methods are powerful but costly. Significantly easier calculations based on a simplified version of second-order time-dependent perturbation theory, the ‘‘two-state model’’ (TSM), are here used to provide another estimate of the frequency dependence. Furthermore, the TSM calculations can be done in the presence of a dielectric reaction field (the polarizable continuum model method) to provide estimates of the solvent dependent properties in addition to the frequency-dependent properties. Here we use RT-TDDFT to assess the accuracy of the frequency dependence of the TS, and a ground-state finite field calculation to assess the effect of additional states on the static hyperpolarizability. Both frequency and dielectric responses are important for evaluation of the suitability of molecules in nonlinear optical applications.
Last updated on 07/25/2022