CSE 135: Introduction to Theory of Computation
Pushdown Automata

Sungjin Im

University of California, Merced

03-05-2015
So far we considered automata with finite memory or machines with infinite memory.

Today: automata with access to an infinite stack — infinite memory but restricted access.

The stack can contain an unlimited number of characters. But can read/erase only the top of the stack: pop. Can add to only the top of the stack: push.

On longer inputs, automaton may have more items in the stack.
Restricted Infinite Memory: The Stack

- So far we considered automata with finite memory or machines with infinite memory.
Restricted Infinite Memory: The Stack

- So far we considered automata with finite memory or machines with infinite memory.
- Today: automata with access to an infinite stack — infinite memory but restricted access.
Restricted Infinite Memory: The Stack

- So far we considered automata with finite memory or machines with infinite memory.
- Today: automata with access to an infinite stack — infinite memory but restricted access.
- The stack can contain an unlimited number of characters.
Restricted Infinite Memory: The Stack

- So far we considered automata with finite memory or machines with infinite memory.
- Today: automata with access to an infinite stack — infinite memory but restricted access.
- The stack can contain an unlimited number of characters. But
 - can read/erase only the top of the stack: pop.
Restricted Infinite Memory: The Stack

- So far we considered automata with finite memory or machines with infinite memory.
- Today: automata with access to an infinite stack — infinite memory but restricted access.
- The stack can contain an unlimited number of characters. But
 - can read/erase only the top of the stack: pop
 - can add to only the top of the stack: push
Restricted Infinite Memory: The Stack

- So far we considered automata with finite memory or machines with infinite memory.
- Today: automata with access to an infinite stack — infinite memory but restricted access.
- The stack can contain an unlimited number of characters. But
 - can read/erase only the top of the stack: pop
 - can add to only the top of the stack: push
- On longer inputs, automaton may have more items in the stack.
Keeping Count Using the Stack

- An automaton can use the stack to recognize $\{0^n1^n\}$
Keeping Count Using the Stack

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
Keeping Count Using the Stack

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
Keeping Count Using the Stack

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
 - (If a 0 comes after a 1, reject)
Keeping Count Using the Stack

- An automaton can use the stack to recognize \(\{0^n1^n\} \)
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
 - (If a 0 comes after a 1, reject)
 - If attempt to pop an empty stack, reject
An automaton can use the stack to recognize \(\{0^n1^n\} \)
- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0
- (If a 0 comes after a 1, reject)
- If attempt to pop an empty stack, reject
- If stack not empty at the end, reject
An automaton can use the stack to recognize \(\{0^n1^n\} \)

- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0
- (If a 0 comes after a 1, reject)
- If attempt to pop an empty stack, reject
- If stack not empty at the end, reject
- Else accept
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ()() and () are not
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
 - e.g. (((()))) is balanced, but ()(() and () are not
 - On seeing a (push it on the stack
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. ((())) is balanced, but ()() and () are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. \((())()\) is balanced, but \)(() and \(()\) are not
 - On seeing a \(\) push it on the stack
 - On seeing a \) pop a \(\) from the stack
 - If attempt to pop an empty stack, reject
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. \((())()\) is balanced, but \())()\) and \(()\) are not
 - On seeing a \(\) push it on the stack
 - On seeing a \(\) pop a \(\) from the stack
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject
Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. ((())) is balanced, but (())() and ()() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject
 - Else accept
Pushdown Automata (PDA)

Like an NFA with ϵ-transitions, but with a stack

- Stack depth unlimited: not a finite-state machine
- Non-deterministic: accepts if any thread of execution accepts

A Pushdown Automaton
Pushdown Automata (PDA)

- Like an NFA with \(\varepsilon \)-transitions, but with a stack
Pushdown Automata (PDA)

- Like an NFA with ϵ-transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine
Pushdown Automata (PDA)

- Like an NFA with ϵ-transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine
 - Non-deterministic: accepts if any thread of execution accepts
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:

\[q_1, a, x \rightarrow y \]

If at \(q_1 \) with next input symbol \(a \) and top of stack \(x \), then can consume \(a \), pop \(x \), push \(y \) onto stack and move to \(q_2 \) (any of \(a, x, y \) may be \(\epsilon \))
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none)
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 1. push a symbol onto stack (or push none)
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 1. push a symbol onto stack (or push none)
 2. change to a new state
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 1. push a symbol onto stack (or push none)
 2. change to a new state

If at q_1, with next input symbol a and top of stack x, then can consume a, pop x, push y onto stack and move to q_2
Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 1. push a symbol onto stack (or push none)
 2. change to a new state

If at q_1, with next input symbol a and top of stack x, then can consume a, pop x, push y onto stack and move to q_2 (any of a, x, y may be ϵ)
A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q = Finite set of states
- Σ = Finite input alphabet
- Γ = Finite stack alphabet
- q_0 = Start state
- $F \subseteq Q$ = Accepting/final states
- $\delta : Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\}))$
Matching Parenthesis: PDA construction

- First push a "bottom-of-the-stack" symbol $ and move to q_0.
- On seeing a (push it onto the stack.
- On seeing a) pop if a (is in the stack.
- Pop $ and move to final state q_F.
Matching Parenthesis: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to q

Matching Parenthesis: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to q
- On seeing a (push it onto the stack
Matching Parenthesis: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to q
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack
Matching Parenthesis: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to q
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack
- Pop $ and move to final state q_F
Matching Parenthesis: PDA execution

![Diagram of PDA execution]

- **Input**: (()) ()
- **Stack**: $ \rightarrow \text{stack}$
- **State**: q

The diagram illustrates the PDA execution for matching parentheses.
Matching Parenthesis: PDA execution
Matching Parenthesis: PDA execution

input

q

stack

$\$
Matching Parenthesis: PDA execution

\[(()) () \]

\[\text{input} \]

\[q \]

\[\$ \text{ stack} \]

\[() () \]

\[q \]

\[(()) \]

\[(()) \]

\[q \]

\[() \]

\[() \]

\[q \]

\[() \]

\[q \]

\[() \]

\[q \]

\[() \]
Matching Parenthesis: PDA execution

input

((()())(()))

$ stack

)())((())

q

q
Matching Parenthesis: PDA execution
Palindrome: PDA construction

First push a "bottom-of-the-stack" symbol $ and move to a pushing state

Push input symbols onto the stack

Non-deterministically move to a popping state (with or without consuming a single input symbol)

If next input symbol is same as top of stack, pop

If $ on top of stack move to accept state
Palindrome: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to a pushing state

- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
- If $ on top of stack move to accept state

Transition rules:
- $, \epsilon \rightarrow $ from q_0
- $, \epsilon \rightarrow $ from q_\downarrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, $ \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\downarrow
- $, \epsilon \rightarrow $ from q_\downarrow
- $, a \rightarrow $ from q_\downarrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
- $, a \rightarrow $ from q_\uparrow
- $, \epsilon \rightarrow $ from q_\uparrow
First push a “bottom-of-the-stack” symbol $ and move to a pushing state

Push input symbols onto the stack
Palindrome: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
Palindrome: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
Palindrome: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
- If $ on top of stack move to accept state
Palindromes: PDA execution

$q \downarrow$

\[\text{madam} \]

$\$\quad \downarrow$

$q \uparrow$

$q \uparrow$

$q \uparrow$
Palindrome: PDA execution
Palindrome: PDA execution
Palindrome: PDA execution
Palindromes: PDA execution
Palindromes: PDA execution
Palindrome: PDA execution
Instantaneous Description

In order to describe a machine’s execution, we need to capture a “snapshot” of the machine that completely determines future behavior.
Instantaneous Description

In order to describe a machine’s execution, we need to capture a “snapshot” of the machine that completely determines future behavior.

- In the case of an NFA (or DFA), it is the state contents.
Instantaneous Description

In order to describe a machine’s execution, we need to capture a “snapshot” of the machine that completely determines future behavior.

- In the case of an NFA (or DFA), it is the state contents.
- In the case of a PDA, it is the state + stack contents.
Instantaneous Description

In order to describe a machine’s execution, we need to capture a “snapshot” of the machine that completely determines future behavior

- In the case of an NFA (or DFA), it is the state contents
- In the case of a PDA, it is the state + stack contents

Definition

An instantaneous description of a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a pair $\langle q, \sigma \rangle$, where $q \in Q$ and $\sigma \in \Gamma^*$
Computation

Definition
For a PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, F) \), string \(w \in \Sigma^* \), and instantaneous descriptions \(\langle q_1, \sigma_1 \rangle \) and \(\langle q_2, \sigma_2 \rangle \), we say \(\langle q_1, \sigma_1 \rangle \xrightarrow{w} P \langle q_2, \sigma_2 \rangle \) iff there is a sequence of instantaneous descriptions \(\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \ldots \langle r_k, s_k \rangle \) and a sequence \(x_1, x_2, \ldots x_k \), where for each \(i \), \(x_i \in \Sigma \cup \{\epsilon\} \), such that

- \(w = x_1 x_2 \cdots x_k \),
Definition
For a PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, F) \), string \(w \in \Sigma^* \), and instantaneous descriptions \(\langle q_1, \sigma_1 \rangle \) and \(\langle q_2, \sigma_2 \rangle \), we say \(\langle q_1, \sigma_1 \rangle \xrightarrow{w} P \langle q_2, \sigma_2 \rangle \) iff there is a sequence of instantaneous descriptions \(\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \ldots \langle r_k, s_k \rangle \) and a sequence \(x_1, x_2, \ldots x_k \), where for each \(i \), \(x_i \in \Sigma \cup \{\varepsilon\} \), such that

1. \(w = x_1x_2\cdots x_k \),
2. \(r_0 = q_1 \), and \(s_0 = \sigma_1 \),
Computation

Definition
For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w} P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instantaneous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \ldots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \ldots x_k$, where for each i, $x_i \in \Sigma \cup \{\epsilon\}$, such that

- $w = x_1 x_2 \cdots x_k$,
- $r_0 = q_1$, and $s_0 = \sigma_1$,
- $r_k = q_2$, and $s_k = \sigma_2$.

Computation

Definition
For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w} P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instantaneous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \ldots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \ldots x_k$, where for each i, $x_i \in \Sigma \cup \{\epsilon\}$, such that

- $w = x_1 x_2 \cdots x_k$,
- $r_0 = q_1$, and $s_0 = \sigma_1$,
- $r_k = q_2$, and $s_k = \sigma_2$,
- for every i, $(r_{i+1}, b) \in \delta(r_i, x_{i+1}, a)$ such that $s_i = as$ and $s_{i+1} = bs$, where $a, b \in \Gamma \cup \{\epsilon\}$ and $s \in \Gamma^*$
Example of Computation

Example

\[\langle q_0, \epsilon \rangle \xrightarrow{()()} \langle q, ((\$) \rangle \text{ because} \]
Example of Computation

Example

$$\langle q_0, \epsilon \rangle \xrightarrow{()} \langle q, (\langle \rangle \rangle \rangle because

$$\langle q_0, \epsilon \rangle \xrightarrow{x_1=\epsilon} \langle q, \$ \rangle \xrightarrow{x_2=} \langle q, (\$ \rangle \xrightarrow{x_3=} \langle q, ((\$ \rangle \xrightarrow{x_4=} \langle q, (\$ \rangle \xrightarrow{x_5=} \langle q, (\$ \rangle$$
Acceptance/Recognition

Definition
A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff

\[\text{for some } q \in F \text{ and } \sigma \in \Gamma^*, \langle q_0, \epsilon \rangle \xrightarrow{P} \langle q, \sigma \rangle \]
Acceptance/Recognition

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w} P \langle q, \sigma \rangle$
Acceptance/Recognition

Definition
A PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, F) \) accepts a string \(w \in \Sigma^* \) iff for some \(q \in F \) and \(\sigma \in \Gamma^* \), \(\langle q_0, \epsilon \rangle \xrightarrow{w} P \langle q, \sigma \rangle \)

Definition
The language recognized/accepted by a PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, F) \) is \(L(P) = \{ w \in \Sigma^* \mid P \text{ accepts } w \} \).
Acceptance/Recognition

Definition
A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w} P \langle q, \sigma \rangle$

Definition
The language recognized/accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is $L(P) = \{ w \in \Sigma^* | P \text{ accepts } w \}$. A language L is said to be accepted/recognized by P if $L = L(P)$.
Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally, …
Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally, ...

Theorem

For every CFG G, *there is a PDA* P *such that* $L(G) = L(P)$. *In addition, for every PDA* P, *there is a CFG* G *such that* $L(P) = L(G)$.

Proof. Skipped. \square
CFGs and PDAs have equivalent expressive powers. More formally, ...

Theorem

For every CFG G, there is a PDA P such that $L(G) = L(P)$. In addition, for every PDA P, there is a CFG G such that $L(P) = L(G)$. Thus, L is context-free iff there is a PDA P such that $L = L(P)$.

Proof. Skipped. □
Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally, ...

Theorem

For every CFG G, there is a PDA P such that $L(G) = L(P)$. In addition, for every PDA P, there is a CFG G such that $L(P) = L(G)$. Thus, L is context-free iff there is a PDA P such that $L = L(P)$.

Proof.

Skipped. □