CSE 135: Introduction to Theory of Computation
Rice’s Theorem and Closure Properties

Sungjin Im

University of California, Merced

04-21-2015
Mapping Reductions

Definition
A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine M that on every input w halts with $f(w)$ on the tape.

Definition
A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to a language B is a computable function $f : \Sigma^* \to \Sigma^*$ such that

$$w \in A \text{ if and only if } f(w) \in B$$

In this case, we say A is reducible to B, and we denote it by $A \leq_m B$.
Proposition

If $A \leq_m B$ and B is r.e., then A is r.e.

Proof.
Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is

On input w
- Compute $f(w)$
- Run M_B on $f(w)$
- Accept if M_B accepts, and reject if M_B rejects \square

Corollary

If $A \leq_m B$ and A is not r.e., then B is not r.e.
Reductions and Decidability

Proposition

If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.

Proof.

Let \(f \) be a reduction from \(A \) to \(B \) and let \(M_B \) be a Turing Machine deciding \(B \). Then a Turing machine that decides \(A \) is

On input \(w \)

- Compute \(f(w) \)
- Run \(M_B \) on \(f(w) \)
- Accept if \(M_B \) accepts, and reject if \(M_B \) rejects

\(\square \)

Corollary

If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.
The Halting Problem

Proposition

The language $\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.
Recall $\text{A}_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $\text{A}_{\text{TM}} \leq_m \text{HALT} \implies \text{HALT}$ undecidable.
Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows:

On input x

Run M on x

If M accepts then halt and accept
If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w.

The Halting Problem

Proposition

The language $\text{HALT} = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$ is undecidable.

Proof.
Recall $A_{TM} = \{\langle M, w \rangle \mid w \in L(M)\}$ is undecidable. Will give reduction f to show $A_{TM} \leq_m \text{HALT} \implies \text{HALT}$ undecidable.

Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows:

On input x

Run M on x

If M accepts then halt and accept
If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in \text{HALT}$
Proposition

The language \(E_{TM} = \{ M \mid L(M) = \emptyset \} \) is not decidable.

Note: in fact, \(E_{TM} \) is not recognizable.

Proof. Recall \(A_{TM} = \{ \langle M, w \rangle \mid w \in L(M) \} \) is undecidable. For the sake of contradiction, suppose there is a decider \(B \) for \(E_{TM} \). Then we first transform \(\langle M, w \rangle \) to \(\langle M_1 \rangle \) which is the following:

On input \(x \)
- If \(x \neq w \), reject
- Else run \(M \) on \(w \), and accept if \(M \) accepts \(w \), and accept if \(B \) rejects \(\langle M_1 \rangle \), and rejects if \(B \) accepts \(\langle M_1 \rangle \).

Then we show that (1) if \(\langle M, w \rangle \in A_{TM} \), then accept, and (2) \(\langle M, w \rangle \in A_{TM} \), then reject. (how?) This implies \(A_{TM} \) is decidable, which is a contradiction. □
Emptiness of Turing Machines

Proposition

The language \(E_{\text{TM}} = \{ M \mid L(M) = \emptyset \} \) is not decidable.

Note: in fact, \(E_{\text{TM}} \) is not recognizable.

Proof.

Recall \(A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \} \) is undecidable.
Proposition

The language $E_{\text{TM}} = \{ M \mid L(M) = \emptyset \}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider B for E_{TM}.

Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

On input x
If $x \neq w$, reject
Else run M on w, and accept if M accepts w, and accept if B rejects $\langle M_1 \rangle$, and rejects if B accepts $\langle M_1 \rangle$.

Then we show that (1) if $\langle M, w \rangle \in A_{\text{TM}}$, then accept, and (2) $\langle M, w \rangle \in A_{\text{TM}}$, then reject. (how?)

This implies A_{TM} is decidable, which is a contradiction. □
Proposition

The language $E_{TM} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.
Recall $A_{TM} = \{\langle M, w \rangle \mid w \in L(M)\}$ is undecidable. For the sake of contradiction, suppose there is a decider B for E_{TM}. Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

On input x
- If $x \neq w$, reject
- else run M on w, and accept if M accepts w

, and accept if B rejects $\langle M_1 \rangle$, and rejects if B accepts $\langle M_1 \rangle$.
Emptiness of Turing Machines

Proposition

The language \(E_{\operatorname{TM}} = \{ M \mid L(M) = \emptyset \} \) is not decidable.

Note: in fact, \(E_{\operatorname{TM}} \) is not recognizable.

Proof.

Recall \(A_{\operatorname{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \} \) is undecidable. For the sake of contradiction, suppose there is a decider \(B \) for \(E_{\operatorname{TM}} \). Then we first transform \(\langle M, w \rangle \) to \(\langle M_1 \rangle \) which is the following:

On input \(x \)

- If \(x \neq w \), reject
- else run \(M \) on \(w \), and accept if \(M \) accepts \(w \)

, and accept if \(B \) rejects \(\langle M_1 \rangle \), and rejects if \(B \) accepts \(\langle M_1 \rangle \).

Then we show that (1) if \(\langle M, w \rangle \in A_{\operatorname{TM}} \), then accept, and (2) \(\langle M, w \rangle \in A_{\operatorname{TM}} \), then reject. (how?)
Emptiness of Turing Machines

Proposition

The language $E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.
Recall $A_{\text{TM}} = \{\langle M, w \rangle \mid w \in L(M)\}$ is undecidable. For the sake of contradiction, suppose there is a decider B for E_{TM}. Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

On input x

If $x \neq w$, reject

else run M on w, and accept if M accepts w

, and accept if B rejects $\langle M_1 \rangle$, and rejects if B accepts $\langle M_1 \rangle$.

Then we show that (1) if $\langle M, w \rangle \in A_{\text{TM}}$, then accept, and (2) $\langle M, w \rangle \in A_{\text{TM}}$, then reject. (how?) This implies A_{TM} is decidable, which is a contradiction. □
Proposition

The language \(\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \} \) is undecidable.
Checking Regularity

Proposition

The language \(\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \} \) is undecidable.

Proof.

We give a reduction \(f \) from \(A_{\text{TM}} \) to \(\text{REGULAR} \).
Proposition

The language \(\text{REGULAR} = \{M \mid L(M) \text{ is regular}\} \) is undecidable.

Proof.

We give a reduction \(f \) from \(A_{\text{TM}} \) to \(\text{REGULAR} \). Let \(f(\langle M, w \rangle) = N \), where \(N \) is a TM that works as follows:

On input \(x \)

- If \(x \) is of the form \(0^n1^n \) then accept \(x \)
- else run \(M \) on \(w \) and accept \(x \) only if \(M \) does
Proposition

The language \(\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \} \) is undecidable.

Proof.

We give a reduction \(f \) from \(A_{\text{TM}} \) to \(\text{REGULAR} \). Let
\[
f(\langle M, w \rangle) = N,
\]
where \(N \) is a TM that works as follows:

On input \(x \)
- If \(x \) is of the form \(0^n1^n \) then accept \(x \)
- Else run \(M \) on \(w \) and accept \(x \) only if \(M \) does

If \(w \in L(M) \) then \(L(N) = \)
Proposition

The language \(\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \} \) is undecidable.

Proof.

We give a reduction \(f \) from \(A_{TM} \) to \(\text{REGULAR} \). Let \(f(\langle M, w \rangle) = N \), where \(N \) is a TM that works as follows:

On input \(x \):

- If \(x \) is of the form \(0^n1^n \) then accept \(x \)
- Else run \(M \) on \(w \) and accept \(x \) only if \(M \) does

If \(w \in L(M) \) then \(L(N) = \Sigma^* \).
Checking Regularity

Proposition
The language $\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \}$ is undecidable.

Proof.
We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x
- If x is of the form 0^n1^n then accept x
- Else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) =$
Checking Regularity

Proposition

The language \(\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \} \) is undecidable.

Proof.

We give a reduction \(f \) from \(A_{\text{TM}} \) to \(\text{REGULAR} \). Let \(f(\langle M, w \rangle) = N \), where \(N \) is a TM that works as follows:

On input \(x \)

- If \(x \) is of the form \(0^n1^n \) then accept \(x \)
- Else run \(M \) on \(w \) and accept \(x \) only if \(M \) does

If \(w \in L(M) \) then \(L(N) = \Sigma^* \). If \(w \notin L(M) \) then \(L(N) = \{ 0^n1^n \mid n \geq 0 \} \).
Proposition

The language \(\text{REGULAR} = \{ M \mid L(M) \text{ is regular} \} \) is undecidable.

Proof.

We give a reduction \(f \) from \(A_{\text{TM}} \) to \(\text{REGULAR} \). Let \(f(\langle M, w \rangle) = N \), where \(N \) is a TM that works as follows:

On input \(x \)

- If \(x \) is of the form \(0^n1^n \) then accept \(x \)
- Else run \(M \) on \(w \) and accept \(x \) only if \(M \) does

If \(w \in L(M) \) then \(L(N) = \Sigma^* \). If \(w \notin L(M) \) then \(L(N) = \{ 0^n1^n \mid n \geq 0 \} \). Thus, \(\langle N \rangle \in \text{REGULAR} \) if and only if \(\langle M, w \rangle \in A_{\text{TM}} \). \(\square \)
Checking Equality

Proposition

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \text{ is not r.e.} \]
Proposition

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \text{ is not r.e.} \]

Proof.

We will give a reduction \(f \) from \(E_{TM} \) (assume that we know \(E_{TM} \) is R.E.) to \(EQ_{TM} \).
Checking Equality

Proposition

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \] is not r.e.

Proof.

We will give a reduction \(f \) from \(E_{TM} \) (assume that we know \(E_{TM} \) is R.E.) to \(EQ_{TM} \). Let \(M_1 \) be the Turing machine that on any input, halts and rejects
Proposition
\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \text{ is not r.e.} \]

Proof.
We will give a reduction \(f \) from \(E_{TM} \) (assume that we know \(E_{TM} \) is R.E.) to \(EQ_{TM} \). Let \(M_1 \) be the Turing machine that on any input, halts and rejects i.e., \(L(M_1) = \emptyset \). Take \(f(M) = \langle M, M_1 \rangle \).
Checking Equality

Proposition

\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \text{ is not r.e.} \]

Proof.

We will give a reduction \(f \) from \(E_{\text{TM}} \) (assume that we know \(E_{\text{TM}} \) is R.E.) to \(EQ_{\text{TM}} \). Let \(M_1 \) be the Turing machine that on any input, halts and rejects i.e., \(L(M_1) = \emptyset \). Take \(f(M) = \langle M, M_1 \rangle \).

Observe \(M \in E_{\text{TM}} \) iff \(L(M) = \emptyset \) iff \(L(M) = L(M_1) \) iff \(\langle M, M_1 \rangle \in EQ_{\text{TM}} \). □
Checking Properties

Given M

- Does $L(M)$ contain M?
- Is $L(M)$ non-empty?
- Is $L(M)$ empty?
- Is $L(M)$ infinite?
- Is $L(M)$ finite?
- Is $L(M)$ co-finite (i.e., is $\overline{L(M)}$, finite)?
- Is $L(M) = \Sigma^*$?

Which of these properties can be decided?

None! By Rice's Theorem
Checking Properties

Given M

Does $L(M)$ contain M?
Is $L(M)$ non-empty? \{ Undecidable \}
Is $L(M)$ empty?
Is $L(M)$ infinite?
Is $L(M)$ finite?
Is $L(M)$ co-finite (i.e., is $\overline{L(M)}$ finite)?
Is $L(M) = \Sigma^*$? \{ Undecidable \}

Which of these properties can be decided? None!

By Rice's Theorem
Checking Properties

Given M

Does $L(M)$ contain M? \quad \{ \text{Undecidable} \}
Is $L(M)$ non-empty? \quad \text{Undecidable}
Is $L(M)$ empty? \quad \text{Undecidable}
Is $L(M)$ infinite? \quad \text{Undecidable}
Is $L(M)$ finite? \quad \text{Undecidable}
Is $L(M)$ co-finite (i.e., is $\overline{L(M)}$ finite)?
Is $L(M) = \Sigma^*$?

Which of these properties can be decided? None! By Rice’s Theorem
Properties

Definition
A *property of languages* is simply a set of languages.
Properties

Definition
A *property of languages* is simply a set of languages. We say L *satisfies* the property \mathbb{P} if $L \in \mathbb{P}$.
Properties

Definition
A *property of languages* is simply a set of languages. We say \(L \) *satisfies* the property \(\mathcal{P} \) if \(L \in \mathcal{P} \).

Definition
For any property \(\mathcal{P} \), define language \(L_{\mathcal{P}} \) to consist of Turing Machines which accept a language in \(\mathcal{P} \):

\[
L_{\mathcal{P}} = \{ M \mid L(M) \in \mathcal{P} \}
\]
Properties

Definition
A property of languages is simply a set of languages. We say \(L \) satisfies the property \(P \) if \(L \in P \).

Definition
For any property \(P \), define language \(L_P \) to consist of Turing Machines which accept a language in \(P \):

\[
L_P = \{ M \mid L(M) \in P \}
\]

Deciding \(L_P \): deciding if a language represented as a TM satisfies the property \(P \).

- Example: \(\{ M \mid L(M) \text{ is infinite} \} \)
Properties

Definition
A *property of languages* is simply a set of languages. We say L *satisfies* the property \mathbb{P} if $L \in \mathbb{P}$.

Definition
For any property \mathbb{P}, define language $L_\mathbb{P}$ to consist of Turing Machines which accept a language in \mathbb{P}:

$$L_\mathbb{P} = \{ M \mid L(M) \in \mathbb{P} \}$$

Deciding $L_\mathbb{P}$: deciding if a language represented as a TM satisfies the property \mathbb{P}.

- **Example:** $\{ M \mid L(M) \text{ is infinite} \}; \ E_{\text{TM}} = \{ M \mid L(M) = \emptyset \}$
Properties

Definition
A *property of languages* is simply a set of languages. We say \(L \) *satisfies* the property \(\mathbb{P} \) if \(L \in \mathbb{P} \).

Definition
For any property \(\mathbb{P} \), define language \(L_{\mathbb{P}} \) to consist of Turing Machines which accept a language in \(\mathbb{P} \):

\[
L_{\mathbb{P}} = \{ M \mid L(M) \in \mathbb{P} \}
\]

Deciding \(L_{\mathbb{P}} \): deciding if a language represented as a TM satisfies the property \(\mathbb{P} \).

- **Example:** \(\{ M \mid L(M) \text{ is infinite} \} \); \(E_{\text{TM}} = \{ M \mid L(M) = \emptyset \} \)
- **Non-example:** \(\{ M \mid M \text{ has 15 states} \} \)
Properties

Definition
A *property of languages* is simply a set of languages. We say L *satisfies* the property \mathbb{P} if $L \in \mathbb{P}$.

Definition
For any property \mathbb{P}, define language $L_\mathbb{P}$ to consist of Turing Machines which accept a language in \mathbb{P}:

$$L_\mathbb{P} = \{ M \mid L(M) \in \mathbb{P} \}$$

Deciding $L_\mathbb{P}$: deciding if a language represented as a TM satisfies the property \mathbb{P}.

- **Example:** $\{ M \mid L(M) \text{ is infinite}\}; \ E_{TM} = \{ M \mid L(M) = \emptyset \}$
- **Non-example:** $\{ M \mid M \text{ has 15 states} \} \quad \text{← This is a property of TMs, and not languages!}$
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages.

Example
Some trivial properties:

- $P_{\text{all}} = \text{set of all languages}$
- $P_{\text{r.e.}} = \text{set of all r.e. languages}$
- $P_{\text{where } P \text{ is trivial}}$
- $P = \{L | L \text{ is recognized by a TM with an even number of states}\} = P_{\text{r.e.}}$

Observation. For any trivial property P, L_P is decidable. (Why?)

Then $L_P = \Sigma^*$ or $L_P = \emptyset$.
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example
Some trivial properties:

- $P_{\text{ALL}} = \text{set of all languages}$
- $P_{\text{R.E.}} = \text{set of all r.e. languages}$
- \overline{P} where P is trivial

Observation. For any trivial property P, L_{P} is decidable. (Why?) Then $L_{P} = \Sigma^{*}$ or $L_{P} = \emptyset$.
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example
Some trivial properties:

- P_{ALL} = set of all languages
- $P_{\text{R.E.}}$ = set of all r.e. languages
- \overline{P} where P is trivial
- $P = \{L \mid L \text{ is recognized by a TM with an even number of states}\}$

Observation. For any trivial property P, L_P is decidable. (Why?) Then $L_P = \Sigma^* \text{ or } L_P = \emptyset$.
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example
Some trivial properties:

- $P_{\text{ALL}} = \text{set of all languages}$
- $P_{\text{R.E.}} = \text{set of all r.e. languages}$
- \overline{P} where P is trivial
- $P = \{ L \mid L \text{ is recognized by a TM with an even number of states} \} = P_{\text{R.E.}}$
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example
Some trivial properties:
- $P_{\text{all}} = \text{set of all languages}$
- $P_{\text{r.e.}} = \text{set of all r.e. languages}$
- \overline{P} where P is trivial
- $P = \{ L \mid L \text{ is recognized by a TM with an even number of states} \} = P_{\text{r.e.}}$

Observation. For any trivial property P, L_P is decidable. (Why?)
Trivial Properties

Definition
A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example
Some trivial properties:
- \(P_{\text{ALL}} \) = set of all languages
- \(P_{\text{R.E.}} \) = set of all r.e. languages
- \(\overline{P} \) where \(P \) is trivial
- \(P = \{ L \mid L \text{ is recognized by a TM with an even number of states} \} = P_{\text{R.E.}} \)

Observation. For any trivial property \(P \), \(L_P \) is decidable. (Why?)
Then \(L_P = \Sigma^* \) or \(L_P = \emptyset \).
Rice’s Theorem

Proposition

If \mathcal{P} is a non-trivial property, then $L_\mathcal{P}$ is undecidable.
Rice’s Theorem

Proposition

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Thus $\{M \mid L(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)
Rice’s Theorem

Proposition

If P is a non-trivial property, then L_P is undecidable.

Thus $\{M \mid L(M) \in P\}$ is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of languages represented as Turing Machines!
Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.
Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

Example

\[
\left\{ \langle M \rangle \mid M \text{ has 193 states} \right\} \bigg\} \text{ Decidable}
\]

\[
\left\{ \langle M \rangle \mid M \text{ uses at most 32 tape cells on blank input} \right\} \bigg\} \text{ Undecidable}
\]

\[
\left\{ \langle M \rangle \mid M \text{ halts on blank input} \right\}
\]

\[
\left\{ \langle M \rangle \mid \text{on input 0011 } M \text{ at some point writes the symbol } \$ \text{ on its tape} \right\}
\]
Proof of Rice’s Theorem

Rice’s Theorem
If \mathcal{P} is a non-trivial property, then $L_\mathcal{P}$ is undecidable.

Proof.
Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then L_P is undecidable.

Proof.

- Suppose P non-trivial and $\emptyset \notin P$.
Rice’s Theorem
If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.
- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)
Proof of Rice’s Theorem

Rice’s Theorem
If \mathcal{P} is a non-trivial property, then $L_{\mathcal{P}}$ is undecidable.

Proof.

- Suppose \mathcal{P} non-trivial and $\emptyset \not\in \mathcal{P}$.
 - (If $\emptyset \in \mathcal{P}$, then in the following we will be showing $L_{\overline{\mathcal{P}}}$ is undecidable. Then $L_{\mathcal{P}} = \overline{L_{\overline{\mathcal{P}}}}$ is also undecidable.)
- Recall $L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathcal{P} \}$. We’ll reduce A_{TM} to $L_{\mathcal{P}}$.

Proof of Rice’s Theorem

Rice’s Theorem
If \mathcal{P} is a non-trivial property, then $L_\mathcal{P}$ is undecidable.

Proof.

► Suppose \mathcal{P} non-trivial and $\emptyset \not\in \mathcal{P}$.

 ▶ (If $\emptyset \in \mathcal{P}$, then in the following we will be showing $L_\overline{\mathcal{P}}$ is undecidable. Then $L_\mathcal{P} = \overline{L_\overline{\mathcal{P}}}$ is also undecidable.)

► Recall $L_\mathcal{P} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathcal{P} \}$. We’ll reduce A_{TM} to $L_\mathcal{P}$.

► Then, since A_{TM} is undecidable, $L_\mathcal{P}$ is also undecidable.
Rice’s Theorem
If \(\mathcal{P} \) is a non-trivial property, then \(L_{\mathcal{P}} \) is undecidable.

Proof.

- Suppose \(\mathcal{P} \) non-trivial and \(\emptyset \not\in \mathcal{P} \).
 - (If \(\emptyset \in \mathcal{P} \), then in the following we will be showing \(L_{\mathcal{P}} \) is undecidable. Then \(L_{\mathcal{P}} = \overline{L_{\mathcal{P}}} \) is also undecidable.)
- Recall \(L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathcal{P} \} \). We’ll reduce \(A_{TM} \) to \(L_{\mathcal{P}} \).
- Then, since \(A_{TM} \) is undecidable, \(L_{\mathcal{P}} \) is also undecidable. \(\rightarrow \)
Proof of Rice’s Theorem

Proof (contd).
Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P}.
Proof of Rice’s Theorem

Proof (contd).

Since \mathcal{P} is non-trivial, at least one r.e. language satisfies \mathcal{P}, i.e.,
$L(M_0) \in \mathcal{P}$ for some TM M_0.
Proof of Rice’s Theorem

Proof (contd).
Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P}. i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0.
Will show a reduction f that maps an instance $\langle M, w \rangle$ for A_{TM}, to N such that
- If M accepts w then N accepts the same language as M_0.
 - Then $L(N) = L(M_0) \in \mathbb{P}$
- If M does not accept w then N accepts \emptyset.
 - Then $L(N) = \emptyset \not\in \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $N \in L(\mathbb{P})$.
Proof of Rice’s Theorem

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P}. i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0.

Will show a reduction f that maps an instance $\langle M, w \rangle$ for A_{TM}, to N such that

- If M accepts w then N accepts the same language as M_0.
 - Then $L(N) = L(M_0) \in \mathbb{P}$
- If M does not accept w then N accepts \emptyset.
 - Then $L(N) = \emptyset \not\in \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{TM}$ iff $N \in L_{\mathbb{P}}$.
Proof of Rice’s Theorem

Proof (contd).
Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P}. i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0.
Will show a reduction f that maps an instance $\langle M, w \rangle$ for A_{TM}, to N such that
 - If M accepts w then N accepts the same language as M_0.
 - Then $L(N) = L(M_0) \in \mathbb{P}$
 - If M does not accept w then N accepts \emptyset.
 - Then $L(N) = \emptyset \not\in \mathbb{P}$
Thus, $\langle M, w \rangle \in A_{TM}$ iff $N \in L_\mathbb{P}$. ..→
Proof of Rice’s Theorem

Proof (contd).
The reduction f maps $\langle M, w \rangle$ to N, where N is a TM that behaves as follows:

On input x

Ignore the input and run M on w

If M does not accept (or doesn’t halt)
 then do not accept x (or do not halt)
If M does accept w
 then run M_0 on x and accept x iff M_0 does.

Notice that indeed if M accepts w then $L(N) = L(M_0)$. Otherwise $L(N) = \emptyset$. □
Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable
Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable
- Rice’s theorem says nothing about properties of Turing machines
Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

- Rice’s theorem says nothing about properties of Turing machines
- Rice’s theorem says nothing about whether a property of languages is recursively enumerable or not.
Big Picture . . . again

Languages

Recursively Enumerable

Decidable

CFL

Regular

L_{d}, $\overline{A_{TM}}$, E_{TM}

A_{TM}, $\overline{E_{TM}}$, HALT

L_{anbncn}

L_{0n1n}
Big Picture ... again

Languages

Recursively Enumerable

Decidable

CFL

Regular

$L_d, \overline{A_{TM}}, E_{TM}$

$\overline{A_{TM}}, E_{TM}, \text{HALT}$

L_{anbncn}

L_{0n1n}

“almost all” properties!
Proposition
Decidable languages are closed under union, intersection, and complementation.

Proof.
Given TMs M_1, M_2 that decide languages L_1, and L_2.

A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts.
(Similarly for intersection.)

A TM that decides L_1: on input x, run M_1 on x, and accept if M_1 rejects, and reject if M_1 accepts.

□
Proposition

Decidable languages are closed under union, intersection, and complementation.
Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and complementation.

Proof.

Given TMs M_1, M_2 that decide languages L_1, and L_2

- A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts.
Proposition

Decidable languages are closed under union, intersection, and complementation.

Proof.

Given TMs M_1, M_2 that decide languages L_1, and L_2

- A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts. (Similarly for intersection.)
Proposition

Decidable languages are closed under union, intersection, and complementation.

Proof.

Given TMs M_1, M_2 that decide languages L_1, and L_2

- A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts. (Similarly for intersection.)
- A TM that decides $\overline{L_1}$: On input x, run M_1 on x, and accept if M_1 rejects, and reject if M_1 accepts.
Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2.

- A TM to decide L_1L_2:
Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2.

- A TM to decide L_1L_2: On input x, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.
Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2.

- A TM to decide L_1L_2: On input x, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

- A TM to decide L_1^*:
Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2.

- A TM to decide L_1L_2: On input x, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

- A TM to decide L_1^*: On input x, if $x = \epsilon$ accept. Else, for each of the $2^{|x| - 1}$ ways to divide x as $w_1 \ldots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject. □
Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.
Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.

Given TMs M_1, M_2 that recognize languages L_1, L_2
Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.

Given TMs M_1, M_2 that recognize languages L_1, L_2

- A TM that recognizes $L_1 \cup L_2$: on input x, run M_1 and M_2 on x *in parallel*, and accept iff either accepts.
Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.
Given TMs M_1, M_2 that recognize languages L_1, L_2

- A TM that recognizes $L_1 \cup L_2$: on input x, run M_1 and M_2 on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation) □
Proposition

R.E. languages are not closed under complementation.

Proof.

A_{TM} is r.e. but $\overline{A_{TM}}$ is not.
Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

- A TM to recognize L_1L_2:

- A TM to recognize L_1^*:

Regular Operations

Proposition
R.E languages are closed under concatenation and Kleene closure.

Proof.
Given TMs M_1 and M_2 recognizing L_1 and L_2

- A TM to recognize L_1L_2: On input x, do in parallel, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.
Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

- A TM to recognize $L_1 L_2$: On input x, do in parallel, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

- A TM to recognize L_1^*:
Regular Operations

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

- A TM to recognize L_1L_2: On input x, do in parallel, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

- A TM to recognize L_1^*: On input x, if $x = \epsilon$ accept. Else, do in parallel, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \ldots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject.