CSE 135: Introduction to Theory of Computation
Decidability and Recognizability

Sungjin Im

University of California, Merced

04-14 and 4-16-2015
High-Level Descriptions of Computation

- Instead of giving a Turing Machine, we shall often describe a program as code in some programming language (or often “pseudo-code”)
 - Possibly using high level data structures and subroutines (Recall that TM and RAM are equivalent (even polynomially))
- Inputs and outputs are complex objects, encoded as strings
- Examples of objects:
 - Matrices, graphs, geometric shapes, images, videos, ...
 - DFAs, NFAs, Turing Machines, Algorithms, other machines ...
“Everything” finite can be encoded as a (finite) string of symbols from a finite alphabet (e.g. ASCII).

- Can in turn be encoded in binary (as modern day computers do). No special symbol: use self-terminating representations.

Example: encoding a “graph.”

\[(1, 2, 3, 4)(1, 2)(2, 3)(3, 1)(1, 4)\]

encodes the graph

![Graph Diagram]

2

1

3

4
We have already seen several algorithms, for problems involving complex objects like DFAs, NFAs, regular expressions, and Turing Machines.

- For example, convert a NFA to DFA; Given a NFA N and a word w, decide if $w \in L(N)$; ...

All these inputs can be encoded as strings and all these algorithms can be implemented as Turing Machines.

- Some of these algorithms are for decision problems, while others are for computing more general functions.

- All these algorithms terminate on all inputs.
High-Level Descriptions of Computation

Examples: Problems regarding Computation

Some more decision problems that have algorithms that always halt (sketched in the textbook)

- On input $\langle B, w \rangle$ where B is a DFA and w is a string, decide if B accepts w.
 Algorithm: simulate B on w and accept iff simulated B accepts

- On input $\langle B \rangle$ where B is a DFA, decide if $L(B) = \emptyset$.
 Algorithm: Use a fixed point algorithm to find all reachable states. See if any final state is reachable.

Code is just data: A TM can take “the code of a program” (DFA, NFA or TM) as part of its input and analyze or even execute this code
Examples: Problems regarding Computation

Some more decision problems that have algorithms that always halt (sketched in the textbook)

- On input $\langle B, w \rangle$ where B is a DFA and w is a string, decide if B accepts w.
 Algorithm: simulate B on w and accept iff simulated B accepts

- On input $\langle B \rangle$ where B is a DFA, decide if $L(B) = \emptyset$.
 Algorithm: Use a fixed point algorithm to find all reachable states. See if any final state is reachable.

Code is just data: A TM can take “the code of a program” (DFA, NFA or TM) as part of its input and analyze or even execute this code

Universal Turing Machine (a simple “Operating System”): Takes a TM M and a string w and simulates the execution of M on w
Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if $L = L(M)$. A Turing machine M is said to decide a language L if $L = L(M)$ and M halts on every input.
Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if $L = L(M)$. A Turing machine M is said to decide a language L if $L = L(M)$ and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.) or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (Recursive or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For example, by a TM that has all the strings in the language "hard-coded" into it.

We just saw some example algorithms all of which terminate in a finite number of steps, and output yes or no (accept or reject). i.e., They decide the corresponding languages.
Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if $L = L(M)$. A Turing machine M is said to decide a language L if $L = L(M)$ and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.) or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (Recursive or simply decidable) if there exists a TM M which decides L.

- Every finite language is decidable
Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if $L = L(M)$. A Turing machine M is said to decide a language L if $L = L(M)$ and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.) or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (Recursive or simply decidable) if there exists a TM M which decides L.

- Every finite language is decidable: For example, by a TM that has all the strings in the language “hard-coded” into it
- We just saw some example algorithms all of which terminate in a finite number of steps, and output yes or no (accept or reject). i.e., They decide the corresponding languages.
But not all languages are decidable! We will show:

- $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable

However, A_{TM} is Turing-recognizable!

Proposition: There are languages which are recognizable, but not decidable.
But not all languages are decidable! We will show:

- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable

However A_{TM} is Turing-recognizable!
Decidable and Recognizable Languages

- But not all languages are decidable! We will show:
 - $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$ is undecidable
 - However A_{TM} is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable
Recognizing A_{TM}

Program U for recognizing A_{TM}:

On input $\langle M, w \rangle$
- simulate M on w
- if simulated M accepts w, then accept
- else reject (by moving to q_{rej})

But U does not decide A_{TM}: If M rejects w by not halting (does not halt on w), U rejects $\langle M, w \rangle$ by not halting (does not halt on $\langle M, w \rangle$).

Indeed (as we shall see) no TM decides A_{TM}.
Recognizing A_{TM}

Program U for recognizing A_{TM}:

On input $\langle M, w \rangle$
 simulate M on w
 if simulated M accepts w, then accept
 else reject (by moving to q_{rej})

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{TM}$$
Recognizing A_{TM}

Program U for recognizing A_{TM}:

On input $\langle M, w \rangle$

simulate M on w

if simulated M accepts w, then accept
else reject (by moving to q_{rej})

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{TM}$$

But U does not decide A_{TM}
Recognizing A_{TM}

Program U for recognizing A_{TM}:

On input $\langle M, w \rangle$

- simulate M on w
- if simulated M accepts w, then accept
- else reject (by moving to q_{rej})

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{TM}$$

But U does not decide A_{TM}: If M rejects w by not halting (does not halt on w), U rejects $\langle M, w \rangle$ by not halting (does not halt on $\langle M, w \rangle$).
Recognizing A_{TM}

Program U for recognizing A_{TM}:

On input $\langle M, w \rangle$

simulate M on w

if simulated M accepts w, then accept
else reject (by moving to q_{rej})

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{TM}$$

But U does not decide A_{TM}: If M rejects w by not halting (does not halt on w), U rejects $\langle M, w \rangle$ by not halting (does not halt on $\langle M, w \rangle$). Indeed (as we shall see) no TM decides A_{TM}.
Deciding vs. Recognizing

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs P_L and $P_{\overline{L}}$ for recognizing L and \overline{L}:
Deciding vs. Recognizing

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs P_L and $P_{\overline{L}}$ for recognizing L and \overline{L}:

- On input x, simulate P_L and $P_{\overline{L}}$ on input x.
Deciding vs. Recognizing

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs P_L and $P_{\overline{L}}$ for recognizing L and \overline{L}:

- On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first?
Deciding vs. Recognizing

Proposition

If \(L \) and \(\overline{L} \) are recognizable, then \(L \) is decidable

Proof.
Program \(P \) for deciding \(L \), given programs \(P_L \) and \(P_{\overline{L}} \) for recognizing \(L \) and \(\overline{L} \):

- On input \(x \), simulate \(P_L \) and \(P_{\overline{L}} \) on input \(x \). Whether \(x \in L \) or \(x \not\in L \), one of \(P_L \) and \(P_{\overline{L}} \) will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
Deciding vs. Recognizing

Proposition

If \(L \) and \(\bar{L} \) are recognizable, then \(L \) is decidable

Proof.

Program \(P \) for deciding \(L \), given programs \(P_L \) and \(P_{\bar{L}} \) for recognizing \(L \) and \(\bar{L} \):

- On input \(x \), simulate \(P_L \) and \(P_{\bar{L}} \) on input \(x \). Whether \(x \in L \) or \(x \notin L \), one of \(P_L \) and \(P_{\bar{L}} \) will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input \(x \), simulate in parallel \(P_L \) and \(P_{\bar{L}} \) on input \(x \) until either \(P_L \) or \(P_{\bar{L}} \) accepts
Deciding vs. Recognizing

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs P_L and $P_{\overline{L}}$ for recognizing L and \overline{L}:

- On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel P_L and $P_{\overline{L}}$ on input x until either P_L or $P_{\overline{L}}$ accepts.
- If P_L accepts, accept x and halt. If $P_{\overline{L}}$ accepts, reject x and halt.
Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x
for $i = 1, 2, 3, ...$
 simulate P_L on input x for i steps
 simulate P_{-L} on input x for i steps
 if either simulation accepts, break
if P_L accepted, accept x (and halt)
if P_{-L} accepted, reject x (and halt)
Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x
for $i = 1, 2, 3, ...$

simulate P_L on input x for i steps
simulate $P_{\overline{L}}$ on input x for i steps

if either simulation accepts, break

if P_L accepted, accept x (and halt)
if $P_{\overline{L}}$ accepted, reject x (and halt)

(Alternately, maintain configurations of P_L and $P_{\overline{L}}$, and in each iteration of the loop advance both their simulations by one step.)
Deciding vs. Recognizing

So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
Deciding vs. Recognizing

So far:
- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable?

Note: Decidable languages are closed under complementation, but recognizable languages are not.
So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!
Deciding vs. Recognizing

So far:

- \(A_{TM} \) is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

Proposition

\(\overline{A_{TM}} \) is unrecognizable
Deciding vs. Recognizing

So far:
- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

Proposition

$\overline{A_{TM}}$ is unrecognizable

Proof.

If $\overline{A_{TM}}$ is recognizable, since A_{TM} is recognizable, the two languages will be decidable too! □
Deciding vs. Recognizing

So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

Proposition

$\overline{A_{TM}}$ is unrecognizable

Proof.

If $\overline{A_{TM}}$ is recognizable, since A_{TM} is recognizable, the two languages will be decidable too!

Note: Decidable languages are closed under complementation, but recognizable languages are not.
Decision Problems and Languages

- A decision problem requires checking if an input (string) has some property. Thus, a decision problem is a function from strings to boolean.
- A decision problem is represented as a formal language consisting of those strings (inputs) on which the answer is “yes”.
Recursive Enumerability

- A Turing Machine on an input \(w \) either (halts and) accepts, or (halts and) rejects, or never halts.
Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- The language of a Turing Machine M, denoted as $L(M)$, is the set of all strings w on which M accepts.
Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- The language of a Turing Machine M, denoted as $L(M)$, is the set of all strings w on which M accepts.
- A language L is recursively enumerable/Turing recognizable if there is a Turing Machine M such that $L(M) = L$.
Decidability

- A language L is **decidable** if there is a Turing machine M such that $L(M) = L$ and M halts on every input.
Decidability

- A language L is **decidable** if there is a Turing machine M such that $L(M) = L$ and M halts on every input.
- Thus, if L is decidable then L is recursively enumerable.
Undecidability

Definition
A language L is **undecidable** if L is not decidable.
Undecidability

Definition
A language L is **undecidable** if L is not decidable. Thus, there is no Turing machine M that halts on every input and $L(M) = L$.

- This means that either L is not recursively enumerable. That is there is no turing machine M such that $L(M) = L$, or
- L is recursively enumerable but not decidable. That is, any Turing machine M such that $L(M) = L$, M does not halt on some inputs.
Big Picture

Languages

Recursively Enumerable (Recognizable)

Decidable (Recursive)

CFL

Regular

Relationship between classes of Languages
Machines as Strings

- For the rest of this lecture, let us fix the input alphabet to be \{0, 1\}
Machines as Strings

- For the rest of this lecture, let us fix the input alphabet to be \{0, 1\}; a string over any alphabet can be encoded in binary.
Machines as Strings

- For the rest of this lecture, let us fix the input alphabet to be \{0, 1\}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string.
For the rest of this lecture, let us fix the input alphabet to be \(\{0, 1\} \); a string over any alphabet can be encoded in binary.

Any Turing Machine/program \(M \) can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program.
Machines as Strings

- For the rest of this lecture, let us fix the input alphabet to be \{0, 1\}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)
Machines as Strings

- For the rest of this lecture, let us fix the input alphabet to be \{0, 1\}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)
- We will consider decision problems (language) whose inputs are Turing Machine (encoded as a binary string)
The Diagonal Language

Definition
Define $L_d = \{ M \mid M \not\in L(M) \}$. Thus, L_d is the collection of Turing machines (programs) M such that M does not halt and accept (i.e. either reject or never ends) when given itself as input.
The Diagonal Language

Definition
Define $L_d = \{ M \mid M \not\in L(M) \}$. Thus, L_d is the collection of Turing machines (programs) M such that M does not halt and accept (i.e. either reject or never ends) when given itself as input.
A non-Recursively Enumerable Language

Proposition

L_d is not recursively enumerable.
A non-Recursively Enumerable Language

Proposition

\(L_d \) is not recursively enumerable.

Proof.

Recall that,

\(\exists \) Inputs are strings over \(\{0, 1\} \).

Every Turing Machine can be described by a binary string and every binary string can be viewed as a Turing Machine.

In what follows, we will denote the \(i \)th binary string (in lexicographic order) as the number \(i \).

Thus, we can say \(j \in L_i \), which means that the Turing machine corresponding to the \(i \)th binary string accepts the \(j \)th binary string.
Proposition

L_d is not recursively enumerable.

Proof.

Recall that,

- Inputs are strings over \{0, 1\}
Proposition

L_d is not recursively enumerable.

Proof.

Recall that,

- Inputs are strings over \{0, 1\}
- Every Turing Machine can be described by a binary string and every binary string can be viewed as a Turing Machine
Proposition

\(L_d \) is not recursively enumerable.

Proof.
Recall that,

- Inputs are strings over \{0, 1\}
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine
- In what follows, we will denote the \(i \)th binary string (in lexicographic order) as the number \(i \).
A non-Recursively Enumerable Language

Proposition

L_d is not recursively enumerable.

Proof.
Recall that,

- Inputs are strings over \{0, 1\}
- Every Turing Machine can be described by a binary string and every binary string can be viewed as a Turing Machine.
- In what follows, we will denote the ith binary string (in lexicographic order) as the number i. Thus, we can say $j \in L(i)$, which means that the Turing machine corresponding to ith binary string accepts the jth binary string.
Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the \((i, j)\)th entry is \(Y\) if and only if \(j \in L(i)\).

\[
\begin{array}{c|cccccccc}
\text{TM} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \ldots \\
\hline
3 & Y & N & Y & N & Y & Y & Y & Y \\
5 & N & Y & N & Y & Y & N & N & N \\
6 & N & N & Y & N & Y & N & Y & Y \\
\end{array}
\]

For the sake of contradiction, suppose \(L_d\) is recognized by a Turing machine. Say by the \(j\)th binary string. i.e., \(L_d = L(j)\).

But \(j \in L_d\) iff \(j \not\in L(j)\). More concretely, suppose \(j /\in L(j)\) – note that \(j\) can be a string or a TM. Then, by definition, \(j \in L_d = L(j)\). The other case \(j \in L(j)\) can be handled similarly. □
Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the \((i, j)\)th entry is \(Y\) if and only if \(j \in L(i)\).

\[
\begin{array}{cccccccc}
\text{Inputs} & \rightarrow \\
\hline
\text{TMs} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline
3 & Y & N & Y & N & Y & Y & Y & Y \\
5 & N & Y & N & Y & Y & N & N & N \\
6 & N & N & Y & N & Y & N & Y & Y \\
\end{array}
\]

For the sake of contradiction, suppose \(L_d\) is recognized by a Turing machine. Say by the \(j\)th binary string. i.e., \(L_d = L(j)\).
Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the \((i, j)\)th entry is \(Y\) if and only if \(j \in L(i)\).

\[
\begin{array}{ccccccccc}
\text{TMs} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
1 & \text{N} & N & N & N & N & N & N & N \\
2 & N & \text{N} & N & N & N & N & N & N \\
3 & Y & N & \text{Y} & N & Y & Y & Y & Y \\
4 & N & Y & N & \text{Y} & Y & Y & N & N \\
5 & N & Y & N & Y & \text{Y} & N & N & N \\
6 & N & N & Y & N & Y & \text{N} & Y & Y \\
\end{array}
\]

For the sake of contradiction, suppose \(L_d\) is recognized by a Turing machine. Say by the \(j\)th binary string. i.e., \(L_d = L(j)\). But \(j \in L_d\) iff \(j \not\in L(j)\)! More concretely, suppose \(j \not\in L(j)\) – note that \(j\) can be a string or a TM. Then, by definition, \(j \in L_d = L(j)\). The other case \(j \in L(j)\) can be handled similarly. □
Acceptor for L_d?

Consider the following program

On input i
- Run program i on i
- Output ‘‘yes’’ if i does not accept i
- Output ‘‘no’’ if i accepts i
Acceptor for L_d?

Consider the following program

```
On input $i$
    Run program $i$ on $i$
    Output ‘‘yes’’ if $i$ does not accept $i$
    Output ‘‘no’’ if $i$ accepts $i$
```

Does the above program recognize L_d?
Accept for L_d?

Consider the following program:

On input i
- Run program i on i
- Output ‘‘yes’’ if i does not accept i
- Output ‘‘no’’ if i accepts i

Does the above program recognize L_d? No, because it may never output “yes” if i does not halt on i.
Recursively Enumerable but not Decidable

- L_d not recursively enumerable, and therefore not decidable.
Recursively Enumerable but not Decidable

L_d not recursively enumerable, and therefore not decidable. Are there languages that are recursively enumerable but not decidable?
Recursively Enumerable but not Decidable

- L_d not recursively enumerable, and therefore not decidable. Are there languages that are recursively enumerable but not decidable?
- Yes, $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
Proposition

\[A_{TM} \text{ is r.e. but not decidable.} \]
The Universal Language

Proposition

A_{TM} is r.e. but not decidable.

Proof.

We have already seen that A_{TM} is r.e.
Proposition

A_{TM} is r.e. but not decidable.

Proof.
We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM M that always halts and $L(M) = A_{TM}$.
The Universal Language

Proposition
\(A_{TM} \) is r.e. but not decidable.

Proof.
We have already seen that \(A_{TM} \) is r.e. Suppose (for contradiction) \(A_{TM} \) is decidable. Then there is a TM \(M \) that always halts and \(L(M) = A_{TM} \). Consider a TM \(D \) as follows:

On input \(i \)
- Run \(M \) on input \(\langle i, i \rangle \)
- Output ‘‘yes’’ if \(i \) rejects \(i \)
- Output ‘‘no’’ if \(i \) accepts \(i \)

But, \(L(D) \) is not r.e. which gives us the contradiction. □
The Universal Language

Proposition

\(A_{TM} \) is r.e. but not decidable.

Proof.
We have already seen that \(A_{TM} \) is r.e. Suppose (for contradiction) \(A_{TM} \) is decidable. Then there is a TM \(M \) that always halts and \(L(M) = A_{TM} \). Consider a TM \(D \) as follows:

On input \(i \)
- Run \(M \) on input \(\langle i, i \rangle \)
- Output ‘yes’ if \(i \) rejects \(i \)
- Output ‘no’ if \(i \) accepts \(i \)

Observe that \(L(D) = L_d \)!
Proposition

A_{TM} is r.e. but not decidable.

Proof.

We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM M that always halts and $L(M) = A_{TM}$. Consider a TM D as follows:

On input i
- Run M on input $\langle i, i \rangle$
- Output ‘‘yes’’ if i rejects i
- Output ‘‘no’’ if i accepts i

Observe that $L(D) = L_d$! But, L_d is not r.e. which gives us the contradiction. □
A more complete Big Picture

Languages

Recursively Enumerable

Decidable

CFL

Regular

$L_d, \overline{A_{TM}}$

A_{TM}

L_{anbncn}

$L_{0^n1^n}$
A **reduction** is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem **reduces** to the second problem.
A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- **Informal Examples:** Measuring the area of rectangle reduces to measuring the length of the sides.
A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix.
A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- **Informal Examples:** Measuring the area of a rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix.

- The problem L_d reduces to the problem A_{TM} as follows: “To see if $w \in L_d$ check if $\langle w, w \rangle \in A_{TM}$. “
Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.
Undecidability using Reductions

Proposition
Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.
Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2. Then the following algorithm decides L_1
Undecidability using Reductions

Proposition
Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.
Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2. Then the following algorithm decides L_1

- On input w, apply reduction to transform w into an input w' for problem 2
- Run M on w', and use its answer.
Schematic View

Reductions schematically

\[w \xrightarrow{} \]
Reductions schematically
Schematic View

Reductions schematically

$w \rightarrow \text{Reduction } f \rightarrow f(w) \rightarrow \text{Algorithm for Problem 2}$

$\rightarrow \text{yes}$

$\rightarrow \text{no}$
Algorithm for Problem 1

Reduction f

Algorithm for Problem 2

$w \xrightarrow{f(w)}$ yes

Reductions schematically
The Halting Problem

Proposition

The language $\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.
The Halting Problem

Proposition

The language \(\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \} \) is undecidable.

Proof.

We will reduce \(A_{\text{TM}} \) to \(\text{HALT} \). Based on a machine \(M \), let us consider a new machine \(f(M) \) as follows:
The Halting Problem

Proposition
The language \(\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \} \) is undecidable.

Proof.
We will reduce \(A_{TM} \) to \(\text{HALT} \). Based on a machine \(M \), let us consider a new machine \(f(M) \) as follows:

On input \(x \)

- Run \(M \) on \(x \)
- If \(M \) accepts then halt and accept
- If \(M \) rejects then go into an infinite loop
The Halting Problem

Proposition

The language $\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine $f(M)$ as follows:

On input x

Run M on x

If M accepts then halt and accept
If M rejects then go into an infinite loop

Observe that $f(M)$ halts on input w if and only if M accepts w.
The Halting Problem
Completing the proof

Proof (contd).
Suppose HALT is decidable. Then there is a Turing machine H that always halts and $L(H) = \text{HALT}$. But, A_{tm} is undecidable, which gives us the contradiction. □
Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and $L(H) = \text{HALT}$. Consider the following program T

On input $\langle M, w \rangle$
- Construct program $f(M)$
- Run H on $\langle f(M), w \rangle$
- Accept if H accepts and reject if H rejects
Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine \(H \) that always halts and \(L(H) = \text{HALT} \). Consider the following program \(T \)

On input \(\langle M, w \rangle \)
- Construct program \(f(M) \)
- Run \(H \) on \(\langle f(M), w \rangle \)
- Accept if \(H \) accepts and reject if \(H \) rejects

\(T \) decides \(A_{TM} \).
Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and $L(H) = \text{HALT}$. Consider the following program T

On input $\langle M, w \rangle$
- Construct program $f(M)$
- Run H on $\langle f(M), w \rangle$
- Accept if H accepts and reject if H rejects

T decides A_{TM}. But, A_{TM} is undecidable, which gives us the contradiction. □
Mapping Reductions

Definition
A function \(f : \Sigma^* \rightarrow \Sigma^* \) is computable if there is some Turing Machine \(M \) that on every input \(w \) halts with \(f(w) \) on the tape.
Mapping Reductions

Definition
A function \(f : \Sigma^* \rightarrow \Sigma^* \) is computable if there is some Turing Machine \(M \) that on every input \(w \) halts with \(f(w) \) on the tape.

Definition
A mapping/many-one reduction from \(A \) to \(B \) is a computable function \(f : \Sigma^* \rightarrow \Sigma^* \) such that

\[
w \in A \text{ if and only if } f(w) \in B
\]
Mapping Reductions

Definition
A function $f : \Sigma^* \rightarrow \Sigma^*$ is **computable** if there is some Turing Machine M that on every input w halts with $f(w)$ on the tape.

Definition
A **mapping/many-one** reduction from A to B is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that

$$w \in A \text{ if and only if } f(w) \in B$$

In this case, we say A is **mapping/many-one reducible** to B, and we denote it by $A \leq_m B$.
Convention

In this course, we will drop the adjective “mapping” or “many-one”, and simply talk about reductions and reducibility.
Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.
Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.
Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B.

\[\text{On input } w \]
\[\quad \text{Compute } f(w) \]
\[\quad \text{Run } M_B \text{ on } f(w) \]
\[\quad \text{Accept if } M_B \text{ does and reject if } M_B \text{ rejects} \]
\[\square \]
Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B. Then the Turing machine recognizing A is

On input w

- Compute $f(w)$
- Run M_B on $f(w)$
- Accept if M_B does and reject if M_B rejects

□
Corollary

If $A \leq_m B$ and A is not recursively enumerable then B is not recursively enumerable.
Reducions and Decidability

Proposition

If \(A \leq_m B \) and \(B \) is decidable then \(A \) is decidable.

Proof.

Let \(M_B \) be the Turing machine deciding \(B \) and let \(f \) be the reduction. Then the algorithm deciding \(A \), on input \(w \), computes \(f(w) \) and runs \(M_B \) on \(f(w) \). □

Corollary

If \(A \leq_m B \) and \(A \) is undecidable then \(B \) is undecidable.
Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes $f(w)$ and runs M_B on $f(w)$. □
Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes $f(w)$ and runs M_B on $f(w)$.

Corollary

If $A \leq_m B$ and A is undecidable then B is undecidable.