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Abstract

We revisit two well-studied scheduling problems in the unrelated machines setting where each job can
have a different processing time on each machine. For minimizing total weighted completion time we give a
1.45-approximation, which improves upon the previous 1.488-approximation [Im and Shadloo SODA 2020].
The key technical ingredient in this improvement lies in a new rounding scheme that gives strong negative
correlation with less restrictions. For minimizing Lk-norms of machine loads, inspired by [Kalaitzis et al.
SODA 2017], we give better approximation algorithms. In particular we give a

√
4/3-approximation for the

L2-norm which improves upon the former
√
2-approximations due to [Azar-Epstein STOC 2005] and [Kumar

et al. JACM 2009].

1 Introduction

Unrelated machines have been an elegant abstraction of various heterogeneous resource allocation problems. In
the model there is a set J of jobs to be scheduled on a set M of machines. Job j has an arbitrary processing
time (or equivalently size) pij on machine i. This general model has been extensively studied in various settings,
such as offline, online, and stochastic settings. Further, due to the generality of the model, its study has led to
discovering various algorithmic techniques.

In this paper we revisit two well-studied offline scheduling/load balancing problems for unrelated machines,
namely minimizing total weighted completion time and minimizing the Lk-norm of machine loads. We give
improved approximation algorithms for both.

1.1 Previous Work We describe the previous results related to the two problems we study.

Total Weighted Completion Time. This problem is denoted as R||
∑

j wjCj using the classic common three-
field notation. In this problem, a machine can process at most one job at each time and all jobs must be completed
non-preemptively. The problem is known to be strongly NP-hard and APX-hard [23]. Schulz and Skutella gave
a 1.5 + ϵ-approximation by using a time-indexed LP and rounding the LP solution. The approximation ratio
was improved to 1.5 by Skutella [38] and Sethuraman and Squillante [36] independently, which both used convex
programming. Breaking the barrier of 1.5 had since been widely open [16, 34, 30, 41, 35].

The open problem was resolved by the breakthrough work by Bansal et al. [9]. All the previous works had
used an independent rounding where each job j is assigned to machine i with probability xij independently,
given a fractional solution satisfying

∑
i∈M xij = 1. Even if all machines are identical, independent rounding

only gives a 1.5-approximation. To break the barrier, they introduced a novel rounding scheme yielding certain
strong negative correlations among some jobs grouped together. The weighted completion time objective is highly
affected by how much jobs delay other jobs. To reduce the extra delay caused by randomized rounding, ideally
we want to have a strong negative correlation for any pair of jobs, meaning two jobs j and j′ are assigned to
machine i simultaneously with probability strictly less than xij · xij′ . Although this is not possible for every pair
of jobs simultaneously, they showed it is possible for some jobs disjointly grouped on each machine.

Unfortunately, the approximation ratio in [9] was 1.5− 10−7, which was only slightly better than the barrier
of 1.5. The approximation ratio was improved to 1.5 − 1/6000 by Li [33], who used a time-indexed LP instead
of SDP but used the same rounding scheme as Bansal et al. used. Later, it was further improved to 1.488 by
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Im and Shadloo [27]. Their main contribution was obtaining a significantly stronger negative correlation. Their
rounding scheme was iterative fair contention resolution, which was inspired by the work of Feige and Vondrak
[19]. In contrast, Bansal et al.’s rounding was a clever modification of pipage rounding.

Lk-norms of Machine Loads. In this problem each machine i’s load is measured as the total processing time
of jobs assigned to machine i. Note that machine i’s load is equivalent to the maximum completion time of jobs
scheduled on machine i non-preemptively with no idle times. The objective is minimizing the Lk-norm of machine
loads. The Lk-norm seeks to reduce the variance of the loads as well as their average; for further motivation see [6].

The most well-known case is the L∞-norm, which is exactly the makespan minimization. For the L∞-norm,
there exists a classic 2-approximation and it is known to be hard to approximate within a factor of 1.5 unless
P = NP [37]. For the Lk-norm, Awerbuch et al. [4] gave a Θ(k)-approximation based on independent rounding.
Later, Azar and Epstein [5] gave a breakthrough by showing a 2-approximation by using a convex programming
and rounding it using the same rounding scheme used by Shmoys and Tardos [37] for the Generalized Assignment
Problem. In particular they gave a

√
2-approximation for the L2-norm. Kumar et al. further improved the

approximation ratio for small values of k using a novel dependent rounding [29].

1.2 Our Results

Theorem 1.1. (Sections 2-4) There is an efficient randomized 1.45-approximation algorithm for the problem of
minimizing weighted completion time on unrelated machines.

As mentioned before, this improves upon the current best 1.488-approximation due to Im and Shadloo [27].

Theorem 1.2. (Section 5) There is a randomized algorithm that is α1/k-approximate for minimizing the Lk-norm
of machine loads, where α := supm∈(0,1],y∈[0,1] g(m, y), and

g(m, y) :=
m · (1 + (1−m)y)k + (1−m) · ((1−m)y)k

m · 1k + (1−m) · yk

By using a numerical tool, we can compute an upper bound on the claimed approximation ratio α1/k for small
values of k. For the important special case of k = 2, we can analytically show that α = 4/3; see Appendix E.

k 1.5 2 2.5 3 3.5 4 4.5 5

Kumar et al. [29] 1.585
√
2 ≈ 1.414 1.381 1.372 1.382 1.389 1.41 1.436

This paper 1.085
√
4/3 ≈ 1.155 1.214 1.265 1.309 1.349 1.384 1.415

Table 1: Approximation ratio for minimizing the Lk-norm of machine loads for each value of k.

1.3 Our Techniques In this section we give an overview of our techniques.

Total Weighted Completion Time. For the problem of minimizing weighted completion time, our main
contribution is a new strong negative correlation (SNC) scheme. In the scheme introduced by Bansal et al. [9],
which was used later by Li [33] and Im and Shadloo [27], there is a vector y ∈ [0, 1]M×J such that

∑
i∈M yij = 1

for every j ∈ J . For every i ∈ M , we are given a partition of the edges incident to i into groups such that every
group has total y value at most 1. A rounding algorithm with strong negative correlation will assign each job
j ∈ J to a machine i randomly, respecting the marginal probabilities (i.e., j is assigned to i with probability
yij), non-positive correlation between events that two jobs are assigned to a same machine, and strong negative
correlation between events that two jobs are assigned to a same group.

A crucial difference between our setting for the SNC scheme and that of Bansal et al. is that our partitions of
edges are fractional. As a result, it is more natural for us to define y as a vector in [0, 1]U×J , where U is the set
of all groups. Additionally, we are given a mapping g : U → M indicating which machine each group belongs to.
In contrast to the setting of Bansal et al., we may have yuj > 0, yu′j > 0 for a job j ∈ J and two distinct groups
u,u′ ∈ U with g(u) = g(u′). Similarly, our rounding algorithm assigns jobs to groups, respecting the marginal
probabilities, non-positive correlation between events that two jobs are assigned to two groups belonging to the
same machine, and strong non-negative correlation between events that two jobs j and j′ are assigned to the same
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group u. The strong non-negative correlation holds when
∑

u′∈U :g(u′)=g(u) yu′j ≤ 1
2 and

∑
u′∈U :g(u′)=g(u) yu′j′ ≤ 1

2 .
Such a restriction is needed: In the case where g maps all the groups to the same machine, without the restriction,
we can not satisfy all the three requirements. As our SNC setting is more flexible, we have a simpler reduction
from the scheduling problem to the SNC scheme, and the loss it incurs is smaller. This is explained below.

As we do not require the groups belonging to a same machine to be disjoint, a simple construction of the
SNC instance from the scheduling problem guarantees the condition (*): The total y value of edges in a group is
at most 1. In contrast, the algorithm in [27] requires a sampling step to ensure the disjointness of groups for the
same machine. As a result, the condition (*) is satisfied only in expectation. To address the issue, they filter 1/2
fraction of the edges in a group and apply Chernoff bound. Even with this procedure, (*) can only hold with a
reasonable probability smaller than 1. As a result, their algorithm and analysis are more involved and their loss
is bigger due to the filtering and the application of Chernoff bound. Furthermore, due to the simplicity of our
algorithm, we can afford to analyze the approximation ratio more carefully.

Our rounding algorithm for the SNC scheme borrows some ideas from online correlated selection which played
a crucial role in the recent breakthrough result of a better-than-1/2 competitive algorithm for the online edge-
weighted bipartite matching problem due to Fahrbach et al. [18]. Initially, every job chooses two candidate
groups belonging to different machines randomly. Then to respect the marginal probability, we need to assign
the job to one of the two candidate groups uniformly at random. We correlate this process across different jobs
to create some strong negative correlation between events that two jobs are assigned to the same group, without
introducing positive correlation between events that two jobs are assigned to the same machine. To do so, we
generate segments of the form u-j-u′-j′-u′′, where j, j′ ∈ J ,u,u′,u′′ ∈ U and all edges are candidate edges. We
then correlate the assignment of j and j′: With probability 1/2, we assign j to u and j′ to u′; with probability
1/2, we assign j to u′ and j′ to u′′. So, we will not assign both j and j′ to u, creating a negative correlation
between the two events. The segments are generated so that for every u′, j, j′, the path j-u′-j′ appears in the
middle of a segment with some reasonable probability. Our new SNC scheme as well as the rounding algorithm
may be of independent interest.

Lk-norms of Machine Loads. For minimizing Lk-norms of machine loads, we use the same algorithm that was
used by [28] for minimizing total weighted completion time when all jobs have an equal weight-to-size ratio, a.k.a.,
uniform smith ratios. Their algorithm is essentially the same as the celebrated algorithm Shmoys and Tardos
used for minimizing makespan. The novelty of the work [28] primarily lies in the analysis.

At a high level, the rounding views the fractional LP solution as a fractional matching between jobs and
“buckets.” A machine may have multiple buckets, each of unit capacity. The rounding samples an integral
matching. The main difficulty in analyzing the algorithm comes from the fact that individual job assignments are
highly correlated. The key observation in [28] is the outcome satisfies a certain structural property. Then, the
instance is sequentially modified into simpler instances keeping the property satisfied. We borrow this key idea.
But, perhaps our analysis is (modestly) simpler and therefore works for all Lk-norms of machine loads.

1.4 Other Related Work We first discuss other related work on the total weighted completion time objective.
The problem can be solved in polynomial time if jobs have uniform weights or all jobs are unit sized [24, 12]. The
problem admits a PTAS if the number of machine is fixed [32]. As mentioned before, Kalaitzis et al. [28] gave
a 1.21-approximation when all jobs have the same ratio of wij and pij on each machine [28]. When machines
are identical (P ||

∑
j wjCj) or uniformly related (Q||

∑
j wjCj), the problem is NP-hard [20] but admits PTASes

[1, 39, 15]. If there is only one machine, the smith rule of ordering jobs in decreasing ratio of their weight to size
is known to be optimal.

All hither-to-discussion assumed jobs arrive at time 0. If jobs arrive at different times, the problem is NP-
hard even when there is only one machine [31]. When machines are unrelated (R|rj |

∑
j wjCj), 2-approximation

[34, 38] had been the best until it was improved to 1.869-approximation by [26]. PTASes exist when machines
are identical or uniformly related [1, 15]. The flow time objective is significantly more challenging to approximate
than the completion time objective. For minimizing total flow time, i.e, R|rj |

∑
j(Cj − rj), a poly-logarithmic

approximation was given by [7] and it was recently improved by [8]. For the special case of restricted assignment
case with release times, see [21, 22].

For the makespan objective, i.e., R||maxj Cj , there have been attempts to give better than 2-approximations
for certain special cases [40, 17]. The dual objective of maximizing the minimum total load of all machines
has also been studied extensively [10, 3, 2, 13, 19]. Kumar et al. gave a unified approach to optimize multiple
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objectives simultaneously [30]. Bonifaci and Wiese showed a PTAS when there are a fixed number of machine
types for minimizing Lk-norms of machine loads [11]. Chakrabarty and Swamy initiated studying the more general
symmetric norm [14], which strictly generalized the Lk-norm of machine loads. The state-of-the-art approximation
ratio for the problem is 2 + ϵ [25].

1.5 Organization of the Paper The rest of the paper is organized as follows. In Section 2 we introduce
our new strong negative correlation scheme and give the algorithm. In Section 3 we present our algorithm
for R||

∑
j wjCj . We give its analysis in Section 4, finishing the proof of Theorem 1.1. In Section 5, we prove

Theorem 1.2 by giving the algorithm for the problem of minimizing Lk-norm of loads and analyzing it. All missing
proofs can be found in the appendix. Most of the analysis of the algorithm for the weighted completion time
problem is analytical. There are a few places where we use numerical tools to compute the maximum (minimum)
of a single-variable function over an interval. We plot the two functions in Appendix D.

2 Rounding Algorithm with Strong Negative Correlation

In this section, we introduce our strong negative correlation (SNC) scheme. In our setting, there is a set M of
machines, a set J of jobs, a set U of groups, a function g : U → M mapping groups to machines, and a vector
y ∈ [0, 1]U×J such that y(u, J) ≤ 1 for every u ∈ U , and y(U , j) = 1 for every j ∈ J , where y(u, J ′) =

∑
j∈J′ yuj

for every u ∈ U and J ′ ⊆ J , and y(U ′, j) =
∑

u∈U ′ yuj for every U ′ ⊆ U and j ∈ J . We say a group u ∈ U belongs
to the machine g(u). We make the following definition, where g−1(i) is defined as {u ∈ U : g(u) = i}.

Definition 2.1. We say a machine i ∈ M dominates a job j ∈ J if y(g−1(i), j) > 1
2 .

See Figure 1(a) for the input of the SNC scheme. Our main theorem for the strong negative correlation
scheme is the following.

Theorem 2.1. Given M , J ,U , g and y as described above, there is an efficient randomized algorithm that outputs
an assignment σ : J → U of jobs to groups satisfying the following properties.

(2.1a) (Marginal Probabilities) For every u ∈ U and j ∈ J we have Pr[σ(j) = u] = yuj.

(2.1b) (Non-Positive Correlation for a Same Machine) For any two distinct jobs j, j′ and two (possibly
identical) groups u,u′ ∈ U with g(u) = g(u′), we have

Pr[σ(j) = u,σ(j′) = u′] ≤ yujyu′j′ .

(2.1c) (Strongly Negative Correlation for a Same Group) For any two distinct jobs j, j′ ∈ J and group
u ∈ U such that g(u) does not dominate any of j and j′, we have

Pr [σ(j) = σ(j′) = u] ≤ (1− η)yujyuj′ , where η = 0.1561.

As we mentioned, in the scheme of Bansal et al. [9], the vector y is in [0, 1]M×J and there is a partition of
edges incident to each machine i into groups. This naturally gives a vector over [0, 1]U×J , for the set U of all
groups, with a crucial condition which our scheme does not have: a job can not be adjacent to two different
groups belonging to the same machine, in the support of the vector. Our η = 0.1561 may seem weaker than the
counterpart in Im and Shadloo [27]. However the flexibility of the scheme allows us to save more in the reduction
from the scheduling problem.

2.1 Sketch of Rounding Algorithm We first give a sketch of the algorithm. To deliver the ideas more
efficiently, we assume no machines i dominate any job j, all the yuj values are very close to 0, and we make many
simplifying assumptions along the way. Our algorithm consists of 4 steps; see Figure 1 for an illustration of the
sketch.

1. For every job j, we choose two candidate groups belonging to two different machines, such that a group u is
chosen with probability exactly 2yuj . This is possible as we assumed no machines dominate any job. The
process is independent for different jobs j. Let Hcand be the bipartite graph between U and J containing the
edges {uj : u is a candidate group of j}. So, to respect the marginal probabilities, we need to assign each
j ∈ J to one of its two candidate groups uniformly at random. We do this in a coordinated way in succeeding
steps.
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Figure 1: The sketch of the algorithm for our SNC scheme. (a) depicts the input of the scheme. (b) shows the
graph Hcand, where every job j ∈ J is incident to two groups belonging to two different machines. The pairing
is indicated by the red arcs in (b). (c) shows the graph Hsplit. (d) gives one cycle-component in Hsplit and a
partition of the cycle into 2 segments, denoted by red and blue lines respectively.

2. For every group u ∈ U , we consider its incident edges in Hcand, or equivalently, the set of jobs choosing u as a
candidate group. We pair these edges, and for simplicity we assume their cardinality is even so all edges can
be paired. The pairing is chosen uniformly at random. Replacing each group u in Hcand with multiple copies,
each incident to one pair of edges, we obtain a graph Hsplit where all vertices have degree 2. Thus Hsplit is the
union of some cycles.

3. For simplicity, we assume all cycles in Hsplit have lengths being integer multiplies of 4. We break each cycle
in Hsplit into paths of length 4 with end points being groups, which we call segments. There are two ways to
do so and we choose one uniformly at random. So, each segment is of the form u-j-u′-j′-u′′ with u,u′,u′′ ∈ U
and j, j′ ∈ J . (We identify the copies of groups with their original groups in U).

4. For each segment u-j-u′-j′-u′′, we perform the rounding operation: with probability 1/2 we let σ(j) = u and
σ(j′) = u′, and with the remaining probability 1/2, we let σ(j) = u′ and σ(j′) = u′′.

This finishes the sketch of the algorithm. Property (2.1a) is easy to see. To see Property (2.1b), notice that
Step 4 does not create a positive correlation over a same machine: We have g(u) ̸= g(u′) and g(u′) ̸= g(u′′), due
to that the two candidate groups of a job do not belong to a same machine.

To analyze Property (2.1c), we show that two edges uj and uj′ will be paired with a decent probability,
conditioned on that they are both in Hcand: When all the y values tend to 0, the degree of u in Hcand follows
a Poisson distribution with mean 2. Once their are paired, with probability 1/2, u will be the middle vertex of
the segment containing uj and uj′. If this happens, we do not assign both j′ and j′ to u in Step 4, creating a
negative correlation between σ(j) = u and σ(j′) = u.

Many complications arise in the actual algorithm. Firstly, if a job j is dominated by a machine i, we can
not guarantee the two candidate groups for j belong to different machines. In such a case, we do not impose the
requirement. Secondly, as our y values may not tend to 0, we need an extra filtering operation in Step 1: For

every edge uj ∈ Hcand with g(u) not dominating j, we mark uj with probability 1−e−2yuj

2yuj
, which approaches 1 as

yuj tends to 0. This ensures that the probability an edge is marked is 1− e−2yuj , leading to the desired Poisson
distribution in the analysis. For every group u, we only pair the marked edges incident to it. Thirdly, the cycles
in Hsplit may have lengths not being multiplies of 4 (but the lengths are always even). We break such a cycle into
segments of length 4, and one segment of length 6 satisfying certain properties. Finally, Hsplit may contain paths
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as edges may be unpaired; however they are easier to handle than cycles.

2.2 Formal Description of Rounding Algorithm Now we formally describe the rounding algorithm for
Theorem 2.1. Throughout the section, given a graph H = (V ,E) and a vertex v ∈ V , we shall use δH(v) to
denote the set of incident edges of v in H. The rounding algorithm proceeds in 4 steps as we mentioned.

Step 1: Choosing and Marking Candidate Edges. For every job j ∈ J , we independently run the following
procedure. We randomly choose two candidate groups v1j , v

2
j ∈ U , and call the two edges v1j j and v2j j candidate

edges; let Hcand be the bipartite multi-graph between U and J containing all the candidate edges. We guarantee
the following two properties for every j ∈ J :

• Pr[v1j = u] = Pr[v2j = u] = yuj , for every u ∈ U .

• For every i ∈ M such that i does not dominate j, we have Pr[g(v1j ) = g(v2j ) = i] = 0.

The second property says that we should avoid choosing two candidate groups belonging to the same machine,
unless it is unavoidable.

Observation 2.2. If g(u) does not dominate j, then uj appears in Hcand at most once and Pr[uj ∈ Hcand] = 2yuj.

There are no other properties needed on how we choose the two candidate edges for a fixed j.

For every uj ∈ Hcand such that g(u) does not dominate j, we independently mark it with probability
1−e−2yuj

2yuj
≤ 1. The probability tends to 1 as yuj tends to 0. Similarly, we create a bipartite graphs Hmark

between U and J that contains all the marked edges.

Observation 2.3. If g(u) dominates j for some u ∈ U , j ∈ J , then uj /∈ Hmark. Otherwise, Pr[uj ∈ Hmark] =
1− e−2yuj . Moreover, for a group u ∈ U , the events uj ∈ Hmark over all jobs j ∈ J are independent.

Notice that Hmark does not contain parallel edges and Hmark ⊆ Hcand. This holds as if Hcand contains two
copies of the same edge uj, then it must be that g(u) dominates j, in which case we should not have marked uj.

Step 2: Pairing Edges to Obtain a Set Hsplit of Paths and Cycles. For every vertex u ∈ U , we independently
run the following pairing procedure. We pair the edges in δHmark(u) (instead of δHcand(u)), so that 0 or 1 of the
edges in δHmark(u) are not paired, depending on whether |δHmark(u)| is even or odd. Among all the valid pairings,
we choose one uniformly at random. An edge in δHcand(u) may not be paired for two reasons: First, it may not
be in δHmark(u). Second it is in δHmark(u), but |δHmark(u)| is odd and it is the only unpaired edge in the set.

Now, we create a graph Hsplit from Hcand by splitting groups as follows. Let Hsplit contain only the jobs
initially. Then, for every group u ∈ U , and any two paired edges uj,uj′ ∈ Hcand, we add a copy of u to Hsplit, and
two edges connecting the copy to j and j′ respectively. For every group u ∈ U and any unpaired edge uj ∈ Hcand,
we add a copy of u to Hsplit and connect the copy to j.

Notice that in Hsplit, every job has degree exactly 2, and every group (more precisely, every copy of a group)
has degree 1 or 2. So, each connected component in Hsplit is either a cycle or a path connecting two copies of
groups. From now on, we may not strictly distinguish between a group in U and its copies, when doing so does
not lead to a confusion.

Claim 2.4. Let P be a component in Hsplit containing at least 4 edges, and let j ∈ P . Then the two adjacent
groups of j in P belong to different machines.

Proof. If the two groups belong to the same machine, then the machine must dominate j. In this case the two
edges between the two groups and j are not marked and thus can not be paired with other edges. Then P should
be a path of length 2, a contradiction.

Step 3: Breaking Cycles/Paths in Hsplit into Segments. We construct a set of edge-disjoint segments from
the paths and cycles in Hsplit, defined as follows.
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Definition 2.5. Let P be a component in Hsplit that is a path, or a cycle of length at least 8. A segment S in P
is a sub-path of P of length 4 or 6, starting and ending at groups. Moreover, if S is a path u-j-u′-j′-u′′-j′′-u′′′ of
length 6, then g(u) ̸= g(u′′) and g(u′′′) ̸= g(u′).

The groups in S that are not the starting or ending group of S are called the centers of S: If S is u-j-u′-j′-u′′,
then the center is u′, and if S is u-j-u′-j′-u′′-j′′-u′′′, then the centers are u′ and u′′.

If P is a length-4 or 6 cycle in Hsplit, then we also call P a segment, and all groups in P are centers of P .

Notice that by Claim 2.4 and the definition, all centers of a segment S belong to different machines, and
a center and a non-center group of S belong to different machines. However, it may be possible that the two
non-center groups of S belong to the same machine.

We construct a set S of edge-disjoint segments. If P is a cycle of length 4 or 6 in Hsplit, then P is a segment
and we add P to S.

Focus on a path component P in Hsplit, and let it be u1-j1-u2-j2-· · · -uℓ+1. Then we add a set of edge-disjoint
segments of P to S as follows: With probability 1/2, we add to S all the segments of P of the form ut-jt-ut+1-
jt+1-ut+2 with t being an odd number. With the remaining probability 1/2, we add to S all the segments with t
being an even number. The following claim is immediate:

Claim 2.6. Every internal group u in P is the center of a constructed segment with probability 1
2 .

Now we show how to create segments from a cycle component C in Hsplit with length at least 8, in the proof
of the following lemma. As the proof is done by some tedious case-by-case analysis, we defer it to the appendix.

Lemma 2.7. Let C be a cycle component in Hsplit with length at least 8. There is an efficient random procedure
that outputs a set of edge-disjoint segments of C, such that every group u ∈ C is a center of a segment with
probability at least 4

9 .

We add the segments constructed by the lemma to S.

Step 4: Rounding Along Segments. For every segment S ∈ S, we list all the vertices along S in a sequence,
which have length 5 or 7; if S is a length-4 or length-6 cycle, we break it at an arbitrary group and list all the
vertices from the group. With probability 1/2, let σ(j) for every job j in the sequence be the group u before j.
With the remaining probability 1/2, let σ(j) for every j be the group after j in the sequence.

There are many other jobs that are not in any segment in S and thus are not assigned. For these jobs j,
we independently let σ(j) be one of its two neighbors in Hcand uniformly at random. j may not be in a segment
because the component P ∈ Hsplit containing j falls in one of the following cases.

• P is a path, j is the first or the last job on P .

• P is a cycle of length at least 8, and the segments from P do not cover j. This is possible as the segments
constructed by the procedure in Lemma 2.7 may not cover all jobs.

Notice that P can not be a cycle of length 2 as we do not mark an edge uj if u dominates j. This finishes the
description of the rounding algorithm for the SNC scheme.

2.3 The Analysis of Rounding Algorithm for SNC Scheme Now we analyze the algorithm in Section 2.2
and finish the proof of Theorem 2.1. We let cj = 1 if we assign j to v1j and cj = 2 if we assign j to v2j .

1 To see

Property (2.1a), notice that Pr[v1j = u] = Pr[v2j = u] = yuj for every uj ∈ U ×J . Conditioned on any values of v1j
and v2j , we have Pr[cj = 1] = Pr[cj = 2] = 1

2 . Therefore, we have Pr[v1j = u, cj = 1] = Pr[v2j = u, cj = 2] =
yuj

2 .
So, Pr[σ(j) = u] = yuj .

To prove Property (2.1b), we focus on two vertices u,u′ ∈ U with g(u) = g(u′) (it is possible that u = u′)
and two distinct jobs j, j′ ∈ J . We have Pr[v1j = u, v1j′ = u′] = Pr[v1j = u] Pr[v1j′ = u′] = yujyu′j′ as the candidate

edges for different jobs are chosen independently. In the rest of this paragraph, we condition on v1j = u, v1j′ = u′.

We show that the probability cj = cj′ = 1 is at most 1
4 . Notice that the two edges uj and u′j′ in Hcand can not

appear in the same cycle of length 4 or 6 in Hsplit, due to g(u) = g(u′) and Claim 2.4. If the two edges uj and

1It is possible that v1j = v2j . In this case, we can still tell whether cj = 1 or cj = 2. Indeed the purpose of introducing cj is to
avoid the confusion caused by this case.
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u′j′ in Hcand do not belong to a same segment in S, then j and j′ are rounded independently in Step 4. In this
case, the probability is precisely 1

4 . Now assume they appear in the same segment S ∈ S. As g(u) = g(u′), u and
u′ must be the two end-vertices of S, or we have u = u′. In either case, the probability cj = cj′ = 1 happens with
probability 0. So, the probability that cj = cj′ = 1 is at most 1

4 .

This proves that Pr[v1j = u, v1j′ = u′, cj = cj′ = 1] ≤ yujyu′j′

4 . We can prove the same upper bound for

Pr[v1j = u, v2j′ = u′, cj = 1, cj′ = 2], Pr[v2j = u, v1j′ = u′, cj = 2, cj′ = 1] and Pr[v2j = u, v2j′ = u′, cj = cj′ = 2].
Therefore, we have Pr[σ(j) = u,σ(j′) = u′] ≤ yujyu′j′ .

Proof of Property (2.1c) Finally, we prove Property (2.1c), which is the hardest. We focus on a vertex
u ∈ U , and two distinct jobs j, j′ ∈ J such that u does not dominate either j or j′. Notice that each of uj and
uj′ appears in Hcand at most once, and Pr[uj,uj′ ∈ Hcand] = 4yujyuj′ . Under the event, they are both marked

with probability (1−e−2yuj )(1−e
−2y

uj′ )
4yujyuj′

.

From now on, we condition on the event uj,uj′ ∈ Hmark. Let Q = |δHmark(u)| − 2. Then the distribution
for Q is dominated by Pois(2ρ), where for convenience we define ρ := 1 − yuj − yuj′ , and Pois(λ) is the Poisson
distribution with mean λ. Formally, we have the following claim:

Claim 2.8. We can define a random variable X ∼ Pois(2ρ) that is correlated with Q, such that Q ≤ X always
holds.

Proof. Q is the number of marked edges incident to u other than uj and uj′. By Observation 2.3, for every
j′′ /∈ {j, j′}, the probability that j′′ is marked is at most 1 − e−2yuj′′ and the events are independent. The
Bernoulli variable with mean 1 − e−2yuj′′ is dominated by the Poisson distribution with mean 2yuj′′ . Therefore
we can define a random variable Xj′′ for every job j′′ /∈ {j, j′}, such that Xj′′ ∼ Pois(2yuj′′), uj

′′ ∈ Hmark implies
Xj′′ ≥ 1, and the variables Xj′′ over all j′′ are independent. It always holds that Q ≤

∑
j′′∈J\{j,j′} Xj′′ , which

follows the Poisson distribution with mean
∑

j′′∈J\{j,j′} 2yuj′′ = 2(y(u, J)− yuj − yuj′) ≤ 2(1− yuj − yuj′) = 2ρ

as y(u, J) ≤ 1.

Under the value Q, the probability that uj and uj′ are paired is 1
Q+1 when Q is even, and 1

Q+2 when Q is

odd. So conditioned on uj,uj′ ∈ Hmark, we have that uj and uj′ are paired with each other with probability at
least

e−2ρ

 ∑
t≥0 even

(2ρ)
t

t!

1

t+ 1
+

∑
t≥1 odd

(2ρ)
t

t!

1

t+ 2


= e−2ρ

 ∞∑
t=0

(2ρ)
t

t!

1

t+ 1
−

∑
t≥1 odd

(2ρ)
t

t!

1

(t+ 1)(t+ 2)


= e−2ρ

 1

2ρ

∞∑
t=1

(2ρ)
t

t!
− 1

(2ρ)
2

∑
t≥3 odd

(2ρ)
t

t!


= e−2ρ

(
1

2ρ
(e2ρ − 1)− 1

(2ρ)
2 (

e2ρ − e−2ρ

2
− 2ρ)

)
=

1

2ρ
− 1− e−4ρ

8ρ2
,

where we used e2ρ−e−2ρ

2 =
∑

t≥1 odd
(2ρ)t

t! in the first equality in the last line.
Define E to be the event that uj and uj′ are paired to each other, and the copy of the group u for the pair

(uj,uj′) is a center of some segment in S. Notice that when E happens, we will not assign both j and j′ to u. So
we have

Pr[σ(j) = u,σ(j′) = u] = 4yujyuj′ ·
(
1− Pr[E|uj,uj′ ∈ Hcand]

)
· 1
4

≤ 4yujyuj′ ·
(
1− (1− e−2yuj )(1− e−2yuj′ )

4yujyuj′
·
(

1

2ρ
− 1− e−4ρ

8ρ2

)
· 4
9

)
· 1
4

= yujyuj′ −
1

9
(1− e−2yuj )(1− e−2yuj′ )

(
1

2ρ
− 1− e−4ρ

8ρ2

)
. (2.1)
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In the inequality, (1− e−2yuj )(1− e−2yuj′ )4yujyuj′ is the probability that uj and uj′ are marked, under the

condition that they are candidate edges; 1
2ρ − 1−e−4ρ

8ρ2 is the probability that they are paired with each other,

under the condition that they are marked; and 4
9 comes from Claim 2.6 and Lemma 2.7.

We then lower bound (1−e−2yuj )(1−e
−2y

uj′ )
yujyuj′

(
1
2ρ − 1−e−4ρ

8ρ2

)
. For a fixed yuj + yuj′ = 1 − ρ, we have that

(1−e−2yuj )(1−e
−2y

uj′ )
yujyuj′

is minimized when yuj = yuj′ . This follows from taking the logarithm of the quantity, and

the fact that ln 1−e−x

x is a convex function of x:

Claim 2.9. ln 1−e−x

x is convex over the domain [0,∞).

So for a fixed ρ ∈ [0, 1], 1
9
(1−e−2yuj )(1−e

−2y
uj′ )

yujyuj′

(
1
2ρ − 1−e−4ρ

8ρ2

)
is minimized when yuj = yuj′ =

1−ρ
2 . In this

case, the quantity is equal to
4

9
·
(
1− eρ−1

1− ρ

)2

·
(

1

2ρ
− 1− e−4ρ

8ρ2

)
.

The function in the domain [0, 1] has the minimum value of at least 0.1561 (See Figure 10 in Appendix D for
the function). Therefore, (2.1) is at most (1−0.1561)yujyuj′ = (1−η)yujyuj′ , finishing the proof of Property (2.1c).

3 Scheduling Algorithm Based on Rectangle LP

In this section, we describe our algorithm for the problem of scheduling unrelated jobs to minimize the weighted
completion time. The problem is formally defined as follows. We are given a set M of machines, a set J of jobs,
and a processing time pij ∈ Z>0 ∪ {∞} for every i ∈ M , j ∈ J . Every job has a weight wj ∈ Z>0 for every
j ∈ J . The output of the problem is an assignment σ : J → M and a total order ≺i of jobs in σ−1(i) for every
i ∈ M . The completion time Cj of a job j with σ(j) = i in the solution is pij +

∑
j′∈σ−1(i):j′≺ij

pij′ . The goal

of the problem is to minimize
∑

j∈J wjCj . It is well-known that once the assignment σ : J → M is decided, it is

optimum to sort jobs in σ−1(i) for every i ∈ M in non-decreasing order of pij/wj .
As in [33] and [27], our algorithm is based on the so called rectangle LP, which we describe now. Let

T =
∑

j∈J maxi:pij ̸=∞ pij so that any schedule will complete by time T . The LP is defined as follows:

min
∑
j∈J

wj

∑
i∈M ,s∈[0,T )

xijs(s+ pij) (3.2)

∑
i∈M ,s∈[0,T )

xijs = 1 ∀j ∈ J (3.3)

∑
j∈J,s∈[t−pij ,t)

xijs ≤ 1 ∀i ∈ M , t ∈ [T ] (3.4)

xijs = 0 ∀i ∈ M , j ∈ J , s > T − pij (3.5)

xijs ≥ 0 ∀i ∈ M , j ∈ J , s ∈ [0,T ) (3.6)

In the correspondent integer program, xijs for every ij ∈ M × J and integer s ∈ [0,T ) indicates if job j is
scheduled on machine i, with starting time s. The objective gives the weighted completion time of the schedule.
(3.3) requires that every job j is scheduled. (3.4) requires that at any time on machine i, at most one job is being
processed. (3.5) ensures that no jobs complete after time T . (3.6) is the non-negativity constraint. The LP is
polynomial-sized when T is polynomially bounded, but it can be solved to an arbitrary precision even when T is
super-polynomial in n, as shown in [33].

Im and Shadloo [27] showed that given a solution x to LP(3.2), one can round it to an integral schedule,
whose weighted completion time in expectation is at most 1.488 times the value of x. In this paper, we improve
the ratio to 1.45.

As in [27], we define Rijs for every variable xijs > 0 to be a rectangle with horizontal span (s, s + pij ] and
height xijs. We say that the rectangle is for job j, on machine i and with starting time s. So (3.3) says the total
height of all rectangles for a job j is at least 1, and (3.4) says the total height of rectangles on any machine i that
covers a time point t is at most 1. Let xij =

∑
s xijs be the total height of all rectangles for job j on machine i,

for every i ∈ M , j ∈ J .

3.1 Comparison of Algorithm to That of Im and Shadloo [27] As showed by Li [33], the following
independent rounding algorithm leads to a 1.5-approximation for the problem. For every job j, we independently
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choose an “anchor rectangle” Rijs for j, so that Rijs is chosen with probability xijs. If the anchor rectangle for j
is Rijs, we assign j to machine i, and define θj to be a random real number in the span (s, s+pij ] of the rectangle.
Then we schedule all the jobs assigned to a machine i in increasing order of θj values. This serves as a starting
point of their better-than-1.5 approximation algorithms.

Similar to Im and Shadloo [27], we break the time horizon into a set of base windows of geometrically
increasing length and define when a rectangle belongs to a base window. We choose a shifting parameter τij for
every pair ij with xij > 0. Roughly speaking, Rijs belongs to base window k if s + τij is in the base window.
We create one group for every machine i and every base window k, that contains all the rectangles on machine i
belonging to the base window k. We guarantee that the total height of rectangles in a group is at most 1. This
way, bad rectangles on machine i with the similar width have a good probability of being grouped together. Then
applying Theorem 2.1 with this grouping gives some negative correlation between the events these bad rectangles
are chosen as the anchor rectangles. This leads to the better-than-1.5-approximation ratio of the algorithm.

In our SNC scheme, we do not require that a job is only incident to one group belonging to a machine. So
we do not need to choose a representative rectangle Rijs for a ij pair as in Im and Shadloo [27]. As a result,
our construction automatically satisfies that the total height of rectangles belonging to one group is at most 1.
In contrast, the condition is only satisfied in expectation in [27]. Thus, they need to filter 1/2 fraction of the
rectangles in a group and apply Chernoff bound, which only guarantees that the condition holds with a probability
smaller than 1.

3.2 Formal Description of Rounding Algorithm for Scheduling Problem In this section, we formally
describe the rounding algorithm for the problem R||

∑
j wjCj .

Step 1: Constructing Base Windows and Choosing Shifting Parameters. Let α = 0.3,β = 12.1 be
two parameters whose values are chosen to optimize the final approximation ratio; recall that η = 0.1561 is the
parameter in Theorem 2.1. We randomly choose a parameter ρ ∈ [1, 1+β) so that ln ρ is uniformly distributed in
[0, ln(1+β)). Then, define a grid point to be a real number of the form ρ(1+β)k, k ∈ Z. So the time horizon (0,∞)
is broken into many base windows by the grid points: the base window k is the interval (ρ(1 + β)k−1, ρ(1 + β)k].

For every pair ij with pij ̸= ∞, we choose a shifting parameter τij , independently and uniformly at random
from [0, pij). Let τ⃗ be the vector (τij)i∈M ,j∈J:pij ̸=∞. Till the end of this section, we condition on the values of ρ
and τ⃗ when dealing with probabilistic events.

Definition 3.1. We say a rectangle Rijs belongs to the base window k if s ≤ ρ(1 + β)k−1 < s+ τij ≤ ρ(1 + β)k.
Let Rk be the set of all rectangles belonging to the base window k. We use Rijs ∼k Rij′s′ to denote the event that
the two rectangles Rijs and Rij′s′ on the same machine i belong to the same base window k. We use Rijs ∼ Rij′s′

to denote the event that there exists some k such that Rijs ∼k Rij′s′ .

It is possible that a rectangle Rijs does not belong to any base window: This happens if there are no grid points
between s and s+ τij . We note that the requirement s ≤ ρ(1 + β)k−1 will be used in the proof of Lemma 3.2.

Step 2: Defining Groups and Applying Theorem 2.1. To apply the SNC scheme, we need to define the
groups U , the mapping g : U → M and the fractional matching y ∈ [0, 1]U×J . We view each group u as a set of
rectangles and the set U of all groups forms a partition of the rectangles.

For every machine i and base window k, we add a group uik := {Rijs ∈ Rk} to U , if the set is not empty. We
define g(uik) = i. For any ij pair in M × J , we add a group vij := {Rijs /∈

⋃
k Rk} to U if the set is not empty.

We define g(vij) = i. That is, vij contains all the rectangles for j on i that do not belong to any base window.
Clearly, U forms a partition of all rectangles. Then for every group u ∈ U with g(u) = i and j ∈ J , we define

yuj =
∑

s:Rijs∈u

xijs

to be the total height of rectangles in group u for job j. By definition, we have yvijj′ = 0 if j ̸= j′.

Lemma 3.2. For every u ∈ U we have y(u, J) ≤ 1. For every j ∈ J , we have y(U , j) = 1.

Proof. For a group uik ∈ U , we have y(uik, J) is the total height of all rectangles in uik. Notice that Rijs ∈ Rk

only if [s, s + pj) contains ρ(1 + β)k−1. By (3.4), this is at most 1. y(vij , J) = yvijj ≤ 1 as the total height of
rectangles for j is at most 1. The second statement follows from that U is a partition of all rectangles.
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Now we can apply the algorithm for the SNC scheme in Theorem 2.1 on U , g and y to obtain an assignment
σ : J → U of jobs to groups. For every j ∈ J , we identify an anchor rectangle Rijs that resulted in the assignment
of j to σ(j) in the SNC scheme: assuming σ(j) = u, we choose the anchor rectangle for j randomly from the
all rectangles for j in u, with probability proportional to their heights. So, such a rectangle Rijs is chosen with
probability

xijs

yuj
.

We use ij and sj to denote the machine and starting time of the anchor rectangle for job j. Abusing notations
slightly, we also use Rijs to denote the event that Rijs is the anchor rectangle for j. That is, Rijs holds iff ij = i
and sj = s. We state a lemma that is a direct consequence of Theorem 2.1. Recall that a machine i dominates a
job j if y(g−1(i), j) = xij >

1
2 .

Lemma 3.3. Let j, j′ ∈ J be two distinct jobs, i ∈ M and s, s′ ∈ Z≥0. Then the following statements hold.

(3.3a) Pr[Rijs] = xijs.

(3.3b) Pr[Rijs,Rij′s′ ] ≤ xijsxij′s′ .

(3.3c) If i does not dominate any of j and j′, then

Pr[Rijs,Rij′s′ |Rijs ∼ Rij′s′ ] ≤ (1− η)xijsxij′s′ , where η = 0.1561 is as in Theorem 2.1.

Step 3: Construction of Final Schedule. We define

θj =

{
(1 + α)sj + τijj if ij does not dominate j

(1 + α)sj + τijj + 0.2 · pijj if ij dominates j

Recall that α = 0.3 is the global parameter we chose at the beginning of the algorithm. As observed in the
algorithms of [33] and [27], the hard cases come from the rectangles Rijs with s ≪ pij and xij close to 0. This is
because we can charge some delay to s when it is big and a self-“charging” is possible when xij is large. Thus we
can afford to add the term αsi to the definition of θj ; when xijj >

1
2 , we can even afford to add the term 0.2 ·pijj .

In the final schedule, every job j is scheduled on the machine ij . Jobs assigned to a same machine i are
scheduled in increasing order of their θj values (with probability 1, no two jobs have the same θj values). Notice
that once the assignment of jobs to machines is fixed, it is the best to sort jobs using the Smith ratios on each
machine. However, as in [33] and [27], it is more convenient to analyze this (possibly) sub-optimal schedule. This
finishes the description of the algorithm.

4 Analysis of Rounding Algorithm for Scheduling Problem

In this section, we analyze the approximation ratio achieved by the rounding algorithm in Section 3. We fix a
job j∗ and let C∗ be the completion time of j∗ in the schedule produced by the rounding algorithm. Most of the
time we also fix a machine i and our goal is to prove

E[C∗|ij∗ = i] ≤ 1.45

xij∗

∑
s∗

xij∗s∗(s
∗ + pij∗). (4.7)

This shall prove that E[C∗] ≤ 1.45
∑

i,s∗ xij∗s∗(s
∗ + pij∗), which in turn proves that the expected weighted

completion time of the schedule is at most 1.45 times the value of the rectangle LP.

As in [27], we can bound the ratio in (4.7) by 1.5− 1/2
2 + 0.2 = 1.45, for the case when i dominates j∗. The

− 1/2
2 term comes from that xij∗ > 1/2 and the 0.2 term comes the additive term 0.2 · pij∗ j∗ in the definition of

θj∗ . We defer the proof of following lemma to the appendix, as it follows from the argument in [27].

Lemma 4.1. If the machine i dominates j∗, then (4.7) holds.

4.1 When i Does Not Dominate j∗ From now on we consider the case where i does not dominate j∗. We
fix j∗, i and a starting time s∗. We shall upper bound E[C∗|Rij∗s∗ ] by 1.45(s∗ + pij∗). De-conditioning on s∗

proves (4.7). Throughout this section we use τ∗ and θ∗ as shorthands for τij∗ and θj∗ respectively. Notice that
θ∗ = (1+α)s∗+τ∗ conditioned on Rij∗s∗ . Most of the time we also condition on the value τ∗. So for convenience,

we use P̂r[·] and Ê[·] to denote Pr[·|Rij∗s∗ , τ
∗] and E[·|Rij∗s∗ , τ

∗] respectively.
As in [33] and [27], we define configurations as follows:
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Definition 4.2. A configuration f is a set of rectangles on i for jobs in J \ {j∗} with disjoint spans. That is,
for every two distinct rectangles Rijs,Rij′s′ ∈ f , we have (s, s+ pij ] and (s′, s′ + pij′ ] are disjoint.

It is well-known that we can find a family F of configurations2, each f ∈ F with a value zf ∈ [0, 1] such that∑
f∈F

zf = 1 and
∑

f∈F :Rijs∈f

zf = xijs for every rectangle Rijs with j ̸= j∗. For every f ∈ F , we define

Φ(f) := zf
∑

Rijs∈f

1

xijs
· P̂r[Rijs, θj < θ∗] · pij .

The usefulness of the definition Φ(f) can be seen from the following claim:

Claim 4.3. Ê[C∗]− pij∗ =
∑
f∈F

Φ(f).

As
∑

f∈F zf = 1, our goal then is to upper bound Φ(f)
zf

for every f ∈ F , considerably below θ∗. This will

bound Ê[C∗] away from θ∗ + pij∗ = (1 + α)s∗ + τ∗ + pij∗ . As E[τ∗|ij∗ = i] =
pij∗

2 , we shall obtain a better-than-

1.5-approximation. We bound Φ(f)
zf

in the following crucial lemma. For any ρ ∈ [1, 1 + β) and a real t > 0, let

hρ(t) be the smallest grid point that is at least t, under the value of ρ: hρ(t) = ρ(1 + β)k for the smallest integer
k with ρ(1 + β)k ≥ t.

Lemma 4.4. For every f ∈ F , we have

Φ(f)

zf
≤ θ∗ −min

{
η · Eρ

∫ θ∗

0

1

(
s∗ <

hρ(s
∗ + τ∗)

1 + β
< τ < hρ(s

∗ + τ∗)

)
· dτ , 0.102θ∗

}
. (4.8)

We defer the proof to the appendix, and elaborate more on the inequality and proof here. For simplicity,
assume i does not dominate any job involved in f ; this is the bottleneck case. We shift a rectangle Rijs to the
right by αs, so that the value of θj will be the starting time of the anchor rectangle for j after shifting, plus τij .
After shifting, the horizontal span of rectangles in the configuration f ∈ F are disjoint, as we shift the rectangles

on the right more than the rectangles on the left. Then, without using the negative correlation, we can bound Φ(f)
zf

by θ∗. The negative term in (4.8) comes from two cases, corresponding to the two terms in the min operator. The
first term, which is the main term, comes from the negative correlation between Rij∗s∗ and the unique rectangle
Rijs in f that covers θ∗ after shifting. We shall show that the worst case happens when s = 0. In the integration,
τ is the τij value and the condition inside 1(·) is for the event Rijs ∼ Rij∗s∗ . The second term 0.102θ∗ in the min
operator comes from the case where the rectangle Rijs has s ≥ s∗.

To avoid the issue of dividing by 0, we assume s∗ > 0. One can show that the case where s∗ = 0 will be
covered by the case s∗ > 0 and pij∗ tends to ∞. For every r ∈ [0,∞), we define

Q◦(r) = η · Eρ

∫ 1+α+r

0

1
(
1 <

hρ(1 + r)

1 + β
< y < hρ(1 + r)

)
· dy, (4.9)

Q(r) = min {Q◦(r), 0.102(1 + α+ r)} . (4.10)

Corollary 4.1. Let r = τ∗/s∗. Then we have Ê[C∗]− pij∗ ≤
(
1 + α+ r −Q(r)

)
s∗.

Proof. First, for every f ∈ F , we have Φ(f)
zf

≤ θ∗ − Q(r) · s∗. This follows from Lemma 4.4 by defining r = τ∗

s∗

and using the fact that ln ρ is uniformly distributed over [0, ln(1 + β)). By Claim 4.3, we have

Ê[C∗]− pij∗ =
∑
f∈F

Φ(f) ≤
∑
f∈F

(θ∗ −Q(r)s∗)zf = (1 + α)s∗ + τ∗ −Q(r)s∗

=
(
1 + α+ r −Q(r)

)
s∗.

2Here, a configuration implies a complete schedule on a machine, i.e. an ordered subset of jobs. Thus, each job in a configuration
f can be thought of as a rectangle of height zf .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Now we decondition on τ∗ and bound the final ratio for the case that i does not dominate j∗. Let p∗ = pij∗ ,

o = p∗

s∗ , and r = τ∗

s∗ .

Lemma 4.5.
E[C∗|Rij∗s∗ ]

s∗ + p∗
≤ 1

1 + o
·
(
1 + α+

3o

2
− 1

o

∫ o

0

Q(r)dr

)
.

Proof. E[C∗|Rij∗s∗ ]− p∗ ≤
∫ p∗

0

E
[
C∗|Rij∗s∗ , τ

∗] · dτ∗
p∗

− p∗ ≤ s∗2

p∗
·
∫ p∗/s∗

0

(1 + α+ r −Q(r))dr

= s∗ · 1
o

∫ o

0

(1 + α+ r −Q(r))dr = s∗
(
1 + α+

o

2
− 1

o

∫ o

0

Q(r)dr

)
.

Then
E[C∗|Rij∗s∗ ]

s∗ + p∗
≤ 1

(1 + o)s∗
· s∗

(
1 + α+

3o

2
− 1

o

∫ o

0

Q(r)dr

)
=

1

1 + o
·
(
1 + α+

3o

2
− 1

o

∫ o

0

Q(r)dr

)
.

It remains to show that 1
1+o ·

(
1 + α+ 3o

2 − 1
o

∫ o

0
Q(r)dr

)
≤ 1.45 for every o ≥ 0. This will prove

E[C∗|Rij∗s∗ ] ≤ 1.45(s∗ + p∗), which proves (4.7) for the case where i does not dominate j∗. The proof of the
inequality is by tedious elementary mathematical techniques and so we defer most of the proofs to the appendix.

First, we can obtain the closed form for Q◦(r):

Lemma 4.6.

Q◦(r) =


η

ln(1+β)

(
(1 + α+ r) · ln(1 + r)− r

)
r ∈ [0,β − α]

η
ln(1+β)

(
(1 + α+ r) ln (1+β)(1+r)

1+α+r − (β − α)
)

r ∈ (β − α,β]

η
ln(1+β)

(
α− β(1+r)

1+β + (1 + α+ r) ln (1+β)(1+r)
1+α+r

)
r > β

Figure 12 in Appendix D shows the function Q◦(r) over r ≥ 0, the function 0.102(1+α+r) over r ∈ [0,β−α)
and the function 0.1r over r ∈ [β − α,∞). It shows that Q◦(r) ≤ 0.102(1 + α + r) (this is the other term in
the definition of Q(r)) when r ∈ [0,β − α] and Q◦(r) ≥ 0.1r when r ≥ β − α. For formality, we prove the later
inequality analytically as r can go to ∞ in this case.

Lemma 4.7. When r ≥ β − α, we have Q◦(r) ≥ 0.1r.

We define Q′(r) for every r ≥ 0 as follows:

Q′(r) =

{
Q◦(r) = η

ln(1+β)

(
(1 + α+ r) · ln(1 + r)− r

)
r ∈ [0,β − α]

0.1r r > β − α

Therefore, we have Q′(r) ≤ Q(r). It remains to prove the following lemma, whose proof is in the appendix.

Lemma 4.8. We have
1

1 + o
·
(
1 + α+

3o

2
− 1

o

∫ o

0

Q′(r)dr

)
≤ 1.45.

5 Minimizing Lk-norms of Machine Loads

In this section we consider the other objective of minimizing Lk-norms of machine loads. As before, we are given
as input {pij}j∈J,i∈M where pij indicates j’s processing time (or size) on machine i. Formally, for an assignment
σ : J → M of jobs to machines,

∑
j∈σ−1(i) pij is machine i’s load, i.e., the total processing time of jobs assigned

to machine i. It is also equivalent to the maximum completion time of jobs in σ−1(i) when processing them on
machine i with no idle times. Neither migration nor preemption is allowed. The goal is to find an assignment
that minimizes the following objective: ∑

i∈M

 ∑
j∈σ−1(i)

pij

k


1/k

We will optimize the objective after taking the kth power. In other words, we will optimize the Lk
k-norm of

machine loads and take the kth root at the end.
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5.1 Linear Programming We again use a time indexed LP to find an approximate solution:

min
∑

j∈J,i∈M ,s∈[T ]

wijsxijs

∑
i∈M ,s∈[T ]

xijs ≥ 1 ∀j ∈ J

∑
j∈J,s∈(t−pij ,t]

xijs ≤ 1 ∀i ∈ M , t ∈ [T ] (5.11)

xijs = 0 ∀i ∈ M , j ∈ J , s > T − pij

xijs ∈ [0, 1] ∀i ∈ M , j ∈ J , s ∈ [T ],

where wijs := (s+ pij)
k − sk.

The time indexed LP is almost identical to the LP presented at the beginning of Section 3. The main difference
lies in the objective where job j adds to the kth power of machine loads by wijs when job j starts execution at
time s on machine i. To better understand the objective, consider the IP before relaxation; so, xijs ∈ {0, 1}.
Fix an assignment of jobs to machines and say jobs j1, j2, . . . jH are scheduled on machine i in this order and
let Cj1 ,Cj2 , . . . ,CjH be their respective completion time—ordering doesn’t affect machine loads so we assume an
arbitrary fixed ordering. Then, machine i contributes to the Lk

k-norm objective in the schedule by

(CjH )
k
=

H∑
h′=1

(
(Cjh′ )

k − (Cjh′−1
)k
)
,

where Cj0 := 0 for brevity. So, when job jh′ starts at time s = Cjh′−1
, i.e., xijh′s = 1, we can pretend that

it contributes to the objective by wijh′s = (s + pijh′ )
k − sk. Thus, the above objective captures the Lk

k-norm
objective of the IP.

All the constraints remain unchanged. The only simplification is that we don’t explicitly prohibit job j from
being assigned to machines i such that pij > T , but this is only for notational convenience. Thus, the above LP
is a valid LP relaxation for minimizing the Lk

k-norm objective.

5.2 Splittable Rectangle Packing To better understand the structure of the LP solution x, we consider the
following fractional packing problem for each machine i, which we term splittable rectangle packing (srp).

Fix a machine i. Suppose we have a rectangle of width xij :=
∑

s xijs and height pij for each job j.3 We are
allowed to split the rectangle into smaller ones of the same height, subject to the constraint that the total width
of the resulting rectangles equals the original width, xij . We are asked to pack the rectangles into a container of
width 1 with no overlap. Then, we can view the packing as a collection Ii of subsets of rectangles of the same
width λ(I), where

∑
I∈Ii

λ(I) = 1. Let p(I) denote the total height of rectangles in I. Then the packing’s cost

is
∑

I∈Ii
λ(I) · (p(I))k. See Figure 2 for illustration.

Note that I ∈ Ii may include more than one rectangle originating form the same job.4 So, if we associate
rectangles with jobs that they originate from, we can view I as a multi-set of jobs and P (I) is the total size of the
jobs in the multiset. Let srp∗({xij}j) denote the optimum solution for instance {xij}j of the splittable rectangle
problem, or its objective.

If a rectangle is placed at distance s from the bottom of the container, we say that it starts at time s. This
is natural because there is a natural mapping from jobs to rectangles as discussed above.

Lemma 5.1. For an optimum solution x to the LP and for each machine i, srp∗({xij}j) is equal to x’s
contribution to the LP objective on machine i, i.e.,

∑
s,j wijsxijs.

Proof. Fix a machine i and the value of xij for all j. For the sake of contradiction suppose srp∗({xij}j) <∑
s,j wijsxijs. To draw a contradiction, we convert the optimum packing Ii to the SRP into a local LP solution

3Here, we override the definition of height that was used in the previous sections.
4We can avoid this by using configuration LPs instead of time-indexed LPs although we don’t have to.
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0.75 0.50

3

a b 

2

0.50

c

0.5   0.25 0.25

Figure 2: Illustration of the splittable rectangle packing. In this example, we are given three rectangles, a, b, and
c. They have height 2, 2, 3 and width 0.75, 0.5, 0.5, respectively. Intuitively they correspond to jobs of processing
times 2, 2, 3 that are fractionally assigned to a machine by 0.75, 0.5, 0.5. The right figure shows a packing of the
rectangles. The three groups I1 = {a, b}, I2 = {a, c}, I3 = {c} have width 0.5, 0.25, 0.25 respectively. Note that
rectangle a was split into two, which appear in I1 and I2. Since p(I1) = 2 + 2, p(I2) = 5, p(I3) = 3, the objective
of the packing is 0.5 ∗ 4k + 0.25 ∗ 5k + 0.25 ∗ 3k. It is an easy exercise to see that this is indeed an optimum
packing for any k > 1. Lemma 5.1 shows that this is what the LP optimizes on each machine given a set of jobs
fractionally assigned to the machine.

on machine i. As discussed above, each split rectangle corresponds to a job and its start time is naturally defined
in each subset I in Ii; the rectangles are ordered in an arbitrary but fixed order). Initially xijs = 0 for all j
and s. For each split rectangle in I ∈ Ii that start at time s and corresponds to j, we add λ(I) to xijs. Since
the rectangles are packed into the container of width 1 with no overlaps, the resulting local LP solution must
satisfy constraints (5.11). This means we can improve the optimum LP solution locally on machine i, which is a
contradiction. Therefore, we have srp∗({xij}j) ≥

∑
s,j wijsxijs.

Conversely, we can convert the LP solution on machine i to a valid solution to SRP without changing cost.
To this end, create a rectangle Rijs for each xijs > 0. The rectangle has height pij and width xijs. Sort the
rectangles {Rijs}j,s in non-decreasing order of their start time and pack them into the container of width 1—here,
we split the considered rectangle if necessary. Then, it is easy to see that we can pack Rijs starting it at time
s due to the LP constraint (5.11). As we didn’t change the start times, the cost is preserved. Thus, we have
srp∗({xij}j) ≤

∑
s,j wijsxijs.

We have shown the equivalence of two views: fractional optimal scheduling in the LP and fractional splittable
rectangle packing for fixed {xij}j . Henceforth we will use both views in the analysis. In particular, we will
interchangeably use jobs and rectangles.

5.3 Algorithm We use the same algorithm as Kalaitzis et al. [28] used for minimizing weighted completion
time of jobs with uniform smith ratios, which is essentially the celebrated algorithm developed by Shmoys and
Tardos for the Generalized Assignment Problem [37]. For completeness we reproduce the algorithm below.

Sort jobs on each machine i in non-increasing order of their processing time, pij , and fractionally pack them
into buckets of unit capacity, denoted as B(i, 1),B(i, 2),B(i, 3) . . ., opening a new bucket only when necessary.
Formally, let Xij :=

∑
j′:pij′≥pij

xij′ breaking ties in an arbitrary but fixed way. If ⌈Xij − xij⌉ = ⌈Xij⌉, then
j is fractionally matched with B(i, ⌈Xij⌉) by xij where xij :=

∑
s xijs as defined before. Otherwise, job j is
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fractionally matched with B(i, ⌈Xij − xij⌉) by ⌈Xij − xij⌉− (Xij − xij) and with B(i, ⌈Xij⌉) by Xij −⌊Xij⌋.5 In
either case, job j is matched with buckets by xij in total. If it is matched with more than bucket, it is matched
with exactly two consecutive buckets on machine i.

For convenience, we add dummy jobs of size 0 (which doesn’t affect machine loads), so every bucket is fully
matched. Thus, we have defined a fractional perfect matching between jobs and buckets. It is well known
that a fractional perfect matching can be decomposed into a convex combination of polynomially many integral
matchings. We sample an integral matching at random from the combination/distribution. Clearly, it assigns
each job to exactly one bucket, therefore to one machine.

5.4 Analysis Fix a machine i. As a result of the above rounding, suppose machine i gets assigned a set I of
jobs with probability λ(I). Clearly we have

∑
I λ(I) = 1. Because j is assigned to i with probability xij

6, we can
view the rounding outcome as a feasible solution to the instance {xij}j of srp, which we denote as Ai. Thanks to
Lemma 5.1, our goal becomes upper-bounding this solution’s cost relative to srp∗({xij}j). But the solution can
be complicated to analyze due to correlations among jobs that exist on other machines. The key idea in [28] lies
in observing a structural property of the rounding scheme’s outcome and upper bounding the cost by the worst
packing solution satisfying the property.

For brevity, henceforth we fix a machine i and consider the instance {xij}j of SPR. The following definition
articulates the key property. Recall that a rectangle’s height is equal to the corresponding job’ size.

Definition 5.2. A solution I with λ(I), I ∈ I to the SRP is balanced if for any I, I ′ ∈ I and any integer q > 0,
the qth highest rectangle in I has no smaller height than the q + 1th highest rectangle in I ′.

Recall that Ai denotes the solution to the srp resulting from the rounding; for convenience, we may let it
also denote its cost. The following observation is immediate from the algorithm’s definition.

Observation 5.3. It is the case that Ai is balanced.

Let Oi denote the optimum solution’s cost, i.e.,
∑

j,s wijsxijs. Knowing that Ai is balanced, we will consider
the worst balanced packing solution and compare its cost to Oi for the sake of analysis. Intuitively, the packing
gets worse when more bigger jobs are grouped together.

Formally the worst balanced packing is defined as follows. Sort jobs in decreasing order of pij , breaking ties
arbitrarily. If j1, j2, ..., is the order, they are mapped to intervals (0,xij1 ], (xij1 ,xij1 + xij2 ], . . .. Let f(z) denote
the size of the job whose interval includes z. See Figure 3. Let F (z) := f(z) + f(z + 1) + f(z + 2) + . . . and
Fr(z) := F (z)− f(z), which are both defined over z ∈ [0, 1]. See Figures 4 and 5.

z1 2 3

f(z)

Figure 3: Illustration of f .

5The only degenerate case is when Xij − xij and Xij are both integers. In that case, j is fully matched with B(i,Xij).
6It is an easy exercise to show this as the fractional matching constructed in the algorithm matches i and j by xij units.
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z1 2 3

f(z)

Figure 4: Partitioning f .

z1

F(z)

+

+

z1

Fr(z)

+

Figure 5: Illustration of F and Fr.

Lemma 5.4. Ai ≤
∫ 1

0
(F (z))kdz.

Proof. The randomized rounding chooses exactly one job from each bucket. In other words, it chooses z1 ∈ [0, 1),
z2 ∈ [1, 2), . . . at random and the kth power of machine i’s load is (f(z1) + f(z2) + . . .)k. It is an easy exercise
to see that the expected kth power is maximized when z1 = z, z2 = z + 1 . . . for z sampled from [0, 1) uniformly
at random. In this case the expected kth power is exactly the desired upper bound. The proof follows from a
straightforward swapping argument.

Having upper bounded Ai by the “worst” balanced packing’s cost, we will compare the worst balanced packing
to the optimum packing.

Lemma 5.5. Let Oi :=
∑

j,s wijsxijs and A′
i :=

∫ 1

0
(F (z))kdz. If A′

i ≤ αOi, then the randomized rounding gives

a α1/k-approximation for minimizing Lk-norms of machine loads.

Proof. We have E
∑

i Ai ≤
∑

i A
′
i ≤ α

∑
i Oi. Thus, the algorithm yields an assignment that is α-approximate

against the LP solution for the Lk
k-norm objective. By taking the kth root, the lemma follows.

Therefore, our remaining goal becomes upper bounding A′
i/Oi. We will make several modifications of f (and

therefore F and Fr accordingly) in a sequence without decreasing A′
i/Oi. In each step we convert the current
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f into f ′, and accordingly F and Fr into F ′ and F ′
r, respectively. For convenience, we will assume that f has

domain [0,∞) by adding dummy jobs of zero size. Note that F (z) and Fr(z) have domain [0, 1].
First step. F ′ = F ; f ′(z) = F (z)−F (1), z ∈ [0, 1]; and F ′

r(z) = F (1). Further, jobs corresponding to F ′
r(z)

are infinitesimal. See Figure 6.

z1

F(z)

z1

F(z)

Figure 6: Illustration of the first step. In the left the red area illustrates f(z) for z ∈ [0, 1] and the grey area
illustrates Fr(z). In this step we replace the area below the dotted line with infinitesimal jobs, which are colored
blue in the right figure.

Here, it is important to notice that we only replace each job (or rectangle) with smaller jobs (or shorter
rectangles). In particular, rectangles corresponding to f(z), z ∈ [0, 1] can only be replaced into shorter rectangles.
This is possible due to the following lemma.

Lemma 5.6. For all z ∈ [0, 1] we have Fr(z) ≤ F (1).

Proof. By definition of f we have f(z + 1) ≤ f(1), f(z + 2) ≤ f(2) . . .. The claim follows by adding up the
inequalities.

Since F ′ = F , A′
i remains fixed. Further, Oi can only decrease as we replaced each rectangle with shorter

rectangles and thus more flexible packings are allowed. Therefore, the first step doesn’t decrease A′
i/Oi.

Second step. Since all rectangles corresponding to f(z), z ≥ 1 have infinitesimal height, the optimal packing
just ‘waterfills’ the slope defined by f(z), z ∈ [0, 1]. This is shown in the left figure in Figure 7. We would
like to increase A′

i keeping Oi the same. Thus, we only modify the slope under the water. Precisely, we find
m′ ≤ m ∈ [0, 1] such that i) f ′(z) = f(z) for all z ∈ [0,m′], ii) f ′(z) is constant for all z ∈ [m′,m], iii) f ′(z) = 0

for all z ∈ [m, 1], and iv) f ′(m)(1 − m) =
∫ 1

z=0
Fr(z)dz. This process is illustrated in Figure 7. Note that this

step doesn’t change the value of Oi.
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z1 z1m

Figure 7: Illustration of the second step. The left figure shows the optimum packing. The right figure shows the
modification: without changing the volume and skyline of infinitesimal rectangles colored blue, shift the volume of
f(z), z ∈ [0, 1] to the left as much as possible. The right figure shows the resulting F ′, along with f ′(z), z ∈ [0, 1]
and F ′

r.

Further, it is straightforward to see that this step can only increase A′
i as illustrated in Figure 8.

z

F(z)

z
1

F(z)

m

Figure 8: Illustration of F before and after the second step.

Third step. Change f to f ′ so that f ′(z) is constant for z ∈ [0,m]. In this step we do not change f(z), z > m.
Here we ensure A′

i/Oi never decreases. Let’s see why this is possible. Let r := F (1); in other words, the total
height of infinitesimal rectangles in any group of A′

i is r. Thanks to the simple structure of f , we have

A′
i

Oi
=

∫m

z=0
(r + f(z))kdz + (1−m)rk∫m

z=0
(f(z))kdz + (1−m)(f(m))k

Let’s consider any two z1, z2 ∈ [0,m] such that f(z1) ̸= f(z2). Let I1 be the maximal interval including z1
where f(z) is constant for z ∈ I1. Similarly I2 is defined. We observe that we can make f more uniform without
decreasing the value of A′

i/Oi.

Lemma 5.7. It is possible to not to decrease the value of A′
i/Oi by setting f ′(z) = f(z1) or f ′(z) = f(z2) for all

z ∈ I1 ∪ I2 ; and f ′(z) = f(z) for all z /∈ I1 ∪ I2.

Proof. Let y1 = f(z1) and y2 = f(z2). Let λ1 = |I1| and λ2 = |I2|. Then, for some cn, cd > 0, before the change,
we have

A′
i

Oi
=

λ1(y1 + r)k + λ2(y2 + r)k + cn
λ1(y1)k + λ2(y2)k + cd

Let λ1 = λ and λ2 = λ − λ1. Then, both the numerator and denominator are linear in λ. It is an easy exercise
to show that A′

i/Oi is maximized when λ = 0 or λ = λ1 + λ2.
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The above process of making the function values uniform must terminate in a finite time steps assuming that
f has a finite number of distinct function values. Thus, at the end f(z) is constant for z ∈ [0,m] and f(z) = 0 for
z ∈ [m, 1]. Technically speaking f(z) should be a sufficiently small constant for z ∈ [m, 1] to capture infinitesimal
sizes, but we pretend that the value is zero for convenience.

After all the modification steps, the final f is illustrated in Figure 9.

1

F(z)

zm 1
1
zm 1

Figure 9: After all the modification steps, f(z),Fr(z), z ∈ [0, 1] are colored in red and blue, respectively. The
right figure shows the optimal packing.

To upper bound A′
i/Oi, by scaling we can assume wlog that

f(z) =

{
1 z ∈ [0,m]

0 z ∈ [m, 1],

Fr(z) = (1−m)y z ∈ [0, 1]

for some y ∈ [0, 1]. Define

g(m, y) :=
m · (1 + (1−m)y)k + (1−m) · ((1−m)y)k

m · 1k + (1−m) · yk
(5.12)

Note that A′
i/Oi = g(m, y). Thus, thanks to Lemma 5.5 we have Theorem 1.2, which we reproduce below for

easy reference.

Theorem 5.1. There is a randomized algorithm that is α1/k-approximate for minimizing the Lk-norm of machine
loads, where α := supm∈(0,1],y∈[0,1] g(m, y).

As mentioned before, we can compute an upper bound on the claimed approximation ratio α1/k for small
values of k. See Table 1. When k = 2, we analytically show that α = 4/3 in Appendix E.
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A Missing Proofs in Section 2

Lemma 2.7. Let C be a cycle component in Hsplit with length at least 8. There is an efficient random procedure
that outputs a set of edge-disjoint segments of C, such that every group u ∈ C is a center of a segment with
probability at least 4

9 .

Proof. If the total length of C is an integer multiply of 4, then we can partition the edges of C into segments of
length 4. There are two different ways to do this, and we output one uniformly at random. Clearly, every group
in C is the center of a segment with probability 1/2.

Otherwise, the length of C is 4z + 2 for some integer z ≥ 1. If the length of C is at least 18, we do the
following. We randomly choose a job in j ∈ C ∩ J from C, remove it and its two adjacent edges from C, break
the resulting path of length 4z into z segments of length 4, and output the z segments. The probability that a
vertex is the center of a segment is z

2z+1 ≥ 4
9 .

It remains to consider the case where the length of C is 10 or 14. In this case, we show that C contains a valid
segment S of length 6. As two groups u and u′ adjacent to a same job j in C have g(u) ̸= g(u′), the multi-set
M ′ := {g(u) : u ∈ C ∩ U} contains at least 3 distinct machines.

• If C has length 10, then M ′ has size 5 and every machine appears at most twice in M ′. Among all the 5
sub-paths of C of length 6 that start and end at groups, at most 4 of them are invalid segment. This holds
since a pair of the same machine in M ′ can invalidate two segments of length 6.

• If C has length 14, then M ′ has size 7 and a machine appears at most 3 times in M ′. If a machine appears
3 times, then the three groups u,u′,u′′ with g(u) = g(u′) = g(u′′) breaks C into paths of length 4, 4 and 6
respectively. The path of length 6 is a valid segment as the two end-groups have the same g value. Now assume
no machine appears 3 times in M ′, then as before we can invalidate at most 6 segments of length 6, and there
is one (valid) segment of length 6 in C.

With the segment S of length 6, we show how to output the segments. With probability 1/2, we output S,
breaking the remaining edges into segments of length 4 (there are 1 or 2 of them) and output these segments
also. With the remaining probability 1/2, we do the following. Let j be the job between the two centers of S.
We remove j and its two adjacent edges from C, and break the remaining path into segments of length 4. Clearly
one can show that every group is a center of some segment with probability 1/2.

Claim A.1. ln 1−e−x

x is convex over the domain [0,∞).

Proof. The derivative of the function is e−x

1−e−x − 1
x = 1

1−e−x − 1− 1
x . The second-order derivative is

−e−x

(1−e−x)2 +
1
x2 .

It remains to show that (1 − e−x)2 ≥ e−xx2 for every x ≥ 0, which is equivalent to e−x + e−x/2x ≤ 1
for every x ≥ 0. The inequality holds with equality when x = 0. The derivative of the function is
−e−x − e−x/2x/2 + e−x/2 = e−x/2(1− e−x/2 − x/2) ≤ 0.

B Missing Proofs in Section 3

Lemma 3.3. Let j, j′ ∈ J be two distinct jobs, i ∈ M and s, s′ ∈ Z≥0. Then the following statements hold.
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(3.3a) Pr[Rijs] = xijs.

(3.3b) Pr[Rijs,Rij′s′ ] ≤ xijsxij′s′ .

(3.3c) If i does not dominate any of j and j′, then

Pr[Rijs,Rij′s′ |Rijs ∼ Rij′s′ ] ≤ (1− η)xijsxij′s′ , where η = 0.1561 is as in Theorem 2.1.

Proof. U , g and y are determined when we fixed ρ and τ⃗ . To see (3.3a), notice that we assign j to a group u
with probability yuj , which is the total height of rectangles in u for j. Under this event, we choose the anchor
rectangle from them at random, proportional to their heights.

Now we consider (3.3b). Let u be the group containing Rijs; define u′ similarly for Rij′s′ . We have
g(u) = g(u′) = i. (2.1b) in Theorem 2.1 says that Pr[σ(j) = u,σ(j′) = u′|ρ, τ⃗ ] ≤ yujyu′j′ . Then
Pr[Rijs,Rij′s′ |ρ, τ⃗ ,σ(j) = u,σ(j′) = u′] =

xijs

yuj
· xij′s′

yu′j′
by the way we choose anchor rectangles. Combining

the two inequalities gives Pr[Rijs,Rij′s′ |ρ, τ⃗ ] ≤ xijsxij′s′ for any ρ and τ⃗ . Then de-conditioning on ρ and τ⃗ proves
(3.3b).

Finally we turn to (3.3c). Assume i does not dominate any of j and j′. Fix a base window k. For a fixed
ρ and τ⃗ for which Rijs ∼k Rij′s′ , we have Pr[σ(j) = uik,σ(j

′) = uik|ρ, τ⃗ ] ≤ (1 − η)yuikjyuikj′ , by the Property
(2.1c) in Theorem 2.1. Again by the way we choose the anchor rectangles, we have

Pr[Rijs,Rij′s′ |ρ, τ⃗ ] ≤ Pr[σ(j) = uik,σ(j
′) = uik|ρ, τ⃗ ] · Pr[Rijs,Rij′s′ |σ(j) = uik,σ(j

′) = uik, ρ, τ⃗ ]

≤ (1− η)yuikjyuikj′ ·
xijs

yuikj
· xij′s′

yuikj′
= (1− η)xijsxij′s′ .

Then de-conditioning on ρ and τ⃗ , we have Pr[Rijs,Rij′s′ |Rijs ∼k Rij′s′ ] ≤ (1 − η)xijsxij′s′ . De-conditioning on
k proves (3.3c).

C Missing Proofs in Section 4

Lemma 4.1. If the machine i dominates j∗, then (4.7) holds.

Proof. For every j ∈ J and real t ≥ 0, let voli,j(t) be the total volume of portions of rectangles on i for j before
time t. For every i, J ′ ⊆ J and t, let voli,J′(t) =

∑
j∈J′ voli,j(t). Then,

E[C∗|ij∗ = i]− pij∗ ≤ 1

xij∗

∑
s∗

xij∗s∗

∫ pij∗

0

voli,J\j∗((1 + α)s∗ + τ∗ + 0.2 · pij∗)
dτ∗

pij∗

≤ 1

xij∗

∑
s∗

xij∗s∗

∫ pij∗

0

(
(1 + α)s∗ + τ∗ + 0.2 · pij∗ − voli,j∗(s

∗ + τ∗)
) dτ∗
pij∗

=
1

xij∗

∑
s∗

xij∗s∗

(
(1 + α)s∗ +

pij∗

2
+ 0.2 · pij∗ −

∫ pij∗

0

voli,j∗(s
∗ + τ∗)

dτ∗

pij∗

)
=

1 + α

xij∗

∑
s∗

xij∗s∗ · s∗ + 0.7pij∗ − xij∗pij∗

2

≤ 1 + α

xij∗

∑
s∗

xij∗s∗ · s∗ + 0.45pij∗ .

We explain the inequality in the first line. The probability of Rij∗s∗ is
xij∗s∗

xij∗
, conditioned on ij∗ = i. As i

dominates j∗, we have θj∗ = (1 + α)s∗ + τ∗ + 0.2 · pij∗ conditioned on Rij∗s∗ and τij∗ = τ∗. Under these
conditions, the expected starting time of j∗ is at most vol(θj∗): for a rectangle Rijs with j ̸= j∗, we have
Pr[Rijs, θij < θj∗ |Rij∗s∗ , τij∗ = τ∗] ≤ Pr[Rijs, s+ τij < θj∗ |Rij∗s∗ , τij∗ = τ∗] ≤ xijs ·Pr[s+ τij < θj∗ |Rij∗s∗ , τij∗ =
τ∗]. This is 1

pij
times the volume of the rectangle Rijs before time θ∗j . If the event happens, the rectangle

contributes pij to the starting time of j∗. So the inequality holds.
The second inequality used that the total volume of all rectangles on machine i before time (1+α)s∗+τ∗+αpij∗

is at most (1 + α)s∗ + τ∗ + 0.2 · pij∗ , and voli,j∗(s
∗ + τ∗) ≤ voli,j∗((1 + α)s∗ + τ∗ + 0.2 · pij∗).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



We then prove

1

xij∗

∑
s∗

xij∗s∗
1

pij∗

∫ pij∗

0

vol(s∗ + τ∗)dτ∗ =
xij∗pij∗

2
,

which is used in the equality in the fourth line. Notice
∑

s∗,s′∗

∫ pij∗

0

∫ pij∗

0
xij∗s∗xij∗s′∗1(s

′∗+τ ′∗ < s∗+τ∗)dτ∗dτ ′∗ =
x2
ij∗p

2
ij∗

2 . Scaling both sides by 1
xij∗pij∗

gives the inequality.

The last inequality used that xij∗ > 1
2 since i dominates j∗. So, E[C̃j∗ |ij∗ = i] ≤ 1

xij∗

∑
s∗ xij∗s∗ ·

((1 + α)s∗ + 1.45pij∗) ≤ 1.45
xij∗

∑
s∗ xij∗s∗(s

∗ + pij∗).

Claim C.1. Ê[C∗]− pij∗ =
∑
f∈F

Φ(f).

Proof. Ê[C∗]− pij∗ =
∑

j ̸=j∗,s

P̂r[Rijs, θj < θ∗] · pij

=
∑

j ̸=j∗,s

P̂r[Rijs, θj < θ∗] · pij ·
1

xijs
·

∑
f∈F :Rijs∈f

zf

=
∑
f∈F

∑
j ̸=j∗,s:Rijs∈f

zf · 1

xijs
· P̂r[Rijs, θj < θ∗] · pij =

∑
f∈F

Φ(f).

Lemma 4.4. For every f ∈ F , we have

Φ(f)

zf
≤ θ∗ −min

{
η · Eρ

∫ θ∗

0

1

(
s∗ <

hρ(s
∗ + τ∗)

1 + β
< τ < hρ(s

∗ + τ∗)

)
· dτ , 0.102θ∗

}
. (4.8)

Proof. We first give a coarse upper bound for the first term in the min operator, so that we can use it to absorb
some bound we obtain along the way.

η · Eρ

∫ θ∗

0

1

(
s∗ <

hρ(s
∗ + τ∗)

1 + β
< τ < hρ(s

∗ + τ∗)

)
· dτ

≤ η · Eρ

∫ θ∗

0

1

(
hρ(θ

∗/(1 + α))

1 + β
< τ

)
· dτ =

η

ln(1 + β)

∫ 1+β

1

dϱ

ϱ
·
(
θ∗ − ϱθ∗

(1 + α)(1 + β)

)
=

η

ln(1 + β)

(
θ∗ ln(1 + β)− βθ∗

(1 + α)(1 + β)

)
= ηθ∗

(
1− β

(1 + α)(1 + β) ln(1 + β)

)
≤ 0.8ηθ∗.

The inequality comes from that the event in 1(·) on the right side of the inequality is easier to satisfy than that

on the left side. The first equality follows by defining ϱ =
hρ(θ

∗/(1+α))
θ∗/(1+α) and that ln ϱ is uniformly distributed in

[0, ln(1 + β)].

For a rectangle Rijs ∈ f with s + pij ≤ θ∗

1+α , we have P̂r[Rijs, θj < θ∗] ≤ P̂r[Rijs] ≤ xijs due to (3.3b).

Thus 1
xijs

P̂r[Rijs, θj < θ∗] ≤ 1. For a rectangle Rijs with s > θ∗

1+α , we have P̂r[Rijs, θj < θ∗] = 0 as

(1 +α)s+ τij ≥ (1 +α)s > θ∗ with probability 1. Let Rijs be the unique rectangle with s ≤ θ∗

1+α < s+ pij in the

configuration. We assume Rijs exists: Otherwise Φ(f)
zf

≤ θ∗

1+α ≤ θ∗ − ηθ∗, and ηθ∗ is at least the first term in the

min operator in (4.8). So (4.8) holds.
For notational convenience, we use p for pij and τ for τij . The total contribution of rectangles in f before

Rijs to Φ(f) is at most zfs, and the total contribution rectangles in f after Rijs is 0. So,

Φ(f)

zf
≤ s+

1

xijs
· P̂r[Rijs, θj < θ∗] · p.

If i dominates j, then Φ(f)
zf

≤ s+ (θ∗ − (1 + α)s− 0.2p)+ = max{s, θ∗ − αs− 0.2 · p}, as θj = (1 + α)s+ τ + 0.2p

and τ is uniformly distributed in [0, p). Notice s ≤ θ∗

1+α ≤ θ∗−ηθ∗ and αs+0.2 ·p ≥ 0.8η · (1+α)(s+p) ≥ 0.8ηθ∗.

Thus Φ(f)
zf

≤ θ∗ − 0.8ηθ∗. Again 0.8ηθ∗ is lower bounded by the first term in the min operator of (4.8).
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From now on we assume i does not dominate j. Let q = min{θ∗ − (1 + α)s, p} ≥ 0. For any τ ∈ [0, p], we
have (1 + α)s+ τ < θ∗ if and only if τ < q. For any τ ∈ [0, q), we have

P̂r[Rijs, θj < θ∗|τ ] = P̂r[Rijs|τ ]

= P̂r[Rijs ∼ Rij∗s∗ |τ ] · P̂r[Rijs|Rijs ∼ Rij∗s∗ , τ ] + P̂r[Rijs ̸∼ Rij∗s∗ |τ ] · P̂r[Rijs|Rijs ̸∼ Rij∗s∗ , τ ]

≤ P̂r[Rijs ∼ Rij∗s∗ |τ ] · (1− η)xijs + P̂r[Rijs ̸∼ Rij∗s∗ |τ ] · xijs

= xijs

(
1− η · P̂r[Rijs ∼ Rij∗s∗ |τ ]

)
.

So, we have

Φ(f)

zf
= s+

1

p

∫ q

0

(1− η · P̂r[Rijs ∼ Rij∗s∗ |τ ]) · p · dτ = s+ q − η

∫ q

0

P̂r[Rijs ∼ Rij∗s∗ |τ ] · dτ

= s+ q − η

∫ q

0

P̂r[Rijs ∼ Rij∗s∗ |τ ]dτ = s+ q − η · Eρ

∫ q

0

P̂r[Rijs ∼ Rij∗s∗ |τ , ρ] · dτ

= s+ q − η · Eρ

∫ q

0

1

(
max{s, s∗} <

hρ(s
∗ + τ∗)

1 + β
< s+ τ < hρ(s

∗ + τ∗)

)
· dτ . (C.1)

In the rest of the proof, we fix s∗ ≥ 0, τ∗ ≥ 0 and θ∗ = (1 + α)s∗ + τ∗, and upper bound (C.1) subject to
s, q ≥ 0, (1 + α)s + q ≤ θ∗. It is easy to see that if we increase q continuously at a rate of 1, the negative term
increases by at most a rate of η. So the quantity increases. Thus, we can assume (1 + α)s+ q = θ∗.

We consider two cases. In the first case we assume s > s∗, or (1 + β)s ≤ (s∗ + τ∗), which implies that the

condition s <
hρ(s

∗+τ∗)
1+β inside 1(·) is redundant. We apply the following continuous operation: decrease s at a

rate of 1 and increase q at a rate of 1 + α so that (1 + α)s+ q = θ∗ holds in the process. This increases s+ q at
a rate of α. For a fixed ρ ∈ [1, 1 + β), we consider the interval of τ values in [0, q] for which the condition inside
1(·) holds. The length of the interval increases at a rate of at most 1 + α, which is how fast q increases. So the
how negative term increase at a rate of at most (1 + α)η. As α > (1 + α)η, the operation will increase (C.1).

So, the quantity is maximized when s = 0 when s ≤ s∗. In this case, we have q = θ∗ and

Φ(f)

zf
≤ θ∗ − η · Eρ

∫ θ∗

0

1

(
s∗ <

hρ(s
∗ + τ∗)

1 + β
< τ < hρ(s

∗ + τ∗)

)
· dτ .

This is what we obtain using the first term in the min operator of (4.8).
Then we consider the second case where we have s ≥ s∗ and (1 + β)s > (s∗ + τ∗). As θ∗ = (1 + α)s∗ + τ∗ =

(1 + α)s+ q, we have s+ q ≤ s∗ + τ∗ < (1 + β)s. We have

s+ q − η · Eρ

∫ q

0

1

(
max{s, s∗} <

hρ(s
∗ + τ∗)

1 + β
< s+ τ < hρ(s

∗ + τ∗)

)
· dτ

= s+ q − η · Eρ

∫ q

0

1

(
s <

hρ(s
∗ + τ∗)

1 + β
< s+ τ

)
· dτ

= s+ q − η

ln(1 + β)

∫ s+q
s

1

(s+ q − ϱs) · dϱ
ϱ

= s+ q − η

ln(1 + β)

(
(s+ q) ln

s+ q

s
− q

)
= θ∗ −

(
αs+

η

ln(1 + β)

(
(θ∗ − αs) ln

θ∗ − αs

s
− θ∗ + (1 + α)s

))
.

The second inequality follows by defining ϱ so that
hρ(s

∗+τ∗)
1+β = ϱs. Notice that ln ϱ is uniformly distributed in(

ln s∗+τ∗

(1+β)s , ln
s∗+τ∗

s

]
, and the integration is s + q − ϱs if s < ϱs < s + q and 0 otherwise. The last equality used

that θ∗ = (1 + α)s+ q.
Let x = s

θ∗ ∈ [0, 1]. The minimum of αx+ η
ln(1+β)

(
(1− αx) ln 1−αx

x − 1 + (1 + α)x
)
over x ∈ [0, 1] is at least

0.102. See Figure 11 in Appendix D for the plotting of the function. Therefore, we have Φ(f)
zf

≥ θ∗ − 0.102θ∗.

This corresponds to the second term in the min operator of (4.8).
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Lemma 4.6.

Q◦(r) =


η

ln(1+β)

(
(1 + α+ r) · ln(1 + r)− r

)
r ∈ [0,β − α]

η
ln(1+β)

(
(1 + α+ r) ln (1+β)(1+r)

1+α+r − (β − α)
)

r ∈ (β − α,β]

η
ln(1+β)

(
α− β(1+r)

1+β + (1 + α+ r) ln (1+β)(1+r)
1+α+r

)
r > β

Proof. For convenience, we recall that Q◦(r) = η · Eρ

∫ 1+α+r

0
1
(
1 <

hρ(1+r)
1+β < y < hρ(1 + r)

)
· dy.

If r ∈ [0,β − α], we have 1 + α + r ≤ 1 + α + β − α = 1 + β. The condition y < hρ(1 + r) in the definition

of Q◦(r) is redundant since if 1 <
hρ(1+r)

1+β , then hρ(1 + r) > 1 + α + r. We define ϱ :=
hρ(1+r)

1+β , and thus ln ϱ is

uniformly distributed in
[
ln 1+r

1+β , ln(1+r)
)
. Notice that 1 ≤ 1+r ≤ 1+β. We have

∫ 1+α+r

0
1
(
1 <

hρ(1+r)
1+β < y

)
dy

is 1 + α+ r − ϱ if ϱ > 1 and 0 otherwise.

Q◦(r) =
η

ln(1 + β)

∫ 1+r

1

(1 + α+ r − ϱ)
dϱ

ϱ
=

η

ln(1 + β)

(
(1 + α+ r) · ln(1 + r)− r

)
.

Then we consider the case r ∈ (β − α,β]. We have 1 + r ≤ 1 + β ≤ 1 + α + r. We define ϱ :=
hρ(1+r)

1+β .

Then,
∫ 1+α+r

0
1
(
1 <

hρ(1+r)
1+β < y < hρ(1 + r)

)
· dy is βϱ if ϱ ∈

[
1, 1+α+r

1+β

)
, and 1+α+ r− ϱ if ϱ ∈

[
1+α+r
1+β , 1+ r

]
.

(Notice that 1+α+r
1+r ≤ 1 + α ≤ 1 + β.) So,

Q◦(r) =
η

ln(1 + β)

(∫ 1+α+r
1+β

1

βϱ
dϱ

ϱ
+

∫ 1+r

1+α+r
1+β

(1 + α+ r − ϱ)
dϱ

ϱ

)

=
η

ln(1 + β)

(
β(1 + α+ r)

1 + β
− β + (1 + α+ r) · ln (1 + β)(1 + r)

1 + α+ r
−
(
1 + r − 1 + α+ r

1 + β

))
=

η

ln(1 + β)

(
1 + α+ r − (1 + β)− r + (1 + α+ r) ln

(1 + β)(1 + r)

1 + α+ r

)
=

η

ln(1 + β)

(
(1 + α+ r) ln

(1 + β)(1 + r)

1 + α+ r
− (β − α)

)
.

Finally consider the case r > β. In this case we have 1 + α + r ≥ 1 + r ≥ 1 + β. So, 1 <
hρ(1+r)

1+β is always

satisfied and the requirement can be removed in the definition of Q(r) in (4.10). We define ϱ =
hρ(1+r)

1+r , which

takes values in [1, 1 + β). Then
∫ 1+α+r

0
1
(

hρ(1+r)
1+β < y < hρ(1 + r)

)
· dy is β

1+β · ϱ(1 + r) if ϱ ∈
[
1, 1+α+r

1+r

)
, and

1 + α+ r − ϱ(1+r)
1+β if ϱ ∈

[
1+α+r
1+r , 1 + β

)
. So,

Q◦(r) =
η

ln(1 + β)

(∫ 1+α+r
1+r

1

β

1 + β
· ϱ(1 + r) · dϱ

ϱ
+

∫ 1+β

1+α+r
1+r

(
1 + α+ r − ϱ(1 + r)

1 + β

)dϱ
ϱ

)

=
η

ln(1 + β)

(
βα

1 + β
+ (1 + α+ r) ln

(1 + β)(1 + r)

1 + α+ r
−
(
1 + r − 1 + α+ r

1 + β

))
=

η

ln(1 + β)

(
α− β(1 + r)

1 + β
+ (1 + α+ r) ln

(1 + β)(1 + r)

1 + α+ r

)
.

Lemma 4.7. When r ≥ β − α, we have Q◦(r) ≥ 0.1r.

Proof. First consider the function Q◦ over the domain r ∈ [β − α,β]. We have

dQ◦

dr
=

η

ln(1 + β)

(
ln

(1 + β)(1 + r)

1 + α+ r
+ (1 + α+ r)

(
1

1 + r
− 1

1 + α+ r

))
=

η

ln(1 + β)

(
ln

(1 + β)(1 + r)

1 + α+ r
+

α

1 + r

)
.
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We then compare dQ◦

dr with Q◦

r .

dQ◦

dr
− Q◦

r
=

η

ln(1 + β)

((
1− 1 + α+ r

r

)
· ln (1 + β)(1 + r)

1 + α+ r
+

α

1 + r
+

β − α

r

)
=

η

ln(1 + β)

(
−1 + α

r
· ln (1 + β)(1 + r)

1 + α+ r
+

α

1 + r
+

β − α

r

)
≥ η

ln(1 + β)

(
− 1 + α

β − α
ln

(1 + β)2

1 + β − α
+

α

1 + β
+

β − α

β

)
>

0.7η

ln(1 + β)
> 0.

Therefore, Q◦(r)
r attains its minimum when r = β − α in the domain [β − α,β]. In this domain, we have

Q◦(r)

r
≥ η

ln(1 + β)(β − α)
[(1 + β) ln(1 + β − α)− (β − α)]

=
η

ln(1 + β)

[
1 + β

β − α
· ln(1 + β − α)− 1

]
≥ 0.1.

Now we consider the domain r ∈ [β,∞). As before, we compute dQ◦

dr :

dQ◦

dr
=

η

ln(1 + β)

(
− β

1 + β
+ ln

(1 + β)(1 + r)

1 + α+ r
+ (1 + α+ r)

(
1

1 + r
− 1

1 + α+ r

))
=

η

ln(1 + β)

(
− β

1 + β
+ ln

(1 + β)(1 + r)

1 + α+ r
+

α

1 + r

)
.

Again, we compare dQ◦

dr with Q◦

r :

dQ◦

dr
− Q◦

r
=

η

ln(1 + β)

(
− β

1 + β
+

α

1 + r
− α

r
+

β(1 + r)

(1 + β)r
+
(
1− 1 + α+ r

r

)
ln

(1 + β)(1 + r)

1 + α+ r

)
=

η

ln(1 + β)

(
α

1 + r
− α

r
+

β

(1 + β)r
− 1 + α

r
ln

(1 + β)(1 + r)

1 + α+ r

)
≤ η

r ln(1 + β)

(
β

1 + β
− (1 + α) ln

(1 + β)2

1 + α+ β

)
≤ 0.

So, Q◦

r is minimized when r tends to ∞. So, when r ≥ β, we have

Q◦(r)

r
≥ η

ln(1 + β)

(
− β

1 + β
+ ln(1 + β)

)
= η − ηβ

(1 + β) ln(1 + β)
≥ 0.1.

Lemma 4.8. We have
1

1 + o
·
(
1 + α+

3o

2
− 1

o

∫ o

0

Q′(r)dr

)
≤ 1.45.

Proof. If o ≤ β − α, we have

1

o

∫ o

0

Q′(r)dr =
1

o

∫ o

0

η

ln(1 + β)
[(1 + α+ r) · ln(1 + r)− r] dr

=
η

o ln(1 + β)
· 2 (r + 1) (r + 2α+ 1) ln (r + 1)− r · (3r + 4α+ 2)

4

∣∣∣o
0

=
η

o ln(1 + β)
· 2 (o+ 1) (o+ 2α+ 1) ln (o+ 1)− o · (3o+ 4α+ 2)

4

=
η

ln(1 + β)
·
(
2 (o+ 1) (o+ 2α+ 1) ln (o+ 1)

4o
− 3o+ 4α+ 2

4

)
.
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So, we need to compute the maximum of

1

1 + o
·
[
1 + α+

3o

2
− η

ln(1 + β)
×
(
2 (o+ 1) (o+ 2α+ 1) ln (o+ 1)

4o
− 3o+ 4α+ 2

4

)]
.

The maximum of the function over o ∈ [0,β − α] is at most 1.445 < 1.45, achieved when o ≈ 8.162 (See
Figure 13 in Appendix D).

Then we consider the case o ≥ β − α. We define λ such that

∫ β−α

0

Q′(r)dr =
λ(β − α)2

2
. Indeed one

can compute the value of λ and see that λ < 0.1. To avoid the computation, we see that if λ ≥ 0.1, then we

have 1
o

∫ o

0
Q′(r)dr ≥ 1

o

(
0.1(β−α)2

2 +
∫ o

β−α
0.1rdr

)
≥ 0.1o

2 = 0.05o. The quantity we need to bound is at most
1

1+o · (1 + α+ 3o
2 − 0.05o) ≤ max{1 + α, 1.45} = 1.45.

So we assume λ < 0.1. We have

1

1 + o

(
1 + α+

3o

2
− 1

o

∫ o

0

Q′(r)dr

)
≤ 1

1 + o

(
1 + α+

3o

2
− 1

o

(
λ(β − α)2

2
+

∫ o

β−α

0.1rdr

))
=

1

1 + o

(
1 + α+

3o

2
− 1

o

(
λ(β − α)2

2
+

0.1(o2 − (β − α)2)

2

))
=

1

1 + o

(
1 + α+ 1.45o+

(0.1− λ)(β − α)2

2o

)
= 1.45 +

1

o
· (0.1− λ)(β − α)2

2
+

1

1 + o

(
1 + α− 1.45− (0.1− λ)(β − α)2

2

)
= 1.45 +

1

o
· (0.1− λ)(β − α)2

2
− 1

1 + o

(
0.45− α+

(0.1− λ)(β − α)2

2

)
.

To obtain the second-to-last equality, we replace o
1+o with 1 − 1

1+o and 1
o(o+1) with 1

o − 1
1+o . Let

A = (0.1−λ)(β−α)2

2 and B = 0.45 − α + (0.1−λ)(β−α)2

2 so that the above quantity is 1.45 + A
o − B

1+o . Notice

that 0 < A < B. The derivative of the function w.r.t o is − A
o2 + B

(1+o)2 . The derivative is 0 if o = 1/(
√
B/A− 1),

positive if o > 1/(
√
B/A− 1), and negative if 0 < o < 1/(

√
B/A− 1). So o = 1/(

√
B/A− 1) is a local minimum.

Therefore, the maximum of the function occurs when o = β − α or o = ∞. The former case is already covered in
the case o ∈ [0,β − α]. In the later case, the function value is 1.45.
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D Plotting of Functions Used in the Weighted Completion Time Result

In this section, we plot the functions used in the analysis of the algorithm for weighted completion time. See
Figures 10 to 13.

Figure 10: The function 4
9 ·

(
1−eρ−1

1−ρ

)2
·(

1
2ρ − 1−e−4ρ

8ρ2

)
over ρ ∈ [0, 1].

Figure 11: The function αx + η
ln(1+β)

(
(1 −

αx) ln 1−αx
x − 1 + (1 + α)x

)
over x ∈ [0, 1].

Figure 12: The function Q◦(r) over r ≥ 0 (the
red line), the function 0.102(1 + α + r) over r ∈
[0,β − α) (the green line) and the function 0.1r
over r ∈ [β − α,∞) (the blue line).

Figure 13: The function 1
1+o ·

[
1 + α + 3o

2 −
η

ln(1+β) ×
(

2(o+1)(o+2α+1) ln(o+1)
4o − 3o+4α+2

4

) ]
over

o ∈ [0,β − α] = [0, 11.8].
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E Approximation Ratio for Minimizing L2-norm of Machine Loads

In this section we analytically show that the approximation ratio of our randomized algorithm for minimizing the
L2-norm of machine loads is

√
4/3. To show this, it suffices to show that supm∈(0,1],y∈[0,1] g(m, y) = 4/3 when

k = 2. For convenience we reproduce g(m, y) here when k = 2.

g(m, y) :=
m · (1 + (1−m)y)2 + (1−m) · ((1−m)y)2

m+ (1−m) · y2

We first check the boundary cases. For any fixed y, limm→0 g(m, y) = 1. Further, g(1, y) = 1 for any y ∈ [0, 1]
and g(m, 0) = 1 for any m ∈ (0, 1]. Finally, g(m, 1) = m(2−m)2+(1−m)3 and we can show that it is maximized
when m = 1/2 and g(1/2, 1) = 9/8.

To consider the local optima when m ∈ (0, 1), y ∈ (0, 1), we compute the partial derivative. For convenience,
consider

−g(m, y) + 1 =
m(1−m)y(y − 2)

(1−m)y2 +m

Let p and q be the numerator and denominator respectively. Consider the partial derivative w.r.t. m. By
simplifying

0 =
∂p

∂m
· q − ∂q

∂m
· p = (1− 2m)y(y − 2)((1−m)y2 +m)− (−y2 + 1)m(1−m)y(y − 2),

we obtain
y =

m

1−m
(E.2)

Consider the partial derivative w.r.t. y. By simplifying

0 =
∂p

∂y
· q − ∂q

∂y
· p = m(1−m)(2y − 2)((1−m)y2 +m)−m(1−m)y(y − 2)2y(1−m),

we obtain,
1−m

m
=

1− y

y2
(E.3)

From Eqn (E.2) and (E.3), we have m = 1/3 and y = 1/2. This is the unique local optimum when m, y ∈ (0, 1)
and g(1/3, 1/2) = 4/3. Thus, we conclude supm∈(0,1],y∈[0,1] g(m, y) = 4/3.
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