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Abstract

We propose a statistical formulation for 2-D human pose
estimation from single images. The human body configu-
ration is modeled by a Markov network and the estima-
tion problem is to infer pose parameters from image cues
such as appearance, shape, edge, and color. From a set
of hand labeled images, we accumulate prior knowledge of
2-D body shapes by learning their low-dimensional repre-
sentations for inference of pose parameters. A data driven
belief propagation Monte Carlo algorithm, utilizing impor-
tance sampling functions built from bottom-up visual cues,
is proposed for efficient probabilistic inference. Contrasted
to the few sequential statistical formulations in the liter-
ature, our algorithm integrates both top-down as well as
bottom-up reasoning mechanisms, and can carry out the in-
ference tasks in parallel. Experimental results demonstrate
the potency and effectiveness of the proposed algorithm in
estimating 2-D human pose from single images.

1. Introduction
Inferring human pose from single images is arguably one

of the most difficult problems in computer vision and finds
numerous applications from motion analysis to visual track-
ing. In this paper, we posit the 2-D human pose estimation
problem within a probabilistic framework and develop an
inference algorithm on a rigorous statistical footing. A hu-
man body pose is modeled by a Markov network where
the nodes denote body parts and the edges encode con-
straints among them. An efficient data driven belief prop-
agation Monte Carlo algorithm with importance sampling
functions, built from low-level visual cues, is proposed to
infer the 2-D human pose from a single image snapshot.

From a set of hand labeled images, we apply principal
component analysis to learn the 2-D shape models of each
body part which serve as prior knowledge in predicting po-
tential candidates. Each body part is represented by a state
variable describing its shape and location parameters. The
data driven importance sampling for the head pose is built
using a computationally efficient AdaBoost-based face de-
tector [19]. Constrained by the head location from face de-

tection, a probabilistic hough transform [8] is adopted to
extract salient line segments in the image and they are as-
sembled to form good candidates for constructing an im-
portance sampling function for the human torso. A skin
color model pertaining to the specific subject in the image
is built based on the face detection result, and is utilized in
sampling functions to predict potential body part candidates
such as arms and legs.

The data driven importance functions for body parts are
incorporated in the belief propagation Monte Carlo frame-
work for efficient Bayesian inference of the human pose.
For human pose estimation, the observation models are built
based on the steered edge response of the predicted body
parts. Diametric to the sequential data driven Markov chain
Monte Carlo algorithm, the proposed algorithm integrates
both top-down as well as bottom-up reasoning mechanism
with visual cues, and carries out the inference tasks in paral-
lel within a sound statistical framework. For concreteness,
we apply the developed method to estimate pose of soccer
players in single images with cluttered backgrounds. Exper-
imental results demonstrate the potency and effectiveness of
the proposed method in estimating human pose from single
images. We conclude with discussions on limitations of the
current work and future plan to tackle these problems.

2. Prior work and context
While there exist numerous works on human body track-

ing [11], only a few of them address the initialization prob-
lem, i.e., estimating the human pose from single or multiple
views. We observe the emergence of research work on this
topic with impressive results [2, 9, 10] in the last few years.
These algorithms are categorized into deterministic and sta-
tistical methods for ease of presentation.

Deterministic methods either approach this problem by
applying deterministic optimization methods where the ob-
jective function is the matching error between the model
and the image data [2, 1] or between the image data and
the exemplar set [13]. An alternative is to build detectors
for different body parts and rank the assembled configura-
tion based on a set of human coded criteria [10]. Notwith-



standing the demonstrated success, there exist many chal-
lenging issues to be resolved for robust and efficient pose
estimation. First, it entails solving an optimization prob-
lem of high dimensionality and thus the computation is in-
evitably intractable unless certain assumptions are explic-
itly made. Consequently, the application domains are lim-
ited to uncluttered backgrounds [1, 2] or the human body of
fixed scale [10]. Second, the set of exemplars must be large
enough to cover the parameter space to achieve satisfactory
estimation results at the expense of growing computational
complexity [13]. Third, it is difficult to build robust body
part detectors except faces [19] due to the large appearance
variation cased by clothing [10].

One salient merit of statistical formulation for posture
estimation is that prior knowledge of human body parts
(e.g., appearance, shape, edge and color) can all be ex-
ploited and integrated in a rigorous probabilistic framework
for efficient inference. Ioffe and Forsyth [5] propose an
algorithm to sequentially draw samples of body parts and
make the best prediction by matching the assembled con-
figurations with image observations. However, it is best ap-
plied to estimate poses of humans in images without cloth-
ing or cluttered background since their method relies solely
on edge cues. Sigal et al. [15] resort to a non-parametric
belief propagation algorithm [6] for inferring the 3-D hu-
man pose as the first step of their human tracking algorithm.
Background subtraction and images from multiple views
are employed to facilitate the human pose estimation and
tracking problems. Lee and Cohen [9] apply the data driven
Markov Chain Monte Carlo (DDMCMC) algorithm [18] to
estimate 3-D human pose from single images, in which the
MCMC algorithm is utilized to traverse the pose parameter
space. Nevertheless it is not clear how the detailed balance
condition and convergence in the Markov chain are ensured.
Most importantly, the problem of inferring 3-D body pose
from single 2-D images is intrinsically ill-posed as a result
of depth ambiguity.

In this work, we propose a statistical formulation to in-
fer 2-D body pose from single images. Different from the
previous works, the proposed algorithm integrates the top-
down and bottom-up inference with visual cues through a
data driven belief propagation Monte Carlo algorithm for
Bayesian reasoning. The algorithm is intrinsically paral-
lel which is in direct contrast to the sequential sampling
algorithm [5] and the sequential DDMCMC approach [9].
Furthermore we explicitly learn the shape models of body
parts using quadrangles rather than rectangular templates
[2, 5, 10], thereby facilitating inference of pose parameters.

3. Bayesian formulation

We posit the human pose estimation problem within a
Bayesian framework and the task is to recover the hidden
states, i.e., pose parameters, from image observations.

3.1 Markov network

A human body configuration is represented by a Markov
network as shown in Figure 1. Each random variable x i

represents the pose parameter (i.e., hidden state) of body
part i, e.g., xh describes the pose of head, xt describes
the pose of torso, and xrul describes the pose of the right-
upper-leg. Each undirected link models the constraints
between two adjacent body parts by a potential function
ψij(xi,xj). Each directed link depicts the image observa-
tion zi of body part i with an observation likelihood func-
tion φi(zi|xi). Let S be the set of all subscripts, we denote
the set of pose parameters X = {xi, i ∈ S} and the set
of observations Z = {zi, i ∈ S}, respectively. The joint
posterior distribution of this Markov network is

P (X|Z) ∝
∏

(i,j)∈E
ψi,j(xi,xj)

∏
i∈V

φi(zi|xi), (1)

where E is the set of all undirected links and V is the set
of all directed links [7]. Consequently, the pose estimation
problem is formulated as a Bayesian inference problem of
estimating the marginal posterior distribution P (xi|Z).
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Figure 1. Markov network for human body pose.
A brute force approach to computing (1) is intractable

since it involves numerous integrations of real valued ran-
dom variables in every P (xi|Z). The belief propagation
algorithms, facilitated by local message passing (i.e., local
computation), offer an efficient solution to such inference
problems. Recently a Monte Carlo approach for belief prop-
agation is proposed to deal with graphical models with non-
Gaussian distributions [4]. In Section 4, we present a novel
data driven belief propagation algorithm, which naturally
integrate the bottom-up reasoning with the belief propaga-
tion Monte Carlo algorithm in a principled way.

3.2 Pose parametrization

We represent each body part by a quadrangular shape in
a way similar to the existing works [2, 10]. However, we
do not model them with rectangles or trapezoids since the
body contours usually do not form parallel lines in images.
From a set of 50 images, we manually labeled the quadran-
gular shapes and poses of human parts which best match
human perception. A few examples of the labeled images
are illustrated in Figure 2.

For each of the labeled quadrangular shape, we define
the lines along the body outer contour as the left and the



Figure 2. Examples of labeled images.

right lines, and the other two lines as the top and the bottom
lines, respectively. We define the local coordinate system of
each body part by choosing the centroid of the quadrangular
shape as its origin. The Y axis is pointed from the middle
point of the top line to the middle point of the bottom line,
and the X axis is perpendicular to the Y axis such that the
local coordinate system is only subject to a rotation and a
translation of the image coordinate system. Each labeled
shape is then rotated with respect to a reference frame and
then normalized in both X and Y directions, i.e., the length
(width) along the X axis between the left and the right lines
is normalized to 40 pixels, and the length (height) along the
Y axis between the top and the bottom lines is normalized
to 50 pixels, as depicted in Figure 3. Each normalized shape
is then represented by a 8-dimensional vector by clockwise
enumerating the coordinates of the four vertices.
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Figure 3. Normalization of the labeled shape.

We apply probabilistic principle component analysis
(PCA) [17] to each set of the 8-dimensional normalized
body part shapes for dimensionality reduction. In Sec-
tion 4.2, we show how we use the learned shape model with
probabilistic PCA to construct good importance sampling
functions for body parts. In our experiments, 99% of the
shape variation can be retained with the top 3 principal com-
ponents. We denote the shape representation with reduced
dimensionality for each body parts i ∈ S as ps i. Conse-
quently, the 2-D pose of body part i can be represented by
the rotation θ, scaling sx, sy, and translation tx, ty , in both
X and Y directions of psi, i.e.,

xi = {psi, sx, sy, θ, tx, ty}. (2)

where we call psi the intrinsic pose parameter and the
rest the extrinsic pose parameters. By learning a low-
dimensional shape representation, we reduce the originally
13-dimensional state space to 8 dimensions which in turns
facilitates efficient sampling process. Figure 4 shows some
of the original labeled shapes, the normalized shapes, as

well as the reconstructed shapes from the probabilistic PCA
for the right-upper-arm. It is clear that the reconstructed
shapes match well with the original labeled shapes.

Figure 4. The original shapes (first row), the normalized
(second row), and the reconstructed (third row) shapes of
the right-upper-arm using probabilistic PCA.

3.3 Potential function and likelihood model
As mentioned earlier, a potential functionψ ij models the

pose constraints between two adjacent body parts. For pose
estimation, the natural constraints entail any two adjacent
body parts should be loosely connected [15], and we use a
Gaussian distribution to model the Euclidean distance be-
tween the link points of two adjacent body parts, i.e.,

ψij(xi,xj) ∝ exp

(
−‖P̃tij − P̃tji‖2

2σ2
ij

)
. (3)

where ‖ · ‖ is the Euclidean distance, σ2
ij is the variance

learned from the manually labeled images, and P̃tij is the
link point of the ith to jth body part while P̃tji is the link
point of the jth to ith body part. Figure 5 shows all the
link points of the body parts. In our model, the link points
are either corner points or middle points of either bottom
or top line of the shape. For example, the link point of the
left-upper-arm to the torso is defined as the corner point of
the left line and the bottom line of the left-upper-arm shape,
and the link point of the torso to the left-upper-arm is also
specified by the corner point of the left-bottom corner of
the torso shape. Whereas the link point of the left-upper-
arm to the left-lower-arm is delineated by the middle point
of the top line of the left-upper-arm shape, the link point
of the left-lower-arm to the left-upper-arm is defined as the
middle point of the bottom line of the left-lower-arm shape.
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Arm

4:Left Lower
Arm

5:Right Upper
Arm

6:Right Upper
Arm

7:Left
Upper
Leg

9:Right
Upper
Leg
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Figure 5. Each pair of red circle points represents the link
point pair of two adjacent body parts. The link points are
either corner points or middle points of bottom or top lines.

Although object appearance or texture has been success-
fully utilized in tasks such as face detection, the body con-
tour information may be the only salient cue at our disposal



as clothing causes large visual variation. In this work, the
likelihood function φi is constructed based on the average
steered edge response [14] along the boundaries of the pose
hypothesis of an body part. For example, let the rotation an-
gle of one line segment l be α and the total number of points
on the line is Nl, then the average steered edge response is

Ēl,α =
1

NlEm
∑

(xi,yi)∈l

|Ex(xi,yi) sinα− Ey(xi,yi)cosα|,

(4)
where Em is the maximum value of the steered edge re-
sponse. Unlike [14], we do not compute the steered edge re-
sponse at different scales because the average steered edge
responses across scales may make the steered edge response
less discriminant. Instead, we compute the steered edge re-
sponse in the RGB channels, i.e., E (R)

α (xi), E(G)
α (xi) and

E(B)
α (xi) for each hypothesized body part x i. For head and

torso, the average steered edge response is computed us-
ing all the four line segments of the shape pose hypothesis,
whereas the average steered edge response is only calcu-
lated on the left and right line segments for the other body
parts. Since all the steered edge responses have been nor-
malized between 0 and 1, the likelihood function is defined
based on the maximum steered edge response, i.e.,

φi(zi|xi) = max(E(R)
α (xi), E(G)

α (xi), E(B)
α (xi)). (5)

The reason for using the maximum steered edge response
from different color channels is based on our empirical stud-
ies in which more discriminant likelihood functions can be
obtained using the maximum rather than average edge re-
sponse. We have experimented with the Gibbs likelihood
model proposed in [12] but the performance is less satis-
factory. One explanation is that background subtraction is
utilized so that the body contours can be better extracted be-
fore learning a Gibbs model for likelihood estimation [12].
Nevertheless, background subtraction is inapplicable in this
work as we aim to estimate human pose from single images.

4. Data driven belief propagation
With the Bayesian formulation described in Section 3,

the pose estimation problem is to infer the marginal poste-
rior distribution. In this Section, we propose a data driven
belief propagation Monte Carlo algorithm (DDBPMC) for
Bayesian inference with real valued graphical model.
4.1 Belief propagation Monte Carlo

Belief propagation is an efficient algorithm to comput-
ing posterior, P (xi|Z), through a local message passing
process where the message from xj to xi is computed by
[7, 3]:

mij(xi)←
∫
xj

φj(zj |xj)ψij(xi,xj)
∏

k∈N (xj)\i

mjk(xj),

(6)

whereN (xj)\i is the set of neighboring nodes of xj except
xi. The belief propagation algorithm iteratively updates the
messages passed among the connected nodes until it con-
verges, and the marginal posterior distribution P (x i|Z) on
node xi can be efficiently computed by

P (xi|Z) ∝ φi(zi|xi)
∏

j∈N (xi)

mij(xi). (7)

When both the potential functionψij(xi,xj) and the ob-
servation likelihood φi(zi|xi) are Gaussian distributions,
(6) can be evaluated analytically and thus (7) can be analyt-
ically computed. However, situations arise where the obser-
vation likelihood functions φi(zi|xi) can only be modeled
with non-Gaussian distributions. In such cases, the mes-
sages mij(xi) are also non-Gaussians, thereby making the
computation intractable.

To cope with this problem and allow greater flexibility,
we resort to Monte Carlo approximation within the belief
propagation formulation, and thereby a belief propagation
Monte Carlo (BPMC) algorithm. We represent both the
message mij(xi) and the marginal posterior distribution
P (xi|Z) as weighted sample sets by

mij(xi) ∼ {s(n)
i , ω

(j,n)
i }Nn=1, j ∈ N (xi) (8)

P (xi|Z) ∼ {s(n)
i , π

(n)
i }Nn=1. (9)

The iterative computation in the belief propagation can be
implemented based on these weighted sample sets as sum-
marized in Figure 6.

Note that in both the non-parametric belief propagation
[16] and PAMPAS [6] algorithms, the messages as well as
the marginal distributions are modeled with Gaussian mix-
tures, and the message passing process is carried out by a
Markov chain Monte Carlo (MCMC) algorithm. In con-
trast, the BPMC algorithm models both the messages and
marginal distributions with weighted samples, and the mes-
sage passing process is computed efficiently based on the
samples drawn from an importance sampling. It is worth
emphasizing that good importance functions leads to effi-
cient computation in the BPMC algorithm and better infer-
ence results. In Section 4.2, we show how we construct
good importance functions with bottom-up visual cues for
human pose estimation.
4.2 Data driven importance sampling

In this section, we describe the importance functions for
drawing samples of body parts using visual cues. For con-
creteness, we present our algorithm with an application to
estimate pose of soccer players in images. In such cases, we
can exploit certain image cues for computational efficiency.

4.2.1 Importance function for head pose
With the demonstrated success in detecting faces efficiently,
we utilize a variant of the AdaBoost-based face detector



Monte Carlo simulation of the belief propagation algorithm

1. Importance Sampling: Sample {s(n)
i,k+1}Nn=1

from an importance function Ii(xi).

2. Re-weight: For each s
(n)
i,k+1 and each j ∈ N (i), set

ω
(j,n)
i,k+1 = G

(j)
i (s

(n)
i,k+1)/Ii(s

(n)
i,k+1) where

G
(j)
i (s

(n)
i,k+1) =

N∑
m=1

[π
(m)
j,k × φj(z

(m)
j,k |s(m)

j,k )

×ψji(s
(m)
j,k , s

(n)
i,k+1)

∏
l∈N (j)\i

ω
(l,m)
j,k ]

3. Normalization: Normalize ω
(j,n)
i,k+1, j ∈ N (i),

then set and normalize

π
(n)
i,k+1 = pi(z

(n)
i,k+1|s(n)

i,k+1)
∏

l∈N (i)

ω
(l,n)
i,k+1

4. Iteration: k ← k + 1, iterate 1 → 4 until conver-
gence.

5. Inference: p(xi|Z) ∼ {s(n)
i , π

(n)
i }Nn=1 where

s
(n)
i = s

(n)
i,k and π(n)

i = π
(n)
i,k .

Figure 6. Belief Propagation Monte Carlo algorithm.

[19] to locate the face of a human in an image. However,
this view-based detector performs best in detecting faces in
upright frontal views although this problem can be allevi-
ated by utilizing a multi-view extension. Figure 7(a) shows
one face detected by the AdaBoost-based detector.

(a) (b) (c) (d)

Figure 7. (a). Face detected by a AdaBoost-based face
detector. (b). Image specific skin color segmentation. (c).
Fitted lower-arm and upper-leg hypotheses. (d) Upper-arm
and lower-leg hypotheses (yellow quadrangular shape).

One common problem with this view-based face detector
is that the raw detection results are usually not very accurate
(i.e., the returned rectangles do not precisely lock on faces
in the correct pose and often enclose background pixels),
and thus more efforts are required to better estimate head
pose. Since skin color pixels account for the majority por-
tion of a rectangular area enclosing a face, we use a k-means
algorithm (k = 2) to group the pixels within the rectangle
into skin/non-skin clusters. The center of the face rectangle
is repositioned to centroid of the cluster of skin color pixels.

We then project the rectangular shape onto the learned PCA
subspace of the head shape, thereby obtaining its intrinsic
pose parameters as defined in (2). Along with the extrinsic
rotation, scaling and translation parameters extracted from
the face rectangle, we obtain an approximated head pose
Ixh, and thereby an importance sampling function:

Ih(xh) ∼ N (xh|Ixh,Σh) (10)

where Σh is a diagonal covariance matrix.

4.2.2 Importance functions for arm and leg pose
For the human pose estimation problem considered in this
paper, the soccer players often wear short sleeve shirts and
short trunks, and consequently skin color is a salient cue for
locating lower-arm and upper-leg regions.

A skin color model is constructed from the pixels of
skin color cluster obtained from the k-means algorithm
within the detected face region as discussed in Section 4.2.1.
Specifically, a 2-D color histogram is computed from the
normalized RGB pixel values of the skin color cluster.
Although it is difficult and time consuming to develop a
generic skin color model to account for all variations (as
a result of lighting and race factors), it is relatively easy
and effective to construct a skin color model specific to the
human subject considered for pose estimation, and conse-
quently skin color regions can be extracted effectively with
thresholds. Figure 7(b) shows some segmentation results
using the learned skin color histogram, and Figure 7(c)
shows the results with best fit rectangles after discarding
small blobs. Note that the number of skin tone blobs do not
necessarily match the number of body parts.

Geometric cues such as shape, size, position, and orien-
tation with respect to the head position of a human can be
exploited to generate good pose hypotheses for the lower-
arm and the upper-leg body parts from these fitted rectan-
gles. The hypotheses for the upper-arm and the lower-leg
are then generated by first rotating the shape with respect
to the link point of the corresponding lower-arm and the
upper-leg hypotheses respectively, and then evaluating the
image likelihoods based on edge response using (4) and (5)
for each rotation angle. The hypotheses with maximum
likelihoods for upper-arm and lower-leg parts are selected
for importance functions. Figure 7(d) shows one hypoth-
esis for each of the upper-arm and lower-leg. The impor-
tance sampling function is modeled by a Gaussian mixture
of these hypotheses. That is, after obtaining K good pose
hypothesis Ix(n)

i , n = 1 . . .K for body part i, we draw
samples from the importance function

Ii(xi) ∼
K∑

n=1

1
KN (xi|Ix(n)

i ,Σi), i ∈ S \ {h, t}, (11)

where Σi is a diagonal covariance matrix. Note that a small
number of K good hypotheses facilitate efficient sampling



and inference process although it may have adverse effects
if the value is too small.

4.2.3 Importance function for torso pose
Locating the torso region may be the most important task in
human pose estimation since it is connected to most of the
other body parts. However, detecting a torso part is diffi-
cult as it is usually clothed and thereby has a large variation
in appearance. Without salient image cues (e.g., color and
texture) to facilitate the detection process, we utilize line
segments extracted from the probabilistic Hough transform
[8] to assemble good shape hypotheses of the torso part.

A Canny edge detector is first applied to build the edge
map, and then a probabilistic Hough transform is performed
to detect those near-horizontal and near-vertical line seg-
ments. For each combination of a pair of vertical line seg-
ments, lv1, lv2 and a pair of horizontal line segments lh1,
lh2, let their corner points of the assembled shape be pv1,h1,
pv1,h2, pv2,h1, and pv2,h2 respectively. Torso hypotheses
are obtained by solving an optimization problem with an
objective function specified by

1. The normalized shape of a good hypothesis should be
reconstructed by the learned PCA subspace of the torso
with minimum error.

2. The distance between a good hypothesized torso part
should be as close to the detected face as possible.

3. The two vertical lines, lv1, lv2 should be as symmetric
as possible in the assembled shape.

subject to the constraints that pv1,h1, pv1,h2, pv2,h1, and
pv2,h2 are within the range of image.

For each of the M torso hypotheses Ix(n)
t obtained by

solving the above-mentioned optimization problem (n =
1, . . . ,M and usuallyM < 10), we compute the response
of edges extracted by the Canny detector with likelihood
β

(n)
t using functions similar to (4) and (5). The impor-

tance sampling function for the torso pose is specified by a
Gaussian mixture, i.e.,

It(xt) ∼
M∑

n=1

β
(n)
t N (xt|Ix(n)

t ,Σt). (12)

where Σt is the diagonal covariance matrix. Figure 8
shows one example of the detected near-horizontal and
near-vertical line segments from the probabilistic Hough
transform, and the corresponding torso hypotheses. Al-
though the number of combinations using horizontal and
vertical lines is large, solving the above-mentioned opti-
mization problem significantly prunes the number of torso
hypotheses (i.e,M < 10), thereby facilitating efficient and
effective inference.

5. Experiments
For concreteness, we apply our algorithm to estimate

pose of soccer players in images. The proposed algorithm
can be extended to estimate human pose in other domains.

(a) (b) (c)

Figure 8. (a). Original image. (b). Line segments
extracted by probabilistic Hough transform (red for near-
vertical and blue for near-horizontal lines). (c). Torso hy-
potheses assembled from the line segments shown in (b).

5.1 Validation of the likelihood model
To demonstrate the effectiveness of the likelihood func-

tion proposed in Section 3.3, we generate a number of left-
lower-leg hypotheses by translating the correctly labeled
body part horizontally as shown in Figure 9(a), and their
likelihoods are shown in Figure 9(b).
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Figure 9. (a) Translation of the left-lower-leg part with
respect to the correct location horizontally. (b) Likelihoods
of the translated left-lower-leg hypotheses from the correct
location.

As exemplified in Figure 9(b) the maximum likelihood
occurs at the correct labeled location (i.e., 0 translation hor-
izontally). The two small peaks correspond to the cases
when one of the left and right lines of the shape pose is
aligned with the boundary of the left-lower-leg in the im-
age. The likelihood plots for the other body parts are simi-
lar to Figure 9(b) except the likelihood model for the torso
may not peak at the correct labeled location and may have
more local peaks (due to noisy edge response). This obser-
vation indicates that the difficulty of constructing a likeli-
hood model of the torso part using only edge cues.

5.2 Pose estimation results
To learn the PCA subspace for each body part, we col-

lected a set of 50 images and manually labeled the quad-
rangular shapes and poses of human body parts which best
match human perception (Please see the accompanied video
“720.wmv” for all the training images.). For pose estima-
tion experiments, we gathered another set of 30 images and
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Figure 10. Experimental results of human pose estimation. More results can be found in the accompanied video “720.wmv”.

manually located the body parts as ground truth (We will
make the test image set publicly available at appropriate
time.). These images contain humans with large variation
in pose and backgrounds, as well as occlusions either due
to clothing or view angles. The values of the diagonal co-
variance matrices in importance functions (10)-(12) are em-
pirical learned from the training image set.

Empirical results on estimating pose of soccer players
in single images are illustrated in Figure 10 where the best
estimated shapes and locations of body parts are enclosed
with quadrangles (Please note that more test results can be
found in the accompanied video “720.wmv”.). The experi-
mental results show that our algorithm is able to locate the
body parts and estimate their pose well even though they
appear in different posture, background, view angles and
lighting conditions. Our algorithm is able to infer pose
which are heavily occluded in Figure 10(f)-(g) as a result
of data driven importance sampling from the visual cues.
Specifically, the left lower leg of the player in Figure 10(f)
is located as a result of the best pose estimation using im-
age likelihoods and importance function (11). Similarly, the
occluded body parts and their poses in Figure 10(h)-(j) are
inferred using the proposed DDBPMC algorithm.

Head Torso LUA LLA RUA
RMSE 14.32 18.96 14.62 11.85 19.52

RLA LUL LLL RUL RLL Overall
RMSE 19.01 23.75 18.19 20,48 18.98 17.96

Table 1. Average root mean square error (RMSE) of the
estimated 2-D pose for each body part and for the whole
body pose (e.g., LUA refers to left-upper-arm).

We evaluate the accuracy of our pose estimation algo-
rithm by computing the root mean square errors (RMSE)

between the estimated body pose enclosed by quadrangles
and the ground truth, i.e., the RMSE between the four cor-
ner points of the two quadrangles. The average RMSE of
each body part as well as that of the overall full body pose
estimation over the 30 test images are presented in Table 1.
At first glance, it seems that the RMSE of our algorithm is
larger than the result of 20 test images reported in [9] even
though the test sets are different. Nevertheless, we compute
the accuracy of four points for each body parts while they
just evaluated the accuracy of the joint locations, and thus
the RMSE comparison is not justified. Further, the number
of points set we compute is larger than that in [9]. Another
complicating factor is the difficulty of determining what the
“ground truth” of body pose is, as a result of covered cloth-
ing and difference of human perception in labeling body
parts as well as pose precisely. Finally, the average RMSE
of each image is presented in in Figure 11 to show the dis-
tribution of the overall RMSE among the 30 test images.
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Figure 11. Overall RMSE of each of the test images.
The current implementation of the proposed algorithm

draws 500 samples for each of the body parts, and the mes-
sage passing process of the DDBPMC algorithm is iterated
6 times. Without code optimization, it takes about 2 to 3
minutes to process an image on a Pentium IV 1.7 GHz ma-



chine with 256 MB memory.

5.3 Discussions
Compared with the most relevant work [9], the problem

we address in this paper is well posed rather than inferring
3-D pose from single 2-D images. Furthermore, the test im-
ages in our work are more challenging since they contain
complex poses with occlusions in textured background. Fi-
nally, we have done a larger scale experiment and present
all results in the accompanied video.

Although the experimental results demonstrate success
of our algorithm in pose estimation from single images,
there are a few research issues to be explored. The body
postures such as torso may be more accurately estimated
with more complicated body shapes. However, the infer-
ence problem will be more complicated due to the increas-
ing degree of freedom in body shape. The proposed algo-
rithm sometimes fails when long line segments are observed
near the torso region. This is not surprising since long line
segments often cause problems in generating good hypothe-
ses of the torso region.

6. Concluding remarks
We propose a rigorous statistical formulation for 2-D

human pose estimation from single images. The theoretic
foundation of this work is based on a Markov network,
and the estimation problem is to infer pose parameters
from observable cues such as appearance, shape, edge, and
color. A novel data driven belief propagation Monte Carlo
(DDBPMC) algorithm, which combines both top-down and
bottom-up reasoning within a rigorous statistical frame-
work, is proposed for efficient Bayesian inference. This is
in contrast to the data driven Markov chain Monte Carlo
(DDMCMC) algorithm in that DDBPMC carries out the
Bayesian inference in parallel while the DDMCMC algo-
rithm performs sequentially. Experimental results demon-
strate the potency and effectiveness of the proposed method
in estimating human pose from single images.

The proposed algorithm can be easily extended to better
estimate human pose in situations where contour or motion
cues abound. Our future work will focus on integrating vi-
sual cues to build better data driven importance functions
for a more efficient pose estimation algorithm.
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