1.      Michael Jordan: Advanced Topics in Learning and Decision Making, other courses

2.      Geoffrey Hinton: Summer School Lectures, Introduction to Neural Networks and Machine Learning

3.      Christopher Bishop: Machine Learning Techniques for Computer Vision

4.      Zoubin Ghahramani: Unsupervised Learning, Statistical Approaches to Learning and Discovery

5.      Sam Roweis: Machine Learning, Uncertainty and Learning in Artificial Intelligence, other courses

6.      Tommi Jakkola: Introduction to Neural Networks and Machine Learning, Machine Learning, other courses

7.      Lawrence Saul: Artificial Intelligence and Machine Learning, Advanced Topics in Artificial Intelligence and Machine Learning,

8.      Thomas Hofmann: Machine Learning and Pattern Recognition

9.      Daphne Koller: Probabilistic Models in Artificial Intelligence

10.  Tom Mitchell: Machine Learning

11.  Andrew Ng: Machine Learning

 

 

 

1.      Intel Open Source Computer Vision (OpenCV) Library

2.      CVonline: Compendium of Computer Vision

3.      Keith Price Annotated Computer Vision Bibliography

 

1.      Netlab: http://www.ncrg.aston.ac.uk/netlab/over.php

2.      Torch: http://www.idiap.ch/machine-learning.php

3.      Weka: http://www.cs.waikato.ac.nz/ml/weka/

4.      Factor analysis and mixture of factor analyzers: ftp://ftp.cs.toronto.edu/zoubin/mfa.tar.gz

5.      Isomap: http://isomap.stanford.edu/

6.      LLE: http://www.cs.toronto.edu/~roweis/lle/code.html

7.      Locally linear coordination: http://www.cs.berkeley.edu/~ywteh/research/llc/

8.      SVM: see kernel machine

9.      Adaboost: See boost algorithms