{"cells":[{"cell_type":"markdown","source":["To run the Jupyter notebook on Google Colab:\n","1) Open Google Colab:\n","https://colab.research.google.com\n","2) In the pop-up window, click the \"Upload\" tab\n","3) Click \"Choose file\" → select your .ipynb file\n","4) Colab will open your notebook immediately.\n","5) In Colab in the top-right corner click \"Connect\"\n","6) In Colab in the bottom-right corner click \"T4(Python 3)\", select \"Change runtime type\" and make sure you use GPU\n","\n","No need to install any python packages, everything is preinstalled in Colab"],"metadata":{"id":"iA4VpINKcFwo"}},{"cell_type":"markdown","source":["To run the Jupyter notebook locally on your laptop you need to install all the packages (pytorch, matplotlib):\n","1) pip install --upgrade pip\n","2) pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu\n","3) pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126\n","4) pip install matplotlib\n","5) pip install numpy\n","6) pip install scikit-learn\n","\n"],"metadata":{"id":"R21IKO9QcOKz"}},{"cell_type":"markdown","metadata":{"id":"G9izkKnAuKp7"},"source":["# Import all the necessary libraries"]},{"cell_type":"code","execution_count":47,"metadata":{"id":"tVyBJYPZuKp8","executionInfo":{"status":"ok","timestamp":1763145452049,"user_tz":480,"elapsed":23,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["import torch\n","import torch.nn as nn\n","import torch.optim as optim\n","from torchvision import datasets, transforms\n","from torch.utils.data import DataLoader\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","from sklearn.metrics import confusion_matrix\n","import numpy as np\n","from matplotlib.colors import LogNorm\n"]},{"cell_type":"markdown","metadata":{"id":"xNcwYQvBuKp9"},"source":["# Load MNIST dataset"]},{"cell_type":"markdown","metadata":{"id":"nRurFljAuKp9"},"source":["##### Compose multiple dataset preprocessing steps and load the dataset:\n","transforms.ToTensor() - converts to pytorch tensor, brings scale from 0-255 to 0-1\n","\n","transforms.Normalize((0.1307,), (0.3081,)) - normalizes by mean and variance"]},{"cell_type":"code","execution_count":3,"metadata":{"id":"zMQx0F49uKp9","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1763142966265,"user_tz":480,"elapsed":3255,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"e9c538c4-64f0-46ab-8d22-1f794b1289d5"},"outputs":[{"output_type":"stream","name":"stderr","text":["100%|██████████| 9.91M/9.91M [00:00<00:00, 19.8MB/s]\n","100%|██████████| 28.9k/28.9k [00:00<00:00, 236kB/s]\n","100%|██████████| 1.65M/1.65M [00:00<00:00, 4.50MB/s]\n","100%|██████████| 4.54k/4.54k [00:00<00:00, 10.5MB/s]\n"]}],"source":["transform = transforms.Compose([\n"," transforms.ToTensor(),\n"," transforms.Normalize((0.1307,), (0.3081,))\n","])\n","\n","train_data = datasets.MNIST(root=\"./data\", train=True, download=True, transform=transform)\n","validation_data = datasets.MNIST(root=\"./data\", train=False, download=True, transform=transform)"]},{"cell_type":"markdown","metadata":{"id":"USGQUXUauKp8"},"source":["# Define LeNet-5 model architecture\n","##### Model takes as an input images of 28x28 pixels grayscale (single channel)\n","
\n"," \n","
"]},{"cell_type":"markdown","source":["You can make changes to the architecture. Make sure layer parameters match"],"metadata":{"id":"KfTmSKezgunE"}},{"cell_type":"code","execution_count":4,"metadata":{"id":"l2dFZYW3uKp9","executionInfo":{"status":"ok","timestamp":1763142971889,"user_tz":480,"elapsed":9,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["class LeNet5(nn.Module):\n"," def __init__(self):\n"," super(LeNet5, self).__init__()\n"," self.conv1 = nn.Conv2d(1, 6, kernel_size=5) # 28x28 -> 24x24 -> 12x12 after pooling\n"," self.conv2 = nn.Conv2d(6, 16, kernel_size=5) # 12x12 -> 8x8 -> 4x4 after pooling\n","\n"," self.fc1 = nn.Linear(16*4*4, 120)\n"," self.fc2 = nn.Linear(120, 84)\n"," self.fc3 = nn.Linear(84, 10)\n","\n"," self.relu = nn.ReLU() # nonlinearity is ReLU\n"," self.pool = nn.AvgPool2d(kernel_size=2, stride=2)\n","\n"," def forward(self, x):\n"," x = self.pool(self.relu(self.conv1(x))) # (N, 1, 28, 28) -> (N, 6, 12, 12)\n"," x = self.pool(self.relu(self.conv2(x))) # (N, 6, 12, 12) -> (N, 16, 4, 4)\n","\n"," x = x.view(x.size(0), -1) # flatten\n"," x = self.relu(self.fc1(x))\n"," x = self.relu(self.fc2(x))\n"," x = self.fc3(x)\n"," return x"]},{"cell_type":"markdown","metadata":{"id":"jrtv57DPuKp-"},"source":["choosing a device \"cuda\" for GPU if available else \"cpu\""]},{"cell_type":"code","execution_count":5,"metadata":{"id":"2KgukIn7uKp-","executionInfo":{"status":"ok","timestamp":1763142976211,"user_tz":480,"elapsed":333,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n","model = LeNet5().to(device) # create an instance of LeNet-5 on the chosen device"]},{"cell_type":"markdown","metadata":{"id":"ZLPlEsO3uKp-"},"source":["function to show number of trainable parameters and shape of the input per layer in LeNet"]},{"cell_type":"code","execution_count":6,"metadata":{"id":"I4J41sAQuKp-","executionInfo":{"status":"ok","timestamp":1763142978611,"user_tz":480,"elapsed":1,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["def count_params(model):\n"," print(f\"{'Layer':30} {'Shape':25} {'Params'}\")\n"," print(\"-\" * 70)\n"," total = 0\n"," for name, param in model.named_parameters():\n"," if param.requires_grad:\n"," params = param.numel()\n"," total += params\n"," shape = list(param.shape)\n"," print(f\"{name:30} {str(shape):25} {params}\")\n"," print(\"-\" * 70)\n"," print(f\"Total Trainable Params: {total:,}\")"]},{"cell_type":"code","execution_count":7,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"mpHvuGMKuKp-","executionInfo":{"status":"ok","timestamp":1763142979433,"user_tz":480,"elapsed":12,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"bc7859d2-dcb1-4164-fc01-01148ba874a3"},"outputs":[{"output_type":"stream","name":"stdout","text":["Layer Shape Params\n","----------------------------------------------------------------------\n","conv1.weight [6, 1, 5, 5] 150\n","conv1.bias [6] 6\n","conv2.weight [16, 6, 5, 5] 2400\n","conv2.bias [16] 16\n","fc1.weight [120, 256] 30720\n","fc1.bias [120] 120\n","fc2.weight [84, 120] 10080\n","fc2.bias [84] 84\n","fc3.weight [10, 84] 840\n","fc3.bias [10] 10\n","----------------------------------------------------------------------\n","Total Trainable Params: 44,426\n"]}],"source":["count_params(model)"]},{"cell_type":"markdown","source":["# Objective function"],"metadata":{"id":"OBkvoHzQgRW-"}},{"cell_type":"markdown","metadata":{"id":"FBanzzX9uKp-"},"source":["Next, we choose a loss function (Cross Entropy loss)"]},{"cell_type":"code","execution_count":9,"metadata":{"id":"UU_ZkEEMuKp-","executionInfo":{"status":"ok","timestamp":1763143142548,"user_tz":480,"elapsed":4,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["criterion = nn.CrossEntropyLoss() # loss function"]},{"cell_type":"markdown","metadata":{"id":"SrMtkHXMuKp-"},"source":["# Train"]},{"cell_type":"markdown","metadata":{"id":"YptuV77xuKp9"},"source":["### Prepare DataLoader\n","Dataloader allows batching, shuffling and parallel data loading\n","\n","batch size is set to 256, you can change it"]},{"cell_type":"code","execution_count":10,"metadata":{"id":"WL8udzY9uKp9","executionInfo":{"status":"ok","timestamp":1763143177945,"user_tz":480,"elapsed":41,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["batch_size = 256 # batch size can be changed here\n","\n","train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) # train data is prepared in batches\n","test_loader = DataLoader(validation_data, batch_size=10000, shuffle=False) # test data is load fully as 1 batch"]},{"cell_type":"markdown","metadata":{"id":"KEDuJYiFuKp-"},"source":["### choosing learning rate"]},{"cell_type":"code","execution_count":11,"metadata":{"id":"ZyJ5B0zGuKp-","executionInfo":{"status":"ok","timestamp":1763143180182,"user_tz":480,"elapsed":17,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["learning_rate = 1e-2 # you can change learning rate here"]},{"cell_type":"markdown","source":["### Optimization algorithm\n","Next, we choose an optimization algorithm (Stochastic Gradient Descend).\n","\n","model.parameters() returns all trainable parameters of the Neural Network. Every nn.Module (like nn.Linear, nn.Conv2d, etc.) registers its trainable parameters automatically"],"metadata":{"id":"neiXla_RhM9G"}},{"cell_type":"code","source":["optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) # optimization algorithm"],"metadata":{"id":"WmA_IMVohLM6","executionInfo":{"status":"ok","timestamp":1763143181991,"user_tz":480,"elapsed":11,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"execution_count":12,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"1Z4Com8LuKp-"},"source":["### Function for 1 epoch of the training loop"]},{"cell_type":"code","execution_count":13,"metadata":{"id":"poWGyeITuKp-","executionInfo":{"status":"ok","timestamp":1763143184442,"user_tz":480,"elapsed":4,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["def train(epoch):\n"," model.train() # sets model to train mode\n"," total_loss = 0\n"," correct = 0\n"," total = 0\n"," for batch_idx, (data, target) in enumerate(train_loader): # Loads one mini-batch of images and labels\n"," data, target = data.to(device), target.to(device) # Sends tensors to GPU if available, otherwise CPU\n","\n"," optimizer.zero_grad() # Clears previous gradients stored in .grad. Necessary because PyTorch accumulates gradients\n"," output = model(data) # Model predicts class scores for the batch\n"," preds = output.argmax(dim=1) # Picks index of highest score per sample → predicted class\n"," correct += (preds == target).sum().item() # count correct predictions\n"," loss = criterion(output, target) # calculates the chosen loss (cross-entropy, squared error, etc.)\n"," loss.backward() # Computes gradients of loss w.r.t. model weights\n"," optimizer.step() # Applies gradient update using chosen algorithm (SGD, Adam, etc.)\n","\n"," total += target.size(0)\n"," total_loss += loss.item() # Stores average loss across the epoch for printing\n","\n"," print(f\"Epoch {epoch+1}: loss = {total_loss / len(train_loader):.4f}\")\n"," return total_loss / len(train_loader), 1 - correct / total"]},{"cell_type":"markdown","metadata":{"id":"a1E51lEVuKp_"},"source":["### Function for inference of the NN on the validation set"]},{"cell_type":"code","execution_count":14,"metadata":{"id":"EPzRoC5SuKp_","executionInfo":{"status":"ok","timestamp":1763143186583,"user_tz":480,"elapsed":11,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["def validation():\n"," model.eval() # Puts network in evaluation mode\n"," total_loss = 0\n"," correct = 0\n"," total = 0\n"," with torch.no_grad(): # Disables gradient calculation. Makes testing faster & uses less memory\n"," for data, target in test_loader:\n"," data, target = data.to(device), target.to(device)\n"," output = model(data)\n"," loss = criterion(output, target)\n"," preds = output.argmax(dim=1) # Picks index of highest score per sample → predicted class\n"," correct += (preds == target).sum().item() # count correct predictions\n"," total += target.size(0)\n"," total_loss += loss.item()\n","\n"," print(f\"Test accuracy: {correct * 100.0 / total:.2f}%\")\n"," return total_loss / len(test_loader), 1 - correct / total"]},{"cell_type":"markdown","source":["### Function to calculate confusion matrix"],"metadata":{"id":"MK8sR7VAm44I"}},{"cell_type":"code","source":["def get_confusion_matrix(model, dataloader, device):\n"," model.eval()\n"," all_preds = []\n"," all_labels = []\n","\n"," with torch.no_grad():\n"," for x, y in dataloader:\n"," x, y = x.to(device), y.to(device)\n"," outputs = model(x)\n"," preds = outputs.argmax(dim=1)\n","\n"," all_preds.append(preds.cpu().numpy())\n"," all_labels.append(y.cpu().numpy())\n","\n"," all_preds = np.concatenate(all_preds)\n"," all_labels = np.concatenate(all_labels)\n","\n"," return confusion_matrix(all_labels, all_preds)"],"metadata":{"id":"hcZVLKQRmiHv","executionInfo":{"status":"ok","timestamp":1763144720192,"user_tz":480,"elapsed":3,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"execution_count":24,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"vqfvsrGTuKp_"},"source":["### The Actual training loop"]},{"cell_type":"code","execution_count":25,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"88FkC-6tuKp_","executionInfo":{"status":"ok","timestamp":1763145033762,"user_tz":480,"elapsed":309390,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"1833e76d-c3c5-41d9-8657-59d09b5c7284"},"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1: loss = 1.3068\n","Test accuracy: 90.04%\n","Epoch 2: loss = 0.2330\n","Test accuracy: 95.20%\n","Epoch 3: loss = 0.1363\n","Test accuracy: 96.74%\n","Epoch 4: loss = 0.0967\n","Test accuracy: 97.55%\n","Epoch 5: loss = 0.0790\n","Test accuracy: 97.68%\n","Epoch 6: loss = 0.0663\n","Test accuracy: 98.08%\n","Epoch 7: loss = 0.0578\n","Test accuracy: 98.31%\n","Epoch 8: loss = 0.0516\n","Test accuracy: 98.20%\n","Epoch 9: loss = 0.0466\n","Test accuracy: 98.43%\n","Epoch 10: loss = 0.0441\n","Test accuracy: 98.54%\n"]}],"source":["def reset_weights(m): #reseting weights so the results of the last training loop are erased.\n"," if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):\n"," m.reset_parameters()\n","\n","model.apply(reset_weights)\n","\n","epochs = 10\n","\n","train_losses = []\n","test_losses = []\n","train_errors = []\n","test_errors = []\n","\n","train_cm_history = []\n","test_cm_history = []\n","\n","for epoch in range(epochs):\n"," train_ls, train_err = train(epoch)\n"," test_ls, test_err = validation()\n","\n"," train_losses.append(train_ls)\n"," train_errors.append(100*train_err)\n"," test_losses.append(test_ls)\n"," test_errors.append(100*test_err)\n","\n"," train_cm = get_confusion_matrix(model, train_loader, device)\n"," test_cm = get_confusion_matrix(model, test_loader, device)\n"," train_cm_history.append(train_cm)\n"," test_cm_history.append(test_cm)"]},{"cell_type":"markdown","metadata":{"id":"ZZtKF5BYuKp_"},"source":["Plotting loss function for both train and test"]},{"cell_type":"code","execution_count":26,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":407},"id":"q56qljtfuKp_","executionInfo":{"status":"ok","timestamp":1763145037931,"user_tz":480,"elapsed":197,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"327d50da-a2b5-4d70-f6a4-c26e8b6b755f"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlzlJREFUeJzs3Xd8VFX+//HXzKT3BgmBNHrvRVDAgmLXtQCKIoji6lpZLKz9a0HUVVbhZ1sVFVEs4OqqILLSpIN0kBaSUJIQ0khPZub3x00CEZCETEky7+fjMY+5c2fmnHNBOfO555zPMdntdjsiIiIiIiIi4nBmdzdAREREREREpKlS0C0iIiIiIiLiJAq6RURERERERJxEQbeIiIiIiIiIkyjoFhEREREREXESBd0iIiIiIiIiTqKgW0RERERERMRJFHSLiIiIiIiIOImCbhEREREREREnUdAtIiIiIiIi4iQNIuieMWMGiYmJ+Pn5MWDAANasWXPaz86dO5e+ffsSFhZGYGAgPXv25JNPPqnxGbvdzlNPPUWLFi3w9/dn2LBh7N6929mXISIi4nGWLl3KVVddRWxsLCaTiW+++abG++qTRUTE07k96J4zZw4TJ07k6aefZsOGDfTo0YPhw4eTmZl5ys9HRETw+OOPs3LlSjZv3sy4ceMYN24cCxYsqP7Myy+/zBtvvMHbb7/N6tWrCQwMZPjw4ZSUlLjqskRERDxCYWEhPXr0YMaMGad8X32yiIh4OpPdbre7swEDBgygX79+TJ8+HQCbzUZcXBz33Xcfjz32WK3K6N27N1dccQXPPfccdrud2NhY/v73vzNp0iQA8vLyiI6OZubMmYwaNcpp1yIiIuLJTCYT8+bN49prrwVQnywiIoKbR7rLyspYv349w4YNqz5nNpsZNmwYK1euPOP37XY7ixYt4vfff2fIkCEAJCcnk56eXqPM0NBQBgwYUKsyRURExDHUJ4uIiICXOyvPysrCarUSHR1d43x0dDQ7d+487ffy8vJo2bIlpaWlWCwW/t//+39cfPHFAKSnp1eX8ccyq977o9LSUkpLS6tf22w2srOziYyMxGQyndW1iYiIOJrdbufYsWPExsZiNrt9hdgZnU2fDOqXRUSkcahtv+zWoPtsBQcHs3HjRgoKCli0aBETJ06kdevWnH/++WdV3pQpU3j22Wcd20gREREnSUtLo1WrVu5uhtOoXxYRkcbkTP2yW4PuqKgoLBYLGRkZNc5nZGQQExNz2u+ZzWbatm0LQM+ePdmxYwdTpkzh/PPPr/5eRkYGLVq0qFFmz549T1ne5MmTmThxYvXrvLw84uPjSUtLIyQk5Gwv78/t/R98MQbC4uHuFc6poxamL9rN20v3cXP/OP5xRWe3tUNERM4sPz+fuLg4goOD3d2UWjmbPhmc3C/Puxt2fgfnPgRD/l6/shzsl52Z3PfZb3SNDeHzuwa6uzkiInIGte2X3Rp0+/j40KdPHxYtWlSddMVms7Fo0SLuvffeWpdjs9mqp6ElJSURExPDokWLqjv0/Px8Vq9ezd13333K7/v6+uLr63vS+ZCQEOcF3Z0uAD8LFKcBBRAS65x6ziA0LBSzbwA2b3/nXauIiDhUY5lifTZ9Mji5X+4yDJL/C5lroIH1e1ERZZh9A7B6qU8WEWlMztQvu316+cSJE7ntttvo27cv/fv3Z9q0aRQWFjJu3DgAxowZQ8uWLZkyZQpgTDnr27cvbdq0obS0lB9++IFPPvmEt956CzAu+MEHH+T555+nXbt2JCUl8eSTTxIbG1sd2DcIfqEQ3RXSN0PKCuh2g1ua4e9tAaCk3OaW+kVEpHErKChgz5491a+Tk5PZuHEjERERxMfHN7w+ufVQ4/nAWigrBJ9A97TjFPy8jfWAxeVWN7dEREQcye1B98iRIzly5AhPPfUU6enp9OzZk/nz51cnXUlNTa2xKL2wsJB77rmHAwcO4O/vT8eOHZk1axYjR46s/swjjzxCYWEhEyZMIDc3l/POO4/58+fj5+fn8uv7UwnnGkF36kq3Bd1+lUG3OngRETkb69at44ILLqh+XTUt/LbbbmPmzJkNr08OT4LQOMhLg9RV0PYi97TjFPyqb4SrTxYRaUrcvk93Q5Sfn09oaCh5eXnOnd61/T/Guu7mneEe92ydMu+3Azw0ZxOD20XxyfgBbmmDiNSP1WqlvLzc3c0QB/D29sZisZz2fZf1Tw2Mw6/7m3tg46dw7oNwccNJ2Lb3SAEX/XMJwX5ebHlmuLubIyJnSf1y0+GoftntI90eLX6Q8Zy5HYqyISDC5U3w89JddZHGym63k56eTm5urrubIg4UFhZGTExMo1m33SglDTGC7uQl7m5JDVUj3aVa8iXSKKlfbpoc0S8r6HanoGYQ2Q6O7jamuHW83OVN8PPRmm6RxqqqY2/evDkBAQEK0ho5u91OUVERmZmZADWyfYuDJQ42ng9vguIc8A93b3sqVeVZKbPasNrsWMz6f1qkMVG/3LQ4sl9W0O1uCQMrg+4V7gm6vbSmW6Qxslqt1R17ZGSku5sjDuLv7w9AZmYmzZs3/9MpbVIPoS0hsi0c3WMkM+14hbtbBBxPpAbGDLRAX/1ME2ks1C83TY7ql81n/og4VcK5xnOKe9Z0+/toerlIY1S1ViwgIMDNLRFHq/o71XpAJ0uqzGKevNS97ThB1Y1wUL8s0tioX266HNEvK+h2t/iBxvPhjcbWJS5WdVddnbtI46Spa02P/k5dJGmI8dyAgm6z2YSPl7YNE2nM9G940+OIv1MF3e4WFg8hrcBWYewZ6mLap1tERDxS1bruzO1QkOnetpxA/bKISNOjoNvdTCZjXTcY68pc7MR9urV7nIg0VomJiUybNs3dzZDGJDASorsZx/uXubctJ9AMNBFpCtQv16SguyFIqNw6zI1Bt9Vmp9yqoFtEnMtkMv3p45lnnjmrcteuXcuECRMc21hp+qqmmO9rOFuH+Xkr14qIuI76ZddQWsyGoGq/7gNroaIMvHxcVnXVNDaAkgpr9VoyERFnOHz4cPXxnDlzeOqpp/j999+rzwUFBVUf2+12rFYrXl5n7qqaNWvm2IaKZ0gaAqtmNKh13ZpeLiKupH7ZNRRhNQTNOoB/BFSUGAnVXMjbYqJqG9CSMt1VFxHniomJqX6EhoZiMpmqX+/cuZPg4GB+/PFH+vTpg6+vL8uXL2fv3r1cc801REdHExQURL9+/fj5559rlPvHaWwmk4l///vf/OUvfyEgIIB27drx7bffuvhqpcFLGAQmC+QkQ26qu1sDgK+3tvIUEddRv+waCrobApPJbVPMTSaT7qqLNBF2u52isgq3PByZE+Kxxx7jpZdeYseOHXTv3p2CggIuv/xyFi1axG+//call17KVVddRWrqnwdJzz77LCNGjGDz5s1cfvnljB49muzsbIe1U5oAvxBo2ds4Tm4Y67r9taZbpMlQv1yTJ/fLml7eUMQPhJ3/NYLu8x50adV+3hYKy6y6qy7SyBWXW+n81AK31L39/4YT4OOYLuX//u//uPjii6tfR0RE0KNHj+rXzz33HPPmzePbb7/l3nvvPW05Y8eO5aabbgLgxRdf5I033mDNmjVceumlDmmnNBFJQ4zlXclLoddod7emRoJTEWnc1C/X5Mn9ska6G4qqke7UVWBzbUerpC0i0pD07du3xuuCggImTZpEp06dCAsLIygoiB07dpzxjnr37t2rjwMDAwkJCSEzs+FsDSUNxIn7dTeAXTyqZp+Vqk8WkQZC/XL9aaS7oYjpDj5BUJpn7Bka081lVVdtT6K76iKNm7+3he3/N9xtdTtKYGBgjdeTJk1i4cKFvPrqq7Rt2xZ/f39uuOEGysrK/rQcb2/vGq9NJhM2m5bRyB/EDQCLDxw7BEf3QFQ7tzbHT0u+RJoM9cs1eXK/rKC7obB4QVx/2Ps/SFnp0qDb30cj3SJNgclkcthUsobk119/ZezYsfzlL38BjDvs+/fvd2+jpOnw9jcC7/3LIHlJAwi6dSNcpKlQvyxVNL28IanaOizlV5dW6+eloFtEGq527doxd+5cNm7cyKZNm7j55ps95s64uMiJU8zdTEu+RKShU79cdwq6G5Lqdd0rXbqu7PhIt/5nEZGG57XXXiM8PJxBgwZx1VVXMXz4cHr37u3uZklTkjTUeE5eBm7+4ahEaiLS0KlfrrumN9+hMWvZx1hXVpAB2fsgso1LqvX1UgcvIq43duxYxo4dW/36/PPPP+UWJ4mJifzvf/+rce5vf/tbjdd/nNZ2qnJyc3PPuq3SxLXsDd6BUJwNmdtcusTrj7SNp4i4i/pl59FId0Pi7QexlXeJXLhfd9VId3GZgm4REfFAFu/js83cPMXcT/t0i4g0OQq6G5oTp5i7iJ9XZQdfoQ5eREQ8VANZ1+2vNd0iIk2Ogu6GJsH1ydSq13RrpFtERDxVVdC9/1ewVritGb4KukVEmhwF3Q1NXH8wmSFnP+QfckmV1ZlSK7R+TEREPFRMN/ALg7JjcOg3tzVDidRERJoeBd0NjV8oRHc1jl20rru6g9dIt4iIeCqzBRLPM46Tl7itGUqkJiLS9CjobogSzjWeXbSuW+vHREREgNbnG89uXNetRGoiIk2Pgu6GKGGg8ZzimqC7qoPXVDYREfFoVeu601ZDeYlbmqAb4SIiTY+C7oYovjLoztwGRdlOr05T2URERICo9hAUDRUlcGCtW5qgNd0iIk2Pgu6GKKg5RLYzjtNWO706P91VFxERAZPphK3D3LOu2083wkVEmhwF3Q1V9RRz528dpqBbRBqT888/nwcffLD6dWJiItOmTfvT75hMJr755pt61+2ocqQBc/N+3VrTLSKNjfrlM1PQ3VBVJVNzwbpurekWEVe56qqruPTSS0/53rJlyzCZTGzevLlOZa5du5YJEyY4onnVnnnmGXr27HnS+cOHD3PZZZc5tC5pYKqC7oProfSYy6uvuhFeWmHDZrO7vH4R8Szql11DQXdDVbWu+/BGKCt0alVK2iIirjJ+/HgWLlzIgQMHTnrvww8/pG/fvnTv3r1OZTZr1oyAgABHNfFPxcTE4Ovr65K6xE3CEyEsAWwVkLrK5dVX9clgBN4iIs6kftk1FHQ3VGHxENLK6PSdnMxF68dExFWuvPJKmjVrxsyZM2ucLygo4Msvv+Taa6/lpptuomXLlgQEBNCtWzc+++yzPy3zj9PYdu/ezZAhQ/Dz86Nz584sXLjwpO88+uijtG/fnoCAAFq3bs2TTz5JeXk5ADNnzuTZZ59l06ZNmEwmTCZTdXv/OI1ty5YtXHjhhfj7+xMZGcmECRMoKCiofn/s2LFce+21vPrqq7Ro0YLIyEj+9re/VdclDZQb13X7nRB0awaaiDib+mXX9MteTi1dzp7JZKzr3vKlMcW8au9QJ/D3UaZUkSbBbofyIvfU7R1g/Lt1Bl5eXowZM4aZM2fy+OOPY6r8zpdffonVauWWW27hyy+/5NFHHyUkJITvv/+eW2+9lTZt2tC/f/8zlm+z2bjuuuuIjo5m9erV5OXl1VhnViU4OJiZM2cSGxvLli1buPPOOwkODuaRRx5h5MiRbN26lfnz5/Pzzz8DEBoaelIZhYWFDB8+nIEDB7J27VoyMzO54447uPfee2v8ePnll19o0aIFv/zyC3v27GHkyJH07NmTO++884zXI26SNBR++8Qt67otZhM+FjNlVptmoIk0duqX1S9XUtDdkCUMqgy6nZtMzc9L08tFmoTyIngx1j11/+MQ+ATW6qO33347r7zyCkuWLOH8888HjCls119/PQkJCUyaNKn6s/fddx8LFizgiy++qFXn/vPPP7Nz504WLFhAbKzxZ/Hiiy+etN7riSeeqD5OTExk0qRJfP755zzyyCP4+/sTFBSEl5cXMTExp61r9uzZlJSU8PHHHxMYaFz79OnTueqqq5g6dSrR0dEAhIeHM336dCwWCx07duSKK65g0aJFCrobsqTBxvPhzcbWnQERLq3e11tBt0iToH5Z/XIlTS9vyOIHGc8H1kFFmdOq8fM5nkjNblfSFhFxro4dOzJo0CA++OADAPbs2cOyZcsYP348VquV5557jm7duhEREUFQUBALFiwgNTW1VmXv2LGDuLi46o4dYODAgSd9bs6cOZx77rnExMQQFBTEE088Ues6TqyrR48e1R07wLnnnovNZuP333+vPtelSxcsluNThlu0aEFmZmad6hIXC46BqA6AHfYvd3n12qtbRFxJ/bLz+2WNdDdkzTqAfwQUZxsJ1eLOfDfpbFR17nY7lFlt+HpZzvANEWmQvAOMO9vuqrsOxo8fz3333ceMGTP48MMPadOmDUOHDmXq1Kn861//Ytq0aXTr1o3AwEAefPBBysocd+Nx5cqVjB49mmeffZbhw4cTGhrK559/zj//+U+H1XEib2/vGq9NJhM2m3JoNHhJQyDrd2OKeeerXVq1v3KtiDQN6pdrxRP6ZQXdDZnJZEwx3/lfSFnhtKD7xEypJWUKukUaLZOp1lPJ3G3EiBE88MADzJ49m48//pi7774bk8nEr7/+yjXXXMMtt9wCGGvBdu3aRefOnWtVbqdOnUhLS+Pw4cO0aNECgFWramagXrFiBQkJCTz++OPV51JSUmp8xsfHB6v1z0cZO3XqxMyZMyksLKy+q/7rr79iNpvp0KFDrdorDVjSEFj7nlvWdWuvbpEmQv2y+uVKml7e0FVtHZaywmlVeFvMWMxG0oSSCnXwIuJ8QUFBjBw5ksmTJ3P48GHGjh0LQLt27Vi4cCErVqxgx44d3HXXXWRkZNS63GHDhtG+fXtuu+02Nm3axLJly2p04lV1pKam8vnnn7N3717eeOMN5s2bV+MziYmJJCcns3HjRrKysigtLT2prtGjR+Pn58dtt93G1q1b+eWXX7jvvvu49dZbq9eNSSOWeB5gMka7j6W7tGpt5SkirqZ+2bkUdDd0CZXrutNWgROnPVR18MVl6uBFxDXGjx9PTk4Ow4cPr17r9cQTT9C7d2+GDx/O+eefT0xMDNdee22tyzSbzcybN4/i4mL69+/PHXfcwQsvvFDjM1dffTUPPfQQ9957Lz179mTFihU8+eSTNT5z/fXXc+mll3LBBRfQrFmzU26PEhAQwIIFC8jOzqZfv37ccMMNXHTRRUyfPr3ufxjS8AREQIvKvWmTl7m0al+t6RYRN1C/7DwmuzJnnSQ/P5/Q0FDy8vIICQlxb2OsFTA1AcoK4K+/QkxXp1TT9/mfySooZf6Dg+kY4+ZrFpEzKikpITk5maSkJPz8/NzdHHGgP/u7bVD9kwu57bp/egJWvAm9boVrXPej7bYP1rBk1xFevbEHN/Rp5bJ6ReTsqV9uuhzRL2uku6GzeB1fy+3EKeZV68c00i0iIlIpaajxnLzEpdVqTbeISNOioLsxqNo6LNV5QbcypYqIiPxB/Dlg9oLcVMjZ77Jq/bSmW0SkSVHQ3RgknJBMzUmrAdTBi4iI/IFvMLTsYxy7MIu5EqmJiDQtCrobg5Z9wOIDBRmQvc8pVfgraYuIiMjJqqeYuy7o9lOfLCLSpDSIoHvGjBkkJibi5+fHgAEDWLNmzWk/+9577zF48GDCw8MJDw9n2LBhJ31+7NixmEymGo9LL73U2ZfhPN7+ENvbOHbSum5frR8TERE5WdIQ4zl5qdNmm/2Rn5Z8iYg0KW4PuufMmcPEiRN5+umn2bBhAz169GD48OFkZmae8vOLFy/mpptu4pdffmHlypXExcVxySWXcPDgwRqfu/TSSzl8+HD141Rp5RuVqq3DUlc6pXiNdIs0TtqAounR32kD06ofePkZs82ydrmkyurkpuqTRRod/Rve9Dji79TtQfdrr73GnXfeybhx4+jcuTNvv/02AQEBfPDBB6f8/Keffso999xDz5496dixI//+97+x2WwsWrSoxud8fX2JiYmpfoSHh7vicpynKuh20ki37qqLNC7e3t4AFBUVubkl4mhVf6dVf8fiZt5+EDfAOHbRFHOt6RZpfNQvN12O6Je9HNWYs1FWVsb69euZPHly9Tmz2cywYcNYubJ2I7pFRUWUl5cTERFR4/zixYtp3rw54eHhXHjhhTz//PNERkaesozS0lJKS0urX+fn55/F1ThZXH8wmSEnGfIPQ0gLhxavDl6kcbFYLISFhVXPCgoICMBkMrm5VVIfdrudoqIiMjMzCQsLw2KxuLtJUiVpiLFt2L7F0P9Op1dXdSO8VDfCRRoN9ctNjyP7ZbcG3VlZWVitVqKjo2ucj46OZufOnbUq49FHHyU2NpZhw4ZVn7v00ku57rrrSEpKYu/evfzjH//gsssuY+XKlaf8w5oyZQrPPvts/S7G2fxCIborpG82tg7rer1ji9eabpFGJyYmBuC0y3GkcQoLC6v+u5UGImko8BzsXw42K5ide0NE08tFGif1y02TI/pltwbd9fXSSy/x+eefs3jxYvz8/KrPjxo1qvq4W7dudO/enTZt2rB48WIuuuiik8qZPHkyEydOrH6dn59PXFyccxt/NhIGGUF3ihOCbp/KNd1l6uBFGguTyUSLFi1o3rw55eXl7m6OOIC3t7dGuBui2F7gEwwluZC+BWJ7OrU6beMp0jipX256HNUvuzXojoqKwmKxkJGRUeN8RkbGGe8mvPrqq7z00kv8/PPPdO/e/U8/27p1a6KiotizZ88pg25fX198fX3rfgGuljAIVr8NKY5PpubnVdnBV6iDF2lsLBaLAjURZ7J4QeK5sGu+sa7bRUG3RrpFGif1y/JHbk2k5uPjQ58+fWokQatKijZw4MDTfu/ll1/mueeeY/78+fTt2/eM9Rw4cICjR4/SooVj10G7XHzln0nmNijKdmjR/tUj3Vo/JiIicpITtw5zMn8lNxURaVLcnr184sSJvPfee3z00Ufs2LGDu+++m8LCQsaNGwfAmDFjaiRamzp1Kk8++SQffPABiYmJpKenk56eTkFBAQAFBQU8/PDDrFq1iv3797No0SKuueYa2rZty/Dhw91yjQ4T1Bwi2xnHaasdWrSfV+Wabo10i4iInKwq6E5ZAVbnThs9nkhNfbKISFPg9qB75MiRvPrqqzz11FP07NmTjRs3Mn/+/OrkaqmpqRw+fLj682+99RZlZWXccMMNtGjRovrx6quvAsZ0js2bN3P11VfTvn17xo8fT58+fVi2bFnjmEJ+JgmVo90O3jqsaqS7RGu6RURETta8C/hHQHkhHFzv1Kr8Nb1cRKRJaRCJ1O69917uvffeU763ePHiGq/379//p2X5+/uzYMECB7WsAUo4FzZ87PCguzppi0a6RUTEgaxWK8888wyzZs0iPT2d2NhYxo4dyxNPPNG4ttMxmyFpMGz/jzHFPP4cp1WlHUVERJoWt490Sx1Vres+vBHKCh1WbHXSFo10i4iIA02dOpW33nqL6dOns2PHDqZOncrLL7/Mm2++6e6m1Z2L1nUrkZqISNPSIEa6pQ7C4iGkFeQfgANrofX5Din2+FQ2JW0RERHHWbFiBddccw1XXHEFAImJiXz22WesWbPGzS07C0nnG89pq6G8GLz9nVKN3wmJ1Ox2e+OaESAiIifRSHdjYzKdsK7bcVuHKWmLiIg4w6BBg1i0aBG7du0CYNOmTSxfvpzLLrvMzS07C5FtIDgWrGUOT2h6oqrp5QClFboZLiLS2GmkuzGKHwhbvoSUXx1WpJK2iIiIMzz22GPk5+fTsWNHLBYLVquVF154gdGjR5/2O6WlpZSWlla/zs/Pd0VTz8xkMqaYb/7cmGLuoNlmf1R1IxyMdd0nvhYRkcZHI92NUcK5xvOBdVBR5pAilbRFRESc4YsvvuDTTz9l9uzZbNiwgY8++ohXX32Vjz766LTfmTJlCqGhodWPuLg4F7b4DFywrtvbYsbLbEwp117dIiKNn4LuxqhZB2PbkopiI6GaAyhpi4iIOMPDDz/MY489xqhRo+jWrRu33norDz30EFOmTDntdyZPnkxeXl71Iy0tzYUtPoOkwcbzwQ1Q4rwReM1AExFpOhR0N0YmEyQMMo4dtHXYH5O2iIiIOEJRURFmc82fGxaLBZvt9CO4vr6+hISE1Hg0GGHxEJ4EdqvDt+88kW91v6ygW0SksVPQ3VhVbR2W6phkav4+x9eLKWmLiIg4ylVXXcULL7zA999/z/79+5k3bx6vvfYaf/nLX9zdtLPXeqjx7MQp5lXLvjTSLSLS+CmRWmNVNdKduhJsNjDX7/6Jn9fx7ytpi4iIOMqbb77Jk08+yT333ENmZiaxsbHcddddPPXUU+5u2tlLGgLrZzo16PbXSLeISJOhoLuxiukOPkFQkgeZ2yGma72K87KY8baYKLfaKS63EuaYVoqIiIcLDg5m2rRpTJs2zd1NcZzEynXdGVug8CgERjq8Cj8F3SIiTYamlzdWFi9o1c84dtS6bq/j67pFRETkNIKaQ/POxvH+ZU6pwt9bfbKISFOhoLsxq9o6LNUxQXdUsC8Am9JyHVKeiIhIk1W9ddgSpxTvq608RUSaDAXdjVlCZTK1lBXggIzj1/ZsCcCsVSn1LktERKRJc/J+3drKU0Sk6VDQ3Zi17AMWHyjIgOx99S5uVP84vMwm1qXksOOw8/YeFRERafQSzgWTGY7ugbyDDi9e08tFRJoOBd2Nmbc/xPY2jh2wdVh0iB/Du8QAGu0WERH5U/5h0KKnceyEdd1+ml4uItJkKOhu7Kq2DnNQMrVbzkkAYN5vBzlWUu6QMkVERJokJ04x15ZhIiJNh4Luxs7BQfc5rSNo2zyIojIr835z/HQ5ERGRJuPEoNsBuVVOpC3DRESaDgXdjV1cf2NNWU4y5B+ud3Emk4lbK0e7P1mZgt3BPyJERESajPhzwOwNeWlGP+xASqQmItJ0KOhu7PxCIbqrceygrcP+0rslAT4WdmcWsDo52yFlioiINDk+gdCqn3G8z7Fbh/kpkZqISJOhoLspcPAU8xA/b67tZWwf9okSqomIiJyek9Z1VyVS00i3iEjjp6C7KagOuuufwbzKLQOMKeYLtqaTmV/isHJFRESalNZDjWcHr+uuSqRWqqBbRKTRU9DdFMQPNJ4zt0ORY6aDd44NoW9COBU2O5+vTXNImSIiIk1Oy77g5Q9FWZC5w2HFak23iEjToaC7KQhqDpHtADukrXZYsVXbh81enUqFVWvKRERETuLlAwmVN78dOMVca7pFRJoOBd1NRVWH76B13QCXdYshItCH9PwSft6R6bByRUREmhQnrOuuWtOtLcNERBo/Bd1NRcK5xrMDg25fLwsj+8UBMEsJ1URERE6tKujevxysFQ4p0l/Ty0VEmgwF3U1F1bruwxuhrNBhxd7cPx6TCZbvyWLfkQKHlSsiItJkxPQA31AozYP0TQ4p0q86kZqml4uINHYKupuKsHgIaQm2Cjiw1mHFxkUEcGGH5gB8ujrVYeWKiIg0GRYvSKycceagKeZKpCYi0nQo6G4qTCanbB0GcMtAI6Hal+vSKC5T5y8iInKSpBO2DnMA/+pEaup3RUQaOwXdTUnVFPNUx63rBhjarhlxEf7kl1Tw3aZDDi1bRESkSaha152yEirK6l1cVSK14nIrdgfu/y0iIq6noLspqUqmlrbWIR1+FbPZxC0DjNHuj1ftV+cvIiLyR807QUAUVBTDwXX1Ls7PxxjpttuhTNt2iog0agq6m5JmHcA/wujwDzsmkUuVG/vG4eNlZuvBfDYdyHNo2SIiIo2eyeTQrcP8vCzVx9qrW0SkcVPQ3ZTUWNf9q0OLjgj04cruLQD4ZKW2DxMRETlJVdC9b0m9i/K2mLCYTQDkFjlu9pqIiLiegu6mpnpdt2OTqQHceo4xxfy7zYfIKdQPABERkRqqgu4Da+u9fafJZKJnXBgAX647UM+GiYiIOynobmoSTgi6bY6djtYzLowusSGUVdj4cn2aQ8sWERFp9CJaQ2gc2MohdVW9i7tzcBIAn6xKobC0ot7liYiIeyjobmpieoB3IJTkQeZ2hxZtMpmqR7tnrUrFZlNCNRERkWoOXtd9cecYEiMDyCsuZ85a3ewWEWmsFHQ3NRYviOtvHDthivnVPWMJ9vMiNbuIpbuPOLx8ERGRRs2BQbfFbOLOIa0BeH95MhXKYi4i0igp6G6KqrYOc3AyNYAAHy9u6NMKMEa7RURE5ASJg43nwxuhOLfexV3fuxWRgT4czC3m+y2H612eiIi4nkOC7tzcXEcUI45Sta47ZaWxwaeD3VI5xfx/OzM4kFPk8PJFREQardCWENkW7DaH3Pz287Zw26BEAN5Zsg+7E/p1ERFxrjoH3VOnTmXOnDnVr0eMGEFkZCQtW7Zk0ybH7g0tZ6llH7D4QEE6ZO9zePFtmgVxbttIbHb4bI1Gu0VERGpw4BRzMHYP8fe2sP1wPr/uOeqQMkVExHXqHHS//fbbxMXFAbBw4UIWLlzIjz/+yGWXXcbDDz/s8AbKWfD2h9jexrET1nXD8e3D5qxNo7TC6pQ6REREGiUHB93hgT6M7Gf89npn6V6HlCkiIq5T56A7PT29Ouj+73//y4gRI7jkkkt45JFHWLt2rcMbKGcpYZDxnLLCKcUP6xRNdIgvWQVlzN+a7pQ6REREGqXEyqA7czsUZDqkyPHnJWE2wbLdWWw7lOeQMkVExDXqHHSHh4eTlmZsWzF//nyGDRsGgN1ux2rViGeD4eSg28ti5ub+VduHpTilDhERkUYpMBKiuxnH+5c5pMi4iACu6B4LwHtLHb90TEREnKfOQfd1113HzTffzMUXX8zRo0e57LLLAPjtt99o27btWTVixowZJCYm4ufnx4ABA1izZs1pP/vee+8xePBgwsPDCQ8PZ9iwYSd93m6389RTT9GiRQv8/f0ZNmwYu3fvPqu2NVpx/QET5CRDvnOynY7qH4eX2cTa/TnsOJzvlDpEREQaJQdPMQe4q3L7sO82H1YiUxGRRqTOQffrr7/OvffeS+fOnVm4cCFBQUEAHD58mHvuuafODZgzZw4TJ07k6aefZsOGDfTo0YPhw4eTmXnq6ViLFy/mpptu4pdffmHlypXExcVxySWXcPDgwerPvPzyy7zxxhu8/fbbrF69msDAQIYPH05JSUmd29do+YVCTOVd9lTnjHZHh/gxvEsMoNFuERGRGpwQdHdtGcqgNpFYbXY+WL7fYeWKiIhzmexu3ntiwIAB9OvXj+nTpwNgs9mIi4vjvvvu47HHHjvj961WK+Hh4UyfPp0xY8Zgt9uJjY3l73//O5MmTQIgLy+P6OhoZs6cyahRo85YZn5+PqGhoeTl5RESElK/C3SnHx+F1W9DvzvhiledUsWKvVnc/N5qAnwsrP7HRQT7eTulHhERaUL9Ux01yusuyYepiWC3woNbISzOIcUu2XWE2z5YQ4CPhZWPXURogPpdERF3qW3/VOeR7o8++ojvv/+++vUjjzxCWFgYgwYNIiWlbqOdZWVlrF+/vnpdOIDZbGbYsGGsXFm7rNtFRUWUl5cTEREBQHJyMunp6TXKDA0NZcCAAbUus8lw8rpugIGtI2nTLJCiMivzfjt45i+IiIh4Ar8QiO1lHDtwtHtIuyg6xgRTVGZl1mrNMhMRaQzqHHS/+OKL+Pv7A7By5UpmzJjByy+/TFRUFA899FCdysrKysJqtRIdHV3jfHR0NOnptcuI/eijjxIbG1sdZFd9ry5llpaWkp+fX+PRJMQPNJ4zt0NRtlOqMJlM1duHfbIyBTdPnBAREWk4Wg81nh0YdJtMJu4aaqzt/vDX/ZSUK4mtiEhDV+egOy0trTph2jfffMP111/PhAkTmDJlCsuWOSZDZ2299NJLfP7558ybNw8/P7+zLmfKlCmEhoZWP6q2RGv0gppDZDvADmmrnVbNdX1a4e9tYXdmAWuSnRPci4iINDonrut24E3pK7vHEhvqR1ZBKd9olpmISINX56A7KCiIo0ePAvDTTz9x8cUXA+Dn50dxcXGdyoqKisJisZCRkVHjfEZGBjExMX/63VdffZWXXnqJn376ie7du1efr/peXcqcPHkyeXl51Y+qLdGahITK0W4nTjEP8fPm2l4tAfhECdVEREQMcQPA4gPHDsHRvQ4r1tti5vbzkgB4d9k+bDbNMhMRacjqHHRffPHF3HHHHdxxxx3s2rWLyy+/HIBt27aRmJhYp7J8fHzo06cPixYtqj5ns9lYtGgRAwcOPO33Xn75ZZ577jnmz59P3759a7yXlJRETExMjTLz8/NZvXr1acv09fUlJCSkxqPJiK9c153q3PXst5wTD8D8relkHvOgLPEiIiKn4+1vBN4AyUscWvSo/vEE+3mx70ghP+/IOPMXRETEbeocdM+YMYOBAwdy5MgRvv76ayIjIwFYv349N910U50bMHHiRN577z0++ugjduzYwd13301hYSHjxo0DYMyYMUyePLn681OnTuXJJ5/kgw8+IDExkfT0dNLT0ykoKACMtU4PPvggzz//PN9++y1btmxhzJgxxMbGcu2119a5fY1eVTK1Q79BWaHTqukSG0qfhHAqbHbmrGlCMwVERETqwwlbhwEE+XpxS2VOlXeX7nNo2SIi4lhedf1CWFhY9fZeJ3r22WfPqgEjR47kyJEjPPXUU6Snp9OzZ0/mz59fnQgtNTUVs/n4vYG33nqLsrIybrjhhhrlPP300zzzzDOAkVG9sLCQCRMmkJuby3nnncf8+fPrte670QqLh5CWkH8QDqw7ntTFCW49J4H1KTnMXpPK3ee3wctS53s6IiIiTUvSEPjlBSPottnA7Li+cdygRN5flsy6lBzWp2TTJyHCYWWLiIjjnNU+3bm5ubz//vvs2LEDgC5dunD77bcTGhrq8Aa6Q6PcD/TPfH0HbPkShj4GF0w+8+fPUmmFlYFT/kd2YRnv3NqH4V3+fF2+iIjUTZPrn2qpUV93RZmxX3d5Ifx1OcR0c2jxj361mTnr0rikczTvjul75i+IiIjDOG2f7nXr1tGmTRtef/11srOzyc7O5rXXXqNNmzZs2LChXo0WJ6naOizVecnUAHy9LIzsZ2R+n6WEaiIiIuDlc3ypl4OnmAPcOcRIqLZwRwZ7jxQ4vHwREam/OgfdDz30EFdffTX79+9n7ty5zJ07l+TkZK688koefPBBJzRR6i3hXOM5ba1xx92Jbu4fj8kEy3ZnsU+dv4iIiNPWdQO0bR7MsE7R2O3w72Va2y0i0hCd1Uj3o48+ipfX8eXgXl5ePPLII6xbt86hjRMHadYB/COgohgOb3JqVXERAVzQoTkAn65OdWpdIiIijUJV0L3/V7BWOLz4u4a2BuDrDQe1g4iISANU56A7JCSE1NSTg6m0tDSCg4Md0ihxMJPp+NQ2J08xByOhGsCX69IoLrM6vT4REZEGLaYb+IVB2TE4vNHhxfdNCKdXfBhlFTY+WrHf4eWLiEj91DnoHjlyJOPHj2fOnDmkpaWRlpbG559/zh133HFWW4aJi1St605xftA9pH0z4iL8yS+p4LtNh5xen4iISINmtkDiecbxvsUOL95kMnHXkDYAzFqVSmGp40fTRUTk7NU56H711Ve57rrrGDNmDImJiSQmJjJ27FhuuOEGpk6d6ow2iiMkVCVTW2lsWeJEFrOJ0QOM0e5Zq5VQTUREhKTKLTudsK4b4OLO0SRFBZJXXM6ctWlOqUNERM5OnYNuHx8f/vWvf5GTk8PGjRvZuHEj2dnZvP766/j6+jqjjeIIMT3AOxBK8iBzu9OrG9E3Dh8vM5sP5LEpLdfp9YmIiDRorSuD7rTVUO74ddcWs4k7BhuZzN9fnky51bk32EVEpPbqHHRXCQgIoFu3bnTr1o2AgABHtkmcweIFcf2N49SVTq8uItCHK7u1AOATbR8mIiKeLqo9BEVDRQkcWOuUKq7v3YqoIB8O5hbzw5bDTqlDRETqzuvMH4Hrrruu1gXOnTv3rBsjTpZwLuz7BVJ+hf53Or26WwYmMPe3g3y36RCPX96J8EAfp9cpIiJnZrPZWLJkCcuWLSMlJYWioiKaNWtGr169GDZsGHFxce5uYtNjMhlZzLd8aUwxTxrs8Cr8vC3cNjCRfy7cxTtL9nF1j1hMJpPD6xERkbqp1Uh3aGhorR/SgFWt605ZCXa706vrFRdGl9gQSitsfLX+gNPrExGRP1dcXMzzzz9PXFwcl19+OT/++CO5ublYLBb27NnD008/TVJSEpdffjmrVq1yd3ObHifu113l1oEJ+Htb2H44n+V7spxWj4iI1F6tRro//PBDZ7dDXKFlH7D4QEE65CRDRGunVmcymbj1nAQem7uFWatTGH9eEmaz7riLiLhL+/btGThwIO+99x4XX3wx3t7eJ30mJSWF2bNnM2rUKB5//HHuvLP+M6MOHjzIo48+yo8//khRURFt27blww8/pG/fvvUuu1GpCroProPSAvANcngVYQE+jOwXx8wV+3l36T4Gt2vm8DpERKRuznpNtzRC3v4Q29s4dsHWYQBX94wl2M+LlKNFLNMddxERt/rpp5/44osvuPzyy08ZcAMkJCQwefJkdu/ezYUXXljvOnNycjj33HPx9vbmxx9/ZPv27fzzn/8kPDy83mU3OuGJEBYPtgqn5lcZf14SFrOJZbuz2HYoz2n1iIhI7Sjo9jQnTjF3gQAfL27o0wqAT1YqoZqIiDt16tSp1p/19vamTZs29a5z6tSpxMXF8eGHH9K/f3+SkpK45JJLHFJ2o1Q9xXyJ06qIiwjgispkpu8u3ee0ekREpHYUdHuahHON55RfXVZl1Z7d/9uZwYGcIpfVKyIiZ1ZRUcGMGTO48cYbue666/jnP/9JSYnjtrT69ttv6du3LzfeeCPNmzenV69evPfeew4rv9FJOt94duK6boAJQ4wlZP/dfFh9r4iImyno9jRx/QGTsaY73zXbibRtHsSgNpHY7PDZmlSX1CkiIrVz//33M2/ePC644AKGDh3K7NmzGTdunMPK37dvH2+99Rbt2rVjwYIF3H333dx///189NFHp/1OaWkp+fn5NR5NRlXW8sOboSjbadV0bRnKuW0jsdrsvL882Wn1iIjImdU56N63T9OUGjW/UIjpZhynumZdN8Ct5xij3XPWplFWYXNZvSIiUtO8efNqvP7pp59YsGAB99xzDw888ACffvopP/74o8Pqs9ls9O7dmxdffJFevXoxYcIE7rzzTt5+++3TfmfKlCk1dkZpUluYBcdAVAfA7vRZZ3cNMabwz1mbRl5RuVPrEhGR06tz0N22bVsuuOACZs2a5dDpZ+JCCYOMZxet6wYY1jma6BBfsgrKmL8t3WX1iohITR988AHXXnsthw4dAqB379789a9/Zf78+Xz33Xc88sgj9OvXz2H1tWjRgs6dO9c416lTJ1JTTz/zafLkyeTl5VU/0tLSHNaeBsEFW4cBDG4XRacWIRSVWZm1WnlVRETcpc5B94YNG+jevTsTJ04kJiaGu+66izVr1jijbeIs1UG360a6vS1mbuofD8AsJVQTEXGb7777jptuuonzzz+fN998k3fffZeQkBAef/xxnnzySeLi4pg9e7bD6jv33HP5/fffa5zbtWsXCQkJp/2Or68vISEhNR5NSlXQvc95ydTA2LpzwpAkAD78dT8l5Van1iciIqdW56C7Z8+e/Otf/+LQoUN88MEHHD58mPPOO4+uXbvy2muvceTIEWe0UxwpvjKDeeZ2KM5xWbU39Y/HYjaxZn82O9Ob0Po8EZFGZuTIkaxZs4YtW7YwfPhwbrnlFtavX8/GjRuZMWMGzZo5bm/nhx56iFWrVvHiiy+yZ88eZs+ezbvvvsvf/vY3h9XR6CSeB5gg63c45tzZX1d2jyU21I+sglLm/XbQqXWJiMipnXUiNS8vL6677jq+/PJLpk6dyp49e5g0aRJxcXGMGTOGw4ddk6RLzkJQc4hsC9ghdbXLqo0O8WN4l2gAZq3SaLeIiDuFhYXx7rvv8sorrzBmzBgefvhhpywb69evH/PmzeOzzz6ja9euPPfcc0ybNo3Ro0c7vK5GIyACWnQ3jpOXObUqb4uZ288zRrvfW7oPm83u1PpERORkZx10r1u3jnvuuYcWLVrw2muvMWnSJPbu3cvChQs5dOgQ11xzjSPbKY5WPcXcdVuHAdxSmVBt3oaDHCtRUhcREVdLTU1lxIgRdOvWjdGjR9OuXTvWr19PQEAAPXr0cGgStSpXXnklW7ZsoaSkhB07dnDnnXc6vI5GxwX7dVcZ1T+eED8v9mUVsnBHhtPrExGRmuocdL/22mt069aNQYMGcejQIT7++GNSUlJ4/vnnSUpKYvDgwcycOZMNGzY4o73iKPGVQXeq65KpAQxsHUmbZoEUlln5RtPcRERcbsyYMZjNZl555RWaN2/OXXfdhY+PD88++yzffPMNU6ZMYcSIEe5uZtOXNNR4dnIyNYAgX6/qm97vLtUuNCIirlbnoPutt97i5ptvJiUlhW+++YYrr7wSs7lmMc2bN+f99993WCPFCapGug/9BmWFLqvWZDJVbx/2yaoU7HZNcxMRcaV169bxwgsvcOmll/Laa6+xefPm6vc6derE0qVLGTZsmBtb6CHizwGzF+SmQM5+p1c3dlAiPhYz61NyWLffefuDi4jIyeocdO/evZvJkyfTokWL037Gx8eH2267rV4NEycLi4eQlmCrgAPrXFr1dX1a4e9tYVdGAWuS1fGLiLhSnz59eOqpp/jpp5949NFH6dat20mfmTBhghta5mF8g6FlH+PYyeu6AZqH+HFd75YAvKPRbhERlzqrNd05OTm8+uqrjB8/nvHjx/Pqq6+Sna3gqVExmdyydRhAiJ831/aKBYzRbhERcZ2PP/6Y0tJSHnroIQ4ePMg777zj7iZ5Lheu6wa4Y3BrAH7ekcGezAKX1CkiImcRdC9dupTExETeeOMNcnJyyMnJ4c033yQpKYmlS52/LkkcqGrrsFTXBt1wPKHa/K3pZB5zfLZcERE5tYSEBL766iu2bdvGp59+SmxsrLub5Lmqg+6l4ILlVm2bBzGsUzR2O/x7mUa7RURcpc5B99/+9jdGjhxJcnIyc+fOZe7cuezbt49Ro0Z59p6bjVHCucZz2lqoKHNp1V1iQ+kdH0aFzc6cNWkurVtExFMVFtYth0ddPy911Ko/ePlBQQZk7XJJlX8daox2z91wUDe9RURcpM5B9549e/j73/+OxWKpPmexWJg4cSJ79uxxaOPEyZp1AP8IqCiGw5tcXv2tA43R7s/WpFJhtbm8fhERT9O2bVteeuklDh8+fNrP2O12Fi5cyGWXXcYbb7zhwtZ5IG8/iBtgHLsgizlA38QIeseHUWa18dGK/S6pU0TE09U56O7duzc7duw46fyOHTvo0aOHQxolLmIyuXWK+WVdWxAR6MOhvBL+tzPT5fWLiHiaxYsXs3btWpKSkhgwYAB/+9vfeOGFF/jnP//JE088wXXXXUdsbCy33347V111FY888oi7m9z0uXhdN8BdQ9sA8MnKFApKK1xWr4iIp/Kq6xfuv/9+HnjgAfbs2cM555wDwKpVq5gxYwYvvfRSja1Hunfv7riWinMkDILfvzeSqZ37gEur9vO2MKJvHG8v2csnq1K4pEuMS+sXEfE0HTp04OuvvyY1NZUvv/ySZcuWsWLFCoqLi4mKiqJXr1689957XHbZZTVmtIkTJQ0FnjMymNtsYD6rHLd1cnGnaFpHBbIvq5A5a9MYf16S0+sUEfFkJnsdN0r+457cJxVoMmG32zGZTFit1no1zl3y8/MJDQ0lLy+PkJAQdzfHuQ6uh/cuBL9QeGS/Szr7E6VlFzHklV+w2+GXSeeTFBXo0vpFRBoTj+qfTtCkr9taAVMToewYTFgCsT1dUu3s1an8Y94WWob5s/jh8/G2uLb/FxFpCmrbP9V5pDs5ObleDZMGJqYHeAdCSR5kboeYri6tPi4igAs6NOd/OzP5dFUKT1zZ2aX1i4iIuJXFy5h1tnuBsa7bRUH3db1b8trC3zmYW8z3mw9zba+WLqlXRMQT1fm2ZkJCQq0f0ghYvCCuv3GcutItTbi1cvuwL9cfoLiscc6OEBEROWuthxrPLkqmBsYSr7GDEgF4Z+k+6jjxUURE6uCs5hLt3buX++67j2HDhjFs2DDuv/9+9u7d6+i2iatUbR2W4vpkagBD2jcjLsKfvOJyvtt8yC1tEBERcZuqZGopK8Ba7rJqbzkngQAfCzsO57Nsd5bL6hUR8TR1DroXLFhA586dWbNmDd27d6d79+6sXr2aLl26sHDhQme0UZwtoTKDecoKcMOdbovZxOgBxmj3rFUpLq9fRETErZp3MbbwLC+EgxtcVm1YgA8j+8UB8O7SfS6rV0TE09Q56H7sscd46KGHWL16Na+99hqvvfYaq1ev5sEHH+TRRx91RhvF2Vr2AbM3FKRDjnvW7N/YpxU+FjObD+SxKS3XLW0QERFxC7MZkgYbxy6cYg4w/rwkLGYTy/dksfVgnkvrFhHxFHUOunfs2MH48eNPOn/77bezfft2hzRKXMzb3wi8wW1TzCODfLmiewsAPtFot4iI082fP5/ly5dXv54xYwY9e/bk5ptvJicnx40t81Bu2K8boFV4AFdW9r8a7RYRcY46B93NmjVj48aNJ53fuHEjzZs3d0SbxB2qp5i7J5kaGGvLAL7bdIjcojK3tUNExBM8/PDD5OfnA7Blyxb+/ve/c/nll5OcnMzEiRPd3DoPlFSZTC1tDZQXu7TqCUNaA/D9lsMcyClyad0iIp6gzkH3nXfeyYQJE5g6dSrLli1j2bJlvPTSS9x1113ceeedzmijuEJ1MrVf3daE3vFhdG4RQmmFja/WH3BbO0REPEFycjKdOxvbNH799ddceeWVvPjii8yYMYMff/zRza3zQJFtIbgFWEshbbVLq+4SG8p5baOw2uy8v1xbw4qIOFqdg+4nn3ySp556ijfffJOhQ4cydOhQpk+fzjPPPMMTTzzhjDaKK8T1B0zGmu4M9ywTMJlM3DrweEI1m03bl4iIOIuPjw9FRcao5s8//8wll1wCQERERPUIuLiQyXR8tNvF67oB7hpqjHZ/viZNs81ERBysTkF3RUUFn3zyCTfffDMHDhwgLy+PvLw8Dhw4wAMPPIDJZHJWO8XZ/EKh/XDj+MuxUFrglmZc0zOWYF8v9h8tYvkebV8iIuIs5513HhMnTuS5555jzZo1XHHFFQDs2rWLVq1aubl1Hqp6Xbfrg+7z2kbRuUUIxeVW7SQiIuJgdQq6vby8+Otf/0pJSQkAwcHBBAcHO6Vh4gZXv2lMbcv6Hb673y3bhwX4eHF9H+PHnhKqiYg4z/Tp0/Hy8uKrr77irbfeomXLlgD8+OOPXHrppW5unYeqymB+cAOUuHa2gclkql7bPXPFfkrKrS6tX0SkKavz9PL+/fvz22+/OaMt4m5BzeHGmWD2gq1fw5p33dKMqoRqi3ZkcDDXtclkREQ8RXx8PP/973/ZtGlTjV1JXn/9dd544w03tsyDhcVDeBLYrZDq+sSmV3RvQcswf7IKypi74aDL6xcRaarqHHTfc889/P3vf2f69OmsXLmSzZs313jU1YwZM0hMTMTPz48BAwawZs2a035227ZtXH/99SQmJmIymZg2bdpJn3nmmWcwmUw1Hh07dqxzuzxW/Dlw8XPG8YLHjSyqLta2eRCD2kRis8Nnq1NdXr+IiCfYsGEDW7ZsqX79n//8h2uvvZZ//OMflJVpTa/bVE0x3+farcMAvC1mbj8vCYB/L9uHVblVREQcos5B96hRo0hOTub+++/n3HPPpWfPnvTq1av6uS7mzJnDxIkTefrpp9mwYQM9evRg+PDhZGZmnvLzRUVFtG7dmpdeeomYmJjTltulSxcOHz5c/ThxH1KphXPuhs7Xgq0cvrgNCl2/tvrWytHuz9emUlZhc3n9IiJN3V133cWuXbsA2LdvH6NGjSIgIIAvv/ySRx55xM2t82BuXNcNMKpfHKH+3uzLKmTh9gy3tEFEpKmpc9CdnJx80mPfvn3Vz3Xx2muvceeddzJu3Dg6d+7M22+/TUBAAB988MEpP9+vXz9eeeUVRo0aha+v72nL9fLyIiYmpvoRFRVVp3Z5PJMJrpkOke3g2CH46nawuXZt17DO0USH+JJVUMb8bekurVtExBPs2rWLnj17AvDll18yZMgQZs+ezcyZM/n666/d2zhPVhV0Z2yBwqMurz7Q14tbzokH4N2le11ev4hIU1TnoDslJYWWLVuSkJBQ49GyZUtSUmqf+KqsrIz169czbNiw440xmxk2bBgrV9ZvHdPu3buJjY2ldevWjB49mtTUP5+iXFpaSn5+fo2Hx/MNhpGfgHcAJC+BX150afXeFjM39Tc6/VkrlVBNRMTR7HY7Npsxk+jnn3/m8ssvByAuLo6sLO0e4TZBzaG5sX86+5e5pQm3DUrEx2JmQ2ou6/Znu6UNIiJNSZ2D7gsuuIDs7JP/Ac7Ly+OCCy6odTlZWVlYrVaio6NrnI+OjiY9/exHNgcMGMDMmTOZP38+b731FsnJyQwePJhjx46d9jtTpkwhNDS0+hEXF3fW9TcpzTvBVZXJdJa9CrsWuLT6Uf3isZhNrNmfzc503QgREXGkvn378vzzz/PJJ5+wZMmS6i3DkpOTT+qbxcXcPMW8ebAf1/cxstm/vaRusxhFRORkdQ667Xb7KffjPnr0KIGBgQ5pVH1cdtll3HjjjXTv3p3hw4fzww8/kJubyxdffHHa70yePLl6z/G8vDzS0tJc2OIGrvuN0H+CcTz3TsjZ77KqY0L9uKSz8cNPe4aKiDjWtGnT2LBhA/feey+PP/44bdu2BeCrr75i0KBBbm6dh3Nz0A1wx+DWmEzw844M9mQWuK0dIiJNgVdtP3jdddcBxj6OY8eOrbGm2mq1snnz5jp10lFRUVgsFjIyaibpyMjI+NMkaXUVFhZG+/bt2bNnz2k/4+vr+6drxD3eJS8Ye4YeXAdzboXxC8HbzyVV33pOAj9uTWfehoM8dlkngnxr/Z+siIj8ie7du9fIXl7llVdewWKxuKFFUi3hXDCZ4ehuyD8EIbEub0KbZkEM6xTNwu0Z/HvZPl66vrvL2yAi0lTUeqS7auq13W4nODi4xnTsmJgYJkyYwKxZs2pdsY+PD3369GHRokXV52w2G4sWLWLgwIF1u4o/UVBQwN69e2nRooXDyvQ4Xj4w4iMIiIT0zfDjwy6remCbSFo3C6SwzMq837RnqIiIo61fv55Zs2Yxa9YsNmzYgJ+fH97e3u5ulmfzD4MWPYxjN452/3VoawDmbjhIZn6J29ohItLY1XrY8MMPPwQgMTGRSZMmOWQq+cSJE7ntttvo27cv/fv3Z9q0aRQWFjJu3DgAxowZQ8uWLZkyZQpgJF/bvn179fHBgwfZuHEjQUFB1dPiJk2axFVXXUVCQgKHDh3i6aefxmKxcNNNN9W7vR4ttBVc/2/45DrY8DHEDYBetzi9WpPJxK3nJPDsd9uZtTKFWwbEn3J5g4iI1E1mZiYjR45kyZIlhIWFAZCbm8sFF1zA559/TrNmzdzbQE+XNAQO/WYE3T1GuaUJfRIi6JMQzvqUHGau2M8jl3Z0SztERBq7Oq/pfvrppx22dnvkyJG8+uqrPPXUU/Ts2ZONGzcyf/786gQuqampHD58uPrzhw4dolevXvTq1YvDhw/z6quv0qtXL+64447qzxw4cICbbrqJDh06MGLECCIjI1m1apV+PDhCmwvhgseN4+//Doc3u6Ta63q3wt/bwu8Zx1i7P8cldYqINHX33XcfBQUFbNu2jezsbLKzs9m6dSv5+fncf//97m6eJA01npOXgt3utmZMGGKMds9alUJBaYXb2iEi0piZ7Pa6/UuekZHBpEmTWLRoEZmZmfzx61ara/dzdob8/HxCQ0PJy8sjJCTE3c1pWGw2+Gwk7P4JwhNhwhJjGpyTTZ67mc/WpHFVj1jevKmX0+sTEWmIHNk/hYaG8vPPP9OvX78a59esWcMll1xCbm5uvcp3JI/sl8sKYWoiWMvg8leh/51uaYbNZmfYa0vYl1XIE1d04o7Brd3SDhGRhqi2/VOdR7rHjh3Lhg0bePLJJ/nqq6+YO3dujYc0cWYz/OUdCIs3Mpl/c7cRiDvZLeckADB/62Eyj2ldmYhIfdlstlOu3fb29q7ev1vcyCcQLviHcfzjI/D7fLc0w2w2cWflaPcHy5Mpt+q/DRGRuqpz0L18+XI+/fRT7r77bq699lquueaaGg/xAAERMOJjsPjA7z/Ain85vcousaH0jg+j3Grni7Xa0k1EpL4uvPBCHnjgAQ4dOlR97uDBgzz00ENcdNFFbmyZVDv3Qeh1K9ht8NU4Y423G/ylV0uignw5lFfCfzcfOvMXRESkhjoH3XFxcSdNKRcPFNsLLn/FOF70fy7JrnrrQGO0e/bqVCp0p11EpF6mT59Ofn4+iYmJtGnThjZt2pCUlER+fj5vvvmmu5snACYTXPk6tL4Ayotg9kjIdf2NZz9vC+POTQTgnSX79DtQRKSO6hx0T5s2jccee4z9+/c7oTnSqPS+DXqOrrwDf7uxl6gTXda1BRGBPhzKK+F/OzOdWpeISFMXFxfHhg0b+P7773nwwQd58MEH+eGHH9iwYQOtWrVyd/OkisXb2LazeRcoyIDZI6Akz+XNuGVAAgE+FnamH2PZ7iyX1y8i0pjVOZFaeHg4RUVFVFRUEBAQcNJ6sOzsbIc20B08MmHL2SorgvcvhoytEHcOjP2v8QPBSab8uIN3luxjcLsoPhk/wGn1iIg0RJ7aP3nqddeQdwDeuwgK0qH1+TD6K6f2t6fyf99t54Nfkzm3bSSf3nGOS+sWEWmIats/1Xqf7irTpk2rT7ukqfEJMNZ3v3s+pK2ChU/DpS86rbrR/RN4d+k+lu3OIjmrkKQox2xfJyLiCd54441af1bbhjUwoa3g5jnw4eWwbzH890G4eroxBd1Fbj8vkY9W7ufXPUfZejCPri1DXVa3iEhjVueRbk+gO+pnYef38PnNxvGNM6HLX5xW1bgP1/DL70e4c3ASj1/R2Wn1iIg0NPXtn5KSkmr1OZPJxL59++pcvrOoXz7BrgXw2ShjadeFT8KQSS6t/oHPf+M/Gw9xdY9Y3tAWniLi4Zy2ZRjA3r17eeKJJ7jpppvIzDTW1v74449s27bt7ForjV/HK4wsqwD/uReO7HJaVVUJ1T5bk8bmA7lOq0dEpKlJTk6u1aMhBdzyB+2Hw2UvG8f/ew42f+nS6idUbh/2/ZbDpGUXubRuEZHGqs5B95IlS+jWrRurV69m7ty5FBQUALBp0yaefvpphzdQGpELn4TEwVBWAF/cCqUFTqlmaPvm9E+MoKC0gtH/Xs3GtFyn1CMiItIg9b8TBt5rHP/nHkhZ4bKqu8SGMrhdFFabnfeXJ7usXhGRxqzOQfdjjz3G888/z8KFC/Hx8ak+f+GFF7Jq1SqHNk4aGYsXXP8+BMXAkZ3w3QPghNULFrOJD8b1o19iOMdKKrj136vZkJrj8HpEREQarIufg05Xg7XMWN6VtdtlVd81pA0Ac9amkVNY5rJ6RUQaqzoH3Vu2bOEvfzl5vW7z5s3JytIWEh4vONpY022ywNavYO2/nVJNkK8XM8f1p39SBMdKKxjz/hrWpzT+zPkiIiK1YjbDde9Cy75QnAOf3gCFrvkddm7bSDq3CKG43MqsVSkuqVNEpDGrc9AdFhbG4cOHTzr/22+/0bJlS4c0Shq5hIFwyXPG8fzJkLbWKdUE+noxc1w/zmltTDUf8/4a1u5X4C0iIh7C2x9u+hzCEiBnv5FgrbzY6dWaTCbuGmqs7f5o5X5Kyq1Or1NEpDGrc9A9atQoHn30UdLT0zGZTNhsNn799VcmTZrEmDFjnNFGaYzOuQc6XwO2cvjyNqfdfQ/w8eLDsf0Z1CaSwjIrt32whtX7jjqlLhERkQYnqJmxZ7dfGBxYC/PuApvN6dVe3q0FLcP8ySoo4+sNB5xen4hIY1bnoPvFF1+kY8eOxMXFUVBQQOfOnRkyZAiDBg3iiSeecEYbpTEymYz9QyPbQv5B+PoOsDnnTri/j4X3b+vHeW2jKCqzMvbDtaxS4C0iclYKCwtZunSpu5shddGsPYz6FMzesP0/8LPzE9t6W8yMP8/Ygu7fy5Kx2rQDrYjI6dQ56Pbx8eG9995j3759/Pe//2XWrFns3LmTTz75BIvF4ow2SmPlFwIjPgHvANj3Cyx+yWlV+ftY+PdtfRncLoricivjPlzLir3KMSAiUld79uzhggsucHczpK4Sz4Nr/59xvOINWPu+06sc2S+OUH9vkrMKWbg9w+n1iYg0Vme1TzdAXFwcoaGhXHPNNbRr186RbZKmJLozXPUv43jpy7BrgdOq8vO28N6Yvgxt34ziciu3z1zLr3sUeIuIiIfoPgIueNw4/mES7PrJqdUF+npx6zkJALyzdC92J+xYIiLSFJx10A1w2WWXcfDgQUe1RZqq7iOg3x3G8dwJkOO8TKd+3hbeubUPF3RoRkm5jdtnrmXpriNOq09EpLGJiIj408eQIUPc3USpjyEPQ8/RYLfBV+Pg8GanVnfboER8vMz8lprLuhRt3ykicipe9fmy7mhKrQ1/EQ79BgfXwxdj4PYF4O3nlKr8vC28fWsf/vbpBn7ekckdH6/j3Vv7cH6H5k6pT0SkMSktLeXuu++mW7dup3w/JSWFZ5991sWtEocxmeDKaZB3AJKXwOwRcMciCHXODjPNgn25vncrPluTyhuLdjNzXH8sZpNT6hIRaazqNdItUmtevnDjR+AfAYc3wvxHnVqdr5eF/ze6Dxd3jqaswsaEj9fzy85Mp9YpItIY9OzZk7i4OG677bZTPq655hp3N1Hqy8sHRnwMzTrCscNG4F2S77Tq7hychJfZxLLdWdz32QZKK7SFmIjIieoVdL/zzjtER0c7qi3S1IXFwfX/Bkywfib89qlTq/PxMjPj5t4M7xJNmdXGXZ+sZ9EOJXoREc92xRVXkJube9r3IyIitAVoU+AfBqO/hKBoyNgKX44Fa7lTqmrdLIh/jeqFt8XED1vSGffhWgpKK5xSl4hIY2Sy13OOeH5+Pv/73//o0KEDnTp1clS73Co/P5/Q0FDy8vIICQlxd3OansVTYfGL4OUHd/wMMaee4ugo5VYbD3z+Gz9sScfbYmLGzb25pEuMU+sUEXEGT+2fPPW6HeLgBph5BZQXQe/bjOSmJudM/16+O4u7PllHYZmVbi1D+XBcP6KCfJ1Sl4hIQ1Db/qnOI90jRoxg+vTpABQXF9O3b19GjBhB9+7d+frrr8++xeI5hjwMbS+GihKYcysU5zq1Om+LmX+N6sUV3VtQbrVzz6cbmL813al1iojIqb300kuYTCYefPBBdzfFM7TsDde/D5hgw0fw6zSnVXVeuyg+m3AOEYE+bDmYx4i3V5KWXeS0+kREGos6B91Lly5l8ODBAMybNw+73U5ubi5vvPEGzz//vMMbKE2Q2QzXvQuh8ZCTDN/cA05OyudtMfOvkT25ukcsFTY7987ewI9bDju1ThGRxiIkJIR9+/Y5vZ61a9fyzjvv0L17d6fXJSfoeDlcNtU4/vkZ2Oq8QZLurcL46q8DaRnmz76sQm54ewW/px9zWn0iIo1BnYPuvLw8IiIiAJg/fz7XX389AQEBXHHFFezevdvhDZQmKiACRnwEFh/4/Xv49V9Or9LLYua1ET24tmdl4P3Zb/x38yGn1ysi0tC5YjeSgoICRo8ezXvvvUd4eLjT65M/GHAXnHOPcTzvbkhd5bSqWjcL4uu7B9E+OoiM/FJufHsF6/ZnO60+EZGGrs5Bd1xcHCtXrqSwsJD58+dzySWXAJCTk4Ofn3O2gJImqmXv43feFz0LycucXqWXxcw/R/Tkut4tsdrsPPD5Rr7dpMBbRMTZ/va3v3HFFVcwbNiwM362tLSU/Pz8Gg9xgEuehw5XgLUUPrsJju51WlUxoX58cddA+iSEk19SwS3vr+Z/O5XMVEQ8U52D7gcffJDRo0fTqlUrYmNjOf/88wFj2vnp9vwUOa0+46DHTWC3wVe3Q77zp3xbzCZeuaEHN/RphdVm58HPf+Ob3w46vV4RkYbqlltucWqCss8//5wNGzYwZcqUWn1+ypQphIaGVj/i4uKc1jaPYrbA9e9BbG8ozoZPb4DCo06rLizAh1njB3BBh2aUlNu48+P1zN1wwGn1iYg0VGeVvXzdunWkpaVx8cUXExQUBMD3339PWFgY5557rsMb6WrKkupiZUXw72GQuQ3iB8Jt34HF2+nV2mx2Js/dwpx1aZhN8OqNPbiudyun1ysicrYaY/+UlpZG3759WbhwYfVa7vPPP5+ePXsybdq0U36ntLSU0tLS6tf5+fnExcU1qutu0Aoy4d8XQW4qxJ0DY/4D3s6brVhutfHIV5uZV3mD+4krOnHH4NZOq09ExFVq2y/Xe8swq9XKli1bSEhIaDJrtBrjj5pG7+heePd8KM2HgffC8BdcUq3NZufxb7by2ZpUTCZ4+fru3NhXIyoi0jA5qn/Kysrigw8+YOXKlaSnG7s5xMTEMGjQIMaOHUuzZs0c1WS++eYb/vKXv2CxWKrPWa1WTCYTZrOZ0tLSGu+divplJ8jcCe9fAqV50OU6I8O5uc4TIGvNZrPzwg87eH95MgB3n9+GR4Z3wOSk7ctERFzBaVuGPfjgg7z//vuA0WkOHTqU3r17ExcXx+LFi8+6weLhItvAtf/POF45HbZ945JqzWYTL1zblVvOicduh0e+3swXa9NcUreIiDusXbuW9u3b88YbbxAaGsqQIUMYMmQIoaGhvPHGG3Ts2JF169Y5rL6LLrqILVu2sHHjxupH3759GT16NBs3bjxjwC1O0rwjjPwEzN6wbS787zmnVmc2m3jiik48emlHAN5avJdHv95MhdXm1HpFRBoCr7p+4auvvuKWW24B4LvvviM5OZmdO3fyySef8Pjjj/Prr786vJHiITpdBYPuhxVvwH/uheguENXO6dWazSaeu6YrZpOJj1em8MjXm7Ha7dzUP97pdYuIuNp9993HjTfeyNtvv33SKKPdbuevf/0r9913HytXrnRIfcHBwXTt2rXGucDAQCIjI086Ly7Weihc/SZ881dY/hqEJ0CfsU6rzmQycff5bYgI9Gby3C18se4AOUXlvHlTL/y8dfNFRJquOo90Z2VlERMTA8APP/zAjTfeSPv27bn99tvZsmWLwxsoHuaipyHhXCg7BnNuhbJCl1RrMpl49uoujB2UCMDkuVuYtSrFJXWLiLjSpk2beOihh045rddkMvHQQw+xceNG1zdM3KPnTTD0MeP4vxNhz89Or3Jkv3jeuqUPPl5mFm7PYMwHa8gvKXd6vSIi7lLnoDs6Oprt27djtVqZP38+F198MQBFRUWaIib1Z/GCGz6EoGg4sgO+ewBcsH8sGD82n76qM+PPSwLgiW+28vHK/S6pW0TEVWJiYlizZs1p31+zZg3R0dFObcPixYtPm0RN3OD8x6D7KLBb4YuxkL7V6VUO7xLDx7f3J9jXizXJ2Yx8ZxWZx0qcXq+IiDvUOegeN24cI0aMoGvXrphMpur9NlevXk3Hjh0d3kDxQMHRcONMMFlgy5ew9t8uq9pkMtacTRhiZFV96j/bmPlrssvqFxFxtkmTJjFhwgQeeOABvv32W1avXs3q1av59ttveeCBB/jrX//KI4884u5miiuZTMY088TBxkyz2SMg/5DTqz2ndSSf33UOUUG+7Diczw1vrSTlqGtmuImIuNJZZS//6quvSEtL48Ybb6RVK2OLpY8++oiwsDCuueYahzfS1ZQltYFY8Sb89ISR5OX2BdCqj8uqttvtTJ3/O28v2QvAk1ceHwEXEXEXR/VPc+bM4fXXX2f9+vVYrVYALBYLffr0YeLEiYwYMcJRTXYI9csuUpxjZDTP2gUx3WDcj+Ab7PRqU44Wcuv7a0jNLiIqyJePbu9Hl9hQp9crIlJfLtsyrClS595A2O3wxa2w4zsIaQV3LYXASBdWb+fVn35nxi9G4K19RUXE3RzdP5WXl5OVlQVAVFQU3t7e9S7TGdQvu1DOfvj3MCg8Au0ugVGfGUu/nCwzv4QxH6xhZ/oxgn29eO+2vpzT2nV9vojI2XDalmEAS5Ys4aqrrqJt27a0bduWq6++mmXLlp11Y0VOyWSCa/4fRLSB/AMw9w6wWV1YvYlJl3Tg/gvbAvD89zt4p3LkW0SkKfD29qZFixa0aNGiwQbc4mLhiXDTHPDyh90/wY8PuyS3SvMQP+bcNZD+iREcK61gzAdr+GlbutPrFRFxhToH3bNmzWLYsGEEBARw//33c//99+Pv789FF13E7NmzndFG8WR+IcY+ol7+sPd/sGSqS6s3mUxMvKQDD1xkbF025ced/L/Fe1zaBhEREZdq1Qeu/zdggnUfGMu9XCDU35uPx/dnWKdoyips/HXWer5Ym+aSukVEnKnO08s7derEhAkTeOihh2qcf+2113jvvffYsWOHQxvoDprG1gBtmgPzJgAmGP0ltLvY5U3418+7ef3nXQBMuqQ9917o/D3ERURO5Kn9k6det9ut/H+wYLJxfONH0OVal1RbYbUxee4Wvlx/AIDHLuvIXUNan3KbOxERd3La9PJ9+/Zx1VVXnXT+6quvJjlZWZ7FSXqMhL7jATvMvRNyXL+H9gPD2jHpkvYAvPrTLv71826Xt0FERMRlzrkb+t9lHM+7C9JOv9WcI3lZzLx8Q3f+OrQNAC/9uJMXf9iBzaY0RCLSONU56I6Li2PRokUnnf/555+Ji4tzSKNETunSKRDb28iu+sUYKHf9fp73XtiORy7tAMDrP+/i9YW7UC5CERFpkkwmo+9tfxlUlMBnoyB7n4uqNvHYZR15/PJOALy3LJlJX22i3GpzSf0iIo5U53SUf//737n//vvZuHEjgwYNAuDXX39l5syZ/Otf/3J4A0WqefnCiI/gnSFweCN89wBcNQ28/V3ajHvOb4vFZGLKjzv516Ld2Ox2Jl7cXtPeRESk6TFb4Ib34cPLjb730xth/EIIiHBJ9XcOaU14oA+Pfr2ZuRsOkltUzoybe+PvY3FJ/SIijnBWW4bNmzePf/7zn9Xrtzt16sTDDz/cJPboBq0da/B2/wyf3gDYITwJLn8V2g1zeTP+vWwfz39v/D9wz/lteHh4BwXeIuJUnto/eep1NyjH0o2txPLSIH4QjPnGuBnuIot2ZHDPpxsorbDRJyGcD27rR2iAMu6LiHs5ZU13RUUF//d//0e/fv1Yvnw5R48e5ejRoyxfvvysA+4ZM2aQmJiIn58fAwYMYM2a068X2rZtG9dffz2JiYmYTCamTZtW7zKlEWo3DEZ9CsGxkJMMn14Pc26FvIMubcYdg1vz5JWdAfh/i/fy0vydmmouIiJNU3CMkcjUNwRSV8B//uaSrcSqXNQpmll3DCDEz4v1KTmMeGcl6XmuX2YmInI26hR0e3l58fLLL1NRUeGQyufMmcPEiRN5+umn2bBhAz169GD48OFkZmae8vNFRUW0bt2al156iZiYGIeUKY1Uxyvg3jUw8F4wWWDHtzCjP6yYDtZylzVj/HlJPHOVEXi/s2QfL/6wQ4G3iIg0Tc07wYiPwewFW76EX15wafX9EiP44q8DaR7sy+8Zx7j+rRXsO1Lg0jaIiJyNOidSu+iii1iyZIlDKn/ttde48847GTduHJ07d+btt98mICCADz744JSf79evH6+88gqjRo3C1/fUU5rqWqY0Yr7BMPwFuGspxA2AsgL46XF4ZyikrnJZM8aem8Rz13QBjEQvz/1XgbeIiDRRbS6Aqypz+Cx9BTZ84tLqO8aE8PXdg0iKCuRgbjE3vr2SLQfyXNoGEZG6qnPQfdlll/HYY48xadIkPvvsM7799tsaj9oqKytj/fr1DBt2fC2u2Wxm2LBhrFy5sq7NclqZ0gjEdIVx8+Hq6eAfAZnb4IPhxtS3wqMuacKtAxN54S9dAfjg12Se/W67Am8REWmaet0CQx42jv/7IOz9xaXVx0UE8OVfB9K1ZQhHC8sY9e5KVuzJcmkbRETqos7Zy++55x7AGFH+I5PJhNVqrVU5WVlZWK1WoqOja5yPjo5m586ddW1WvcosLS2ltLS0+nV+fv5Z1S9uZDZD71uNaec/Pw0bPobfZsHO72HYs9DrVuMzTjR6QAJmk4nJc7cwc8V+bHY7z17dRcnVRESk6bngccjZb0wz/2IM3L4Aoju7rPqoIF8+u/McJny8npX7jjL2w7VMG9WTy7u1cFkbRERqq85RiM1mO+2jtgF3QzNlyhRCQ0OrH9pvvBELiICr34Tbf4Lorsae3t/db4x8p29xevU39Y/n5eu7YzLBxytTeOKbrdhsGvEWEZEmxmSCa2ZAwrlQmm9sJXYs3aVNCPbz5sNx/bisawxlVht/m72BT1enuLQNIiK14dyhvz8RFRWFxWIhIyOjxvmMjIzTJklzVpmTJ08mLy+v+pGWlnZW9UsDEj8AJiyB4S+CTxAcWGOs9Z7/Dyg95tSqR/SL45UbemAywaerU3n8my0KvEVEpOnx8oWRsyCyHeQfgJlXwP7lLm2Cn7eF6Tf35uYB8djt8Pi8rby5aLeWeIlIg1LroPt///sfnTt3PuXU67y8PLp06cLSpUtrXbGPjw99+vRh0aJF1edsNhuLFi1i4MCBtS7HEWX6+voSEhJS4yFNgMULBv4N/rYGOl8LdiusmgHT+8G2eU7d6uSGPq345409MJvgszVp3P7RWtbuz9aPABERaVoCIoytxIJi4OgeI/CeOwGOZZz5uw5iMZt44dqu3H9hWwD+uXAXz363XTe8RaTBqHXQPW3aNO68885TBqShoaHcddddvP7663WqfOLEibz33nt89NFH7Nixg7vvvpvCwkLGjRsHwJgxY5g8eXL158vKyti4cSMbN26krKyMgwcPsnHjRvbs2VPrMsUDhbaEER/B6K8hPAmOHYYvx8Ks6+HoXqdVe13vVrw+sicWs4nFvx/hxrdXcs2MX/nPxoOUW21Oq1dERMSlIpLgb6ug73jABJvnwPS+sPpdsLlm6aHJZGLiJR14unIbz5kr9vPgnI2UVai/FRH3M9lrOfSWkJDA/Pnz6dSp0ynf37lzJ5dccgmpqal1asD06dN55ZVXSE9Pp2fPnrzxxhsMGDAAgPPPP5/ExERmzpwJwP79+0lKSjqpjKFDh7J48eJalVkb+fn5hIaGkpeXp1Hvpqa8GJZPg+WvgbUMLL4weCKc+yB4+zmlyt0Zx3h/eTJzfztY3fm3CPVjzMBEbu4fT2iAt1PqFZGmx1P7J0+97kbp4Hr4/u9w6DfjdUx3uPJ1aNXXZU34z8aD/P2LTVTY7AxuF8Xbt/Qh0LfOuYNFRM6otv1TrYNuPz8/tm7dStu2bU/5/p49e+jWrRvFxcVn1+IGRJ27Bzi61/hRsK9ym5OI1nD5q9D2IqdVmVVQyqerUvlkVQpZBUa2fH9vCzf0acW4cxNp3SzIaXWLSNPgqf2Tp153o2WzwvqZsOhZKMkDTNB7DAx7xpiO7gKLf8/k7lkbKC630iMujA/H9iMi0McldYuI56ht/1Tr6eUtW7Zk69atp31/8+bNtGihbRqkkYhsA7fOgxs+NNahZe+DWdcZ087zDzmlyqggXx4Y1o5fH7uAV27oTseYYIrLrXyyKoWLXlvC+JlrWbE3S+u+RUSkcTNboN94uHc99BwN2GHDR/BmH2NLT5vzp3yf36E5s+8cQFiAN5vScrnx7RUcym38A0Mi0jjVeqT7vvvuY/HixaxduxY/v5rTcIuLi+nfvz8XXHABb7zxhlMa6kq6o+5hSvJh8RRY/TbYbeATDBf8A/pPMJKxOYndbmfl3qO8vzyZRTszq893ahHC+POSuKpHC3y9LE6rX0QaH0/tnzz1upuMlJXw/UTI3G68btUfrvgntOju9Kr3ZB7j1vfXcDivhBahfnwyvj9tmwc7vV4R8QwOn16ekZFB7969sVgs3HvvvXTo0AEw1nLPmDEDq9XKhg0biI6OdswVuJE6dw91eLPxo+DAWuN1dDe48jWI6+/0qvceKeDDX5P5av0BSsqNEYBmwb7cek4CowfEExnk6/Q2iEjD56n9k6ded5NiLYfV7xg3ucsKwGSG/ncZN7n9nPt3ejC3mFvfX82+I4WEBXjz4dh+9IoPd2qdIuIZHB50A6SkpHD33XezYMGC6imwJpOJ4cOHM2PGjFMmOWuM1Ll7MJsNfvsYFj4NJbnGud5jYNizLlmHlltUxuw1qXy8IoX0/BIAfL3M/KVXS24/L4n20bo7L+LJPLV/8tTrbpLyD8GCfxhbdwIERcPwF6Hr9WAyOa3a7MIyxn24hk0H8vD3tvDsNV24ukcsft6aUSYiZ88pQXeVnJwc9uzZg91up127doSHN627herchcIsI/DeOMt4HRAJF/8f9LgZzLVOhXDWyq02fthymPeXJ7P5QF71+SHtmzH+vCSGtIvC5MQfJyLSMHlq/+Sp192k7f0ffD8Jsiu37kwcbEw5b9bBaVUWllbw11nrWbY7C4DwAG9u7BvHTf3jSYoKdFq9ItJ0OTXoburUuUu1P65DizvHmHIe3cUl1dvtdtal5PDvZfv4aXsGVf+3tmsexO3nJfGXXi11l17Eg3hq/+Sp193kVZTCr2/AslehogTM3jDoXhjyMPg4Jwguq7Dx3rJ9zFqVwuG8kurz57WNYvSAeIZ1jsbb4vyb6yLSNCjorgd17lKDtRxWvQWLX4LyQjBZYOA9MPQx8HXdNl+pR4v4cEUyX6xNo7DMCkBEoA+jB8Rz68AEmgc7Z59xEWk4PLV/8tTr9hg5++HHR2HXfON1aBxc+hJ0vMJpU84rrDYW/36ET1ensHjXkeqb2s2CfRnVL45R/eNpGebvlLpFpOlQ0F0P6tzllPIOwPzHYMd3xuuQlsaPgk5XOXUd2h/ll5Tzxdo0Pvx1Pwcrtz/xtpi4qkcs489LoktsqMvaIiKu5an9k6det8fZ+YMRfOelGq/bDYfLpkKEc3MGpWUX8fnaVOasTSOroAwAswku7Nic0QMSGNK+GRazlnSJyMkUdNeDOnf5U7t+gh8mQW6K8brdJXDZy07/UfBHFVYbP23P4N/L9rEhNbf6/MDWkYw/L4kLOzbHrB8JIk2Kp/ZPnnrdHqmsyJhu/usbYCsHLz8Y/HcYdD94O3dGV1mFjYXbM/h0dQor9h6tPt8yzJ+bB8RzY99WmlUmIjUo6K4Hde5yRuXFsOyfsHxazR8F5z4AXq7f3uu31BzeX57Mj1vTsdqM/6WTogIZd24iN/RpRYCP8/YbFxHX8dT+yVOv26Md2WXc4E5eYryOaA2XvwJth7mk+r1HCvhsdSpfrj9AXnE5AF5mE8O7xDB6QDwD20QqoamIKOiuD3XuUmtZu+H7vx//URDZFi5/Fdpc4JbmHMwt5uMV+5m9JpVjJRUAhPh5cdOAeMYOSqRFqNaniTRmnto/eep1ezy7HbZ+DQseh4J041zna2D4FAht6ZImlJRb+WHLYT5dncr6lJzq862jArl5QDzX925FeKCPS9oiIg2Pgu56UOcudVL9o+AfUJBhnOt6vbHvaHCMW5pUWFrBl+vS+HDFflKOFgHGHfrLu7Vg/HlJ9IgLc0u7RKR+PLV/8tTrlkol+bB4Cqx+B+xW8A6E8x+Dc+4Gi7fLmrHjcD6zV6cy77eDFJQaN7Z9vMxc2a0Fo8+Jp3d8uEa/RTyMgu56UOcuZ6UkD/73Aqx9D+w28AmGC5+AfneAxT3Tu602O4t2ZPD+8mRWJ2dXn++bEM7485K4pEuMksOINCKe2j956nXLH6RvMWaXpa02XjfrZOztnXiuS5tRWFrBt5sOMWtVCtsO5Vef7xgTzOgB8VzTqyUhfq67GSAi7qOgux7UuUu9HNpo7O19cL3xOqY7nPcgtOwDYQkuzXR+oq0H8/hgeTLfbT5EudX4375VuD9jByUysl8cwfqBINLgeWr/5KnXLadgs8Gm2bDwKSiqTHbWfRRc8hwENXdpU+x2O5sP5PHp6hS+3XSIknIbAP7eFq7pGcvoAQl0a6UdRUSaMgXd9aDOXerNZoUNH8HPzxgj4FUCIiG2F8T2Np5b9nb5FPSM/BI+XrmfT1enkltkJIcJ8vViZL84xg5KJC4iwKXtEZHa89T+yVOvW/5EUTYs+j9YPxOwg28oXPQk9L0dzBaXNyevuJx5Gw7w6epUdmcWVJ/v0SqU0QMSuLJHCyU1FWmCFHTXgzp3cZiCI/DrNNi/HDK2GZnO/yg4tjIAPyEYD4hwetOKy6zM/e0AHyxPZu+RQsDYl3Rgm0gu7RLDJV1iiA7R1igiDYmn9k+eet1SCwfWw/cPweFNxusWPeGK16BVH7c0x263s3Z/Dp+uTuHHLemUWY3R72A/L67v3YqbB8TTPjrYLW0TEcdT0F0P6tzFKcpLjMD70AY49Bsc3ABZvxvrv/8oPNEIwFv2Np5bdAdf53TSNpudJbuP8MHyZJbtzqrxXu/4MIZ3ieHSrjEkRAY6pX4RqT1P7Z889bqllmxWWPcBLHoOSvMAE/QZCxc95ZKb2KdztKCUr9YfYPaa1OqkpgD9EyMYfU48l3aNwdfL9aPyIuI4CrrrQZ27uExpAaRvNgLwqmA8e98pPmiCZh1OCMR7QXRX8HbsSPT+rEIWbEtnwbZ0NqTm1nivY0wwl3aNYXiXGDrGBCtDq4gbeGr/5KnXLXVUkAk/PQmbPzdeB0TCxf8HPW4Gs9ltzbLZ7Py6N4tPV6WycEcGVpvx0zsi0Icb+7Tipv7xJEbpxrZIY6Sgux7UuYtbFeccHwk/9JvxyD948ufM3hDdueb68GadHJYpPT2vhIXb05m/LZ1V+7KrfyQAJEQGVE9B7xUXhlkZ0EVcwlP7J0+9bjlL+5cbWc6P7DRexw0wppzHdHVvuzDyqsxZm8Zna1I5nFdSfX5wuyhGD4jnok7ReFvcd4NAROpGQXc9qHOXBudYRmUAvuH4qHhV1tYTeflDTLfj09Jb9oaINvW+w59TWMainZnM35rO0t1HKKs4PiW+ebBv9RT0/kkR+rEg4kSe2j956nVLPVjLYdVbsPglKC8EkwUG3AXnTwY/9/83VGG1sfj3I3y6OoXFu45Q9Wu8ebAvo/rFMbJ/PC3D/N3bSBE5IwXd9aDOXRo8ux3y0o4H4Ac3GElkSvNP/qxvCLTocTwQj+0FYfFnvXVZYWkFi38/woJt6fxvZyYFpRXV74UFeHNRx2gu7RrD4HZR+HlrrZqII3lq/+Sp1y0OkHcA5k+GHd8ar4NiYPgL0PV6t23h+Udp2UV8vjaVOWvTyCooA4zEphd2bM7NA+IZ3K6ZbmiLNFAKuutBnbs0SjYbZO89YVr6Bji8GSqKT/5sQGTNaemxvSE4us5VllZYWbHnKAu2pfPT9gyyC8uOV+Fj4YIOzbmkSzQXdmyufcBFHMBT+ydPvW5xoD0/ww8PH8+b4h1o9HtBMZXPlY/gmBOeY4xEbC4KzssqbCzcnsGnq1NYsff4bLYgXy8GtYlkSPtmDG3fTFt7ijQgCrrrQZ27NBnWCjiy44Q14hsqty6rOPmzIS2NILzdxdDp6jpnfK2w2liXksP8ren8tC2dQyesVfOxmDm3bSTDu8RwcedoIoN863tlIh7JU/snT71ucbDyEvj1X7D89VPfkD4Vs3dlEH5igH6K58BmDsupArD3SAGfrU5l7m8Ha9zQBkiKCmRIuyiGtG/GOa0jCfTV/t8i7qKgux7UuUuTduLWZVWj4kd2Aif8U2D2gtbnG9PvOl4BfqF1qsJut7PlYB7ztxqJ2PZV7gMOxpS5fokR1ZnQY7VmTaTWPLV/8tTrFicpL4b8Q3AsHQrSjbwpJz4XZBrvFWfXoVCTEXifFJTHnDCKXnmuDjuP2Gx2th7KY+muIyzdlcWG1BwqTkhs6m0x0TchgiHtmzGkfRSdW4RodxERF1LQXQ/q3MXjlBYYa8JTV8L2byB9y/H3LD7QdpgRgLe/FHyD6lz8nsxj1QH41oM11513bxVanYitTbO6ly3iSTy1f/LU6xY3qyg1AvCCjNMH6McyoDAT7LYzl1fFL/Q0o+YxNae4+wafNLX9WEk5K/YeNYLw3UdIy645Yh8V5Fs9Cn5euyiiNLNMxKkUdNeDOnfxeFl7YNtc2Pr18S1XwMiO3v4S6HIdtLsEfOq+riwtu4iftmewYGs6a1OyOfFfoLbNg7i0MgDvEqu79SJ/5Kn9k6detzQSNisUZp0mKE+vDNorX1vLzlxeFe8ACG4BCQOh/WXGDLQTbnzb7Xb2Hy2qHAU/wsp9Rykqs9YoomvLEIa0a8aQ9s3oHR+Oj5cSsok4koLuelDnLnKCjO2VAfhcI1FbFe9A6HCZMQLe9iLwqvvd9CPHSvl5Rwbzt6azYm8W5dbj/xy1DPOvnoLeJyEci/YCF/HY/slTr1uaGLsdinNOGDn/k+eygpO/b/GFpMHGrLP2l0JYXI23SyusrE/JYUnlVPQdh2vOLAv0sTCwTRRD2xsj4QmRgc68WhGPoKC7HtS5i5yC3W5MQd82F7bOg7zU4+/5hhprv7teD62HgqXumcrzisv5ZWcmC7als/j3IxSXH79bHxXkw8WdYxjeJZpBbaJ0p148lqf2T5563eLBSguM4Ds7GfYshN9/hNyUmp+J7gYdKgPw2N5grtk3Zh4rYdmuLJbuPsKy3VknJWRLiAyoHgUf2CaSICVkE6kzBd31oM5d5Azsdji43hj93jYPjh06/p5/BHS6CrpeB4mDwVz3vbqLy6ws3X2EBVvT+XlHBvklx7OtB/t5cVHH5lzSJYb+SRFaryYexVP7J0+9bpFqdrux3Ov3H2HXAjiwpuY68sDmxvKvU0xDByMh27ZD+SzdfYQlu46wIeXkhGy948OrtyXr3CIEs2aYiZyRgu56UOcuUgc2G6StMgLw7d9A4ZHj7wU2h87XGAF43Dkn3YWvjXKrjVX7jhpbkW3P4Mix0hrvtwr3p0dcGL3iwugRF0bX2FD8feoe6Is0Bp7aP3nqdYucVuFR2P0T7PoR9vwPyo4df+8M09DBSMi2cu9Rlu42pqKnZhfVeD8qyIfB7YyM6IPbNdMNbpHTUNBdD+rcRc6StQJSlhsB+I5vjbVrVYJjocu1xhT0ln1OyshaGzabnd/SjL3AF/9+hD1HCvjjv2AWs4kO0cH0jA+jZ6swesaH0aZZkNaES5Pgqf2Tp163SK1UlBl9764FZzUNHWB/VmFlAH6EFXtPTsjWJTbE2JasXTP6JCghm0gVBd31oM5dxAGs5bBviZEBfef3UJp3/L2weOjyFyMLeoseZxWAg3GnfsuBPDYeyGVjai4b03LJ/MNIOECQrxfdWobSIy6MnpWPmNDa75Mq0lB4av/kqdctUmd1mYbe5gLwOTmZWlmFjfUpOdVB+LZDp0rIFlkdhCdGKSGbeC4F3fWgzl3EwSpKYc8iIwnbzh+gvPD4exFtjOnnXa6D6M71rupwXjGb0nL5LS2XTWm5bD6Qd9Ide4CYED96xIXSMy6cHnGhdG8VpiQy0uA1xv5pypQpzJ07l507d+Lv78+gQYOYOnUqHTp0qHUZjfG6RRqEek5DB2OnkeV7jGnoy3YfIaugZkK2+IgAhrSPYki7ZvRLjCA80MeZVyTSoCjorgd17iJOVFZk/ADYNte4C19Rcvy9Zh2N4LvrdRDVziHVWW129mQWsDEth41peWxMy+X39Hxsf/iXz2SCds2D6Fm5NrxnXBgdooPxsmgKnTQcjbF/uvTSSxk1ahT9+vWjoqKCf/zjH2zdupXt27cTGFi7EbLGeN0iDY4DpqHbbHa2H65MyPb7Edb/ISEbGH1p38QI+iaE0y8xgrgIf0xnOaNNpKFT0F0P6txFXKT0GPw+3wjA9/wM1hPunsd0Ox6Ahyc6tNqisgq2HsxnU5oxJX1jWi4Hc4tP+pyft9mYll65NrxHqzBahevHg7hPU+ifjhw5QvPmzVmyZAlDhgyp1XeawnWLNCgOmIYOUFBaYSRk23WEX/dmse9I4UmfaR7sS7/ECPomGkF4xxjd0JamQ0F3PahzF3GD4lz4/QcjCdu+X8B2fJswWvYxAvAuf4HQlk6pPvNYCZsrR8I3HTAC8WMnbFVWJSrIxwjCK0fEe8SFEepf933JRc5GU+if9uzZQ7t27diyZQtdu3Y95WdKS0spLT2enyE/P5+4uLhGfd0iDdoZp6EPgfbDocNlENrqtMUcLShlfUoO61JyWLs/m60H8yi31gw1An0s9IoPrw7Ce8aFEajlXdJIKeiuh6bwo0akUSvKNrKfb50L+5fVvPsed46RAb3zNRAc7bQm2Gx2ko8WsjH1eBC+43D+ST8eAFpHBdaYlt6pRYgyu4pTNPb+yWazcfXVV5Obm8vy5ctP+7lnnnmGZ5999qTzjfW6RRoVB0xDr1JSbmVTWm51EL4+JeekG9oWs4kusSH0qZyO3jchnOYhSnYqjYOC7npo7D9qRJqUgkzY/h8jAE9dCZzwT1ZgM2PqeXgihCVUHlc+h7QEs2P36y4pt7L98PFp6ZvSctl/tOikz/lYzHSODanOlN6tVSgJEQGaTif11tj7p7vvvpsff/yR5cuX06rV6UfLNNIt0kA4aBp6FavNzq6MY6xLyWHd/mzW7c855fKuhMgA+iZE0C/RGBFv0yxIS7ukQVLQXQ+N/UeNSJOVfwi2fWOsAT+w9s8/a/aC0LiagfiJwbl/+FlvVXainMKy6pHwqmA8p6j8pM95W0wkRAbSplkgbZoF0bpZEG2aBdK6WZCmp0utNeb+6d577+U///kPS5cuJSkpqU7fbczXLdKk/Nk0dLM3RLWH5p0qH52N57CEPx0NP5hbzLrKUfC1+3PYmZ7PH6OT8ABv+lQH4RF0bRmCr5djb6yLnA0F3fWgzl2kESjONaa85eyHnKrn/ca53NSaSdlOxTfkeDAedkJQHp5oBOveZze1zW63k5ZdzG9pOWxKy2NjWg7bD+dTUm477XeignyNYLx5EK2jjOc2UUG0DPfHYtadfTmuMfZPdrud++67j3nz5rF48WLatav7zgSN8bpFmrwzTUOv4h0IzTvWDMSbd4ag6FPe/M4vKWdDSg7r9htT0jem5VJaUbMP9fUy06NVWPW68N4J4bqBLW6hoLse1LmLNHI2Kxw7fDwYzz0hKM9JgYL0MxRgguAWJwTifwjOg6L/9K79Sc2x2TmcX8LezAL2HSlg75FC9h4pYN+RQtLzS077PR8vM62jAmldOTpujJAbo+PaU9wzNcb+6Z577mH27Nn85z//qbE3d2hoKP7+/rUqozFet4hHsdshLw0yd0Dm9uPPR34//U1w/4gTgvCqgLyjMRPtBGUVNrYdyqsOwtel5JBdWLNMkwk6RAfTNzGcvglGpvSWYdptRJxPQXc9qHMXaeLKiozR8NONlJcV/Pn3vfwgLP4Uo+QJxmu/2v+7UVBawb7KAHzvic9ZhZRVnH50PCbErzoYrw7KmwfRIsQPs0bHm6zG2D+d7kfvhx9+yNixY2tVRmO8bhEBrBWQva9mIJ65A7L31lwbfqLgWIjuXHNkPKoD+AQAxuyZfVmF1WvC16XkkJx18lZlLUL96JtoTEnvkxBOx5iQxjV7rKIMio6CxQcCI93dGjkNBd31oM5dxIPZ7UYnVz0yvr/mSHneQbBb/7yMgMiaid2CY/8wMl7Z6dcIRk44Npmw2SG3qJzMglKO5JeQWVDOkWMlHDlWSn7pyfXbK7/vbTERFeRP8xBfmgX70TzEl+ZBvjQL8Tth/duf1O8TYNxQCIsHv9A/v05xOU/tnzz1ukWarPJiyNr1h5HxHcZo+SmZICKpMgg/ISCPbAMWb44cK2V9SjZr9xsJ2rYdyqfCVjPECfb1oldCOP0SwukeF0Z0iC9RQb6EB/i4JhivKIXCLCg8AkVZxvr4oizjXI3XR4zj0rzj3w1sVnnNXWrOCvANdn675U81qqB7xowZvPLKK6Snp9OjRw/efPNN+vfvf9rPf/nllzz55JPs37+fdu3aMXXqVC6//PLq98eOHctHH31U4zvDhw9n/vz5tWqPOncROS1rOeQdOHnKetVxcbZ72+dIfmGVo/fxxk2EsITjo/lhcWfMUiuO56n9k6det4jHKcmDzJ1/GBnfbtwMP5UTk7dFHw/IiwJi2Xggv3pK+oaUHArLTn3D3GyCiEBfooJ8aBZsBOJRQT6Vz75EBVe+F+RLRKDP8Z1IyopOCJqPnhA8Hzl1QH1i0rnaMplPPyMAIDT+pGsnqj14+da9LjkrjSbonjNnDmPGjOHtt99mwIABTJs2jS+//JLff/+d5s2bn/T5FStWMGTIEKZMmcKVV17J7NmzmTp1Khs2bKBr166AEXRnZGTw4YcfVn/P19eX8PDwk8o7FXXuInLWSvIrA/ITAvGCjMo3T/jn9lT/9NY4d7rP2k97zma3U1Jupai0gqKyCorLrBSVWSkuq6DcanTaJk6u18sM/j4WArwthJqLCC9Lx7cs58zXGtjseED+x+A8LE6dvhN4av/kqdctIpUKjkDmtpNHxk+3HOwPydusUZ3YTRyrM71Yk5LD7oxjZBWUnbA23E4ApUSY8okinwhTPpGmfCI4Vnl8jAiMc83MxrEfpaeu+8+YvYzZcAFRxpTxgCijLw2MMs4HRlWeq3z2D6ucFfD78WvOqPxzOF1+GpPFmAHwx1kBEUkO30pVGlHQPWDAAPr168f06dMBsNlsxMXFcd999/HYY4+d9PmRI0dSWFjIf//73+pz55xzDj179uTtt98GjKA7NzeXb7755qzapM5dRJqa7MKyGmvH9x4pZN+RAlKyi7DaTu4GAiihlekICeYjdPbPpZ3vUeLNWcTYMggrPYxPxZnu2JsgOOYUAXm88TqkFViUDK6uPLV/8tTrFpE/cWLytqpANHOHEaCeKXlbSAsoysZemIWtMAtTURZma92D6FK7F9mEkG0P5qg9hGyCybaHcNQewlFCKPUJx+YfiTkoCq/g5gSGRNIsxO+UI+l13gKtKPvkxHWZ243ZAqfi5Vc5K6BzzZHxkJYO2ULVU9W2f3LrL56ysjLWr1/P5MmTq8+ZzWaGDRvGypUrT/mdlStXMnHixBrnhg8fflKAvXjxYpo3b054eDgXXnghzz//PJGRp05CUFpaSmnp8f/R8vPzz/KKREQapohAHyICI+ibGFHjfFmFjdTsospAvIDUo0UcyCnmYG4x+3MC2GWNY2EB8IfBhBAKiTMdoZX5CJ39cmjnYwTl0bYMwssO42UtNjLIHzsMaatObpDJYnT0JwbkJx4Hx+iOvIiInJ7JdDwHSfvhx8+flLytMiDP3mcsAUtZfrwIoEZP4+V/mlHnSGwBkRwzh5FtCiXLFkR6RRDpxd5kFZZxpKCUrIIyso6VklVQytHCMuOGdjHGIxuMjvT0iVqD/bxoVh2IHw/KY0L9iI8IICEygOjgE5KlBkRA4rnGo4rdbvS7J84GyNxuTNmvKIb0zcbjRL4hJ2SQP2HNuJK3OZRbg+6srCysVivR0dE1zkdHR7Nz585Tfic9Pf2Un09PPz7F4tJLL+W6664jKSmJvXv38o9//IPLLruMlStXYrGc/CNuypQpPPvssw64IhGRxsXHy0zb5kG0bR500ns2m50jBaUcyCnmQE4RB3OLK4+LOZgTyJ6cYLZVJLKgEKiRONZOBMeIM2XSypRFR79s2vlmE286QrQtg7CydCy2MshLNR6nYvY2pqifODp+4rrywGa6My8iIiezeEGz9sajy7XHz5+YvK0g8w+BdaTRr/xJrhIzEFr5SDpDE2w2O7nF5WQVlJJ1rPR4UF75Oqug8tyxMo4WllJutXOspIJjJRXsO0Um9iq+XmbiIgJIiAggPjKgOhiPjwgkLsLfGC0PiTUebYed0CCrsdytRiC+A47uhtJ8SFttPE4U2Px4AF41Mt6sg5K3naUmObdv1KhR1cfdunWje/futGnThsWLF3PRRRed9PnJkyfXGD3Pz88nLi7OJW0VEWmozGYT0SF+RIf40Sfh5JwYdrudo4Vlx4PyqoA8t5gDOcHszglnU1lbvi8Cio5/z4SNZuTRynSEOFMmHXyzaeeTTZz5CNG2TELLMjDbyo1Riex9p26clz8ERxsZ1v3CjGf/sOOv/cMqz5/iPS8fx/5BiYhIw+ftDy16GA8nM5tNlTPMfGgf/edBqt1uJ68yQD9yrDIwr3ocK+NQXjGp2cYstNIKG3syC9iTefKIuckELUL8iI8MICEi0HiuCswjAgmNbGOs9e505fEvVZTB0T3Hp6ZXBeQ5+6EwE5IzIXlJzYrC4k9YL16VvK2d8ricgVuD7qioKCwWCxkZGTXOZ2RkEBMTc8rvxMTE1OnzAK1btyYqKoo9e/acMuj29fXF11f/oYiI1IXJZKqe/tYzLuyk9+12O7lF5ZWBeFH1KLnxCGV3TjM2lLY/Pv2ukgUr0eQQZzpCnDmTtt7ZtPU5SoL5CM1tmYSUZWKqKDZ+FJwNL/8TgvI/BOSnDN5PeM83WCPsIiLiMCaTibAAH8ICfGh7cg7pahVWG4dyS0jJLiTlaBGp2UWkHC0kNbuY1KOFFJZZOZRXwqG8ElbtO3knlVB/7+NBeI3APInoLp0wd7vh+IdLC44nb8s4ISAvSIfcVOOx64RdoUwWiGxrzESrkSSuMlHcied8Aj2yH3Vr0O3j40OfPn1YtGgR1157LWAkUlu0aBH33nvvKb8zcOBAFi1axIMPPlh9buHChQwcOPC09Rw4cICjR4/SokULRzZfRET+hMlkIjzQh/BAH7q1OvWe33nF5acYJS/iQE44v+e2YHVROViBkuPf8aaCWFMWkeQTYioklEJCTEVEWYqI8ioh0lJEuLmIEFMRwfYCAu2F+FuP4WetHBmoKIZjlWvO63xR5tMH5Kd8HV55HK71cSIicta8LGZjSnlkAIPb1XyvauaZEYxXBuVHi0jJNoLzI8dKySsuZ/OBPDYfODnRmo+XmbhwfxIiA48H5ZGtiG/ZgbhuNx1P8vZnyduyfjceZ7wQv9ME5ievoycwylhz3gSCdLdnL58zZw633XYb77zzDv3792fatGl88cUX7Ny5k+joaMaMGUPLli2ZMmUKYGwZNnToUF566SWuuOIKPv/8c1588cXqLcMKCgp49tlnuf7664mJiWHv3r088sgjHDt2jC1bttRqRFtZUkVEGoaC0orKgLzoD0F5MUcLysgvLudYaUWtyjJjI4giQk2FhPzhOcxUQKRXCc0sxYSbiwkzFxJCIUH2QgJsx/C3HsNir109pxSeBA9sPPvvV/LU/slTr1tExBGKyioqR8argvHjo+UHc4qpOMUuJlWqpq3HVQfjgTVGy0P9vY4nb8s/dIp9y6teH4GKktPWc1oWn1Nvp3Zi0F4dvEcZN75dGKQ3iuzlYGwBduTIEZ566inS09Pp2bMn8+fPr06Wlpqaitlsrv78oEGDmD17Nk888QT/+Mc/aNeuHd988031Ht0Wi4XNmzfz0UcfkZubS2xsLJdccgnPPfecppCLiDQyQb5edIgJpkPM6dfEWW12CkoqyCsuJ7+knPzi8hOOT3XeOLen8nxJubGHOX8aU9vxo6w6SA+lgBBTUfUoe4S5kMgTRtlDTxhlD7Ae45g1gCiH/smIiIjUToCPFx1jQugYc3JQWGG1cTivhJTKYDz1aFHlcdFJ09ZXJ59+2npcRAQRATF4W8x4e5nwCTLjFVJ5bDHjbTbhRwlB1lwCK3IJLM/FryIH/7Ic/Mpy8C3Lxqc0G+/SbLxKsvEqPoq5osjY/q1qN5TaOOVe6H9ImBcQZeySEtmmvn+0teb2ke6GSHfURUQ8R2mFlfziCvJLKoPyEwLz/BMC9j9+piqAP9U+53/UvlkAP/39gnq31VP7J0+9bhERd7Lb7WQXllUG4EU1A/PKaevO5EsZkeQTYconypRPBPlEmI4RaconynyMyMrjSPIJJ5/AExPEnEFGUCeiJ51iS9M6ajQj3SIiIu7k62WhWbCFZsF1nw1lt9spKrOePLJe+TqvMlgPD/B2QstFREScx2QyERnkS2SQL73jT97FpKisgrTs4sqEbkXkl1RQbrVRXmGjwmanrPK43Gqj3GY/fmy1Vz6f6djCEasvh6xRUIthYl/KCMcIxiMqg3QjMM8jAiNAjzAdI4J80iuiiD5zkQ6joFtEROQsmUwmAn29CPT1IhZ/dzdHRETEZQJ8zrwEzBHsdjsVtsqAvMII5itsx4/LrTYqrMePT/W63GrniNXGocobAmdzo70+FHSLiIiIiIhIg2QymfC2mPC2mMHH3a05O+Yzf0REREREREREzoaCbhEREREREREnUdAtIiIiIiIi4iQKukVEREREREScREG3iIiIiIiIiJMo6BYRERERERFxEgXdIiIiIiIiIk6ioFtERERERETESRR0i4iIiIiIiDiJgm4RERERERERJ1HQLSIiIiIiIuIkCrpFREREREREnOT/t3ensVGVfxvHr2kL06EptZTQRUGKNuybFmspCVEaCxKSKrKYilVMCNhiS0VFoGwCFQxoENJao/iGRTEBEQVTK2JAKGUpQmQzkkA000KQboZqOuf/gsd5MraiwNycnvL9JBOYc84Mv3OHcuVizsxQugEAAAAAMITSDQAAAACAIZRuAAAAAAAMoXQDAAAAAGAIpRsAAAAAAEMo3QAAAAAAGELpBgAAAADAEEo3AAAAAACGULoBAAAAADCE0g0AAAAAgCGUbgAAAAAADKF0AwAAAABgCKUbAAAAAABDKN0AAAAAABhC6QYAAAAAwBBKNwAAAAAAhlC6AQAAAAAwhNINAAAAAIAhlG4AAAAAAAyhdAMAAAAAYAilGwAAAAAAQyjdAAAAAAAYQukGAAAAAMAQSjcAAAAAAIZQugEAAAAAMITSDQAAAACAIZRuAAAAAAAMaROle926derZs6fCw8OVkpKigwcPXvf4LVu2qE+fPgoPD9fAgQP15ZdfBuy3LEsLFixQfHy8PB6P0tPTdfbsWZOnAAAAruNGsx4AgPbC9tL98ccfq6CgQAsXLtSRI0c0ePBgZWRkqKamptXjv//+ez399NN64YUXdPToUWVmZiozM1MnTpzwH7Ny5UqtWbNGJSUlqqioUEREhDIyMnT16tXbdVoAAOD/3GjWAwDQnrgsy7LsHCAlJUXDhg3T2rVrJUk+n0/du3fXzJkzNWfOnBbHT5o0SY2NjdqxY4d/28MPP6whQ4aopKRElmUpISFBL7/8smbPni1Jqq2tVWxsrD766CNNnjz5X2eqq6tTVFSUamtr1blz5yCdKQAAt8ap+XSjWf93Tj1vAED79l/zydZXuv/44w8dPnxY6enp/m0hISFKT0/X/v37W33M/v37A46XpIyMDP/x586dk9frDTgmKipKKSkp//icAADAjJvJegAA2pMwO//wS5cuqbm5WbGxsQHbY2NjderUqVYf4/V6Wz3e6/X69/+17Z+O+bumpiY1NTX579fW1kq69j8XAAC0FX/lks0Xqd2Qm8l6chkA4AT/NZdtLd1tRVFRkRYvXtxie/fu3W2YBgCA66uvr1dUVJTdYxhDLgMAnOTfctnW0t21a1eFhoaquro6YHt1dbXi4uJafUxcXNx1j//r1+rqasXHxwccM2TIkFaf8/XXX1dBQYH/vs/n0+XLlxUTEyOXy3XD5+VUdXV16t69uy5cuMB75oKIdQ0+1tQM1tWMYK6rZVmqr69XQkJCkKYz72aynly+hp9JM1jX4GNNzWBdzbAjl20t3R07dtSDDz6o8vJyZWZmSroWrOXl5crNzW31MampqSovL1d+fr5/W1lZmVJTUyVJiYmJiouLU3l5ub9k19XVqaKiQjNmzGj1Od1ut9xud8C2u+6665bOzck6d+7MD7YBrGvwsaZmsK5mBGtdnfYK981kPbkciJ9JM1jX4GNNzWBdzbiduWz75eUFBQXKzs5WcnKyHnroIb3zzjtqbGzU888/L0l69tlndffdd6uoqEiSlJeXp5EjR2rVqlUaO3asNm/erEOHDqm0tFSS5HK5lJ+fr6VLlyopKUmJiYkqLCxUQkKCP+wBAMDt829ZDwBAe2Z76Z40aZIuXryoBQsWyOv1asiQIdq1a5f/A1fOnz+vkJD//5D14cOHa+PGjZo/f77mzp2rpKQkbdu2TQMGDPAf8+qrr6qxsVHTpk3TlStXNGLECO3atUvh4eG3/fwAALjT/VvWAwDQntleuiUpNzf3Hy8x+/bbb1tsmzBhgiZMmPCPz+dyubRkyRItWbIkWCPeEdxutxYuXNjikj7cGtY1+FhTM1hXM1jXa66X9Wgdf3fMYF2DjzU1g3U1w451dVlO+t4RAAAAAAAcJOTfDwEAAAAAADeD0g0AAAAAgCGUbgAAAAAADKF0Q0VFRRo2bJgiIyPVrVs3ZWZm6vTp03aP1a68+eab/q+zw6355Zdf9MwzzygmJkYej0cDBw7UoUOH7B7L0Zqbm1VYWKjExER5PB7dd999euONN8RHftyY7777TuPGjVNCQoJcLpe2bdsWsN+yLC1YsEDx8fHyeDxKT0/X2bNn7RkWbRq5bB65HDzkcvCRy7eurWUypRvas2ePcnJydODAAZWVlenPP//UY489psbGRrtHaxcqKyv13nvvadCgQXaP4ni//fab0tLS1KFDB+3cuVM//vijVq1apejoaLtHc7QVK1aouLhYa9eu1cmTJ7VixQqtXLlS7777rt2jOUpjY6MGDx6sdevWtbp/5cqVWrNmjUpKSlRRUaGIiAhlZGTo6tWrt3lStHXkslnkcvCQy2aQy7euzWWyBfxNTU2NJcnas2eP3aM4Xn19vZWUlGSVlZVZI0eOtPLy8uweydFee+01a8SIEXaP0e6MHTvWmjp1asC2J5980srKyrJpIueTZG3dutV/3+fzWXFxcdZbb73l33blyhXL7XZbmzZtsmFCOAm5HDzkcnCRy2aQy8HVFjKZV7rRQm1trSSpS5cuNk/ifDk5ORo7dqzS09PtHqVd2L59u5KTkzVhwgR169ZNQ4cO1fvvv2/3WI43fPhwlZeX68yZM5KkY8eOae/evRozZozNk7Uf586dk9frDfi3ICoqSikpKdq/f7+Nk8EJyOXgIZeDi1w2g1w2y45MDjPyrHAsn8+n/Px8paWlacCAAXaP42ibN2/WkSNHVFlZafco7cbPP/+s4uJiFRQUaO7cuaqsrNRLL72kjh07Kjs72+7xHGvOnDmqq6tTnz59FBoaqubmZi1btkxZWVl2j9ZueL1eSVJsbGzA9tjYWP8+oDXkcvCQy8FHLptBLptlRyZTuhEgJydHJ06c0N69e+0exdEuXLigvLw8lZWVKTw83O5x2g2fz6fk5GQtX75ckjR06FCdOHFCJSUlhPst+OSTT7RhwwZt3LhR/fv3V1VVlfLz85WQkMC6AjYjl4ODXDaDXDaDXG5/uLwcfrm5udqxY4d2796te+65x+5xHO3w4cOqqanRAw88oLCwMIWFhWnPnj1as2aNwsLC1NzcbPeIjhQfH69+/foFbOvbt6/Onz9v00TtwyuvvKI5c+Zo8uTJGjhwoKZMmaJZs2apqKjI7tHajbi4OElSdXV1wPbq6mr/PuDvyOXgIZfNIJfNIJfNsiOTKd2QZVnKzc3V1q1b9c033ygxMdHukRxv1KhROn78uKqqqvy35ORkZWVlqaqqSqGhoXaP6EhpaWktvjbnzJkzuvfee22aqH34/fffFRISGAehoaHy+Xw2TdT+JCYmKi4uTuXl5f5tdXV1qqioUGpqqo2ToS0il4OPXDaDXDaDXDbLjkzm8nIoJydHGzdu1GeffabIyEj/exmioqLk8Xhsns6ZIiMjW7z3LiIiQjExMbwn7xbMmjVLw4cP1/LlyzVx4kQdPHhQpaWlKi0ttXs0Rxs3bpyWLVumHj16qH///jp69KhWr16tqVOn2j2aozQ0NOinn37y3z937pyqqqrUpUsX9ejRQ/n5+Vq6dKmSkpKUmJiowsJCJSQkKDMz076h0SaRy8FHLptBLptBLt+6NpfJRj4THY4iqdXb+vXr7R6tXeGrSYLj888/twYMGGC53W6rT58+Vmlpqd0jOV5dXZ2Vl5dn9ejRwwoPD7d69eplzZs3z2pqarJ7NEfZvXt3q/+WZmdnW5Z17StKCgsLrdjYWMvtdlujRo2yTp8+be/QaJPI5duDXA4Ocjn4yOVb19Yy2WVZlmWmzgMAAAAAcGfjPd0AAAAAABhC6QYAAAAAwBBKNwAAAAAAhlC6AQAAAAAwhNINAAAAAIAhlG4AAAAAAAyhdAMAAAAAYAilGwAAAAAAQyjdANokl8ulbdu22T0GAAAQuQzcCko3gBaee+45uVyuFrfRo0fbPRoAAHccchlwtjC7BwDQNo0ePVrr168P2OZ2u22aBgCAOxu5DDgXr3QDaJXb7VZcXFzALTo6WtK1S8yKi4s1ZswYeTwe9erVS59++mnA448fP65HH31UHo9HMTExmjZtmhoaGgKO+fDDD9W/f3+53W7Fx8crNzc3YP+lS5f0xBNPqFOnTkpKStL27dvNnjQAAG0UuQw4F6UbwE0pLCzU+PHjdezYMWVlZWny5Mk6efKkJKmxsVEZGRmKjo5WZWWltmzZoq+//jogvIuLi5WTk6Np06bp+PHj2r59u+6///6AP2Px4sWaOHGifvjhBz3++OPKysrS5cuXb+t5AgDgBOQy0IZZAPA32dnZVmhoqBURERFwW7ZsmWVZliXJmj59esBjUlJSrBkzZliWZVmlpaVWdHS01dDQ4N//xRdfWCEhIZbX67Usy7ISEhKsefPm/eMMkqz58+f77zc0NFiSrJ07dwbtPAEAcAJyGXA23tMNoFWPPPKIiouLA7Z16dLF//vU1NSAfampqaqqqpIknTx5UoMHD1ZERIR/f1pamnw+n06fPi2Xy6Vff/1Vo0aNuu4MgwYN8v8+IiJCnTt3Vk1Nzc2eEgAAjkUuA85F6QbQqoiIiBaXlQWLx+P5T8d16NAh4L7L5ZLP5zMxEgAAbRq5DDgX7+kGcFMOHDjQ4n7fvn0lSX379tWxY8fU2Njo379v3z6FhISod+/eioyMVM+ePVVeXn5bZwYAoL0il4G2i1e6AbSqqalJXq83YFtYWJi6du0qSdqyZYuSk5M1YsQIbdiwQQcPHtQHH3wgScrKytLChQuVnZ2tRYsW6eLFi5o5c6amTJmi2NhYSdKiRYs0ffp0devWTWPGjFF9fb327dunmTNn3t4TBQDAAchlwLko3QBatWvXLsXHxwds6927t06dOiXp2ieYbt68WS+++KLi4+O1adMm9evXT5LUqVMnffXVV8rLy9OwYcPUqVMnjR8/XqtXr/Y/V3Z2tq5evaq3335bs2fPVteuXfXUU0/dvhMEAMBByGXAuVyWZVl2DwHAWVwul7Zu3arMzEy7RwEA4I5HLgNtG+/pBgAAAADAEEo3AAAAAACGcHk5AAAAAACG8Eo3AAAAAACGULoBAAAAADCE0g0AAAAAgCGUbgAAAAAADKF0AwAAAABgCKUbAAAAAABDKN0AAAAAABhC6QYAAAAAwBBKNwAAAAAAhvwPn1GR+PRpyqUAAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["fig, axes = plt.subplots(1, 2, figsize=(10, 4))\n","\n","# Left: Loss\n","axes[0].plot(range(1, epochs+1), train_losses)\n","axes[0].plot(range(1, epochs+1), test_losses)\n","axes[0].set_xlabel(\"Epoch\")\n","axes[0].set_ylabel(\"Cross-entropy loss\")\n","axes[0].set_ylim(0, 0.3)\n","# axes[0].set_title(\"Train/Test Loss\")\n","axes[0].legend([\"Train\", \"Validation\"])\n","\n","# Right: Error (1 - acc)\n","axes[1].plot(range(1, epochs+1), train_errors)\n","axes[1].plot(range(1, epochs+1), test_errors)\n","axes[1].set_xlabel(\"Epoch\")\n","axes[1].set_ylabel(\"0-1 loss (%)\")\n","# axes[1].set_title(\"Train/Test Error\")\n","axes[1].legend([\"Train\", \"Validation\"])\n","axes[1].set_ylim(0, 10)\n","\n","plt.tight_layout()\n","plt.show()"]},{"cell_type":"markdown","source":["### Plotting confusion matrix"],"metadata":{"id":"wOOE2OC9nAX1"}},{"cell_type":"code","source":["def plot_confusion_matrices_grid(cm_history, title_prefix=\"Epoch\"):\n"," num_epochs = len(cm_history)\n","\n"," cols = int(np.ceil(np.sqrt(num_epochs)))\n"," rows = int(np.ceil(num_epochs / cols))\n","\n"," fig, axes = plt.subplots(rows, cols, figsize=(cols*4, rows*4))\n"," axes = axes.flatten()\n","\n"," for i, cm in enumerate(cm_history):\n"," cm_safe = cm.copy()\n"," cm_safe[cm_safe == 0] = 1 # needed for LogNorm\n","\n"," sns.heatmap(\n"," cm_safe,\n"," cmap=\"magma\",\n"," norm=LogNorm(vmin=1, vmax=cm_safe.max()), # This makes small values visible\n"," annot=False,\n"," fmt=\"d\",\n"," cbar=True,\n"," ax=axes[i]\n"," )\n"," axes[i].set_title(f\"{title_prefix} {i+1}\")\n"," axes[i].set_xlabel(\"Predicted\")\n"," axes[i].set_ylabel(\"True\")\n","\n"," # Hide leftover unused cells\n"," for j in range(i+1, len(axes)):\n"," axes[j].axis(\"off\")\n","\n"," fig.tight_layout()\n"," plt.show()\n"],"metadata":{"id":"7Ffc3GuSpyYd","executionInfo":{"status":"ok","timestamp":1763145437207,"user_tz":480,"elapsed":40,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"execution_count":44,"outputs":[]},{"cell_type":"markdown","source":["Confusion matrix on train data"],"metadata":{"id":"p_MWj_Run0o2"}},{"cell_type":"code","source":["plot_confusion_matrices_grid(train_cm_history, title_prefix=\"Train Epoch\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"1QT2TV56nyPt","executionInfo":{"status":"ok","timestamp":1763145444475,"user_tz":480,"elapsed":6445,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"6a2e38b7-01b8-4de2-fcd9-63f39de85c11"},"execution_count":45,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABi8AAASmCAYAAABWYjjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xl8VPW9//H3JMCEAAmb7CJuCCMQFYSCslgolHpBXHGriK1LO+CCoqQuiFvcaq2XUdTW4i5eFXetFEVAsQiIbQ2yKCqyKSJhk0Ay398f/kiJbGe275mT7+t5H+fxuJkk8/mO2ryYfDnnhIwxRgAAAAAAAAAAAFkix+8FAAAAAAAAAAAA7IrNCwAAAAAAAAAAkFXYvAAAAAAAAAAAAFmFzQsAAAAAAAAAAJBV2LwAAAAAAAAAAABZhc0LAAAAAAAAAACQVdi8AAAAAAAAAAAAWYXNCwAAAAAAAAAAkFXYvAAAAAAAAAAAAFmFzQtYc/7556tdu3Z+L8OaGTNmKBQK6bnnnvN7KQAQODQDAOAFvQAAeEEvgGBi8wIKhUKejhkzZvi91Gp2/iDe2/HMM8/4vcSUbN68WePHj9cvf/lLNW7cWKFQSJMnT/Z7WQAcRzOy04cffqhRo0bpyCOPVL169dS2bVudccYZWrJkid9LA+AoepGdPvnkE51++uk65JBDlJ+fr6ZNm6pPnz565ZVX/F4aAEfRi2C49dZbFQqF1KlTJ7+XAsfU8nsB8N/jjz9e7ePHHntM06ZN2+3xjh07pjTn4YcfVjweT+k59uTSSy/Vscceu9vjPXv2TPssm9atW6ebbrpJbdu2VVFRUdaFGoCbaEZ2uuOOO/Tee+/p9NNPV5cuXbRmzRpNnDhRxxxzjD744APeZACwjl5kpy+//FKbNm3SiBEj1KpVK23dulXPP/+8hg4dqgcffFAXXXSR30sE4Bh6kf2+/vpr3XbbbapXr57fS4GD2LyAzj333Goff/DBB5o2bdpuj//U1q1blZ+f73lO7dq1k1rf/vTu3VunnXZaRp7bTy1bttTq1avVokULzZs3b48xBADbaEZ2GjNmjJ566inVqVOn6rHhw4erc+fOuv322/XEE0/4uDoALqIX2elXv/qVfvWrX1V7bNSoUeratavuueceNi8AWEcvst9VV12ln/3sZ6qsrNS6dev8Xg4cw2Wj4Em/fv3UqVMnzZ8/X3369FF+fr7+8Ic/SJJeeuklnXjiiWrVqpXC4bAOPfRQ3XzzzaqsrKz2HD+9vuAXX3yhUCiku+++Ww899JAOPfRQhcNhHXvssfrwww/Tuv5QKKRRo0bpySef1BFHHKG8vDx17dpVM2fO3O1rP/roIw0ePFgFBQWqX7+++vfvrw8++GC3r9uwYYOuuOIKtWvXTuFwWG3atNF555232w/yeDyuW2+9VW3atFFeXp769++vZcuW7XfN4XBYLVq0SP5FA4BPaIb9ZvTq1avaxoUkHX744TryyCO1aNGiBP8JAIAd9MJ+L/YkNzdXBx54oDZs2JDU9wNAptEL/3oxc+ZMPffcc7r33nsTft1AOnDmBTz77rvvNHjwYJ155pk699xz1bx5c0nS5MmTVb9+fY0ZM0b169fX22+/rRtuuEEbN27UXXfdtd/nfeqpp7Rp0yZdfPHFCoVCuvPOO3XKKafo888/97QzvmnTpj3u/DZp0kShUKjq43fffVdTpkzRpZdeqnA4rPvvv1+//OUvNXfu3KrLaXzyySfq3bu3CgoKdPXVV6t27dp68MEH1a9fP7377rvq0aOHpB/vR9G7d28tWrRIF1xwgY455hitW7dOL7/8sr7++ms1bdq0au7tt9+unJwcXXXVVSorK9Odd96pc845R//85z/3+9oAIKhohv/NMMZo7dq1OvLIIxP+XgCwhV7404stW7bohx9+UFlZmV5++WW98cYbGj58uKfvBQA/0Av7vaisrNTo0aP129/+Vp07d97v1wMZYYCfiEaj5qf/afTt29dIMpMmTdrt67du3brbYxdffLHJz88327Ztq3psxIgR5qCDDqr6ePny5UaSadKkiVm/fn3V4y+99JKRZF555ZV9rvOdd94xkvZ6rF69uuprdz42b968qse+/PJLk5eXZ04++eSqx4YNG2bq1KljPvvss6rHVq1aZRo0aGD69OlT9dgNN9xgJJkXXnhht3XF4/Fq6+vYsaMpLy+v+vyf//xnI8n8+9//3ufr29WHH35oJJm//e1vnr8HAGygGdnXjJ0ef/xxI8n89a9/Tfh7ASDd6EV29eLiiy+uWn9OTo457bTTqv3zAgC/0Ivs6cXEiRNNYWGh+eabb4wxP/57OPLII/f7fUA6ceYFPAuHwxo5cuRuj9etW7fq/9+0aZPKy8vVu3dvPfjgg/r0009VVFS0z+cdPny4GjVqVPVx7969JUmff/65p3XdcMMNVd+zq8aNG1f7uGfPnuratWvVx23bttVJJ52kV155pep0wrfeekvDhg3TIYccUvV1LVu21Nlnn62HH35YGzduVEFBgZ5//nkVFRXp5JNP3m3urjvrkjRy5Mhql/LY9fVxA1UANRXN8LcZn376qaLRqHr27KkRI0Z4/j4AsI1e+NOLyy+/XKeddppWrVqlZ599VpWVldq+fft+vw8A/EIv7Pbiu+++0w033KDrr79eBxxwwL7+EQAZxeYFPGvduvVu19OWfjyt7brrrtPbb7+tjRs3VvtcWVnZfp+3bdu21T7eGY3vv//e07o6d+6sAQMG7PfrDj/88N0ea9++vbZu3apvv/1W0o83fDriiCN2+7qOHTsqHo9rxYoVOvLII/XZZ5/p1FNP9bS+VF8fAAQRzfCvGWvWrNGJJ56owsJCPffcc8rNzfX8vQBgG73wpxcdOnRQhw4dJEnnnXeeBg4cqCFDhuif//znbr/4AoBsQC/s9uK6665T48aNNXr0aE9zgExh8wKe7bqbvdOGDRvUt29fFRQU6KabbtKhhx6qvLw8LViwQNdcc43i8fh+n3dvv1QxxqS85mxQ018fAOwJzUhOqq+vrKxMgwcP1oYNGzRr1iy1atUqncsDgLSjF8lJ9+s77bTTdPHFF2vJkiV7/MUZAPiNXiQnmde3dOlSPfTQQ7r33nu1atWqqse3bdumHTt26IsvvlBBQcFuZ5cAmcDmBVIyY8YMfffdd3rhhRfUp0+fqseXL1/u46r2bOnSpbs9tmTJEuXn51edApefn6/Fixfv9nWffvqpcnJydOCBB0qSDj30UP3nP//J7IIBoIahGZm1bds2DRkyREuWLNE//vEPRSKRjM8EgEygF/b98MMPkrz9LWUAyBb0IjNWrlypeDyuSy+9VJdeeulunz/44IN12WWX6d57783YGoCdcvxeAIJt5w7urju227dv1/333+/XkvZqzpw5WrBgQdXHK1as0EsvvaSBAwcqNzdXubm5GjhwoF566SV98cUXVV+3du1aPfXUUzr++ONVUFAgSTr11FP18ccfa+rUqbvNqSm78wCQbjQjc82orKzU8OHDNWfOHP3f//2fevbsmZbnBQA/0IvM9eKbb77Z7bEdO3boscceU926ddn4BhAo9CIzvejUqZOmTp2623HkkUeqbdu2mjp1qn7zm9+kPAfwgjMvkJJevXqpUaNGGjFihC699FKFQiE9/vjjVn+BP2vWLG3btm23x7t06aIuXbpUfdypUycNGjRIl156qcLhcFXMJkyYUPU1t9xyi6ZNm6bjjz9ev//971WrVi09+OCDKi8v15133ln1dWPHjtVzzz2n008/XRdccIG6du2q9evX6+WXX9akSZP2e0MoryZOnKgNGzZUnab3yiuv6Ouvv5YkjR49WoWFhWmZAwA20IzMNePKK6/Uyy+/rCFDhmj9+vV64oknqn3+3HPPTXkGANhCLzLXi4svvlgbN25Unz591Lp1a61Zs0ZPPvmkPv30U/3xj39U/fr1U54BALbQi8z0omnTpho2bNhuj+8802JPnwMyhc0LpKRJkyZ69dVXdeWVV+q6665To0aNdO6556p///4aNGiQlTXcd999e3x8/Pjx1ULRt29f9ezZUxMmTNBXX32lSCSiyZMnV/uaI488UrNmzVJxcbFKSkoUj8fVo0cPPfHEE+rRo0fV19WvX1+zZs3S+PHjNXXqVD366KNq1qyZ+vfvrzZt2qTttd1999368ssvqz5+4YUX9MILL0j68RdRbF4ACBKakblmLFy4UNKPm9yvvPLKbp9n8wJAkNCLzPVi+PDh+utf/6oHHnhA3333nRo0aKCuXbvqjjvu0NChQ9MyAwBsoReZ/Z0UkA1ChmvcwAGhUEjRaFQTJ070eykAgCxHMwAAXtALAIAX9AJIHve8AAAAAAAAAAAAWYXNCwAAAAAAAAAAkFXYvAAAAAAAAAAAAFmFe14AAAAAAAAAAICswpkXAAAAAAAAAAAgq7B5AQAAAAAAAAAAsgqbFwAAAAAAAAAAIKvU8nsBmVD5w9+tzaqV/z9W5txw2A1W5rz/7WYrcyTpmMb1rMzZHrcyRpI04uDvrcx5+stGVuYc23iHlTmS9PLXuVbmPLbmxpSfozI+I+nvzc3pl/J8pFfltreszKlV90Qrc8464A9W5kjSt9u3WZnzfajMypxu9VpamSNJB9YLWZnz97UbrMyRpKMKGlqZ8+j6Z63MKdv8n5SfI5VeSDQj29S0XkhSm4b9rMz5esMMK3MGFI6xMkey16ahB7SyMufhb2dZmSNJP8vtaWXOJ/HPrMyRpNL1T6b0/fSiZrHVi8ZN7f3MK6ht58/JtnphU8dGZ1iZ0ye/vZU5kvTgyluszLHZdVumbbgjpe93sReceQEAAAAAAAAAALJKjTzzAgAyKp7C6TxsGQOAO1LphUQzAMAV9AIA4IWDvQjgkgHAZ/F40kcsFlMkElEkElEsFvP7lQAAMimFXtAMAHBIir0AADjCwV6weQEAiUohFNFoVKWlpSotLVU0GvX7lQAAMinFNxc0AwAcwWY3AMALB3vBZaMAIFHG+L0CAEAQ0AsAgBcp9iIajbLJDQAucLAXbF4AQKICeqodAMAyegEA8IJeAAC8cLAXXDYKAAAAAAAAAABkFc68AIBEObjTDQBIAr0AAHhBLwAAXjjYCzYvACBRDsYCAJAEegEA8IJeAAC8cLAXXDYKABIVjyd9xGIxRSIRRSIRxWIxv18JACCTUugFzQAAh9ALAIAXKfYiiDjzAgASlcIP/Gg0qmg0msbFAACyVopvEGgGADiCXgAAvEixF7FYrGqTOyjtYPMCAAAAAAAAAIAaLCgbFrvydfNi3bp1euSRRzRnzhytWbNGktSiRQv16tVL559/vg444AA/lwcAexQywTzVLuhoBoCgoRf+oBcAgoZe+INeAAgaF3vh2z0vPvzwQ7Vv31733XefCgsL1adPH/Xp00eFhYW677771KFDB82bN8+v5QHA3jl2fcFsQDMABJKD16T1G70AEEj0wjp6ASCQHOyFb2dejB49WqeffromTZqkUChU7XPGGF1yySUaPXq05syZs8/nKS8vV3l5ebXHasW3Kxyuk/Y1A4AkKW78XoFzMtoMQzMAZAi9sI5eAAgkemEdvQAQSA72wrczLz7++GNdccUVu0VCkkKhkK644gotXLhwv89TUlKiwsLCasftd03JwIoB4P9zbJc7G9AMAIHk4N+M8hu9ABBI9MI6egEgkBzshW+bFy1atNDcuXP3+vm5c+eqefPm+32e4uJilZWVVTvGjR2ezqUCAHxGMwAAXtALAIAX9AIAgsG3y0ZdddVVuuiiizR//nz179+/Kgpr167V9OnT9fDDD+vuu+/e7/OEw2GFw+Fqj1X+wOl5ADIohd3qWCymWCwmSYpGo4pGo+laVY2W0WZsoxkAMiTFv91EMxJHLwAEEr2wjl4ACKSAnj2RCt82L6LRqJo2bao//elPuv/++1VZWSlJys3NVdeuXTV58mSdccYZfi0PAPbOJB8L3kwkh2YACKQUeiHRjGTQCwCBRC+soxcAAinFXgRxs9u3zQtJGj58uIYPH64dO3Zo3bp1kqSmTZuqdu3afi4LAPbNwZ3ubEAzAAQOvfAFvQAQOPTCF/QCQOCk2IugbFjsytfNi51q166tli1b+r0MAPAmbvxegdNoBoDAoBe+ohcAAoNe+IpeAAgMB3uRFZsXABAo/M0oAIAX9AIA4AW9AAB44WAvcvxeAAAAAAAAAAAAwK448wIAEuXgTjcAIAn0AgDgBb0AAHjhYC/YvACABIUcjAUAIHH0AgDgBb0AAHjhYi/YvACARBn3bpAEAEgCvQAAeEEvAABeONgLNi8AIFEO7nQDAJJALwAAXtALAIAXDvaCG3YDgEWxWEyRSESRSESxWMzv5QAAshjNAAAAAOAyNi8AIFHxeNJHNBpVaWmpSktLFY1G/X4lAIBMSqEXNAMAHJJiL9jsBgBHONgLLhsFAImKu3eNQQBAEugFAMCLFHsRjUbZ5AYAFzjYCzYvACBRDl5jEACQBHoBAPCCXgAAvHCwFzVy86JW/v9Ym1VROc3KnBe6v21lTtzUtzJHkj75fruVOR0a1rEyR5JK/tPAypxjmlgZo8LaFXYGScoNBejHkYOxqMlq1T3RyhxbvXjimBlW5khSvVp2fr4+uKzQypxvfrD3M2/FlkorcwY1b2hljiQ1z7Pzs/HwTcdbmZMW9KJGqWm9kKRbO8y0MudlHWplTscG9azMkaRH179mZc6nG061MqeLjrUyR5IOLrDz5/4dZQdbmZMW9KJGqYm9uPoQO734lznGyhxJmlth5+f4ou+ftTJn5fYjrMyRpJMaX2Nlzvz4P63MCRQHexGg3xYCQJYwXAYEAOABvQAAeEEvAABeONgLbtgNAAAAAAAAAACyCmdeAECiHDxNDwCQBHoBAPCCXgAAvHCwF2xeAECi4u6dpgcASAK9AAB4QS8AAF442As2LwAgUQ7udAMAkkAvAABe0AsAgBcO9oLNCwBIlIOxAAAkgV4AALygFwAALxzsBTfsBgAAAAAAAAAAWYUzLwAgUQ5eYxAAkAR6AQDwgl4AALxwsBdsXgBAoox7p+kBAJJALwAAXtALAIAXDvaCy0YBQKLiJukjFospEokoEokoFov5/UoAAJmUQi9c/FtVAOAsegEA8MLBXrB5AQCJiseTPqLRqEpLS1VaWqpoNOr3KwEAZFIKvVA8zoY3ALiCXgAAvHCwF1w2CgAAAMhC0WiUjW4AwH7RCwCAF0HsBZsXAJCogJ5qBwCwjF4AALygFwAALxzsRVZfNmrFihW64IIL9vk15eXl2rhxY7VDcu9fJACLUjlNDxnhpRcSzQBgWYqndSMzeI8BIOvQi6xELwBkHQd7kdWbF+vXr9ejjz66z68pKSlRYWFhtUMK5r8MAAHh2M2RgsBLLySaAcAyB2+oFwS8xwCQdehFVqIXALKOg73w9bJRL7/88j4///nnn+/3OYqLizVmzJhqjxUWNk5pXQCwT4Y/jNqWjl5INAOAZfTCF7zHABA49MIX9AJA4DjYC183L4YNG6ZQKCRj9r7zEwqF9vkc4XBY4XD4p9+VhtUBwF4EdLc6yNLRC4lmALCMXviC9xgAAode+IJeAAgcB3vh62WjWrZsqRdeeEHxeHyPx4IFC/xcHgAgS9ALAIBXNAMA4AW9AIDs5+vmRdeuXTV//vy9fn5/O+AA4AvHri+YDegFgEBy8Jq02YBmAAgceuELegEgcBzsha+XjRo7dqy2bNmy188fdthheueddyyuCAA8iLt3jUG/0QsAgUQvfEEzAAQOvfAFvQAQOA72wtfNi969e+/z8/Xq1VPfvn0trQYAPArobnWQ0QsAgUQvfEEzAAQOvfAFvQAQOA72wtfNCwAIJAdjAQBIAr0AAHhBLwAAXjjYC1/veQEAAAAAAAAAAPBTnHkBAIly8BqDAIAk0AsAgBf0AgDghYO9YPMCABJl3DtNDwCQBHoBAPCCXgAAvHCwF2xeAECiHLzGIAAgCfQCAOAFvQAAeOFgL9i8AIBEORgLAEAS6AUAwAt6AQDwwsFecMNuAAAAAAAAAACQVdi8AIBExePJH5Zt2LBB3bp101FHHaVOnTrp4Ycftr4GAHBWKr2w3Ax6AQA+ClAvAAA+crAXXDYKABIVoNP0GjRooJkzZyo/P19btmxRp06ddMopp6hJkyZ+Lw0Aaj56AQDwIkC9kH7c8B4wYIAqKipUUVGhyy67TBdeeKHfywKAms/BXtTIzYs/H3m9tVklHWdamVM8r4eVOeuPm2dljiSddXCZlTn3LbL3pvvGo7+3MmdjedjKnFohe7uyn/1Qbm1WygIUi9zcXOXn50uSysvLZYyRMcFZvw13d7TTjBMav2xlzjurB1mZI0mv951lZc5JbfKtzHn/G3s/8yKN6liZc0i9HVbmSNI35Xb+WLl0x2wrc9KCXtQo90Ts9OLSg+y8v5Ck+5bYeY/x7wPfszKnaZ6VMZKkgXmnWJnTNC/XypwODe3MkaSckJ05S8xyO4PSIUC9kNjw3p+rD7bTi+sOt9eLOxfZ6cWl7f9pZY4kNfzBzs9xWWrT2orNdgZJOqaJnfcyBRuPszLnnXI7f05JCwd7wWWjACBRcZP8kaCZM2dqyJAhatWqlUKhkF588cXdviYWi6ldu3bKy8tTjx49NHfu3Gqf37Bhg4qKitSmTRuNHTtWTZs2TfaVAwASkUovEmwGvQCAALPYi3RgwxsAfOJgL9i8AIAEmbhJ+kjUli1bVFRUpFgstsfPT5kyRWPGjNH48eO1YMECFRUVadCgQfrmm2+qvqZhw4b6+OOPtXz5cj311FNau3Zt0q8dAOBdKr1ItBn0AgCCy2YvJDa8ASCoXOwFmxcAYFF5ebk2btxY7Sgv3/slswYPHqxbbrlFJ5988h4/f8899+jCCy/UyJEjFYlENGnSJOXn5+uRRx7Z7WubN2+uoqIizZpl51I/AIDUJNIMegEA8IoNbwCAF9nQCzYvACBRxiR9lJSUqLCwsNpRUlKS1DK2b9+u+fPna8CAAVWP5eTkaMCAAZozZ44kae3atdq0aZMkqaysTDNnztQRRxyR+j8DAMD+pdCLdDaDXgBAlkuxF/wFKQBwhIO9YPMCABKVwvUFi4uLVVZWVu0oLi5Oahnr1q1TZWWlmjdvXu3x5s2ba82aNZKkL7/8Ur1791ZRUZF69+6t0aNHq3Pnzin/IwAAeJDiNWnT1Qx6AQBZLsVe8BekAMARDvaiVlKrAwCXpXCTo3A4rHA4nMbF7Fv37t21cOFCa/MAALtI8aZ4NptBLwDARyn2ori4WGPGjKn2WLL92NeG96effirpxw3viy66qOrGq2x4A4AlDvaCzQsASFSKsUiXpk2bKjc3d7frBa5du1YtWrTwaVUAgCr0AgDgRYA2uyU2vAHANw72gstGAYBFsVhMkUhEkUhkrzc88qpOnTrq2rWrpk+fXvVYPB7X9OnT1bNnz1SXCgDwWbqaQS8AAF6x4Q0A8MJWL9i8AIBEpXB9wWg0qtLSUpWWlioaje531ObNm7Vw4cKqnerly5dr4cKF+uqrryRJY8aM0cMPP6xHH31UixYt0u9+9ztt2bJFI0eOzOQ/AQCAFylekzaRZtALAAiwFHvBX5ACAEc42AsuGwUACTIWLwMyb948nXDCCVUf77w24YgRIzR58mQNHz5c3377rW644QatWbNGRx11lN58883drjkIALCPXgAAvEi1F9HRUU9/MWqnzZs3a9myZVUf79zwbty4sdq2basxY8ZoxIgR6tatm7p37657772XDW8AyAIu9oLNCwBIlMVfRvXr10/G7HveqFGjNGrUKEsrAgB4Ri8AAF5YvkcSG94AEFAO9oLNCwBIVAqxiMViVafmRaOJ7XgDAAImxTcXNAMAHGH5l1FseANAQDnYC+55AQCJsnjPCwBAgFm85wUAIMCy6BrmAIAs5mAvfN+8+OGHHzR79myVlpbu9rlt27bpscce82FVAIBsQy8AAF7QCwCuYbM7OfQCgGuC2AtfNy+WLFmijh07qk+fPurcubP69u2r1atXV32+rKxsvzf4KC8v18aNG6sdFfGKTC8dgMuMSf5AUtLRC4lmALAslV7QjKTQCwCBRC+sy2gvDL0AkCEO9sLXzYtrrrlGnTp10jfffKPFixerQYMGOu644/TVV195fo6SkhIVFhZWO6atm5XBVQNwnYknfyA56eiFtOdmTP+OZgDIjFR6QTOSk8le/IP3GAAyhF7Yl8lefLCBXgDIDBd74evmxfvvv6+SkhI1bdpUhx12mF555RUNGjRIvXv31ueff+7pOYqLi1VWVlbt+EXT3hleOQCnOXZ9wWyQjl5Ie25G/yY0A0CGOHhNWr9lshcDeI8BIFNS7AUSl8le/KwhvQCQIQ72wtfNix9++EG1atWq+jgUCumBBx7QkCFD1LdvXy1ZsmS/zxEOh1VQUFDtqJVTa7/fBwBJ4+ar1qWjFxLNAGAZN+y2jl4ACCQ2u63LaC9C9AJAhjjYC19/onbo0EHz5s1Tx44dqz0+ceJESdLQoUP9WBYAIMvQCwCAF/QCgIui0Sib3AmiFwBcFMRe+Hrmxcknn6ynn356j5+bOHGizjrrLJmA3kwEQM3l2vUFswG9ABBELl6T1m/0AkAQ0Qv76AWAIHKxF75uXhQXF+v111/f6+fvv/9+xeMB/ScLoOZy7PqC2YBeAAgkB69J6zd6ASCQ6IV19AJAIDnYCy7EBwCJ4s+wAAAv6AUAwAt6AQDwwsFe+HrmBQAEkYmbpI8g3hwJAJCcVHpBMwDAHfQCAOCFi73gzAsAsCiIN0cCAPiDZgAAvKAXAAAvgtgLNi8AIFEOnqYHAEgCvQAAeEEvAABeONgLNi8AIFHBvMcRAMA2egEA8IJeAAC8cLAXbF4AQIJM3MFaAAASRi8AAF7QCwCAFy72gs0LAEiUg6fpAQCSQC8AAF7QCwCAFw72IsfvBQBA0Jh48kcsFlMkElEkElEsFvP7pQAAMiiVXtAMAHBHqr0AALjBxV6weQEAFkWjUZWWlqq0tFTRaNTv5QAAshjNAAB4wWY3AMCLIPaCy0YBQKICulsNALCMXgAAvEixF9FolE1uAHCBg72okZsXORZvvZ6XG7Iyp3TYNCtzfvveL6zMkaRfHjjTypzH+6+wMkeSnlzU1sqcro22WpkTafWtlTmSdGX7ltZmpSqop9phz95bu8PKnAahPCtznj3uPStzJOmM9/tYmVOr7olW5rzT60orcyTp94uWWZnTLO8IK3MkqW6unT9/ndvoDCtz0oFe1Czfldv5c//35RVW5kjStBPetTLnmRV9rcxpfIC9n+P/+flxVuacM7OelTk9azW0MkeSft5sm5U5Teq0tzInHehFzbJic6WVOfVq27uYyqTuH1iZc9/SnlbmSPbeY7zZY6yVOb9d/G8rcyRpe9zO+8A+za2M0cFb7byedHCxFzVy8wIAMsrBWAAAkkAvAABe0AsAgBcO9oLNCwBIkLF3chcAIMDoBQDAC3oBAPDCxV5ww24AAAAAAAAAAJBVOPMCABLk4jUGAQCJoxcAAC/oBQDACxd7wZkXAJCoePJHLBZTJBJRJBJRLBbzY/UAAFtS6AXNAACHpNgLAIAjHOwFmxcAkCATT/6IRqMqLS1VaWmpotGo3y8FAJBBqfSCZgCAO1LtBZvdAOAGF3vBZaMAIEEu3iAJAJA4egEA8CLVXkSjUTa5AcABLvaCzQsASFQ85PcKAABBQC8AAF7QCwCAFw72gstGAQAAAAAAAACArMKZFwCQIBPQmxwBAOyiFwAAL+gFAMALF3vB5gUAJMgY907TAwAkjl4AALygFwAAL1zsBZsXAJAgF3e6AQCJoxcAAC/oBQDACxd7weYFACTIxVgAABJHLwAAXtALAIAXLvbC982LRYsW6YMPPlDPnj3VoUMHffrpp/rzn/+s8vJynXvuufr5z3++z+8vLy9XeXl5tcd2xCtUO8f3lwYASKNUeyHtuRmVpkK5IZoBADVFpnpRYSpUi14AQI3B+wsAyH45fg5/8803ddRRR+mqq67S0UcfrTfffFN9+vTRsmXL9OWXX2rgwIF6++239/kcJSUlKiwsrHZMWzfL0isA4CJjQkkfsVhMkUhEkUhEsVjM75cSGOnohbTnZiz54T0LrwCAi1LphYvXs02HTPbi/e9nWngFAFxEL+zLZC9Kt8628AoAuMjFXvi6eXHTTTdp7Nix+u677/S3v/1NZ599ti688EJNmzZN06dP19ixY3X77bfv8zmKi4tVVlZW7fhF096WXgEAF5l4KOkjGo2qtLRUpaWlikajfr+UwEhHL6Q9N6N93eMsvAIALkqlFybOhncyMtmLXo36WHgFAFxEL+zLZC8i+cdbeAUAXORiL3zdvPjkk090/vnnS5LOOOMMbdq0SaeddlrV58855xz961//2udzhMNhFRQUVDu4ZBSATDIm+QPJSUcvpD03g1O6AWRKKr0wRmx4JyGTveCSUQAyhV7Yx/sLAEHkYi98/4kaCv14ykpOTo7y8vJUWFhY9bkGDRqorKzMr6UBwB4F9VS7oKMXAIKGXviDXgAIGnrhD3oBIGhc7IWvZ160a9dOS5curfp4zpw5atu2bdXHX331lVq2bOnH0gAAWYReAAC8oBcAAC/oBQAEg69nXvzud79TZWVl1cedOnWq9vk33nhDP//5z20vCwD2ycTd2+n2G70AEET0wj56ASCI6IV99AJAELnYC183Ly655JJ9fv62226ztBIA8I57V9hHLwAEEb2wj14ACCJ6YR+9ABBELvbC93teAEDQuHiNQQBA4ugFAMALegEA8MLFXrB5AQAJijt4mh4AIHH0AgDgBb0AAHjhYi/YvACABLl4mh4AIHH0AgDgBb0AAHjhYi9y/F4AAAAAAAAAAADArjjzAgAS5OI1BgEAiaMXAAAv6AUAwAsXe8HmBQAkyMVYAAASRy8AAF7QCwCAFy72gs0LAEhQ3MFYAAASRy8AAF7QCwCAFy72gs0LAEiQibsXCwBA4ugFAMALegEA8MLFXnDDbgCwKBaLKRKJKBKJKBaL+b0cAEAWoxkAAC/oBQCgpqqRZ17cv2qJtVk9wu2tzNmwvYmVObcWDLMyR5Iqtr5qZU6PVlOtzJGkW4/YZmXOQ0vDVuaEP29rZY4kjTqizNqsVBmT/PdGo1FFo9H0LQYpW1e5xcqclrXrW5nzxVZ7ae/R8gUrcyo2v2xlTo82L1mZI0nXHXyYlTmLN9n7mzlLyyqtzLn7uFVW5qRDKr2QaEa2+ee6zVbmrMz52socSVqyuIGVOYPz/8fKHFvvLySp8QFXWpnz++ZnWJnzr/V23sdI0isbvrQy587D21mZkw70omYp27HDypwODfOszJGkeetS/I/Uo1p1T7QyR7LXjFqWGnhx6+uszJGklVviVubc+tmtVub8o+dVVuakQ6q9iMViVZvcQWlHjdy8AIBMcvEagwCAxNELAIAX9AIA4EWqvQjKhsWu2LwAgAQZ3lwAADygFwAAL+gFAMALF3vB5gUAJIi/GQUA8IJeAAC8oBcAAC9c7AU37AYAAAAAAAAAAFmFMy8AIEEunqYHAEgcvQAAeEEvAABeuNgLNi8AIEFxvxcAAAgEegEA8IJeAAC8cLEXbF4AQIJc3OkGACSOXgAAvKAXAAAvXOwFmxcAkCAXb5AEAEgcvQAAeEEvAABeuNgLNi8AIEEu7nQDABJHLwAAXtALAIAXLvYix+8FAAAAAAAAAAAA7IozLwAgQXHj9woAAEFALwAAXtALAIAXLvYi6zYvjDEKhdw7BQZAcLh4ml42ohcAsh29yB40A0A2oxfZg14AyGYu9iLrLhsVDoe1aNEiv5cBAHsVVyjpA+lDLwBku1R6QTPSi2YAyGb0InvQCwDZzMVe+HbmxZgxY/b4eGVlpW6//XY1adJEknTPPffYXBYA7Jdx8DQ9P9ELAEFFL+yjGQCCiF7YRy8ABJGLvfBt8+Lee+9VUVGRGjZsWO1xY4wWLVqkevXqeTpVr7y8XOXl5dUei5tK5YRy07lcAIBP0tULaW/NqFBOKOuuoggASEJm32PQCwCoKTLZi0pToVx6AQBp4dtP09tuu00PPfSQ/vjHP+rnP/951eO1a9fW5MmTFYlEPD1PSUmJJkyYUO2xpnmddEDdLmldLwDsFHfwGoN+SlcvpD03o234Zzoor2fa1gsAO9EL+zL5HuPgcC8dmnd8WtcLABK98EMme3FY+Hi1r9s7resFAMnNXvh2z4tx48ZpypQp+t3vfqerrrpKO3bsSOp5iouLVVZWVu1okndkmlcLAP/l2vUF/ZauXkh7bsaB4WPTuFoA+C8Xr0nrt0y+xzg4/LM0rxYAfkQv7MtkLw7lL0YByBAXe5HU5sWsWbN07rnnqmfPnlq5cqUk6fHHH9fs2bMTep5jjz1W8+fP17fffqtu3brpP//5j+dLf+wUDodVUFBQ7eCSUQAyyZjkD9tWrFihfv36KRKJqEuXLvq///s/q/OzqRfS3prBKd0AMiOVXthuht+9kLKrGfQCgE1B6oXkfzOyvRdcMgpAprjYi4Q3L55//nkNGjRIdevW1UcffVR1bb+ysjLddtttCS+gfv36evTRR1VcXKwBAwaosrIy4ecAAJviJpT0YVutWrV07733qrS0VG+99ZYuv/xybdmyxcpsegHAdan0wnYz/OyFRDMAuC1IvZB4jwEAfnGxFwlvXtxyyy2aNGmSHn74YdWuXbvq8eOOO04LFixI9OmqnHnmmZo3b55eeOEFHXTQQUk/DwBkmlEo6cO2li1b6qijjpIktWjRQk2bNtX69eutzKYXAFyXSi9sN8PPXkg0A4DbgtQLifcYAOAXF3uR8ObF4sWL1adPn90eLyws1IYNGxJ9umratGmjk046SfXq1UvpeQCgppg5c6aGDBmiVq1aKRQK6cUXX9zta2KxmNq1a6e8vDz16NFDc+fO3eNzzZ8/X5WVlTrwwAMzvOof0QsAsCfIvZBoBgDYFORm0AsAsCcbepHw5kWLFi20bNmy3R6fPXu2DjnkkESfDgACJ26SPxK1ZcsWFRUVKRaL7fHzU6ZM0ZgxYzR+/HgtWLBARUVFGjRokL755ptqX7d+/Xqdd955euihh5J5yUmhFwBcl0ovEm1GkHsh0QwAbrPZCynYzaAXAFzmYi8SvovQhRdeqMsuu0yPPPKIQqGQVq1apTlz5uiqq67S9ddfn/ACACBoUrlOYHl5edV1WXcKh8MKh8N7/PrBgwdr8ODBe32+e+65RxdeeKFGjhwpSZo0aZJee+01PfLIIxo3blzVzGHDhmncuHHq1atX0mtPFL0A4LpUryubSDOC3AuJZgBwm81eSMFuBr0A4DIXe5HwmRfjxo3T2Wefrf79+2vz5s3q06ePfvvb3+riiy/W6NGjE14AAARNKtcXLCkpUWFhYbWjpKQkqXVs375d8+fP14ABA6oey8nJ0YABAzRnzpwf12qMzj//fP385z/Xr3/967S8fq/oBQDXpXpN2nQ1I9t7IdEMAG7Lll5I2d8MegHAZS72IuEzL0KhkK699lqNHTtWy5Yt0+bNmxWJRFS/fv2kFgAAQZPMqXY7FRcXa8yYMdUe29sO9/6sW7dOlZWVat68ebXHmzdvrk8//VSS9N5772nKlCnq0qVL1bUJH3/8cXXu3DmpmYmgFwBcl0ovpPQ1I9t7IdEMAG7Lll5I2d8MegHAZS72IuHNi53q1KmjSCSS7LcDgJP2dTpeJhx//PGKx+PW5u0JvQCA5NhsRjb0QqIZAJAM3mMAALwIYi8S3rw44YQTFArt/fpab7/9dkoLAoBsZ5TaNQbTpWnTpsrNzdXatWurPb527Vq1aNHCp1X9F70A4Dp64R3NAOCybOmFlP3NoBcAXOZiLxK+58VRRx2loqKiqiMSiWj79u1asGCBtdPKAcBPcZP8EYvFFIlEFIlEFIvFUlpHnTp11LVrV02fPv2/a4vHNX36dPXs2TPVl5kyegHAdan0Ip3NyPZeSDQDgNuypRdS9jeDXgBwmYu9SPjMiz/96U97fPzGG2/U5s2bU14QAGS7uEl+pzsajSoajXr++s2bN2vZsmVVHy9fvlwLFy5U48aN1bZtW40ZM0YjRoxQt27d1L17d917773asmWLRo4cmfQa04VeAHBdKr2QEmtGkHsh0QwAbrPZCynYzaAXAFzmYi+SvufFT5177rnq3r277r777nQ9JQBkpRTvj5SQefPm6YQTTqj6eOeNlUaMGKHJkydr+PDh+vbbb3XDDTdozZo1Ouqoo/Tmm2/udsOkbEIvALiCXqSOZgBwgc1eSDWzGfQCgAtc7EXaNi/mzJmjvLy8dD0dAEBSv379ZMy+8zRq1CiNGjXK0opSRy8AIP1qYi8kmgEAmVATm0EvACD9sqEXCW9enHLKKdU+NsZo9erVmjdvnq6//vq0LSwVEzscaG3W7HV2bpTSqm6llTlLB11kZY4k/efEN6zMmbu4v5U5krTyt/+wMqfzhtZW5lx09HIrcyTpxdKDrMzpmobnSOU0vVgsVnVdwURP1wuaIPRCkk5r09DKnL+v3GZlzqINCd/OKmmxLvWtzBnaZpaVOf/8aoiVOZL0l+PmWZnz2rqVVuZI0sDGdtp0xeyWVuZMScNzpHpaN83IrmZ0LKhnZc7c9R9bmSNJRbUGWpnzq4Zjrcxp18re37hev/oOK3Pu7THfypy1Wm9ljiQdV7e9lTnT19q7qen/pPj99MK7IPQiPzdtf094n17+dpWVOZK0Vp9ZmfP7Nvb+HTY+4Eorcyo2vmhlzi1dF1iZI0lT1n1qZc6AwjFW5vx1WR0rcyQp1d9QutiLhH+iFhYWVvs4JydHRxxxhG666SYNHGjnD78A4Kd4Ct8blDikA70A4LpUeiHRDJoBwBX0wjt6AcBlLvYioc2LyspKjRw5Up07d1ajRo0ytSYAyGomxZ1uF9ALAKAXXtEMAK6jF97QCwCuc7EXCV1bIjc3VwMHDtSGDRsytBwAyH7xFA5X0AsASK0XNAMA3EEvvKEXAFznYi8SvjB2p06d9Pnnn2diLQAQCHGT/OESegHAdan0gmYAgDvohXf0AoDLXOxFwpsXt9xyi6666iq9+uqrWr16tTZu3FjtAADsXSwWUyQSUSQSqbpJUk1FLwAgNTSDZgCAF/SCXgCAF0Hshed7Xtx000268sor9atf/UqSNHToUIVC/73OljFGoVBIlZWV6V8lAGQRo+SvMRjEmyMlil4AwI9S6YVEMySaAcAN9GL/6AUAuNkLz5sXEyZM0CWXXKJ33nknk+sBgKwX1FPtbKEXAPAjerF/NAMA6IUX9AIA3OyF580LY378p9O3b9+MLQYAgiDVne6ajl4AwI/oxf7RDACgF17QCwBwsxeeNy8kVTslDwBc5eJOd6LoBQDQC69oBgDX0Qtv6AUA17nYi4Q2L9q3b7/fWKxfvz6lBQFATRaLxapuihTEaw16RS8AIHU0479oBgDsHb34L3oBADVLQpsXEyZMUGFhYabWAgCBkMpOd01+M7EregEAqf/NKJoBAG6gF97QCwCuS7UXQdzsTmjz4swzz1SzZs0ytRYACAQXrzGYKHoBAPTCK5oBwHX0wht6AcB1qfYiKBsWu/K8ecG1BQHgRy5eYzAR9AIAfkQv9o9mAAC98IJeAICbvfC8eWFM5v/pbNmyRc8++6yWLVumli1b6qyzzlKTJk32+T3l5eUqLy+v9tj2eIXq5CR0UgkAeBb3ewFZLlt7Ie25GRXxCtWiGQAygF7sX6abkc5eVJoK5YboBYD0oxf7Ry8AwM1e5Hj9wng8nvbT8yKRSNXNlFasWKFOnTrpiiuu0LRp0zR+/HhFIhEtX758n89RUlKiwsLCasfTKz9I6zoBYFfGhJI+XJCtvZD23Ixp62alda0AsFMqvaAZyclkL+ZtpBcAMoNe7F+QevHpD++lbZ0AsCsXe+F58yITPv30U1VUVEiSiouL1apVK3355ZeaO3euvvzyS3Xp0kXXXnvtPp+juLhYZWVl1Y6zWv/MxvIBAJakoxc7v/enzfhF096ZXj4AwJJM9qJbAb0AgJoik73oUPe4TC8fAJzh6+bFrubMmaMbb7xRhYWFkqT69etrwoQJmj179j6/LxwOq6CgoNrBJaMAZFI8hSMWiykSiSgSiSgWi/mw+uBLthfSnpvBJaMAZEoqvaAZqUt3L7gECIBMoRf+ohcAgsLFXvj+E3XnTZe2bdumli1bVvtc69at9e233/qxLADYq1RukBSNRhWNRtO3GIfQCwBBk+oN9WhGcugFgKChF/6gFwCCxsVe+L550b9/f9WqVUsbN27U4sWL1alTp6rPffnll55ukAQANmX+dtTYE3oBIGjohT/oBYCgoRf+oBcAgsbFXvi6eTF+/PhqH9evX7/ax6+88op69+basgCySzygNzkKMnoBIIjohX30AkAQ0Qv76AWAIHKxF1m1efFTd911l6WVAACyGb0AAHhBLwAAXtALAAgG3y8bBQBB4+JpegCAxNELAIAX9AIA4IWLvWDzAgASlOoNkgAAbqAXAAAv6AUAwAsXe8HmBQAkKO73AgAAgUAvAABe0AsAgBcu9iLH7wUAQNAYk/wRi8UUiUQUiUQUi8X8fikAgAxKpRc0AwDcQS8AAF642AvOvAAAi6LRqKLRqN/LAAAEAM0AAHhBLwAAXgSxF2xeAECC4gr5vQQAQADQCwCAF/QCAOCFi71g8wIAEmQcvEESACBx9AIA4AW9AAB44WIv2LwAgAS5eIMkAEDi6AUAwAt6AQDwwsVesHkBAAmKO7jTDQBIHL0AAHhBLwAAXrjYixq5efHaqnxrs5Zv2mFlzic5dq5pduG/HrIyR5Le7DHWypy/911kZY4kXfnRqVbm/KHuiVbmbNh+vZU5knTn8putzPmNbkz5ORxsRY2Wl2Pn3+h2U2llznfl263MkaSfzfyzlTkDCsdYmfPX4+ZZmSNJv53b08qcSyz1QpKay07XX99wl5U5U3RTys9BL2qWgjo17xrDH1e8ZWXOxi2Lrcy59tAbrMyRpD92n29lzpUf/czKnKss9mKt+lmZ8/WGGVbmSNKflNp/e/SiZunc2NKv2tY3szNH0tb4Jitz7v/azu8FJOnXza+1MueWrguszLnu4+5W5kjSjfmp/znZi/yGv7Ey5x/f3mNljiQ9pQkpfb+LvcjxewEAAAAAAAAAAAC7qpFnXgBAJrl4mh4AIHH0AgDgBb0AAHjhYi/YvACABBkHYwEASBy9AAB4QS8AAF642AsuGwUACYqncMRiMUUiEUUiEcViMR9WDwCwJZVe0AwAcAe9AAB44WIvOPMCABKUyml60WhU0Wg0fYsBAGStVE/rphkA4AZ6AQDwwsVecOYFAAAAAAAAAADIKpx5AQAJcvASgwCAJNALAIAX9AIA4IWLvWDzAgASlOppegAAN9ALAIAX9AIA4IWLvWDzAgASZBTyewkAgACgFwAAL+gFAMALF3vB5gUAJMjFnW4AQOLoBQDAC3oBAPDCxV5ww24AAAAAAAAAAJBVOPMCABLk4k43ACBx9AIA4AW9AAB44WIv2LwAgAQ52AoAQBLoBQDAC3oBAPDCxV74etmoBQsWaPny5VUfP/744zruuON04IEH6vjjj9czzzzj4+oAYM/iJvkDyaEXAIIolV7QjOTQCwBBRC/soxcAgsjFXvi6eTFy5Eh99tlnkqS//OUvuvjii9WtWzdde+21OvbYY3XhhRfqkUce2edzlJeXa+PGjdWOClNhY/kAHGVS+D8kJx29kPbcjB1xmgEgM1LpBc1ITiZ7wXsMAJlCL+zLaC94fwEgQ1zsha+XjVq6dKkOP/xwSdL999+vP//5z7rwwgurPn/sscfq1ltv1QUXXLDX5ygpKdGECROqPfazwn7q1fCEzCwagPOCulsdZOnohbTnZvxPs74a0pxmAEg/emFfJnvRu1E/9Wn887SvGQDohX2Z7EW/xv10QhPeXwBIPxd74euZF/n5+Vq3bp0kaeXKlerevXu1z/fo0aPaaXx7UlxcrLKysmpH98LeGVszAMC+dPRC2nMzfnkAzQCAmiKTvejVqE9G1gwAsC+TvejdiPcXAJAuvm5eDB48WA888IAkqW/fvnruueeqff7ZZ5/VYYcdts/nCIfDKigoqHbUCnEfcgCZY1I4YrGYIpGIIpGIYrGYD6sPpnT0QtpzM2rn0AwAmZFKL2hGcjLZC95jAMiUVHuBxGW0F7y/AJAhLvbC15+od9xxh4477jj17dtX3bp10x//+EfNmDFDHTt21OLFi/XBBx9o6tSpfi4RAHaTyml60WhU0Wg0fYtxBL0AEESpntZNMxJHLwAEUaq9iMViVZvctMMbegEgiFzsha+bF61atdJHH32k22+/Xa+88oqMMZo7d65WrFih4447Tu+99566devm5xIBYDcmqNvVAUYvAAQRvbCPXgAIolR7EZRfQGUTegEgiFzshe/nsjVs2FC33367br/9dr+XAgCexP1egKPoBYCgoRf+oBcAgoZe+INeAAgaF3vh6z0vAAAAAAAAAAAAfsr3My8AIGhSvcYgAMAN9AIA4AW9AAB44WIv2LwAgARxDXMAgBf0AgDgBb0AAHjhYi/YvACABLl4jUEAQOLoBQDAC3oBAPDCxV6weQEACXJxpxsAkDh6AQDwgl4AALxwsRdsXgBAglzc6QYAJI5eAAC8oBcAAC9c7EWO3wsAAAAAAAAAAADYFWdeAECCjIvn6QEAEkYvAABe0AsAgBcu9oLNCwBIUNy9VgAAkkAvAABe0AsAgBcu9qJGbl58vaXC2qxezWtbmdOt0VYrcz6r+I2VOZLUoPYOK3OeXbPeyhxJmtjqHitzKn54zcqcK9p/YGWOJJX+4hJrs1LlYCtqtBlr7Fw1smVeXStzzm633cocSTrlh2utzCkts3OVy4dWrLIyR5IurnuilTkV5W9YmSNJp7d818qcv3Sx899dOtCLmmXmuu+tzBndYriVOZLUtVG5lTlTV9h521nb4kWRp63eYmXONTWwF79uM8vKnIt6dbUyJx3oRc3yx1XPWplzeUt7vfifeodbmfNqTrGVOZKUGwpZmfOXb2damXNj/k1W5kj2mtG5xd+szLmjw/VW5qSDi72okZsXAJBJLu50AwASRy8AAF7QCwCAFy72ght2AwAAAAAAAACArMKZFwCQIBd3ugEAiaMXAAAv6AUAwAsXe8HmBQAkyDh5lUEAQKLoBQDAC3oBAPDCxV6weQEACXJxpxsAkDh6AQDwgl4AALxwsRfc8wIAEmRM8ocfTj75ZDVq1EinnXaaPwsAAEel0gs/mkEvAMAfQeuFRDMAwA8u9oLNCwCo4S677DI99thjfi8DAJDl6AUAwCuaAQDwItVesHkBAAmKyyR9+KFfv35q0KCBL7MBwGWp9MKPZtALAPBH0Hoh0QwA8IOLvWDzAgASZPMUvZkzZ2rIkCFq1aqVQqGQXnzxxd2+JhaLqV27dsrLy1OPHj00d+7c1F8kACBlNk/rphcAEFy2LwNCMwAgmFzsBZsXAJCgeApHorZs2aKioiLFYrE9fn7KlCkaM2aMxo8frwULFqioqEiDBg3SN998k8Q0AEA6pdKLRJtBLwAguGz2QqIZABBULvaiVtqeCQAcYVK4y1F5ebnKy8urPRYOhxUOh/f49YMHD9bgwYP3+nz33HOPLrzwQo0cOVKSNGnSJL322mt65JFHNG7cuKTXCQBIXSq9kBJrBr0AgOCy2QuJZgBAUKXai0RlQy848wIAEhQ3yR8lJSUqLCysdpSUlCS1ju3bt2v+/PkaMGBA1WM5OTkaMGCA5syZk66XCwBIUiq9SGcz6AUAZLds6YVEMwAgm6Xai/Lycm3cuLHa8dPNb69s9YLNCwCwqLi4WGVlZdWO4uLipJ5r3bp1qqysVPPmzas93rx5c61Zs6bq4wEDBuj000/X66+/rjZt2vCmAwACIl3NoBcAULPxHgMA4EU6N7tt9cLXy0aNHj1aZ5xxhnr37u3nMgAgIXElf5revk7fzpR//OMfVudlAr0AEESp9EKy3wx6AQD+CFovpOA3g14ACKJUe1FcXKwxY8ZUeyzT/Ui1F76eeRGLxdSvXz+1b99ed9xxR7VdGa/2dLpLpanIwGoB4EfGJH+kU9OmTZWbm6u1a9dWe3zt2rVq0aJFeof5LB29kGgGALtS6UU6m0EvErenXsTpBYAMyZZeSO40I5O9MCaZ2+ICwP6l2otwOKyCgoJqR7KbF7Z64ftlo9566y396le/0t133622bdvqpJNO0quvvqp43NsP+z2d7rJo63sZXjUAl8Vlkj5isZgikYgikYhisVhK66hTp466du2q6dOn/3dt8bimT5+unj17pvoys06qvZD23IzSrbMzuGoALkulF+lsBr1ITy9WlH+YwVUDcFm29EJyqxmZ6kX5jnUZXDUAl7nYC983Lzp37qx7771Xq1at0hNPPKHy8nINGzZMBx54oK699lotW7Zsn9+/p2s7dsw/ztLqAbgolV3uaDSq0tJSlZaWKhqN7nfW5s2btXDhQi1cuFCStHz5ci1cuFBfffWVJGnMmDF6+OGH9eijj2rRokX63e9+py1btmjkyJGZ/Efgi1R7Ie25GZH84y2sHoCLUv2bUYk0g178V6Z6cWD4WAurB+Aim72QaMZOmepFuHZTC6sH4CIXe+HrPS92Vbt2bZ1xxhk644wz9NVXX+mRRx7R5MmTdfvtt6uysnKv37enazvmhrLmZQFASubNm6cTTjih6uOd1yYcMWKEJk+erOHDh+vbb7/VDTfcoDVr1uioo47Sm2++udsNk2qSZHsh0QwANRe92F26e5FDLwDUEDSjunT3IhTy/e8JA0BaZEMvsvJP4G3bttWNN96o8ePHB/4mUABqnlRvkJSIfv36yeznQrajRo3SqFGjLK0ou9ALANmMXmQPegEgm9nshUQz9oVeAMhmLvbC1+3ggw46SLm5uXv9fCgU0i9+8QuLKwKA/Ysbk/SRzusLuoReAAiiVHpBM5JDLwAEEb2wj14ACKJUexFEvp55sXz5cj/HA0BSTAo73dFo1NN1BVEdvQAQRKn0QqIZyaAXAIKIXthHLwAEUaq9iMViVZvcQWlHVl42CgCyWdzvBQAAAoFeAAC8oBcAAC9S7UVQNix2xeYFACTI9jUGAQDBRC8AAF7QCwCAFy72wtd7XgAAAAAAAAAAAPwUmxcAkCBjTNIHN9MDAHek0guaAQDuoBcAAC9c7AWXjQKABKVyml4Qry8IAEhOqqd10wwAcAO9AAB44WIv2LwAgAS5eI1BAEDi6AUAwAt6AQDwwsVesHkBAAkyivu9BABAANALAIAX9AIA4IWLveCeFwAAAAAAAAAAIKtw5gUAJMjF0/QAAImjFwAAL+gFAMALF3vBmRcAkKC4TNJHLBZTJBJRJBJRLBbz+6UAADIolV7QDABwB70AAHjhYi9Cxpgat2Vz3WE3W5vVq8k2K3PWb7dzkkyruuVW5kjS1z+ErcxpUKvSyhxJqjQhK3NW/FDbypxL5x5rZY4kTe37vpU5p81L/edDr4aXJf2972/4c8rzkV53R26yMicvx05uv9tu7+8lnHfYKitzxi9obmXOiEPsNXDhhrpW5qy188cUSVLJv+0046aj5lmZM2Hp9Sk/Ryq9kGhGtpnQ3s57jPq17L0927jDzp9dN+6w85q22/tjvwa02G5lzneW3gdO+mqNlTmS9M+vT7Iy56GfzbUyR5J+9+/xKX0/vahZrj7EzvuLPgfY+7Prh+vzrMxplmfvev7//t7OnJPb2Pn3tHCDnX9HkjTnWzsNfP6r46zMmdL7AytzJOnsBRNS+n4Xe8FlowAgQSbk3g2SAACJoxcAAC/oBQDACxd7wWWjAAAAAAAAAABAVuHMCwBIkIs3SAIAJI5eAAC8oBcAAC9c7AWbFwCQoLjcO00PAJA4egEA8IJeAAC8cLEXXDYKABJkFE/6iMViikQiikQiisVifr8UAEAGpdILmgEA7qAXAAAvXOwFZ14AQILiKdwgKRqNKhqNpnE1AIBslUovJJoBAK6gFwAAL1zsBZsXAJAgF0/TAwAkjl4AALygFwAAL1zsBZeNAgAAAAAAAAAAWYUzLwAgQS7udAMAEkcvAABe0AsAgBcu9oLNCwBIkHEwFgCAxNELAIAX9AIA4IWLvWDzAgASFFel30sAAAQAvQAAeEEvAABeuNgLNi8AIEEu7nQDABJHLwAAXtALAIAXLvaCG3YDgEWxWEyRSESRSESxWMzv5QAAshjNAAB4QS8AAF4EsRe+b15MnDhR5513np555hlJ0uOPP65IJKIOHTroD3/4gyoqKnxeIQBUFw/Fkz6i0ahKS0tVWlqqaDTq90sJFHoBIGhS6QXNSB69ABA09MIf9AJA0LjYC18vG3XLLbfozjvv1MCBA3XFFVfoyy+/1F133aUrrrhCOTk5+tOf/qTatWtrwoQJe32O8vJylZeXV3uswlSoVogrYgHIDBevMei3dPRC2ksz4hWqlUMzAKQfvbCPXgAIInphX0Z7we+kAGSIi73w9afp5MmTNXnyZJ1yyin6+OOP1bVrVz366KM655xzJEkdOnTQ1Vdfvc9YlJSU7Pb53o36qU/jn2dy6QAc5uI1Bv2Wjl5Ie27GL5r208ADTsjY2gG4i17Yl8le9G3cTyc04T0GgPSjF/Zlshe9GvbTcY14fwEg/Vzsha+XjVq1apW6desmSSoqKlJOTo6OOuqoqs8fc8wxWrVq1T6fo7i4WGVlZdWOXo36ZHLZABwXN5VJH0hOOnoh7bkZP2/SO1PLBuC4VHpBM5KTyV705j0GgAyhF/Zlshc9GvL+AkBmuNgLXzcvWrRoodLSUknS0qVLVVlZWfWxJH3yySdq1qzZPp8jHA6roKCg2sHpeQBQs6SjF9JemsElQACgxqAXAAAvMtoLficFAGnj60/Uc845R+edd55OOukkTZ8+XVdffbWuuuoqfffddwqFQrr11lt12mmn+blEANiNi6fp+Y1eAAgiemEfvQAQRPTCPnoBIIhc7IWvmxcTJkxQ3bp1NWfOHF144YUaN26cioqKdPXVV2vr1q0aMmSIbr75Zj+XCAC7MQ7eIMlv9AJAENEL++gFgCCiF/bRCwBB5GIvfN28yMnJ0R/+8Idqj5155pk688wzfVoRAOxf3MGdbr/RCwBBRC/soxcAgohe2EcvAASRi73gQnwAkCAXT9MDACSOXgAAvKAXAAAvXOyFrzfsBoAgMqYy6SMWiykSiSgSiSgWi/n9UgAAGZRKL2gGALiDXgAAvEi1F0HEmRcAYFE0GlU0GvV7GQCAAKAZAAAv6AUAwItYLFa1yR2UdrB5AQAJcvEagwCAxNELAIAX9AIA4EWqvQjKhsWu2LwAgAQZBfNUOwCAXfQCAOAFvQAAeOFiL9i8AIAEGcPfjAIA7B+9AAB4QS8AAF642As2LwAgQZzWDQDwgl4AALygFwAAL1zsRY7fCwAAAAAAAAAAANgVZ14AQIKMce8agwCAxNELAIAX9AIA4IWLvaiRmxe5IXuz5n0ftjKnbLuVMYrLzuuRpHOj31mZU3xbMytzJGlp2Q4rcyb2WWFlzusnWPoPT9IprxdZm5Uq4+BpejVZs7Cd+P9jta042fvDzNrN9azMGXFIuZU5X2yx18CXVm2wMufh7na6JEl/7TnXypwbFna3Micd6EXNssPSv85Za+39+eud8hetzLm42RlW5gxrvcXKHEkq3ZhvZc7v/3OLlTkPd7nWyhxJ+kPnD63Mue2Tn1mZkw70omapV8vOn/uf/6qOlTmS9MKmKVbmjGk13MocSerU0M7/7hZvzrMyZ9zim63MkaRHiuw045L2dt5fTFrWy8qcdHCxFzVy8wIAMsnFGyQBABJHLwAAXtALAIAXLvaCzQsASJCx+DfbAQDBRS8AAF7QCwCAFy72gs0LAEiQizvdAIDE0QsAgBf0AgDghYu9yPF7AQAAAAAAAAAAALvizAsASJCLO90AgMTRCwCAF/QCAOCFi71g8wIAEhSXe7EAACSOXgAAvKAXAAAvXOwFl40CgAQZE0/6iMViikQiikQiisVifr8UAEAGpdILmgEA7qAXAAAvXOwFZ14AQIKMqUz6e6PRqKLRaBpXAwDIVqn0QqIZAOAKegEA8MLFXnDmBQAAAAAAAAAAyCqceQEACTIOXmMQAJA4egEA8IJeAAC8cLEXbF4AQIKMcS8WAIDE0QsAgBf0AgDghYu9YPMCABLkYiwAAImjFwAAL+gFAMALF3vh6+bF6tWr9cADD2j27NlavXq1cnJydMghh2jYsGE6//zzlZub6+fyAGCPXDxNLxvQDABBQy/8QS8ABA298Ae9ABA0LvbCtxt2z5s3Tx07dtTrr7+uHTt2aOnSperatavq1aunq666Sn369NGmTZv8Wh4AIIvQDACAF/QCAOAFvQCAYPBt8+Lyyy/XFVdcoXnz5mnWrFmaPHmylixZomeeeUaff/65tm7dquuuu26/z1NeXq6NGzdWOypMhYVXAMBVxsSTPpCcTDZjR5xmAMiMVHpBM5LDewwAQUQv7MtoL3h/ASBDXOyFb5sXCxYs0K9//euqj88++2wtWLBAa9euVaNGjXTnnXfqueee2+/zlJSUqLCwsNoxe/3MTC4dgONcC0U2yGQzXl07O5NLB+AwF99c+C2TvXj/e95jAMgMemFfJnsxi14AyBAXe+Hb5kWzZs20evXqqo/Xrl2riooKFRQUSJIOP/xwrV+/fr/PU1xcrLKysmrH8Y37ZGzdACDFUziQjEw243+aH5+xdQNwXSq9oBnJyGQvejXiPQaATKEXtmWyF73pBYCMca8Xvt2we9iwYbrkkkt01113KRwO6+abb1bfvn1Vt25dSdLixYvVunXr/T5POBxWOByu9litkK/3IQdQwwV1tzrIMtmM2jk0A0Bm0Av7eI8BIIjohX0Z7QXvLwBkiIu98O0n6i233KLVq1dryJAhqqysVM+ePfXEE09UfT4UCqmkpMSv5QHAXpmA7lYHGc0AEET0wj56ASCI6IV99AJAELnYC982L+rXr68pU6Zo27ZtqqioUP369at9fuDAgT6tDACQbWgGAMALegEA8IJeAEAw+H4uW15ent9LAICEuHiaXragGQCChF74h14ACBJ64R96ASBIXOyF75sXABA8lX4vAAAQCPQCAOAFvQAAeOFeL9i8AIAEubjTDQBIHL0AAHhBLwAAXrjYCzYvACBh7sUCAJAMegEA8IJeAAC8cK8XOX4vAAAAAAAAAAAAYFdsXgBAokw8+cMHr776qo444ggdfvjh+stf/uLLGgDASan0wodm0AsA8EnAeiHRDADwhYO94LJRAJAgI+P3EjyrqKjQmDFj9M4776iwsFBdu3bVySefrCZNmvi9NACo8egFAMCLIPVCohkA4BcXe8GZFwCQsHgKh11z587VkUceqdatW6t+/foaPHiw3nrrLevrAAA3pdILu82gFwDgp+D0QqIZAOAf93rB5gUAJMqY5I8EzZw5U0OGDFGrVq0UCoX04osv7vY1sVhM7dq1U15ennr06KG5c+dWfW7VqlVq3bp11cetW7fWypUrk3rZAIAEpdKLBJtBLwAgwCz2QqIZABBYDvaCzQsASJBJ4f8StWXLFhUVFSkWi+3x81OmTNGYMWM0fvx4LViwQEVFRRo0aJC++eabVF8mACBFqfQi0WbQCwAILpu9kGgGAASVi73gnhcAYFF5ebnKy8urPRYOhxUOh/f49YMHD9bgwYP3+nz33HOPLrzwQo0cOVKSNGnSJL322mt65JFHNG7cOLVq1ararvbKlSvVvXv3NLwSAECmJdIMegEA7uI9BgDAi0D2wsBs27bNjB8/3mzbtq3GzOI1Zf8cm7N4Tdlj/PjxRlK1Y/z48Z6+V5KZOnVq1cfl5eUmNze32mPGGHPeeeeZoUOHGmOM2bFjhznssMPM119/bTZt2mTat29v1q1bl6ZX46aa9t84Px+CMaumzbE5K6i9MCb5ZtCL7FAT/xvnNTHHj1k1bU4m8B4j2PjfbfbPsTmL15T9c2zPSqcg9oLNC2NMWVmZkWTKyspqzCxeU/bPsTmL15Q9tm3bZsrKyqodXmP301CsXLnSSDLvv/9+ta8bO3as6d69e9XHL730kjn88MPNoYceah588MG0vA6X1bT/xvn5EIxZNW2OzVlB7YUxyTeDXmSHmvjfOK+JOX7MqmlzMoH3GMHG/26zf47NWbym7J9je1Y6BbEXXDYKACza1+l4mTJ06FANHTrU6kwAQOpsN4NeAEAw8R4DAOBFEHvBDbsBIKCaNm2q3NxcrV27ttrja9euVYsWLXxaFQAg29ALAIBXNAMA4IWtXrB5AQABVadOHXXt2lXTp0+veiwej2v69Onq2bOnjysDAGQTegEA8IpmAAC8sNULLhulH0+ZGT9+vJXTZmzN4jVl/xybs3hNwbV582YtW7as6uPly5dr4cKFaty4sdq2basxY8ZoxIgR6tatm7p37657771XW7Zs0ciRI31cdc1W0/4b5+dDMGbVtDk2Z9ELeuGXmvjfOK+JOX7MqmlzsgHNyC787zb759icxWvK/jm2Z/kpG3oR+v833AAAZKEZM2bohBNO2O3xESNGaPLkyZKkiRMn6q677tKaNWt01FFH6b777lOPHj0srxQA4Cd6AQDwimYAALzIhl6weQEAAAAAAAAAALIK97wAAAAAAAAAAABZhc0LAAAAAAAAAACQVdi8kBSLxdSuXTvl5eWpR48emjt3btpnzJw5U0OGDFGrVq0UCoX04osvpn2GJJWUlOjYY49VgwYN1KxZMw0bNkyLFy9O+5wHHnhAXbp0UUFBgQoKCtSzZ0+98cYbaZ/zU7fffrtCoZAuv/zytD/3jTfeqFAoVO3o0KFD2udI0sqVK3XuueeqSZMmqlu3rjp37qx58+alfU67du12e02hUEjRaDStcyorK3X99dfr4IMPVt26dXXooYfq5ptvViauSrdp0yZdfvnlOuigg1S3bl316tVLH374YdrnAHtCL5JT05phsxeSnWbUxF5INAP+oRfJqWm9kGreewxbvZB4jwF30IzE0YvU8Dup5NEL+5zfvJgyZYrGjBmj8ePHa8GCBSoqKtKgQYP0zTffpHXOli1bVFRUpFgsltbn/al3331X0WhUH3zwgaZNm6YdO3Zo4MCB2rJlS1rntGnTRrfffrvmz5+vefPm6ec//7lOOukkffLJJ2mds6sPP/xQDz74oLp06ZKxGUceeaRWr15ddcyePTvtM77//nsdd9xxql27tt544w2Vlpbqj3/8oxo1apT2WR9++GG11zNt2jRJ0umnn57WOXfccYceeOABTZw4UYsWLdIdd9yhO++8U//7v/+b1jmS9Nvf/lbTpk3T448/rn//+98aOHCgBgwYoJUrV6Z9FrArepG8mtgMG72Q7DWjJvZCohnwB71IXk3shVSz3mPY6oXEewy4gWYkh14kj99JpYZe+MA4rnv37iYajVZ9XFlZaVq1amVKSkoyNlOSmTp1asaef1fffPONkWTefffdjM9q1KiR+ctf/pKR5960aZM5/PDDzbRp00zfvn3NZZddlvYZ48ePN0VFRWl/3p+65pprzPHHH5/xOXty2WWXmUMPPdTE4/G0Pu+JJ55oLrjggmqPnXLKKeacc85J65ytW7ea3Nxc8+qrr1Z7/JhjjjHXXnttWmcBP0Uv0ivIzbDVC2P8a0bQe2EMzYB/6EV6BbkXxtT89xiZ6oUxvMeAG2hG+tALb/idVPLohT+cPvNi+/btmj9/vgYMGFD1WE5OjgYMGKA5c+b4uLL0KSsrkyQ1btw4YzMqKyv1zDPPaMuWLerZs2dGZkSjUZ144onV/l1lwtKlS9WqVSsdcsghOuecc/TVV1+lfcbLL7+sbt266fTTT1ezZs109NFH6+GHH077nJ/avn27nnjiCV1wwQUKhUJpfe5evXpp+vTpWrJkiSTp448/1uzZszV48OC0zqmoqFBlZaXy8vKqPV63bt2M/a1nQKIX6VRTmmGjF5I/zagJvZBoBvxBL9KnpvRCqrnvMTLZC4n3GKj5aEZ60IvE8Dup5NELn/i9e+KnlStXGknm/fffr/b42LFjTffu3TM2V5Z2uSsrK82JJ55ojjvuuIw8/7/+9S9Tr149k5ubawoLC81rr72WkTlPP/206dSpk/nhhx+MMSZju9yvv/66efbZZ83HH39s3nzzTdOzZ0/Ttm1bs3HjxrTOCYfDJhwOm+LiYrNgwQLz4IMPmry8PDN58uS0zvmpKVOmmNzcXLNy5cq0P3dlZaW55pprTCgUMrVq1TKhUMjcdtttaZ9jjDE9e/Y0ffv2NStXrjQVFRXm8ccfNzk5OaZ9+/YZmQcYQy/SoSY1w1YvjPGnGTWlF8bQDNhHL1JXk3phTM1+j5HJXhjDewzUfDQjNfQiOfxOKjX0wj42L2pwKC655BJz0EEHmRUrVmTk+cvLy83SpUvNvHnzzLhx40zTpk3NJ598ktYZX331lWnWrJn5+OOPqx7LVCh+6vvvvzcFBQVpP+2wdu3apmfPntUeGz16tPnZz36W1jk/NXDgQPM///M/GXnup59+2rRp08Y8/fTT5l//+pd57LHHTOPGjTMSv2XLlpk+ffoYSSY3N9cce+yx5pxzzjEdOnRI+yxgJ3qRuprcjEz1whh/mlFTemEMzYB99CJ1NbkXxtSs9xiZ7IUxvMdAzUczUkMvksPvpFJDL+xzevOivLzc5Obm7vZD+7zzzjNDhw7N2FwboYhGo6ZNmzbm888/z+icXfXv399cdNFFaX3OqVOnVv1A2HlIMqFQyOTm5pqKioq0zvupbt26mXHjxqX1Odu2bWt+85vfVHvs/vvvN61atUrrnF198cUXJicnx7z44osZef42bdqYiRMnVnvs5ptvNkcccURG5hljzObNm82qVauMMcacccYZ5le/+lXGZgH0Iv1qWjMy0Qtj7DejJvbCGJoBe+hF+tW0XhhTM95jZLoXxvAeAzUfzUgveuENv5NKD3phj9P3vKhTp466du2q6dOnVz0Wj8c1ffr0jF0nL9OMMRo1apSmTp2qt99+WwcffLC12fF4XOXl5Wl9zv79++vf//63Fi5cWHV069ZN55xzjhYuXKjc3Ny0ztvV5s2b9dlnn6lly5Zpfd7jjjtOixcvrvbYkiVLdNBBB6V1zq7+9re/qVmzZjrxxBMz8vxbt25VTk71Hye5ubmKx+MZmSdJ9erVU8uWLfX999/r73//u0466aSMzQLoRfrVpGZkqheS/WbUxF5INAP20Iv0q0m9kGrOe4xM90LiPQZqPpqRXvTCG34nlR70wiJ/907898wzz5hwOGwmT55sSktLzUUXXWQaNmxo1qxZk9Y5mzZtMh999JH56KOPjCRzzz33mI8++sh8+eWXaZ3zu9/9zhQWFpoZM2aY1atXVx1bt25N65xx48aZd9991yxfvtz861//MuPGjTOhUMi89dZbaZ2zJ5k6Re/KK680M2bMMMuXLzfvvfeeGTBggGnatKn55ptv0jpn7ty5platWubWW281S5cuNU8++aTJz883TzzxRFrn7FRZWWnatm1rrrnmmow8vzHGjBgxwrRu3dq8+uqrZvny5eaFF14wTZs2NVdffXXaZ7355pvmjTfeMJ9//rl56623TFFRkenRo4fZvn172mcBu6IXyatpzbDVC2PsNqOm9cIYmgF/0Ivk1bReGFMz32PY6IUxvMeAG2hGcuhF8vidVGrohX3Ob14YY8z//u//mrZt25o6deqY7t27mw8++CDtM9555x0jabdjxIgRaZ2zpxmSzN/+9re0zrngggvMQQcdZOrUqWMOOOAA079/fyuRMCZzoRg+fLhp2bKlqVOnjmndurUZPny4WbZsWdrnGGPMK6+8Yjp16mTC4bDp0KGDeeihhzIyxxhj/v73vxtJZvHixRmbsXHjRnPZZZeZtm3bmry8PHPIIYeYa6+91pSXl6d91pQpU8whhxxi6tSpY1q0aGGi0ajZsGFD2ucAe0IvklPTmmGzF8bYa0ZN64UxNAP+oRfJqWm9MKZmvsew0QtjeI8Bd9CMxNGL1PA7qeTRC/tCxhiT3nM5AAAAAAAAAAAAkuf0PS8AAAAAAAAAAED2YfMCAAAAAAAAAABkFTYvAAAAAAAAAABAVmHzAgAAAAAAAAAAZBU2LwAAAAAAAAAAQFZh8wIAAAAAAAAAAGQVNi8AAAAAAAAAAEBWYfMCAAAAAAAAAABkFTYvUKOcf/75GjZsWNXH/fr10+WXX259HTNmzFAoFNKGDRuszwYA7B+9AAB4QS8AAF7RDCD92LyAFeeff75CoZBCoZDq1Kmjww47TDfddJMqKioyOveFF17QzTff7Olr+eEOAP6jFwAAL+gFAMArmgEEVy2/FwB3/PKXv9Tf/vY3lZeX6/XXX1c0GlXt2rVVXFxc7eu2b9+uOnXqpGVm48aN0/I8AAB76AUAwAt6AQDwimYAwcSZF7AmHA6rRYsWOuigg/S73/1OAwYM0Msvv1x1Wt2tt96qVq1a6YgjjpAkrVixQmeccYYaNmyoxo0b66STTtIXX3xR9XyVlZUaM2aMGjZsqCZNmujqq6+WMabazJ+eoldeXq5rrrlGBx54oMLhsA477DD99a9/1RdffKETTjhBktSoUSOFQiGdf/75kqR4PK6SkhIdfPDBqlu3roqKivTcc89Vm/P666+rffv2qlu3rk444YRq6wQAJIZeAAC8oBcAAK9oBhBMbF7AN3Xr1tX27dslSdOnT9fixYs1bdo0vfrqq9qxY4cGDRqkBg0aaNasWXrvvfdUv359/fKXv6z6nj/+8Y+aPHmyHnnkEc2ePVvr16/X1KlT9znzvPPO09NPP6377rtPixYt0oMPPqj69evrwAMP1PPPPy9JWrx4sVavXq0///nPkqSSkhI99thjmjRpkj755BNdccUVOvfcc/Xuu+9K+jFop5xyioYMGaKFCxfqt7/9rcaNG5epf2wA4Bx6AQDwgl4AALyiGUBAGMCCESNGmJNOOskYY0w8HjfTpk0z4XDYXHXVVWbEiBGmefPmpry8vOrrH3/8cXPEEUeYeDxe9Vh5ebmpW7eu+fvf/26MMaZly5bmzjvvrPr8jh07TJs2barmGGNM3759zWWXXWaMMWbx4sVGkpk2bdoe1/jOO+8YSeb777+vemzbtm0mPz/fvP/++9W+9je/+Y0566yzjDHGFBcXm0gkUu3z11xzzW7PBQDYP3oBAPCCXgAAvKIZQHBxzwtY8+qrr6p+/frasWOH4vG4zj77bN14442KRqPq3LlztWsKfvzxx1q2bJkaNGhQ7Tm2bdumzz77TGVlZVq9erV69OhR9blatWqpW7duu52mt9PChQuVm5urvn37el7zsmXLtHXrVv3iF7+o9vj27dt19NFHS5IWLVpUbR2S1LNnT88zAADV0QsAgBf0AgDgFc0AgonNC1hzwgkn6IEHHlCdOnXUqlUr1ar13//86tWrV+1rN2/erK5du+rJJ5/c7XkOOOCApObXrVs34e/ZvHmzJOm1115T69atq30uHA4ntQ4AwL7RCwCAF/QCAOAVzQCCic0LWFOvXj0ddthhnr72mGOO0ZQpU9SsWTMVFBTs8Wtatmypf/7zn+rTp48kqaKiQvPnz9cxxxyzx6/v3Lmz4vG43n33XQ0YMGC3z+/cZa+srKx6LBKJKBwO66uvvtrr7njHjh318ssvV3vsgw8+2P+LBADsEb0AAHhBLwAAXtEMIJi4YTey0jnnnKOmTZvqpJNO0qxZs7R8+XLNmDFDl156qb7++mtJ0mWXXabbb79dL774oj799FP9/ve/14YNG/b6nO3atdOIESN0wQUX6MUXX6x6zmeffVaSdNBBBykUCunVV1/Vt99+q82bN6tBgwa66qqrdMUVV+jRRx/VZ599pgULFuh///d/9eijj0qSLrnkEi1dulRjx47V4sWL9dRTT2ny5MmZ/kcEABC9AAB4Qy8AAF7RDCB7sHmBrJSfn6+ZM2eqbdu2OuWUU9SxY0f95je/0bZt26p2va+88kr9+te/1ogRI9SzZ081aNBAJ5988j6f94EHHtBpp52m3//+9+rQoYMuvPBCbdmyRZLUunVrTZgwQePGjVPz5s01atQoSdLNN9+s66+/XiUlJerYsaN++ctf6rXXXtPBBx8sSWrbtq2ef/55vfjiiyoqKtKkSZN02223ZfCfDgBgJ3oBAPCCXgAAvKIZQPYImb3dSQYAAAAAAAAAAMAHnHkBAAAAAAAAAACyCpsXAAAAAAAAAAAgq7B5AQAAAAAAAAAAsgqbFwAAAAAAAAAAIKuweQEAAAAAAAAAALIKmxcAAAAAAAAAACCrsHkBAAAAAAAAAACyCpsXAAAAAAAAAAAgq7B5AQAAAAAAAAAAsgqbFwAAAAAAAAAAIKuweQEAAAAAAAAAALIKmxcAAAAAAAAAACCrsHkBAAAAAAAAAACyCpsXAAAAAAAAAAAgq7B5AQAAAAAAAAAAsgqbFwAAAAAAAAAAIKuweQEAAAAAAAAAALIKmxew5vzzz1e7du38XoY1M2bMUCgU0nPPPef3UgAgcGgGAMALegEA8IJeAMHE5gUUCoU8HTNmzPB7qdXs/EG8t+OZZ57xe4kp2dfr++CDD/xeHgBH0YzstmDBAg0dOlSNGzdWfn6+OnXqpPvuu8/vZQFwEL3ITueff/4+X9/KlSv9XiIAx9CL7LV06VKdeeaZatOmjfLz89WhQwfddNNN2rp1q99Lg0Nq+b0A+O/xxx+v9vFjjz2madOm7fZ4x44dU5rz8MMPKx6Pp/Qce3LppZfq2GOP3e3xnj17pn2WH/b0+g477DCfVgPAdTQje7311lsaMmSIjj76aF1//fWqX7++PvvsM3399dd+Lw2Ag+hFdrr44os1YMCAao8ZY3TJJZeoXbt2at26tU8rA+AqepGdVqxYoe7du6uwsFCjRo1S48aNNWfOHI0fP17z58/XSy+95PcS4Qg2L6Bzzz232scffPCBpk2bttvjP7V161bl5+d7nlO7du2k1rc/vXv31mmnnZaR584GNf31AQgWmpGdNm7cqPPOO08nnniinnvuOeXkcHItAH/Ri+zUs2fP3X6hNnv2bG3dulXnnHOOT6sC4DJ6kZ0ef/xxbdiwQbNnz9aRRx4pSbrooosUj8f12GOP6fvvv1ejRo18XiVcwDtbeNKvXz916tRJ8+fPV58+fZSfn68//OEPkqSXXnpJJ554olq1aqVwOKxDDz1UN998syorK6s9x0+vL/jFF18oFArp7rvv1kMPPaRDDz1U4XBYxx57rD788MO0rj8UCmnUqFF68skndcQRRygvL09du3bVzJkzd/vajz76SIMHD1ZBQYHq16+v/v377/EyTRs2bNAVV1yhdu3aKRwOq02bNjrvvPO0bt26al8Xj8d16623qk2bNsrLy1P//v21bNmyhNa/adMmVVRUJPaiAcAnNMN+M5566imtXbtWt956q3JycrRly5aM/M0yAEgneuHve4ydnnrqKYVCIZ199tlJfT8AZBq9sN+LjRs3SpKaN29e7fGWLVsqJydHderUSeQfAZA0zryAZ999950GDx6sM888U+eee27VD7DJkyerfv36GjNmjOrXr6+3335bN9xwgzZu3Ki77rprv8/71FNPadOmTbr44osVCoV055136pRTTtHnn3/uaWd806ZNu/1wlqQmTZooFApVffzuu+9qypQpuvTSSxUOh3X//ffrl7/8pebOnatOnTpJkj755BP17t1bBQUFuvrqq1W7dm09+OCD6tevn95991316NFDkrR582b17t1bixYt0gUXXKBjjjlG69at08svv6yvv/5aTZs2rZp7++23KycnR1dddZXKysp055136pxzztE///nP/b42SRo5cqQ2b96s3Nxc9e7dW3fddZe6devm6XsBwC80w24z/vGPf6igoEArV67UsGHDtGTJEtWrV0+//vWv9ac//Ul5eXn7/WcDAH6gF/68x9hpx44devbZZ9WrVy+nbmQLIHjohd1e9OvXT3fccYd+85vfaMKECWrSpInef/99PfDAA7r00ktVr169/f6zAdLCAD8RjUbNT//T6Nu3r5FkJk2atNvXb926dbfHLr74YpOfn2+2bdtW9diIESPMQQcdVPXx8uXLjSTTpEkTs379+qrHX3rpJSPJvPLKK/tc5zvvvGMk7fVYvXp11dfufGzevHlVj3355ZcmLy/PnHzyyVWPDRs2zNSpU8d89tlnVY+tWrXKNGjQwPTp06fqsRtuuMFIMi+88MJu64rH49XW17FjR1NeXl71+T//+c9Gkvn3v/+9z9f33nvvmVNPPdX89a9/NS+99JIpKSkxTZo0MXl5eWbBggX7/F4AsIVmZEczunTpYvLz801+fr4ZPXq0ef75583o0aONJHPmmWfu83sBwAZ6kR29+KlXXnnFSDL3339/Qt8HAJlCL7KnFzfffLOpW7dutdd17bXX7vf7gHTizAt4Fg6HNXLkyN0er1u3btX/v2nTJpWXl6t379568MEH9emnn6qoqGifzzt8+PBq18nr3bu3JOnzzz/3tK4bbrih6nt21bhx42of9+zZU127dq36uG3btjrppJP0yiuvVJ1O+NZbb2nYsGE65JBDqr6uZcuWOvvss/Xwww9r48aNKigo0PPPP6+ioiKdfPLJu83ddWdd+vHMiV1Pp9v19e3cXd+TXr16qVevXlUfDx06VKeddpq6dOmi4uJivfnmm3v9XgDwG82w24zNmzdr69atuuSSS3TfffdJkk455RRt375dDz74oG666SYdfvjhe/1+APALvbDbi5966qmnVLt2bZ1xxhmevwcA/EAv7PeiXbt26tOnj0499VQ1adJEr732mm677Ta1aNFCo0aN2uf3AunC5gU8a9269R6vaffJJ5/ouuuu09tvv111TbydysrK9vu8bdu2rfbxzmh8//33ntbVuXNnDRgwYL9ft6df2rRv315bt27Vt99+K+nHGz4dccQRu31dx44dFY/HtWLFCh155JH67LPPdOqpp3paX6qvb1eHHXaYTjrpJL3wwguqrKxUbm5uws8BADbQDLvN2Pmm7ayzzqr2+Nlnn60HH3xQc+bMYfMCQFaiF/69x9i8ebNeeuklDRo0SE2aNPH8fQDgB3phtxfPPPOMLrroIi1ZskRt2rSR9ONfjorH47rmmmt01lln0Q5YweYFPNt1N3unDRs2qG/fviooKNBNN92kQw89VHl5eVqwYIGuueYaTzcL3dsv4I0xKa85G6T79R144IHavn27tmzZooKCglSWBgAZQzOSk+zra9WqlT755JPdbqjXrFkzScltmAOADfQiOel4fS+++KK2bt2qc845J13LAoCMoRfJSfb13X///Tr66KOrNi52Gjp0qCZPnqyPPvrI06YNkCo2L5CSGTNm6LvvvtMLL7ygPn36VD2+fPlyH1e1Z0uXLt3tsSVLlig/P18HHHCAJCk/P1+LFy/e7es+/fRT5eTk6MADD5QkHXroofrPf/6T2QXvxeeff668vDzVr1/fl/kAkCyakTldu3bVtGnTtHLlymp/W2vVqlWSVLVmAAgCemHHk08+qfr162vo0KHWZgJAOtGLzFm7dm21y2nttGPHDklSRUVFRucDO+X4vQAE284d3F13bLdv367777/fryXt1Zw5c7RgwYKqj1esWKGXXnpJAwcOVG5urnJzczVw4EC99NJL+uKLL6q+bu3atXrqqad0/PHHV53pcOqpp+rjjz/W1KlTd5uTrt35nacN7urjjz/Wyy+/rIEDByonh//5AggWmpG5Zuy8Vvlf//rXao//5S9/Ua1atdSvX7+0zAEAG+hF5nqx07fffqt//OMfOvnkk5Wfn5/W5wYAW+hF5nrRvn17ffTRR1qyZEm1x59++mnl5OSoS5cuaZkD7A9nXiAlvXr1UqNGjTRixAhdeumlCoVCevzxx62eXjdr1ixt27Ztt8e7dOlS7Ydpp06dNGjQIF166aUKh8NVMZswYULV19xyyy2aNm2ajj/+eP3+979XrVq19OCDD6q8vFx33nln1deNHTtWzz33nE4//XRdcMEF6tq1q9avX6+XX35ZkyZN2u8NobwYPny46tatq169eqlZs2YqLS3VQw89pPz8fN1+++0pPz8A2EYzMteMo48+WhdccIEeeeQRVVRUqG/fvpoxY4b+7//+T8XFxWrVqlXKMwDAFnqRuV7sNGXKFFVUVHDJKACBRi8y14uxY8fqjTfeUO/evTVq1Cg1adJEr776qt544w399re/5f0FrGHzAinZ+cPryiuv1HXXXadGjRrp3HPPVf/+/TVo0CAra7jvvvv2+Pj48eOrhaJv377q2bOnJkyYoK+++kqRSESTJ0+u9jVHHnmkZs2apeLiYpWUlCgej6tHjx564okn1KNHj6qvq1+/vmbNmqXx48dr6tSpevTRR9WsWTP1799/t+sBJmvYsGF68skndc8992jjxo064IADdMopp2j8+PE67LDD0jIDAGyiGZlrhiRNmjRJbdu21d/+9jdNnTpVBx10kP70pz/p8ssvT9sMALCBXmS2F9KPl4xq1qwZ1ysHEGj0InO96NOnj95//33deOONuv/++/Xdd9/p4IMP1q233qqrr746LTMAL0KmptyBBtiHUCikaDSqiRMn+r0UAECWoxkAAC/oBQDAC3oBJI+L5gMAAAAAAAAAgKzC5gUAAAAAAAAAAMgqbF4AAAAAAAAAAICswj0vAAAAAAAAAABAVuHMCwAAAAAAAAAAkFXYvAAAAAAAAAAAAFmFzQsAAAAAAAAAAJBVavm9gEyo3PaWtVm16p5oZc7Yg6+3Mueu5TdbmSNJbRr2szLn6w0zrMyRpOsOvcHKnPvWTLEy55QGp1uZI0n/3rbaypx5309K+Tkq4zOS/t7cnH4pz0d62WpG51aPWpnTPnSwlTmS9NL6O6zNsqFjozOszbqw5RFW5owptdf1XzUca2XOdlNpZc60Dan/951KLySakW1s9aJx0zFW5kjSwLxTrMx57rsSK3NsKqhn5+f4GYV2/jz+bNn/WZkjScfXHmplzuwdL1uZI0llm/+T0vfTi5rFVi9s/T5Kqpm/v6lpTmp8jbVZtt4HDii082eilTlfW5kjSaXrn0zp+13sBWdeAAAAAAAAAACArFIjz7wAgIyKx5P/XraMAcAdqfRCohkA4Ap6AQDwwsFesHkBAIlKNRYAADfQCwCAF/QCAOCFg70I4H4LAPgsHk/6iMViikQiikQiisVifr8SAEAmpdALmgEADqEXAAAvHOwFZ14AQKKMSfpbo9GootFoGhcDAMhaKfRCohkA4Ax6AQDwwsFesHkBAIly8DQ9AEAS6AUAwAt6AQDwwsFecNkoAAAAAAAAAACQVTjzAgAS5eBONwAgCfQCAOAFvQAAeOFgL9i8AIBEORgLAEAS6AUAwAt6AQDwwsFecNkoAEhUPJ78AQBwRyq9oBkA4A56AQDwIsVexGIxRSIRRSIRxWIxv1+NJ2xeAECiHAsFACBJDr65AAAkgV4AALxIsRfRaFSlpaUqLS1VNBr1+9V4wmWjAMCiaDQamEAAAPxFMwAAXtALAEBN5evmxbp16/TII49ozpw5WrNmjSSpRYsW6tWrl84//3wdcMABfi4PAPYoZDg12w80A0DQ0At/0AsAQUMv/EEvAASNi73w7bJRH374odq3b6/77rtPhYWF6tOnj/r06aPCwkLdd9996tChg+bNm+fX8gBg77gerXU0A0AgcQ1z6+gFgECiF9bRCwCB5GAvfDvzYvTo0Tr99NM1adIkhUKhap8zxuiSSy7R6NGjNWfOnH0+T3l5ucrLy6s9VstsVzhcJ+1rBgBJUtz4vQLn0AwAgUQvrKMXAAKJXlhHLwAEkoO98O3Mi48//lhXXHHFbpGQpFAopCuuuEILFy7c7/OUlJSosLCw2nH7XVMysGIA+P8c2+XOBjQDQCA5+Dej/EYvAAQSvbCOXgAIJAd74dvmRYsWLTR37ty9fn7u3Llq3rz5fp+nuLhYZWVl1Y5xY4enc6kAAJ/RDACAF/QCAOAFvQCAYPDtslFXXXWVLrroIs2fP1/9+/evisLatWs1ffp0Pfzww7r77rv3+zzhcFjhcLjaY5XbOD0PQAYFdLc6yGgGgECiF9bRCwCBRC+soxcAAinFXsRiMcViMUlSNBpVNBpNx6oyyrfNi2g0qqZNm+pPf/qT7r//flVWVkqScnNz1bVrV02ePFlnnHGGX8sDgL0zycciiKHIBjQDQCCl0AuJZiSDXgAIJHphHb0AEEgp9iKIjfBt80KShg8fruHDh2vHjh1at26dJKlp06aqXbu2n8sCgH1LYac7iKHIFjQDQOCk+DejaEZy6AWAwKEXvqAXAALHwTP1fN282Kl27dpq2bKl38sAAG/ixu8VOI1mAAgMeuEregEgMOiFr+gFgMBwsBdZsXkBAIHi4E43ACAJ9AIA4AW9AAB44WAvcvxeAAAAAAAAAAAAwK448wIAEuXgTjcAIAn0AgDgBb0AAHjhYC/YvACABIUcjAUAIHH0AgDgBb0AAHjhYi/YvACARBn3bpAEAEgCvQAAeEEvAABeONgLNi8AIFEO7nQDAJJALwAAXtALAIAXDvaCG3YDAAAAAAAAAICswuYFACQqHk/6iMViikQiikQiisVifr8SAEAmpdALmgEADqEXAAAvHOwFl40CgETFk7/GYDQaVTQaTeNiAABZK4VeSDQDAJxBLwAAXjjYCzYvACBRDl5jEACQBHoBAPCCXgAAvHCwFzVy86JW3ROtzaqonGZlTrTtu1bmFNQ7wsocSeqa08PKnK81w8ocSZr83Uwrc46vPdTKnH+WL7EyR5IWbXjW0qRJqT+Fg7GoyWw1w1YvejR5xsocyV4zDq99vJU587//q5U5knSP6WdlTsdGZ1iZI0lrzXorc5ZWzLYyR7oj9aegFzVKTeuFJLVrcquVOW0a9rMy5+sNM6zMkaSNWxZbmfOXLbdYmXNS42uszJGkJWa5lTm2/h2lBb2oUWpiL27pMMvKnNnmGCtzJKlcO6zMmVX2v1bmvFP+opU5knRx6+uszDmwXsjKnC82t7cyJy0c7EWN3LwAgIwyqZ2mBwBwBL0AAHhBLwAAXjjYC27YDQAAAAAAAAAAsgpnXgBAohw8TQ8AkAR6AQDwgl4AALxwsBdsXgBAouLunaYHAEgCvQAAeEEvAABeONgLNi8AIFEO7nQDAJJALwAAXtALAIAXDvaCzQsASJSDsQAAJIFeAAC8oBcAAC8c7AU37AYAAAAAAAAAAFmFMy8AIFEOXmMQAJAEegEA8IJeAAC8cLAXbF4AQKKMe6fpAQCSQC8AAF7QCwCAFw72gs0LAEiUgzvdAIAk0AsAgBf0AgDghYO94J4XAJCoeDzpIxaLKRKJKBKJKBaL+f1KAACZlEIvXLwZHwA4i14AALxIsRdB/J0UmxcAYFE0GlVpaalKS0sVjUb9Xg4AIIsF8c0FAMA+egEA8CKIv5PislEAkCgHT9MDACQhxV5Eo9HAvKkAAKSAXgAAvHDw91FZfebFihUrdMEFF+zza8rLy7Vx48Zqh+Tev0gAFnFKd9bx0guJZgCwjMuAZCXeYwDIOvQiK9ELAFnHwV5k9ebF+vXr9eijj+7za0pKSlRYWFjtkIL5LwNAQMRN8gcywksvJJoBwLJUekEzMob3GACyDr3ISvQCQNZxsBe+Xjbq5Zdf3ufnP//88/0+R3FxscaMGVPtscLCximtCwD2yfCHUdvS0QuJZgCwjF74gvcYAAKHXviCXgAIHAd74evmxbBhwxQKhWTM3nd+QqHQPp8jHA4rHA7/9LvSsDoA2IuA7lYHWTp6IdEMAJbRC1/wHgNA4NALX9ALAIHjYC98vWxUy5Yt9cILLygej+/xWLBggZ/LAwBkCXoBAPCKZgAAvKAXAJD9fN286Nq1q+bPn7/Xz+9vBxwAfOHY9QWzAb0AEEgOXpM2G9AMAIFDL3xBLwAEjoO98PWyUWPHjtWWLVv2+vnDDjtM77zzjsUVAYAHcfeuMeg3egEgkOiFL2gGgMChF76gFwACx8Fe+Lp50bt3731+vl69eurbt6+l1QCARwHdrQ4yegEgkOiFL2gGgMChF76gFwACx8Fe+Lp5AQCB5GAsAABJoBcAAC/oBQDACwd74es9LwAAAAAAAAAAAH6KMy8AIFEOXmMQAJAEegEA8IJeAAC8cLAXbF4AQKKMe6fpAQCSQC8AAF7QCwCAFw72gs0LAEiUg9cYBAAkgV4AALygFwAALxzsBZsXAJAoB2MBAEgCvQAAeEEvAABeONgLbtgNAAAAAAAAAACyCmdeAECiHLxBEgAgCfQCAOAFvQAAeOFgLzjzAgASFTfJH5Zt2LBB3bp101FHHaVOnTrp4Ycftr4GAHBWKr2w3Ax6AQA+ClAvJJoBAL5xsBc18syLNg37WZsVbfuulTmxZT2tzHmt5WwrcySpdqjm7Z110bFW5hTWrm1ljirsjJGkgnpH2BuWqgBdY7BBgwaaOXOm8vPztWXLFnXq1EmnnHKKmjRp4vfSskbXhr+xMmdi55lW5vxz1clW5kjS+M6trcz56LsfrMyx+XOouQ61MqdvQSsrcyRpS4Wdn41rt7S0Mict6EWN0rHRGVbm3HTELCtzJOmL1WOtzLm6wwdW5tyzYYaVOTVRzwPqWJt1wKb2Vuas3M77i0yhGftm6/1FrdxfWJkjSRU/vGZlzhXt7fRCkv6xebG1WTZs3GLv9VQW2pkz9ZtVVuas1WdW5qSFg72okZsXAJBRAYpFbm6u8vPzJUnl5eUyxsiY4KwfAAKNXgAAvAhQLySaAQC+cbAXNe+vvgNAhpm4SfpI1MyZMzVkyBC1atVKoVBIL7744m5fE4vF1K5dO+Xl5alHjx6aO3dutc9v2LBBRUVFatOmjcaOHaumTZsm+9IBAAlIpReJNoNeAEBw2eyFRDMAIKhc7AWbFwCQxbZs2aKioiLFYrE9fn7KlCkaM2aMxo8frwULFqioqEiDBg3SN998U/U1DRs21Mcff6zly5frqaee0tq1a20tHwBgCb0AAHhFMwAAXmRDL9i8AIBEGZP0UV5ero0bN1Y7ysvL9zpq8ODBuuWWW3TyyXu+j8E999yjCy+8UCNHjlQkEtGkSZOUn5+vRx55ZLevbd68uYqKijRrlr1raQOA01LoRaLNoBcAEGAWeyHRDAAILAd7weYFACQqbpI+SkpKVFhYWO0oKSlJahnbt2/X/PnzNWDAgKrHcnJyNGDAAM2ZM0eStHbtWm3atEmSVFZWppkzZ+qIIwJ080IACLIUepHOZtALAMhyWdILiWYAQFZzsBfcsBsAEpXCDZKKi4s1ZsyYao+Fw+GknmvdunWqrKxU8+bNqz3evHlzffrpp5KkL7/8UhdddFHVTZFGjx6tzp07J7d4AEBiUryhXrqaQS8AIMtlSS8kmgEAWc3BXrB5AQCJSiEW4XA46TAko3v37lq4cKG1eQCAXaT45sJmM+gFAPgoQL2QaAYA+MbBXnDZKAAIqKZNmyo3N3e3mx2tXbtWLVq08GlVAIBsQy8AAF7RDACAF7Z6weYFACQqhesLxmIxRSIRRSIRxWKxlJZRp04dde3aVdOnT//v0uJxTZ8+XT179kz1VQIAUpXiNWnT1Qx6AQBZLkt6IdEMAMhqDvaCy0YBQIJMCqfpRUdHFY1GPX/95s2btWzZsqqPly9froULF6px48Zq27atxowZoxEjRqhbt27q3r277r33Xm3ZskUjR45Meo0AgPRIpRdSYs2gFwAQXDZ7IdEMAAgqF3vB5gUAJCrFWCRi3rx5OuGEE6o+3nljpREjRmjy5MkaPny4vv32W91www1as2aNjjrqKL355pu73TAJAOADegEA8MJiLySaAQCB5WAv2LwAgERZjEW/fv1kzL7njRo1SqNGjbK0IgCAZ/QCAOCF5V9G0QwACCgHe8E9LwAgUVlyfUEAQJbLomvSAgCyGL0AAHjhYC9837z44YcfNHv2bJWWlu72uW3btumxxx7zYVUAkBnRaFSlpaUqLS1N6DqDoBcA3EMzkkMvALiGXiSHXgBwTRB74evmxZIlS9SxY0f16dNHnTt3Vt++fbV69eqqz5eVle33Bh/l5eXauHFjtcOYeKaXDsBlxiR/ICnp6IW052bETWUmlw7AZan0gmYkhV4ACCR6YR29ABBIDvbC182La665Rp06ddI333yjxYsXq0GDBjruuOP01VdfeX6OkpISFRYWVjs2bluewVUDcJ2JJ38gOenohbTnZqzZ9lGGVg3Adan0gmYkJ5O9+G7bJxlaNQDX0Qv7eH8BIIhc7IWvmxfvv/++SkpK1LRpUx122GF65ZVXNGjQIPXu3Vuff/65p+coLi5WWVlZtaMg7+AMrxyA01K5xiCSko5eSHtuRou8ozO4cgBOS/GatEhcJnvRJO/IDK4cgNPohXW8vwAQSA72wtfNix9++EG1atWq+jgUCumBBx7QkCFD1LdvXy1ZsmS/zxEOh1VQUFDtCIV8v5UHgJrMsZsjZYN09ELaczNyQrmZWjYA1zl4Qz2/0QsAgUQvrKMXAALJwV7U2v+XZE6HDh00b948dezYsdrjEydOlCQNHTrUj2UBQMZEo9HA3BQpm9ALAC6iGYmjFwBcRC8SRy8AuCiIvfD1FIWTTz5ZTz/99B4/N3HiRJ111lkyAb2ZCICay7XrC2YDegEgiFy8Jq3f6AWAIKIX9tELAEHkYi983bwoLi7W66+/vtfP33///YrHA/pPFkDN5dj1BbMBvQAQSA5ek9Zv9AJAINEL6+gFgEBysBe+XjYKAAKJP8MCALygFwAAL+gFAMALB3vBna0BIEEmbpI+gnhzJABAclLphQno34wCACSOXgAAvEi1F0H8nRSbFwBgUTQaVWlpqUpLSwN3kyQAgF1BfHMBALCPXgAAvAji76S4bBQAJMrB0/QAAElIsRfRaDQwbyoAACmgFwAALxz8fRSbFwCQKM7MBgB4QS8AAF7QCwCAFw72gs0LAEgQ15UFAHhBLwAAXtALAIAXLvaCzQsASJSDp+kBAJJALwAAXtALAIAXDvaCzQsASJBxMBYAgMTRCwCAF/QCAOCFi73I8XsBAOCSWCymSCSiSCSiWCzm93IAAFmMZgAAvKAXAAAvgtgLzrwAgESlsNMdjUYVjUbTtxYAQPZK8W9G0QwAcAS9AAB44WAv2LxIUUGdkJU5s/tPtzLni9VjrcyRpHYt77Iy59K211uZI0mTv3vWypxz659hZc6YlodbmSNJ875rb21Wqlw8Ta8mW7pjtpU5j6863sqcsqJ/WpkjSRP+8zMrc2rVPdHKnEeP+oOVOZI0YuFtVuZ0q3edlTmSdHRjO3Oa5vWxMygN6EXNsuh7O3/Oe838xsocSdp+5AdW5tz5qZ1e3FPXyhhJ0g2H3WBlzk3LbrIyZ1vczvtaSWqVb2fWiTtOtTInHegFst1Nne28x/jTsl5W5khSrfDNVuYMKBxjZc4/yu6xMkeSNpRXWplzdH5LK3O27GhuZU46uNgLNi8AIFEOxgIAkAR6AQDwgl4AALxwsBdsXgBAgozxewUAgCCgFwAAL+gFAMALF3vBDbsBAAAA4P+xd+/xUpX14se/w20DInghBVTULC+TiiXqIS94IS91zMsptTSJOpY1mklqkCl5xdLMyjG7/BSzc1JPqZWaRw9lamEEpKdESZLUFFEzQDC3smf9/vC4cwvCXNfM7PV+91p/7Jm91/MMKR/3PLOeBQAAtBRXXgBUKIt7DAJQOb0AoBx6AUA5stgLixcAlcpgLACogl4AUA69AKAcGeyFbaMAKpSUqj+KxWLk8/nI5/NRLBab/VIAaKBaeqEZANmhFwCUI4u9cOUFQIVquUFSoVCIQqFQv8kA0LJqvaGeZgBkg14AUI4s9sLiBUClSrlmzwCAdqAXAJRDLwAoRwZ7YdsoAAAAAACgpbjyAqBCSQZvkARA5fQCgHLoBQDlyGIvLF4AVChJsneZHgCV0wsAyqEXAJQji72weAFQoSyudANQOb0AoBx6AUA5stgLixcAFcpiLAConF4AUA69AKAcWexF0xcvHnroobjvvvti3Lhxsf3228fDDz8cX//616OzszOOO+642H///df6852dndHZ2dnjsSQpRS7nXuQAvUmtvYjQDIAsaFQvIpKIyN6l+gC9VaN6UUq6ok+ub6OmDZApTX235vbbb49ddtklTjvttHjnO98Zt99+e+yzzz6xcOHCeOyxx+LAAw+MX/ziF2s9x/Tp02PYsGE9juUvLUrpFQBZlCS5qg+qU49eRKy5GZ2vPJfCKwCyqJZeaEZ1GtmLiAx+1A1IhV6kr5G9ePql36fwCoAsymIvmrp4ce6558bpp58ef/vb3+Lqq6+OD3/4w3HCCSfEnXfeGTNnzozTTz89LrroorWeY+rUqbFs2bIex9CBW6f0CoAsSkq5qo9isRj5fD7y+XwUi8Vmv5S2UY9eRKy5GR39h6fwCoAsqqUXmlGdRvaiyb86Ab2YXqSvkb0YMfCdKbwCIIuy2Iumbhv14IMPxve///2IiDjqqKPiIx/5SHzgAx/ofv7YY4+Nq6++eq3n6OjoiI6Ojh6P2f4DaKQkqf5nC4VCFAqF+k0mI+rRiwjNANJVSy8iNKMajeyFLaOARtGL9DWyF7aMAholi71o+j0vcrlXfwno06dPDBw48P8uyX7V+uuv/3+fcgJoHe16qV270wug3ehFc+gF0G70ojn0Amg3WexFUz9uutVWW8UjjzzS/fWsWbNi9OjR3V8//vjjMXLkyGZMDYAWohcAlEMvACiHXgC0h6ZeefGpT30qurq6ur/ecccdezz/85//PPbff/+0pwWwVkkpeyvdzaYXQDvSi/TpBdCO9CJ9egG0oyz2oqmLFyeeeOJan7/wwgtTmglA+WrdY5DK6QXQjvQifXoBtCO9SJ9eAO0oi71o+j0vANpNFvcYBKByegFAOfQCgHJksRcWLwAqVMrgZXoAVE4vACiHXgBQjiz2wuIFQIWyeJkeAJXTCwDKoRcAlCOLvejT7AkAAAAAAAC8nisvACqUxT0GAaicXgBQDr0AoBxZ7IXFC4AKZTEWAFROLwAoh14AUI4s9sLiBUCFShmMBQCV0wsAyqEXAJQji72weAFQoaSUvVgAUDm9AKAcegFAObLYCzfsBgAAAACAXqxYLEY+n498Ph/FYrHZ0ymLKy9q9PvnV6YyzoN/75vKOPsOel8q40RErHrxllTG6Tf4X1MZJyLiQ2/5Qirj/HLlglTG+dMLm6cyTkTEVusNTm2sWiVJ9T9bLBa7A1EoFKJQKNRpVrS6nQaOTGWc655L5++HiIhpg85LZZy0erHRWz6XyjgREedte1Yq43z7mXtSGSci4odLF6cyzrlbHpXKOPVQSy8iNKPVDF1vu1TGOXyTUamMExFxx5KlqYzTL6XfMdLqRUR6v2N8evN0erH85Rr/wqrAr5Y9lco4R6T471Kt9IJWN//vr6QyTr+OQ1IZJ6L3vSd1+tbp9CIi4od/T+d3jOXL0vn94uodjkhlnHqotRft2AiLFwAVqmWPwXYMBQDVqXVPWs0AyAa9AKAc7nkBwDolGYwFAJXTCwDKoRcAlCOLvbB4AVChLK50A1A5vQCgHHoBQDmy2As37AYAAAAAAFqKKy8AKpTFy/QAqJxeAFAOvQCgHFnshcULgAqVmj0BANqCXgBQDr0AoBxZ7IXFC4AKZXGlG4DK6QUA5dALAMqRxV5YvACoUBZvkARA5fQCgHLoBQDlyGIvLF4AVCiLK90AVE4vACiHXgBQjiz2ok+zJwAAAAAAAPB6rrwAqFApafYMAGgHegFAOfQCgHJksRctt3iRJEnkctm7BAZoH1m8TK8V6QXQ6vSidWgG0Mr0onXoBdDKstiLlts2qqOjIx566KFmTwPgTZUiV/VB/egF0Opq6YVm1JdmAK1ML1qHXgCtLIu9aNqVF5MnT17j411dXXHRRRfFxhtvHBERl156aZrTAlinJIOX6TWTXgDtSi/SpxlAO9KL9OkF0I6y2IumLV5cdtllMWbMmNhggw16PJ4kSTz00EOx3nrrlXWpXmdnZ3R2dr7hHKXI5VruohIAqlCvXkRoBkBv53cMAMrRyF6Ukq7ok+tbz+kCZFbTFi8uvPDC+M53vhNf/epXY//99+9+vH///jFjxozI5/NlnWf69Olxzjnn9Hhs/Y6tY9igbeo6X4DXlDK4x2Az1asXEWtuxoD+b4mBAzap23wBXqMX6Wvk7xh6ATSKXqSvkb0Y2bFrjBo0tq7zBYjIZi+a9tGhKVOmxPXXXx+f+tSn4rTTTotXXnmlqvNMnTo1li1b1uMYOnDrOs8W4J+ytr9gs9WrFxFrbkZH/+F1nC3AP2VxT9pma+TvGHoBNIpepK+RvRgx8J11ni3Aq7LYi6oWL+6555447rjjYty4cfHkk09GRMS1114b9957b0Xn2W233WLu3Lnx7LPPxtixY+OPf/xj2Vt/vKajoyOGDh3a43A5N9BISVL9kbYnnngi9t1338jn87HzzjvHf/3Xf6U6fiv1IkIzgHTV0ou0m9HsXkS0VjP0AkhTO/UiovnNaPVe2DIKaJQs9qLi/wL/8Y9/HAcddFAMGjQofv/733fv7bds2bK48MILK57AkCFD4pprrompU6fGhAkToqurq+JzAKSplOSqPtLWr1+/uOyyy2L+/Plxxx13xGc/+9lYuXJlKmPrBZB1tfQi7WY0sxcRmgFkWzv1IsLvGADNksVeVLx4cf7558eVV14Z3/3ud6N///7dj++5554xb968Sk/X7Zhjjok5c+bEjTfeGFtuuWXV5wFotCRyVR9pGzlyZOyyyy4RETFixIgYPnx4PP/886mMrRdA1tXSi7Sb0cxeRGgGkG3t1IsIv2MANEsWe1Hx4sWCBQtin332We3xYcOGxdKlSys9XQ+bb755HHbYYbHeeuvVdB6A3uLuu++OQw89NEaNGhW5XC5uvvnm1b6nWCzGVlttFQMHDow99tgjZs+evcZzzZ07N7q6umKLLbZo8KxfpRcA6WnnXkRoBkCa2rkZegGQnlboRcWLFyNGjIiFCxeu9vi9994bb33rWys9HUDbKSXVH5VauXJljBkzJorF4hqfv/7662Py5Mkxbdq0mDdvXowZMyYOOuigeOaZZ3p83/PPPx/HH398fOc736nmJVdFL4Csq6UXlTajnXsRoRlAtqXZi4j2boZeAFmWxV70q/QHTjjhhDjllFPiqquuilwuF0899VTMmjUrTjvttDjrrLMqngBAu6lln8DOzs7ufVlf09HRER0dHWv8/kMOOSQOOeSQNz3fpZdeGieccEJMmjQpIiKuvPLKuPXWW+Oqq66KKVOmdI95+OGHx5QpU+Ld73531XOvlF4AWVfrvrKVNKOdexGhGUC2pdmLiPZuhl4AWZbFXlR85cWUKVPiwx/+cBxwwAGxYsWK2GeffeLf//3f45Of/GScfPLJFU8AoN3Usr/g9OnTY9iwYT2O6dOnVzWPl19+OebOnRsTJkzofqxPnz4xYcKEmDVr1qtzTZL46Ec/Gvvvv3985CMfqcvrL5deAFlX65609WpGq/ciQjOAbGuVXkS0fjP0AsiyLPai4isvcrlcnHnmmXH66afHwoULY8WKFZHP52PIkCFVTQCg3VRzqd1rpk6dGpMnT+7x2JutcK/Lc889F11dXbHpppv2eHzTTTeNhx9+OCIifv3rX8f1118fO++8c/fehNdee23stNNOVY1ZCb0Asq6WXkTUrxmt3osIzQCyrVV6EdH6zdALIMuy2IuKFy9eM2DAgMjn89X+OEAmre1yvEbYa6+9olQqpTbemugFQHXSbEYr9CJCMwCq4XcMAMrRjr2oePFiv/32i1zuzffX+sUvflHThABaXRK17TFYL8OHD4++ffvGkiVLejy+ZMmSGDFiRJNm9U96AWSdXpRPM4Asa5VeRLR+M/QCyLIs9qLie17ssssuMWbMmO4jn8/Hyy+/HPPmzUvtsnKAZiol1R/FYjHy+Xzk8/koFos1zWPAgAGx6667xsyZM/85t1IpZs6cGePGjav1ZdZML4Csq6UX9WxGq/ciQjOAbGuVXkS0fjP0AsiyLPai4isvvva1r63x8S996UuxYsWKmicE0OpKSfUr3YVCIQqFQtnfv2LFili4cGH314sWLYr7778/Ntpooxg9enRMnjw5Jk6cGGPHjo3dd989Lrvssli5cmVMmjSp6jnWi14AWVdLLyIqa0Y79yJCM4BsS7MXEe3dDL0AsiyLvaj6nhdvdNxxx8Xuu+8el1xySb1OCdCSarw/UkXmzJkT++23X/fXr91YaeLEiTFjxow4+uij49lnn42zzz47nn766dhll13i9ttvX+2GSa1EL4Cs0IvaaQaQBWn2IqJ3NkMvgCzIYi/qtngxa9asGDhwYL1OB0BE7LvvvpEka8/TSSedFCeddFJKM6qdXgDUX2/sRYRmADRCb2yGXgDUXyv0ouLFiyOPPLLH10mSxOLFi2POnDlx1lln1W1itdg0tkltrAG5vqmMM6x//1TGuXzHL6YyTkTEMVv8OpVxVi29MZVxIiKu3GteKuPcuuiBVMY5d/u3pjJORMSDyyu+BU/T1HKZXrFY7N5XsNLL9dpNO/QiImJo/5GpjHPjC/+VyjjLVy5IZZyIiE9ulk4z+g3+11TGWbX85lTGiYg4913p9OKvS+9KZZyIiL2HnZzKOL98+uVUxjmlDueo9bJuzWitZqTVi4ufvCGVcdJ05jZnpzJOWr2ISK8ZH9lmdirj/OmVJev+pjo59C2bpTLOTc88mco4ERFn1vjzelG+duhFb/Rg6c+pjHPr7mekMk5ExEZv+Vwq46TVi6lj5qYyTppO3+yoVMb5w7L0boJ95Lq/Za2y2IuKFy+GDRvW4+s+ffrEdtttF+eee24ceOCBdZsYQKsq1fCz7RKHetALIOtq6UWEZmgGkBV6UT69ALIsi72oaPGiq6srJk2aFDvttFNsuOGGjZoTQEtLalzpzgK9ANCLcmkGkHV6UR69ALIui72oaJ+Wvn37xoEHHhhLly5t0HQAWl+phiMr9AKgtl5oBkB26EV59ALIuiz2ouJN5nfcccd49NFHGzEXgLZQSqo/skQvgKyrpReaAZAdelE+vQCyLIu9qHjx4vzzz4/TTjstbrnllli8eHEsX768xwHAmysWi5HP5yOfz3ffJKm30guA2miGZgCUQy/0AqAc7diLsu95ce6558bnPve5eO973xsREe9///sjl/vnPltJkkQul4uurq76zxKghSRR/R6D7XhzpErpBcCraulFhGZEaAaQDXqxbnoBkM1elL14cc4558SJJ54Yv/zlLxs5H4CW166X2qVFLwBepRfrphkAelEOvQDIZi/KXrxIklf/dMaPH9+wyQC0g1pXuns7vQB4lV6sm2YA6EU59AIgm70oe/EiInpckgeQVVlc6a6UXgDoRbk0A8g6vSiPXgBZl8VeVLR4se22264zFs8//3xNEwKg/ekFAOXSDADKoRcAtSkWi9036m6X+19UtHhxzjnnxLBhwxo1F4C2UMtKdzuGohp6AVD7J6M0AyAb9KI8egFkXa29aMdGVLR4ccwxx8Qmm2zSqLkAtIVa9hhsx1BUQy8Aat+TVjMAskEvyqMXQNa558Va2FsQ4FVZ3GOwEnoB8Cq9WDfNANCLcugFQDZ7UfbiRZI0/k9n5cqVccMNN8TChQtj5MiR8aEPfSg23njjtf5MZ2dndHZ29nislHRFn1zfRk4VyLBSsyfQ4lq1FxFrbkaSlCKX69OoqQIZphfr1uhm6AXQDvRi3dqpF96TAholi70o+7++S6VS3S/Py+fz3TdTeuKJJ2LHHXeMU089Ne68886YNm1a5PP5WLRo0VrPMX369Bg2bFiP4+mXfl/XeQK8XpLkqj6yoFV7EbHmZix/ad0/B1CNWnqhGdXRC6Ad6cW6tVMvvCcFNEoWe9HUjw49/PDDsWrVqoiImDp1aowaNSoee+yxmD17djz22GOx8847x5lnnrnWc0ydOjWWLVvW4xgx8J1pTB+AlNSjF6/97BubMXTg1o2ePgAp0QsAytHIXnhPCqB+Wua651mzZsWXvvSlGDZsWEREDBkyJM4555y499571/pzHR0dMXTo0B6Hy/OARirVcBSLxcjn85HP56NYLDZh9u2v2l5ErLkZtgABGqWWXmhG7fQCaBd60Vz17oX3pIBGyWIvyr7nRaO8dtOll156KUaOHNnjuc022yyeffbZZkwL4E3VcoOkQqEQhUKhfpPJEL0A2k2tN9TTjOroBdBu9KI59AJoN1nsRdMXLw444IDo169fLF++PBYsWBA77rhj93OPPfZYWTdIAkhT429HzZroBdBu9KI59AJoN3rRHHoBtJss9qKpixfTpk3r8fWQIUN6fP2zn/0s9t577zSnBLBOpTa9yVE70wugHelF+vQCaEd6kT69ANpRFnvRUosXb3TxxRenNBMAWpleAFAOvQCgHHoB0B6avm0UQLvJ4mV6AFROLwAoh14AUI4s9sLiBUCFar1BEgDZoBcAlEMvAChHFnth8QKgQqVmTwCAtqAXAJRDLwAoRxZ70afZEwBoN0lS/VEsFiOfz0c+n49isdjslwJAA9XSC80AyA69AKAcWeyFKy8AUlQoFKJQKDR7GgC0Ac0AoBx6AUA52rEXFi8AKlSKXLOnAEAb0AsAyqEXAJQji72weAFQoSSDN0gCoHJ6AUA59AKAcmSxFxYvACqUxRskAVA5vQCgHHoBQDmy2AuLFwAVKmVwpRuAyukFAOXQCwDKkcVe9MrFi3zHiNTGmt/5dCrjLFr1Qirj/PCPN6QyTkTEJzf7Yirj7LHVramMExHx28VHpjLOSYPOT2Wc/16c3l8R33vq3FTGmRZn1XyODLaiV9s5dktlnP/t/7tUxon10hkmIuLbT6bzd9HmG+ybyjhfGDM3lXEiIi6c/y+pjHPuoFSGiYiIRbk/pDLOPc/flco4EbX/860XvcuEgXulMs4fYnEq40RELIk/pzLOBX9O57/zdtjwqFTGiYg49R3pNOPax/dMZZx+g96XyjgREVv3nZrKOHOX/r9UxnnVlTX9tF70Lu9ef1Qq48xdmsowERHx5MsPpDLO+2an955UWr9jHLP1b1MZ57q/pvPfKRERFw86L5VxHug7LpVxfvS36amME1H7e1JZ7EWfZk8AAAAAAADg9XrllRcAjZTFy/QAqJxeAFAOvQCgHFnshcULgAolGYwFAJXTCwDKoRcAlCOLvbBtFECFSjUcxWIx8vl85PP5KBaLTZg9AGmppReaAZAdegFAObLYC1deAFSolsv0CoVCFAqF+k0GgJZV62XdmgGQDXoBQDmy2AtXXgAAAAAAAC3FlRcAFcrgFoMAVEEvACiHXgBQjiz2wuIFQIVqvUwPgGzQCwDKoRcAlCOLvbB4AVChJHLNngIAbUAvACiHXgBQjiz2wuIFQIWyuNINQOX0AoBy6AUA5chiL9ywGwAAAAAAaCmuvACoUBZXugGonF4AUA69AKAcWeyFxQuACmWwFQBUQS8AKIdeAFCOLPaiqdtGzZs3LxYtWtT99bXXXht77rlnbLHFFrHXXnvFdddd18TZAaxZKan+oDp6AbSjWnqhGdXRC6Ad6UX69AJoR1nsRVMXLyZNmhR//vOfIyLie9/7Xnzyk5+MsWPHxplnnhm77bZbnHDCCXHVVVet9RydnZ2xfPnyHkdXsiqN6QMZldTwP6pTj15EaAaQrlp6oRnV0QugHelF+vQCaEdZ7EVTt4165JFH4u1vf3tERFxxxRXx9a9/PU444YTu53fbbbe44IIL4mMf+9ibnmP69Olxzjnn9Hhs5/XGx5gh+zZkzgDtulrdzurRi4g1N+NtHXvFtoP2rv+kgczTi/Q1shdj1hsf71x/v/pPGsg8vUhfI3ux+9B9Y49hegHUXxZ70dQrLwYPHhzPPfdcREQ8+eSTsfvuu/d4fo899uhxGd+aTJ06NZYtW9bj2HG9vRo2ZwDSV49eRKy5GdsMHNeQOQOQvkb2YuchFroBeotG9mLsUL0AqJemLl4ccsgh8a1vfSsiIsaPHx8/+tGPejx/ww03xNve9ra1nqOjoyOGDh3a4+ibcx9yoHGSGg6qU49eRGgGkK5aeqEZ1dELoB3pRfr0AmhHWexFU/9G/fKXvxx77rlnjB8/PsaOHRtf/epX46677ooddtghFixYEPfdd1/cdNNNzZwiwGpquUyvWCxGsViMiIhCoRCFQqFOs+rd9AJoR7Ve1q0ZldMLoB3pRfr0AmhHWexFUxcvRo0aFb///e/joosuip/97GeRJEnMnj07nnjiidhzzz3j17/+dYwdO7aZUwRYTVJDLNolDq1GL4B2VEsvIjSjGnoBtCO9SJ9eAO0oi71o+rVsG2ywQVx00UVx0UUXNXsqAGUpNXsCGaUXQLvRi+bQC6Dd6EVz6AXQbrLYi6be8wIAAAAAAOCNmn7lBUC7qXWPQQCyQS8AKIdeAFCOLPbC4gVAhWrdYxCAbNALAMqhFwCUI4u9sHgBUKEs7jEIQOX0AoBy6AUA5chiLyxeAFQoiyvdAFROLwAoh14AUI4s9sLiBUCFsrjSDUDl9AKAcugFAOXIYi/6NHsCAAAAAAAAr+fKC4AKJVm8Tg+AiukFAOXQCwDKkcVeWLwAqFApe60AoAp6AUA59AKAcmSxF71y8eInK36U2lifHXl0KuOM2/gfqYxz4cMnpzJORMSowblUxpn75P9LZZyIiH6D0hlrVefPUxlnv01uS2WciIiLtjsrtbFqlcFW9Gq3Lb04lXHO2zadf8bXT7Hs1z71VCrjjB82KpVxrnzmhlTGiYj4yqDzUhknrV5EpNeML+60Vyrj1INe9C4znj4/lXG+uM3ZqYwTEfHsSyNTGefbS+9KZZw0ffOJdP4e/+agVIZJtRd7bJrO7+u7bvDxVMapB73oXdL6+2GHDY9KZZyIiBNGbpfKOLc9uTKVcSIitho8OJVxvvdUOv/90C+lXkSk14y0enFp3vtRraxXLl4ANFIWV7oBqJxeAFAOvQCgHFnshRt2AwAAAAAALcWVFwAVyuJKNwCV0wsAyqEXAJQji72weAFQoSSTuwwCUCm9AKAcegFAObLYC4sXABXK4ko3AJXTCwDKoRcAlCOLvXDPC4AKJUn1RzMcccQRseGGG8YHPvCB5kwAIKNq6UUzmqEXAM3Rbr2I0AyAZshiLyxeAPRyp5xySnz/+99v9jQAaHF6AUC5NAOActTaC4sXABUqRVL10Qz77rtvrL/++k0ZGyDLaulFM5qhFwDN0W69iNAMgGbIYi8sXgBUKM1L9O6+++449NBDY9SoUZHL5eLmm29e7XuKxWJstdVWMXDgwNhjjz1i9uzZtb9IAGqW5mXdegHQvtLeBkQzANpTFnth8QKgQqUajkqtXLkyxowZE8VicY3PX3/99TF58uSYNm1azJs3L8aMGRMHHXRQPPPMM1WMBkA91dKLSpuhFwDtK81eRGgGQLvKYi/61e1MABmRpHiXo0MOOSQOOeSQN33+0ksvjRNOOCEmTZoUERFXXnll3HrrrXHVVVfFlClT0pomAGugFwCUI81eRGgGQLuqtRednZ3R2dnZ47GOjo7o6OhY4/e3Qi9ceQFQoVJS/dHZ2RnLly/vcbwxHOV6+eWXY+7cuTFhwoTux/r06RMTJkyIWbNm1evlAlClWnpRz2boBUBra5VeRGgGQCurtRfTp0+PYcOG9TimT59e1VzS6oXFC4AU1TMUzz33XHR1dcWmm27a4/FNN900nn766e6vJ0yYEB/84Afjtttui80339wvHQBtol7N0AuA3s3vGACUY+rUqbFs2bIex9SpU6s6V1q9sG0UQIVKUf1lelOnTo3Jkyf3eOzNLs+rl//5n/9p6PkBWLNaehGRfjP0AqA52q0XEZoB0Ay19mJtW0Q1Sq29aOrixcknnxxHHXVU7L333lWfY017dSVJKXI5F5UAjVHLFoP1DMXw4cOjb9++sWTJkh6PL1myJEaMGFGXMVpFPXoRseZmRCQRkavpvABrUusW5vVqhl5UTi+ANLVKLyKy0wy9ANpRyrdIWqu0etHUd/iLxWLsu+++se2228aXv/zlHpeUlGtNl0d2vvJcA2YL8KpSJFUfxWIx8vl85PP5KBaLNc1jwIABseuuu8bMmTP/ObdSKWbOnBnjxo2r9WW2lHr0ImLNzYgo1XeyAP+nll7Usxl6UTm9ANLUKr2IyE4z9AJoR1nsRdMvT7jjjjvive99b1xyySUxevToOOyww+KWW26JUqm8v+zXtFdXR//hDZ41kGVJUv1RKBRi/vz5MX/+/CgUCusca8WKFXH//ffH/fffHxERixYtivvvvz8ef/zxiIiYPHlyfPe7341rrrkmHnroofjUpz4VK1eujEmTJjXyj6Apau1FxJqb0QIpBHqpWnpRaTP04p/0Amg3afYiQjNeoxdAu8liL5r+N+pOO+0Ul112WTz11FPxgx/8IDo7O+Pwww+PLbbYIs4888xYuHDhWn++o6Mjhg4d2uOwZRTQW8yZMyfe+c53xjvf+c6IeDUM73znO+Pss8+OiIijjz46Lrnkkjj77LNjl112ifvvvz9uv/321W6Y1BvU2ouINTfDJd1Ab6AX/6QXAGunGa/SC4C1a4VetMwNu/v37x9HHXVUHHXUUfH444/HVVddFTNmzIiLLroourq6mj09gG613iCpEvvuu28k69jU8KSTToqTTjoppRk1n14A7UIvmksvgHaRZi8iNOON9AJoF1nsRUteojB69Oj40pe+FIsWLYrbb7+92dMB6KGUJFUf1JdeAK2sll5oRn3pBdDK9KJ16AXQymrtRT3veZGWpi5ebLnlltG3b983fT6Xy8V73vOeFGcEsG5JDf9rx1C0Ar0A2lEtvdCM6ugF0I70In16AbSjWntR6T0vWkFTt41atGhRM4cHqEr5t29bXaFQaJtAtBK9ANpRLb2I0Ixq6AXQjvQifXoBtKNae9GOWuaeFwDtIu09BgFoT3oBQDn0AoByZLEXLXnPCwAAAAAAILssXgBUKEmSqg/70QJkRy290AyA7NALAMqRxV7YNgqgQrVcpmc/WoDsqPWybs0AyAa9AKAcWeyFxQuACmVxj0EAKqcXAJRDLwAoRxZ7YfECoEJJlJo9BQDagF4AUA69AKAcWeyFe14AAAAAAAAtxZUXABXK4mV6AFROLwAoh14AUI4s9sKVFwAVKkVS9VEsFiOfz0c+n49isdjslwJAA9XSC80AyA69AKAcWexFLkmSXrdkc/jGX0xtrPeM6p/KOBv2T2dPs0dWpHcxzl9eSOc1/fkfy1IZJyIiP2RYKuPMWbk4lXF++9QRqYwTETF5+9+mMs7XHzu75nO8e4NTqv7Z3yz9es3jU19jNzwxlXE+NHJUKuM8sjy9rHd2pTNOV0r/qbLfiFSGiYiI5a+k8/mRby9ekMo4ERF/eOK4VMa56F2/S2WcMxc0txcRmtFq0urFv22aTi8iIh5ams5/j79lYDp/592w7J5UxomIOHLo3qmM8+vlT6UyzoZJOr/HRETcvnj/VMY5ZotfpzJORMR/PXduTT+vF73LFhu+J5Vx1s9tkso4ERH7rbddKuNsl95fRXHfM+n8MvNKqde97Rp3vHRjKuM8/+xXUxln6jvSeT8qIuIrj9b2O0YWe2HbKIAKJbns3SAJgMrpBQDl0AsAypHFXtg2CgAAAAAAaCmuvACoUBZvkARA5fQCgHLoBQDlyGIvLF4AVKgU2btMD4DK6QUA5dALAMqRxV7YNgqgQkmUqj6KxWLk8/nI5/NRLBab/VIAaKBaeqEZANmhFwCUI4u9cOUFQIVKNdwgqVAoRKFQqONsAGhVtfQiQjMAskIvAChHFnth8QKgQlm8TA+AyukFAOXQCwDKkcVe2DYKAAAAAABoKa68AKhQFle6AaicXgBQDr0AoBxZ7IXFC4AKJRmMBQCV0wsAyqEXAJQji72weAFQoVJ0NXsKALQBvQCgHHoBQDmy2AuLFwAVyuJKNwCV0wsAyqEXAJQji71ww26AFBWLxcjn85HP56NYLDZ7OgC0MM0AoBx6AUA52rEXTV+8uPzyy+P444+P6667LiIirr322sjn87H99tvHF77whVi1alWTZwjQUylXqvooFAoxf/78mD9/fhQKhWa/lLaiF0C7qaUXmlE9vQDajV40h14A7SaLvWjqtlHnn39+fOUrX4kDDzwwTj311Hjsscfi4osvjlNPPTX69OkTX/va16J///5xzjnnvOk5Ojs7o7Ozs8djXcmq6JuzIxbQGFncY7DZ6tGLiDU3o5R0RZ9c30ZOH8govUifXgDtSC/S18heJEkpcrmmf1YY6IWy2IumvsM/Y8aMmDFjRhx55JHxwAMPxK677hrXXHNNHHvssRERsf3228cZZ5yx1lhMnz59tee3G7h3bD94n4bOHciuLO4x2Gz16EXEmpsxsmPXGDVobMPmDmSXXqRPL4B2pBfpa2Qv1u/YOoYN2qZhcweyK4u9aOpS8FNPPRVjx776C8CYMWOiT58+scsuu3Q//653vSueeuqptZ5j6tSpsWzZsh7H2we9u5HTBjKulHRVfVCdevQiYs3NGDHwnY2aNpBxtfRCM6qjF0A70ov0NbIXQwdu3ahpAxmXxV40dfFixIgRMX/+/IiIeOSRR6Krq6v764iIBx98MDbZZJO1nqOjoyOGDh3a47BlFEDvUo9eRKy5GbYAAeg99AKAcjSyF7aMAqifpr7Lf+yxx8bxxx8fhx12WMycOTPOOOOMOO200+Jvf/tb5HK5uOCCC+IDH/hAM6cIsJosXqbXbHoBtCO9SJ9eAO1IL9KnF0A7ymIvmrp4cc4558SgQYNi1qxZccIJJ8SUKVNizJgxccYZZ8SLL74Yhx56aJx33nnNnCLAapIM3iCp2fQCaEd6kT69ANqRXqRPL4B2lMVeNHXxok+fPvGFL3yhx2PHHHNMHHPMMU2aEcC6lTK40t1segG0I71In14A7Ugv0qcXQDvKYi/cHAKgQlm8TA+AyukFAOXQCwDKkcVeuIsQQIWSpKvqA4DsqKUXmgGQHXoBQDlq7UWxWIx8Ph/5fD6KxWKzX05ZLF4ApKgdQwFAc2gGAOXQCwDKUSgUYv78+TF//vwoFArNnk5ZbBsFUKFa9hgsFAptEwgAalPrnrSaAZANegFAOdzzAoB1SsKl2QCsm14AUA69AKAcWeyFxQuACiVJ9la6AaicXgBQDr0AoBxZ7IXFC4AKZfEyPQAqpxcAlEMvAChHFnvhht0AAAAAAEBLceUFQIWSJHt7DAJQOb0AoBx6AUA5stiLXrl4se2wAamN9Ye/J6mMM3/FC6mM82+bbZDKOBERn952eSrjTPzDklTGiYj49pPfTGWcb77ji6mMc8GY36YyTkTEpQ/vkdpYtUoyeJleb7Z5n+GpjPOLxS+lMs69r/w0lXEiIg4b8oFUxjlgRCrDxMMvpHdB6kWPnpfKOFPeelYq40REvH/ze1IZ56dPjU9lnHrQi97l3euPSmWcp/+RyjAREfGTFT9KZZyThxydyjhf3GKvVMaJiJi/LJ1x5i79f6mM8+OxU1IZJyKi8Pb7Uhnnuif2TGWcetCL3mXv/u9OZZwfPnthKuNERDz58napjHPkqg+mMk5ExOZD+qYyzn3PL01lnAdW3ZHKOBERJ49Ip+v/ltLvFz9+cp9UxqmHLPaiVy5eADRSFm+QBEDl9AKAcugFAOXIYi8sXgBUKInsXaYHQOX0AoBy6AUA5chiLyxeAFQoiyvdAFROLwAoh14AUI4s9iK9zZ0BAAAAAADK4MoLgAplcaUbgMrpBQDl0AsAypHFXli8AKhQKbIXCwAqpxcAlEMvAChHFnth2yiACiVJqeqjWCxGPp+PfD4fxWKx2S8FgAaqpReaAZAdegFAObLYC1deAFQoSbqq/tlCoRCFQqGOswGgVdXSiwjNAMgKvQCgHFnshSsvAAAAAACAluLKC4AKJRncYxCAyukFAOXQCwDKkcVeWLwAqFCSZC8WAFROLwAoh14AUI4s9sLiBUCFshgLACqnFwCUQy8AKEcWe9HUxYvFixfHt771rbj33ntj8eLF0adPn3jrW98ahx9+eHz0ox+Nvn37NnN6AGuUxcv0WoFmAO1GL5pDL4B2oxfNoRdAu8liL5p2w+45c+bEDjvsELfddlu88sor8cgjj8Suu+4a6623Xpx22mmxzz77xAsvvNCs6QHQQjQDgHLoBQDl0AuA9tC0xYvPfvazceqpp8acOXPinnvuiRkzZsSf/vSnuO666+LRRx+NF198Mb74xS+u8zydnZ2xfPnyHseqZFUKrwDIqiQpVX1QnUY2o0szgAappReaUR29ANqRXqRPL4B2lMVeNG3xYt68efGRj3yk++sPf/jDMW/evFiyZElsuOGG8ZWvfCV+9KMfrfM806dPj2HDhvU4frv0nkZOHci4rIWiFTSyGY/84zeNnDqQYVn85aLZGtmLOcv9jgE0hl6kr5G9mP/ivY2cOpBhWexF0xYvNtlkk1i8eHH310uWLIlVq1bF0KFDIyLi7W9/ezz//PPrPM/UqVNj2bJlPY49Nti7YfMGiCjVcFCNRjbj7YPe3bB5A1lXSy80oxqN7MXYoX7HABpFL9LWyF7kB+/VsHkDWZe9XjTtht2HH354nHjiiXHxxRdHR0dHnHfeeTF+/PgYNGhQREQsWLAgNttss3Wep6OjIzo6Ono81i/X1PuQA71cu65Wt7NGNqOvZgANohfp0wugHelF+vQCaEdZ7EXT/kY9//zzY/HixXHooYdGV1dXjBs3Ln7wgx90P5/L5WL69OnNmh7Am0radLW6nWkG0I70In16AbQjvUifXgDtKIu9aNrixZAhQ+L666+Pl156KVatWhVDhgzp8fyBBx7YpJkB0Go0A4By6AUA5dALgPbQ9GvZBg4c2OwpAFQki5fptQrNANqJXjSPXgDtRC+aRy+AdpLFXjR98QKg/XQ1ewIAtAW9AKAcegFAObLXC4sXABXK4ko3AJXTCwDKoRcAlCOLvbB4AVCx7MUCgGroBQDl0AsAypG9XvRp9gQAAAAAAABez+IFQKWSUvVHE9xyyy2x3Xbbxdvf/vb43ve+15Q5AGRSLb1oQjP0AqBJ2qwXEZoB0BQZ7IVtowAqlETS7CmUbdWqVTF58uT45S9/GcOGDYtdd901jjjiiNh4442bPTWAXk8vAChHO/UiQjMAmiWLvXDlBUDFSjUc6Zo9e3a84x3viM022yyGDBkShxxySNxxxx2pzwMgm2rpRbrN0AuAZmqfXkRoBkDzZK8XFi8AKpUk1R8Vuvvuu+PQQw+NUaNGRS6Xi5tvvnm17ykWi7HVVlvFwIEDY4899ojZs2d3P/fUU0/FZptt1v31ZpttFk8++WRVLxuACtXSiwqboRcAbSzFXkRoBkDbymAvLF4AVCip4X+VWrlyZYwZMyaKxeIan7/++utj8uTJMW3atJg3b16MGTMmDjrooHjmmWdqfZkA1KiWXlTaDL0AaF9p9iJCMwDaVRZ74Z4XACnq7OyMzs7OHo91dHRER0fHGr//kEMOiUMOOeRNz3fppZfGCSecEJMmTYqIiCuvvDJuvfXWuOqqq2LKlCkxatSoHqvaTz75ZOy+++51eCUANFolzdALgOzyOwYA5WjLXiQkL730UjJt2rTkpZde6jVjeU2tP06aY3lNrWPatGlJRPQ4pk2bVtbPRkRy0003dX/d2dmZ9O3bt8djSZIkxx9/fPL+978/SZIkeeWVV5K3ve1tyV//+tfkhRdeSLbddtvkueeeq9Oryabe9s+4vx/aY6zeNk6aY7VrL5Kk+mboRWvojf+Me03GacZYvW2cRvA7Rnvz723rj5PmWF5T64+T9lj11I69sHiRJMmyZcuSiEiWLVvWa8bymlp/nDTH8ppax0svvZQsW7asx1Fu7N4YiieffDKJiOQ3v/lNj+87/fTTk913373765/85CfJ29/+9mSbbbZJvv3tb9fldWRZb/tn3N8P7TFWbxsnzbHatRdJUn0z9KI19MZ/xr0m4zRjrN42TiP4HaO9+fe29cdJcyyvqfXHSXusemrHXtg2CiBFa7scr1He//73x/vf//5UxwSgdmk3Qy8A2pPfMQAoRzv2wg27AdrU8OHDo2/fvrFkyZIejy9ZsiRGjBjRpFkB0Gr0AoByaQYA5UirFxYvANrUgAEDYtddd42ZM2d2P1YqlWLmzJkxbty4Js4MgFaiFwCUSzMAKEdavbBtVLx6ycy0adNSuWwmrbG8ptYfJ82xvKb2tWLFili4cGH314sWLYr7778/Ntpooxg9enRMnjw5Jk6cGGPHjo3dd989Lrvssli5cmVMmjSpibPu3XrbP+P+fmiPsXrbOGmOpRd60Sy98Z9xr8k4zRirt43TCjSjtfj3tvXHSXMsr6n1x0l7rGZqhV7k/u+GGwC0oLvuuiv222+/1R6fOHFizJgxIyIiLr/88rj44ovj6aefjl122SW+8Y1vxB577JHyTAFoJr0AoFyaAUA5WqEXFi8AAAAAAICW4p4XAAAAAABAS7F4AQAAAAAAtBSLFxFRLBZjq622ioEDB8Yee+wRs2fPrvsYd999dxx66KExatSoyOVycfPNN9d9jIiI6dOnx2677Rbrr79+bLLJJnH44YfHggUL6j7Ot771rdh5551j6NChMXTo0Bg3blz8/Oc/r/s4b3TRRRdFLpeLz372s3U/95e+9KXI5XI9ju23377u40REPPnkk3HcccfFxhtvHIMGDYqddtop5syZU/dxttpqq9VeUy6Xi0KhUNdxurq64qyzzoqtt946Bg0aFNtss02cd9550Yhd6V544YX47Gc/G1tuuWUMGjQo3v3ud8fvfve7uo8Da6IX1eltzUizFxHpNKM39iJCM2gevahOb+tFRO/7HSOtXkT4HYPs0IzK6UVtvCdVPb1IX+YXL66//vqYPHlyTJs2LebNmxdjxoyJgw46KJ555pm6jrNy5coYM2ZMFIvFup73jX71q19FoVCI++67L+6888545ZVX4sADD4yVK1fWdZzNN988Lrroopg7d27MmTMn9t9//zjssMPiwQcfrOs4r/e73/0uvv3tb8fOO+/csDHe8Y53xOLFi7uPe++9t+5j/P3vf48999wz+vfvHz//+c9j/vz58dWvfjU23HDDuo/1u9/9rsfrufPOOyMi4oMf/GBdx/nyl78c3/rWt+Lyyy+Phx56KL785S/HV77ylfjmN79Z13EiIv793/897rzzzrj22mvjD3/4Qxx44IExYcKEePLJJ+s+FryeXlSvNzYjjV5EpNeM3tiLCM2gOfSier2xFxG963eMtHoR4XcMskEzqqMX1fOeVG30ogmSjNt9992TQqHQ/XVXV1cyatSoZPr06Q0bMyKSm266qWHnf71nnnkmiYjkV7/6VcPH2nDDDZPvfe97DTn3Cy+8kLz97W9P7rzzzmT8+PHJKaecUvcxpk2blowZM6bu532jz3/+88lee+3V8HHW5JRTTkm22WabpFQq1fW873vf+5KPfexjPR478sgjk2OPPbau47z44otJ3759k1tuuaXH4+9617uSM888s65jwRvpRX21czPS6kWSNK8Z7d6LJNEMmkcv6qude5Ekvf93jEb1Ikn8jkE2aEb96EV5vCdVPb1ojkxfefHyyy/H3LlzY8KECd2P9enTJyZMmBCzZs1q4szqZ9myZRERsdFGGzVsjK6urrjuuuti5cqVMW7cuIaMUSgU4n3ve1+P/68a4ZFHHolRo0bFW9/61jj22GPj8ccfr/sYP/3pT2Ps2LHxwQ9+MDbZZJN45zvfGd/97nfrPs4bvfzyy/GDH/wgPvaxj0Uul6vrud/97nfHzJkz409/+lNERDzwwANx7733xiGHHFLXcVatWhVdXV0xcODAHo8PGjSoYZ96hgi9qKfe0ow0ehHRnGb0hl5EaAbNoRf101t6EdF7f8doZC8i/I5B76cZ9aEXlfGeVPX0okmavXrSTE8++WQSEclvfvObHo+ffvrpye67796wcSOlVe6urq7kfe97X7Lnnns25Pz/+7//m6y33npJ3759k2HDhiW33nprQ8b54Q9/mOy4447JP/7xjyRJkoatct92223JDTfckDzwwAPJ7bffnowbNy4ZPXp0snz58rqO09HRkXR0dCRTp05N5s2bl3z7299OBg4cmMyYMaOu47zR9ddfn/Tt2zd58skn637urq6u5POf/3ySy+WSfv36JblcLrnwwgvrPk6SJMm4ceOS8ePHJ08++WSyatWq5Nprr0369OmTbLvttg0ZD5JEL+qhNzUjrV4kSXOa0Vt6kSSaQfr0ona9qRdJ0rt/x2hkL5LE7xj0fppRG72ojvekaqMX6bN40YtDceKJJyZbbrll8sQTTzTk/J2dnckjjzySzJkzJ5kyZUoyfPjw5MEHH6zrGI8//niyySabJA888ED3Y40KxRv9/e9/T4YOHVr3yw779++fjBs3rsdjJ598cvIv//IvdR3njQ488MDkX//1Xxty7h/+8IfJ5ptvnvzwhz9M/vd//zf5/ve/n2y00UYNid/ChQuTffbZJ4mIpG/fvsluu+2WHHvsscn2229f97HgNXpRu97cjEb1Ikma04ze0osk0QzSpxe16829SJLe9TtGI3uRJH7HoPfTjNroRXW8J1UbvUhfphcvOjs7k759+672l/bxxx+fvP/972/YuGmEolAoJJtvvnny6KOPNnSc1zvggAOST3ziE3U950033dT9F8JrR0QkuVwu6du3b7Jq1aq6jvdGY8eOTaZMmVLXc44ePTr5+Mc/3uOxK664Ihk1alRdx3m9v/zlL0mfPn2Sm2++uSHn33zzzZPLL7+8x2PnnXdest122zVkvCRJkhUrViRPPfVUkiRJctRRRyXvfe97GzYW6EX99bZmNKIXSZJ+M3pjL5JEM0iPXtRfb+tFkvSO3zEa3Ysk8TsGvZ9m1JdelMd7UvWhF+nJ9D0vBgwYELvuumvMnDmz+7FSqRQzZ85s2D55jZYkSZx00klx0003xS9+8YvYeuutUxu7VCpFZ2dnXc95wAEHxB/+8Ie4//77u4+xY8fGscceG/fff3/07du3ruO93ooVK+LPf/5zjBw5sq7n3XPPPWPBggU9HvvTn/4UW265ZV3Heb2rr746Ntlkk3jf+97XkPO/+OKL0adPz79O+vbtG6VSqSHjRUSst956MXLkyPj73/8e//3f/x2HHXZYw8YCvai/3tSMRvUiIv1m9MZeRGgG6dGL+utNvYjoPb9jNLoXEX7HoPfTjPrSi/J4T6o+9CJFzV07ab7rrrsu6ejoSGbMmJHMnz8/+cQnPpFssMEGydNPP13XcV544YXk97//ffL73/8+iYjk0ksvTX7/+98njz32WF3H+dSnPpUMGzYsueuuu5LFixd3Hy+++GJdx5kyZUryq1/9Klm0aFHyv//7v8mUKVOSXC6X3HHHHXUdZ00adYne5z73ueSuu+5KFi1alPz6179OJkyYkAwfPjx55pln6jrO7Nmzk379+iUXXHBB8sgjjyT/8R//kQwePDj5wQ9+UNdxXtPV1ZWMHj06+fznP9+Q8ydJkkycODHZbLPNkltuuSVZtGhRcuONNybDhw9PzjjjjLqPdfvttyc///nPk0cffTS54447kjFjxiR77LFH8vLLL9d9LHg9vaheb2tGWr1IknSb0dt6kSSaQXPoRfV6Wy+SpHf+jpFGL5LE7xhkg2ZURy+q5z2p2uhF+jK/eJEkSfLNb34zGT16dDJgwIBk9913T+677766j/HLX/4yiYjVjokTJ9Z1nDWNERHJ1VdfXddxPvaxjyVbbrllMmDAgOQtb3lLcsABB6QSiSRpXCiOPvroZOTIkcmAAQOSzTbbLDn66KOThQsX1n2cJEmSn/3sZ8mOO+6YdHR0JNtvv33yne98pyHjJEmS/Pd//3cSEcmCBQsaNsby5cuTU045JRk9enQycODA5K1vfWty5plnJp2dnXUf6/rrr0/e+ta3JgMGDEhGjBiRFAqFZOnSpXUfB9ZEL6rT25qRZi+SJL1m9LZeJIlm0Dx6UZ3e1osk6Z2/Y6TRiyTxOwbZoRmV04vaeE+qenqRvlySJEl9r+UAAAAAAACoXqbveQEAAAAAALQeixcAAAAAAEBLsXgBAAAAAAC0FIsXAAAAAABAS7F4AQAAAAAAtBSLFwAAAAAAQEuxeAEAAAAAALQUixcAAAAAAEBLsXhBr/LRj340Dj/88O6v99133/jsZz+b+jzuuuuuyOVysXTp0tTHBmDd9AKAcugFAOXSDKg/ixek4qMf/WjkcrnI5XIxYMCAeNvb3hbnnnturFq1qqHj3njjjXHeeeeV9b3+cgdoPr0AoBx6AUC5NAPaV79mT4DsOPjgg+Pqq6+Ozs7OuO2226JQKET//v1j6tSpPb7v5ZdfjgEDBtRlzI022qgu5wEgPXoBQDn0AoByaQa0J1dekJqOjo4YMWJEbLnllvGpT30qJkyYED/96U+7L6u74IILYtSoUbHddttFRMQTTzwRRx11VGywwQax0UYbxWGHHRZ/+ctfus/X1dUVkydPjg022CA23njjOOOMMyJJkh5jvvESvc7Ozvj85z8fW2yxRXR0dMTb3va2+H//7//FX/7yl9hvv/0iImLDDTeMXC4XH/3oRyMiolQqxfTp02PrrbeOQYMGxZgxY+JHP/pRj3Fuu+222HbbbWPQoEGx33779ZgnAJXRCwDKoRcAlEszoD1ZvKBpBg0aFC+//HJERMycOTMWLFgQd955Z9xyyy3xyiuvxEEHHRTrr79+3HPPPfHrX/86hgwZEgcffHD3z3z1q1+NGTNmxFVXXRX33ntvPP/883HTTTetdczjjz8+fvjDH8Y3vvGNeOihh+Lb3/52DBkyJLbYYov48Y9/HBERCxYsiMWLF8fXv/71iIiYPn16fP/7348rr7wyHnzwwTj11FPjuOOOi1/96lcR8WrQjjzyyDj00EPj/vvvj3//93+PKVOmNOqPDSBz9AKAcugFAOXSDGgTCaRg4sSJyWGHHZYkSZKUSqXkzjvvTDo6OpLTTjstmThxYrLpppsmnZ2d3d9/7bXXJtttt11SKpW6H+vs7EwGDRqU/Pd//3eSJEkycuTI5Ctf+Ur386+88kqy+eabd4+TJEkyfvz45JRTTkmSJEkWLFiQRERy5513rnGOv/zlL5OISP7+9793P/bSSy8lgwcPTn7zm9/0+N6Pf/zjyYc+9KEkSZJk6tSpST6f7/H85z//+dXOBcC66QUA5dALAMqlGdC+3POC1Nxyyy0xZMiQeOWVV6JUKsWHP/zh+NKXvhSFQiF22mmnHnsKPvDAA7Fw4cJYf/31e5zjpZdeij//+c+xbNmyWLx4ceyxxx7dz/Xr1y/Gjh272mV6r7n//vujb9++MX78+LLnvHDhwnjxxRfjPe95T4/HX3755XjnO98ZEREPPfRQj3lERIwbN67sMQDoSS8AKIdeAFAuzYD2ZPGC1Oy3337xrW99KwYMGBCjRo2Kfv3++Y/feuut1+N7V6xYEbvuumv8x3/8x2rnectb3lLV+IMGDar4Z1asWBEREbfeemtsttlmPZ7r6Oioah4ArJ1eAFAOvQCgXJoB7cniBalZb7314m1ve1tZ3/uud70rrr/++thkk01i6NCha/yekSNHxm9/+9vYZ599IiJi1apVMXfu3HjXu961xu/faaedolQqxa9+9auYMGHCas+/tsre1dXV/Vg+n4+Ojo54/PHH33R1fIcddoif/vSnPR6777771v0iAVgjvQCgHHoBQLk0A9qTG3bTko499tgYPnx4HHbYYXHPPffEokWL4q677orPfOYz8de//jUiIk455ZS46KKL4uabb46HH344Pv3pT8fSpUvf9JxbbbVVTJw4MT72sY/FzTff3H3OG264ISIittxyy8jlcnHLLbfEs88+GytWrIj1118/TjvttDj11FPjmmuuiT//+c8xb968+OY3vxnXXHNNRESceOKJ8cgjj8Tpp58eCxYsiP/8z/+MGTNmNPqPCIDQCwDKoxcAlEszoHVYvKAlDR48OO6+++4YPXp0HHnkkbHDDjvExz/+8XjppZe6V70/97nPxUc+8pGYOHFijBs3LtZff/044ogj1nreb33rW/GBD3wgPv3pT8f2228fJ5xwQqxcuTIiIjbbbLM455xzYsqUKbHpppvGSSedFBER5513Xpx11lkxffr02GGHHeLggw+OW2+9NbbeeuuIiBg9enT8+Mc/jptvvjnGjBkTV155ZVx44YUN/NMB4DV6AUA59AKAcmkGtI5c8mZ3kgEAAAAAAGgCV14AAAAAAAAtxeIFAAAAAADQUixeAAAAAAAALcXiBQAAAAAA0FIsXgAAAAAAAC3F4gUAAAAAANBSLF4AAAAAAAAtxeIFAAAAAADQUixeAAAAAAAALcXiBQAAAAAA0FIsXgAAAAAAAC3F4gUAAAAAANBSLF4AAAAAAAAtxeIFAAAAAADQUixeAAAAAAAALcXiBQAAAAAA0FIsXgAAAAAAAC3F4gWp+ehHPxpbbbVVs6eRmrvuuityuVz86Ec/avZUAFqWNgAAAABrYvGCyOVyZR133XVXs6faw2tvAL3Zcd111zV7ijWbO3duHHzwwTF06NBYf/3148ADD4z777+/2dMCMkAbWtOKFSti2rRpcfDBB8dGG20UuVwuZsyY8abf/9BDD8XBBx8cQ4YMiY022ig+8pGPxLPPPpvehAEAAKBK/Zo9AZrv2muv7fH197///bjzzjtXe3yHHXaoaZzvfve7USqVajrHmnzmM5+J3XbbbbXHx40bV/ex0jRv3rzYa6+9Yosttohp06ZFqVSKK664IsaPHx+zZ8+O7bbbrtlTBHoxbWhNzz33XJx77rkxevToGDNmzFoXj/7617/GPvvsE8OGDYsLL7wwVqxYEZdcckn84Q9/iNmzZ8eAAQPSmzgAAABUyOIFcdxxx/X4+r777os777xztcff6MUXX4zBgweXPU7//v2rmt+67L333vGBD3ygIeduprPOOisGDRoUs2bNio033jgiXv3/atttt40vfOEL8eMf/7jJMwR6M21oTSNHjozFixfHiBEjYs6cOWtcoHnNhRdeGCtXroy5c+fG6NGjIyJi9913j/e85z0xY8aM+MQnPpHWtAEAAKBito2iLPvuu2/suOOOMXfu3Nhnn31i8ODB8YUvfCEiIn7yk5/E+973vhg1alR0dHTENttsE+edd150dXX1OMcb9zX/y1/+ErlcLi655JL4zne+E9tss010dHTEbrvtFr/73e/qOv9cLhcnnXRS/Md//Edst912MXDgwNh1113j7rvvXu17f//738chhxwSQ4cOjSFDhsQBBxwQ991332rft3Tp0jj11FNjq622io6Ojth8883j+OOPj+eee67H95VKpbjgggti8803j4EDB8YBBxwQCxcuXOec77nnnpgwYUL3wkXEq29ajR8/Pm655ZZYsWJFFX8SAPWjDem3oaOjI0aMGFHW6/vxj38c//qv/9q9cBERMWHChNh2223jhhtuKOscAAAA0CyuvKBsf/vb3+KQQw6JY445Jo477rjYdNNNIyJixowZMWTIkJg8eXIMGTIkfvGLX8TZZ58dy5cvj4svvnid5/3P//zPeOGFF+KTn/xk5HK5+MpXvhJHHnlkPProo2V9IveFF15Y7U2hiIiNN944crlc99e/+tWv4vrrr4/PfOYz0dHREVdccUUcfPDBMXv27Nhxxx0jIuLBBx+MvffeO4YOHRpnnHFG9O/fP7797W/HvvvuG7/61a9ijz32iIhX9xzfe++946GHHoqPfexj8a53vSuee+65+OlPfxp//etfY/jw4d3jXnTRRdGnT5847bTTYtmyZfGVr3wljj322Pjtb3+71tfV2dkZgwYNWu3xwYMHx8svvxx//OMf41/+5V/W+ecD0EjakG4byvXkk0/GM888E2PHjl3tud133z1uu+22uowDAAAADZPAGxQKheSN/2iMHz8+iYjkyiuvXO37X3zxxdUe++QnP5kMHjw4eemll7ofmzhxYrLlllt2f71o0aIkIpKNN944ef7557sf/8lPfpJERPKzn/1srfP85S9/mUTEmx6LFy/u/t7XHpszZ073Y4899lgycODA5Igjjuh+7PDDD08GDBiQ/PnPf+5+7KmnnkrWX3/9ZJ999ul+7Oyzz04iIrnxxhtXm1epVOoxvx122CHp7Ozsfv7rX/96EhHJH/7wh7W+vp122inZdtttk1WrVnU/1tnZmYwePTqJiORHP/rRWn8eoJ60oTXa8Hq/+93vkohIrr766jd97vvf//5qz51++ulJRPT4/wEAAABajW2jKFtHR0dMmjRptcdff3XAa5903XvvvePFF1+Mhx9+eJ3nPfroo2PDDTfs/nrvvfeOiIhHH320rHmdffbZceedd652bLTRRj2+b9y4cbHrrrt2fz169Og47LDD4r//+7+jq6srurq64o477ojDDz883vrWt3Z/38iRI+PDH/5w3HvvvbF8+fKIeHUrjjFjxsQRRxyx2nxe/4neiIhJkyb1uClqua/v05/+dPzpT3+Kj3/84zF//vz44x//GMcff3wsXrw4IiL+8Y9/lPPHA9BQ2pBuG8r1WiM6OjpWe27gwIE9vgcAAABakW2jKNtmm23W442W1zz44IPxxS9+MX7xi190v4HzmmXLlq3zvK/fizsiut+s+vvf/17WvHbaaaeYMGHCOr/v7W9/+2qPbbvttvHiiy/Gs88+GxGv3mh2u+22W+37dthhhyiVSvHEE0/EO97xjvjzn/8c//Zv/1bW/Kp9fSeeeGI88cQTcfHFF8c111wTERFjx46NM844Iy644IIYMmRIWeMDNJI2pNuGcr22eNTZ2bnacy+99FKP7wEAAIBWZPGCsq3pTY6lS5fG+PHjY+jQoXHuuefGNttsEwMHDox58+bF5z//+SiVSus8b9++fdf4eJIkNc+5FdTy+i644II47bTT4sEHH4xhw4bFTjvt1H0z3G233bau8wSohjZUp9Gvb+TIkRER3Vfrvd7ixYtjo402WuNVGQAAANAqLF5Qk7vuuiv+9re/xY033hj77LNP9+OLFi1q4qzW7JFHHlntsT/96U8xePDgeMtb3hIRr94Me8GCBat938MPPxx9+vSJLbbYIiIittlmm/jjH//Y2An/nw033DD22muv7q//53/+JzbffPPYfvvtUxkfoFLa0HybbbZZvOUtb4k5c+as9tzs2bNjl112SX9SAAAAUAH3vKAmr31y9PWfFH355ZfjiiuuaNaU3tSsWbNi3rx53V8/8cQT8ZOf/CQOPPDA6Nu3b/Tt2zcOPPDA+MlPfhJ/+ctfur9vyZIl8Z//+Z+x1157xdChQyMi4t/+7d/igQceiJtuumm1cRr5qeDrr78+fve738VnP/vZ6NPHv75Aa9KGdNvwZv7t3/4tbrnllnjiiSe6H5s5c2b86U9/ig9+8IOpzwcAAAAq4coLavLud787Ntxww5g4cWJ85jOfiVwuF9dee22qb9Lcc8893ft3v97OO+8cO++8c/fXO+64Yxx00EHxmc98Jjo6OrrfRDvnnHO6v+f888+PO++8M/baa6/49Kc/Hf369Ytvf/vb0dnZGV/5yle6v+/000+PH/3oR/HBD34wPvaxj8Wuu+4azz//fPz0pz+NK6+8MsaMGVPz67r77rvj3HPPjQMPPDA23njjuO++++Lqq6+Ogw8+OE455ZSazw/QKNrQuDZERFx++eWxdOnSeOqppyIi4mc/+1n89a9/jYiIk08+OYYNGxYREV/4whfiv/7rv2K//faLU045JVasWBEXX3xx7LTTTmu8yToAAAC0EosX1GTjjTeOW265JT73uc/FF7/4xdhwww3juOOOiwMOOCAOOuigVObwjW98Y42PT5s2rccbVOPHj49x48bFOeecE48//njk8/mYMWNGj+95xzveEffcc09MnTo1pk+fHqVSKfbYY4/4wQ9+EHvssUf39w0ZMiTuueeemDZtWtx0001xzTXXxCabbBIHHHBAbL755nV5XZtttln07ds3Lr744njhhRdi6623jvPPPz8mT54c/fr5VxdoXdrQuDZERFxyySXx2GOPdX994403xo033hgREccdd1z34sUWW2wRv/rVr2Ly5MkxZcqUGDBgQLzvfe+Lr371q+53AQAAQMvLJb3lzpewFrlcLgqFQlx++eXNngoALUIbAAAAoHXZNB8AAAAAAGgpFi8AAAAAAICWYvECAAAAAABoKe55AQAAAAAAtBRXXgAAAAAAAC3F4gUAAAAAANBSLF4AAAAAAAAtpV+zJ9AIXS/dkdpY/Qa9L5Vx9h52cirj3LPsm6mM01tN3vKsVMa5Ydk9qYyzc+yWyjgREbctvTiVcZLklZrP0VW6q+qf7dtn35rHp77SakZavaA9fHTEF1MZZ8bT56cyTkTEhGGTUxnn4dy8VMZ54u931nyOWnoRoRkAAEC2ufICAAAAAABoKb3yyguAhiqVqv9ZS8YA2VFLLyI0AwAAyDSLFwCVqvXNKACyQS8AAACq5vNcAJUqlao+isVi5PP5yOfzUSwWm/1KAGikGnqhGQAAQNa58gKgUklS9Y8WCoUoFAp1nAwALauGXkRoBgAAkG0WLwAqZRsQAMqhFwAAAFWzbRQAAAAAANBSXHkBUCmfpAWgHHoBAABQNYsXAJXyZhQA5dALAACAqlm8AKiUN6MAKIdeAAAAVM09LwAqVSpVfRSLxcjn85HP56NYLDb7lQDQSDX0QjMAAICsc+UFQIoKhUIUCoVmTwOANqAZAABAljV18eK5556Lq666KmbNmhVPP/10RESMGDEi3v3ud8dHP/rReMtb3tLM6QGsUS6xDUgzaAbQbvQCAACgek3bNup3v/tdbLvttvGNb3wjhg0bFvvss0/ss88+MWzYsPjGN74R22+/fcyZM6dZ0wN4c7VsA0JVNANoSzVuGwUAAJBlTbvy4uSTT44PfvCDceWVV0Yul+vxXJIkceKJJ8bJJ58cs2bNWut5Ojs7o7Ozs8dj/ZKXo6NjQN3nDBAREaWk2TPIHM0A2pJeAAAAVK1pV1488MADceqpp672JlRERC6Xi1NPPTXuv//+dZ5n+vTpMWzYsB7HRRdf34AZA/wfn6JNnWYAbcmVFwAAAFVr2uLFiBEjYvbs2W/6/OzZs2PTTTdd53mmTp0ay5Yt63FMOf3oek4VgCbTDAAAAIBsadq2Uaeddlp84hOfiLlz58YBBxzQ/abTkiVLYubMmfHd7343LrnkknWep6OjIzo6Ono81vWS7T+ABvJp2NRpBtCW9AIAAKBqTVu8KBQKMXz48Pja174WV1xxRXR1dUVERN++fWPXXXeNGTNmxFFHHdWs6QG8uaT6N6OKxWIUi8WIePXvwUKhUK9Z9WqaAbSlGnoRoRkAAEC2NW3xIiLi6KOPjqOPPjpeeeWVeO655yIiYvjw4dG/f/9mTgtg7Wr4JK03n6qnGUDbqfHKC80AAACyrKmLF6/p379/jBw5stnTAChPKWn2DDJNM4C2oRcAAABVa4nFC4C2Yg9zAMqhFwAAAFXr0+wJAAAAAAAAvJ4rLwAq5ZO0AJRDLwAAAKpm8QKgQjlvRgFQBr0AAAConsULgEolbsAKQBn0AgAAoGoWLwAq5ZO0AJRDLwAAAKrmht0AAAAAAEBLsXgBUKlSqeqjWCxGPp+PfD4fxWKx2a8EgEaqoReaAQAAZJ1towAqVap+D/NCoRCFQqGOkwGgZdXQiwjNAAAAss3iBUCl7GEOQDn0AgAAoGq9cvGi36D3pTbWqq47Uxnn/Rvfkco4Q9fbLpVxIiKWr1yQ2lhpuWHZPamMs1/HnqmMw5vwZlSvklYz0urFHhtfl8o4EREv5l5IZZwnX34glXHS7NKNL/xXKuN8YOOpqYwTETFqvXT+s/J/Hr8rlXHqQi8AAACq1isXLwAaKqltGxAAMkIvAAAAquaG3QAAAAAAQEtx5QVApWwDAkA59AIAAKBqFi8AKlWyDQgAZdALAACAqlm8AKiUT9ICUA69AAAAqJrFC4BKeTMKgHLoBQAAQNXcsBsAAAAAAGgprrwAqJQ9zAEoh14AAABUzeIFQKUS24AAUAa9AAAAqJrFC4BK+SQtAOXQCwAAgKq55wVApUqlqo9isRj5fD7y+XwUi8VmvxIAGqmGXmgGAACQda68AEhRoVCIQqHQ7GkA0AY0AwAAyDKLFwCVsg0IAOXQCwAAgKq19LZRTzzxRHzsYx9b6/d0dnbG8uXLexwRflEEGqiWbUBoiHJ6EaEZQMpq3DYKAAAgy1p68eL555+Pa665Zq3fM3369Bg2bFiPI8Ive0ADlZLqDxqinF5EaAaQslp6oRkAAEDGNXXbqJ/+9Kdrff7RRx9d5zmmTp0akydP7vHYsGEb1TQvgLVKvNmdtnr0IkIzgJTpBQAAQNWaunhx+OGHRy6XiyR580+W5XK5tZ6jo6MjOjo63vhTdZgdwJvwadjU1aMXEZoBpEwvAAAAqtbUbaNGjhwZN954Y5RKpTUe8+bNa+b0AGgRegEAAACQLU1dvNh1111j7ty5b/r8uj5lC9AU9i9PnV4Abck9LwAAAKrW1G2jTj/99Fi5cuWbPv+2t70tfvnLX6Y4I4AylOxhnja9ANqSXgAAAFStqYsXe++991qfX2+99WL8+PEpzQagTD4Nmzq9ANqSXgAAAFStqYsXAG3Jm1EAlEMvAAAAqtbUe14AAAAAAAC8kSsvACplD3MAyqEXAAAAVbN4AVCpxDYgAJRBLwAAAKpm8QKgUvYwB6AcegEAAFA1ixcAlfJmFADl0AsAAICquWE3AAAAAADQUlx5AVApN2AFoBx6AQAAUDVXXgBUqpRUf6Rs6dKlMXbs2Nhll11ixx13jO9+97upzwEgs2rpRcrN0AsAAKDVuPKiRvtt9NNUxvnl0wenMs5+I15KZZyIiHtiQWpjpWX5K4tTGadjcC6VcQb0SWecttNGe5ivv/76cffdd8fgwYNj5cqVseOOO8aRRx4ZG2+8cbOn1jJ22PCoVMbZY+PrUhnnt4uPTGWciIgv5O9LZZyfLU1lmFi+svd1aVC/9D6nMrBvOuNsvsG+6QxUD3oBAABQNYsXAJVqozej+vbtG4MHD46IiM7OzkiSJJKkfeYP0Nb0AgAAoGq2jQKoUFJKqj4qdffdd8ehhx4ao0aNilwuFzfffPNq31MsFmOrrbaKgQMHxh577BGzZ8/u8fzSpUtjzJgxsfnmm8fpp58ew4cPr/alA1CBWnpRaTP0AgAA6G0sXgC0sJUrV8aYMWOiWCyu8fnrr78+Jk+eHNOmTYt58+bFmDFj4qCDDopnnnmm+3s22GCDeOCBB2LRokXxn//5n7FkyZK0pg9ASvQCAADobSxeAFQqSao+Ojs7Y/ny5T2Ozs7ONx3qkEMOifPPPz+OOOKINT5/6aWXxgknnBCTJk2KfD4fV155ZQwePDiuuuqq1b530003jTFjxsQ999xTtz8KANaihl5U2gy9AAAAehuLFwCVKiVVH9OnT49hw4b1OKZPn17VNF5++eWYO3duTJgwofuxPn36xIQJE2LWrFkREbFkyZJ44YUXIiJi2bJlcffdd8d2221X+58BAOtWQy/q2Qy9AAAA2pEbdgNUqoYbsE6dOjUmT57c47GOjo6qzvXcc89FV1dXbLrppj0e33TTTePhhx+OiIjHHnssPvGJT3TfePXkk0+OnXbaqbrJA1CZGm/YXa9m6AUAANCOLF4AVKqGN6M6OjqqXqyoxu677x73339/auMB8Do1Ll6k2Qy9AAAAWo1towDa1PDhw6Nv376r3VB1yZIlMWLEiCbNCoBWoxcAAEA7sngBUKka9i8vFouRz+cjn89HsVisaRoDBgyIXXfdNWbOnPnPqZVKMXPmzBg3blytrxKAWtV4z4t6NUMvAACAdmTbKIAKJTVsA1I4uRCFQqHs71+xYkUsXLiw++tFixbF/fffHxtttFGMHj06Jk+eHBMnToyxY8fG7rvvHpdddlmsXLkyJk2aVPUcAaiPWnoRUVkz9AIAAOhtLF4AVKrGN6MqMWfOnNhvv/26v37txq0TJ06MGTNmxNFHHx3PPvtsnH322fH000/HLrvsErfffvtqN2UFoAn0AgAAoGoWLwAqleKbUfvuu28kydrHO+mkk+Kkk05KaUYAlE0vAAAAquaeFwCVaoH9ywFoAy1yzwsAAIB21PTFi3/84x9x7733xvz581d77qWXXorvf//7TZgVQGMUCoWYP39+zJ8/v6J7X6AXQPZoBgAAkGVNXbz405/+FDvssEPss88+sdNOO8X48eNj8eLF3c8vW7ZsnTcR7OzsjOXLl/c4ItK7RB/IoCSp/qAq9ehFxJqbUUq6Gjl1IMtq6YVmAAAAGdfUxYvPf/7zseOOO8YzzzwTCxYsiPXXXz/23HPPePzxx8s+x/Tp02PYsGE9johS4yYNZF5Sqv6gOvXoRcSam/G3lx5s0KyBrKulF5oBAABkXVMXL37zm9/E9OnTY/jw4fG2t70tfvazn8VBBx0Ue++9dzz66KNlnWPq1KmxbNmyHkcL7IYF9Ga17GFOVerRi4g1N2Pjge9o4MyBTKvxnhcAAABZ1tR3+f/xj39Ev379ur/O5XLxrW99Kw499NAYP358/OlPf1rnOTo6OmLo0KE9johcA2cNZJ6br6auHr2IWHMz+uT6NmraQNa5YTcAAEDV+q37Wxpn++23jzlz5sQOO+zQ4/HLL788IiLe//73N2NaAA1TKBTcdLUKegFkkWYAAABZ1tQrL4444oj44Q9/uMbnLr/88vjQhz4UiZsVAi3G/uXp0wugHbnnBQAAQPWaungxderUuO222970+SuuuCJKJb+5AS3G/uWp0wugLbnnBQAAQNWaum0UQFvyHjkA5dALAACAqjX1yguAdpSUkqoPN18FyI5aeqEZAABA1rnyAiBFbr4KQLk0AwAAyDKLFwCVsg0IAOXQCwAAgKpZvAColHuoAlAOvQAAAKiaxQuACiUl70YBsG56AQAAUD2LFwCVsg0IAOXQCwAAgKpZvACoUOLNKADKoBcAAADV69PsCQBkSbFYjHw+H/l8PorFYrOnA0AL0wwAACDLXHkBUKkaPklbKBSiUCjUby4AtK4ar7zQDAAAIMt65eLF5hvsm9pY9yz9ZirjTB+zQSrj/PLpg1MZJyKi36B0/uy+vP1ZqYwTEfH5h89LZZyn+nemMs57N+9IZZyIiL1fODm1sWplG5De5YXkmVTGeWjpDamMc8zmm6QyTkTEdU/tk8o4X+lI5+/WD73lC6mMExHxw2cvTGWcxf3+kco4EREbdqyXyjjbJ+9KZZx60AsAAIDq9crFC4CG8mYUAOXQCwAAgKpZvACoUJI0ewYAtAO9AAAAqJ4bdgMAAAAAAC3FlRcAFbKHOQDl0AsAAIDqWbwAqJQ3owAoh14AAABUzbZRABVKStUfxWIx8vl85PP5KBaLzX4pADRQLb3QDAAAIOtceQFQoVpuwFooFKJQKNRvMgC0rFpv2K0ZAABAllm8AKhUKdfsGQDQDvQCAACgaraNAgAAAAAAWoorLwAqlLgBKwBl0AsAAIDqWbwAqFCS2AYEgHXTCwAAgOpZvACokE/SAlAOvQAAAKiexQuACnkzCoBy6AUAAED1mr548dBDD8V9990X48aNi+233z4efvjh+PrXvx6dnZ1x3HHHxf7777/Wn+/s7IzOzs4ejyVJKXI59yIH6E1q7UWEZgAAAAC0i6a+W3P77bfHLrvsEqeddlq8853vjNtvvz322WefWLhwYTz22GNx4IEHxi9+8Yu1nmP69OkxbNiwHsfylxal9AqALEqSXNUH1alHLyI0A0hXLb3QDAAAIOuaunhx7rnnxumnnx5/+9vf4uqrr44Pf/jDccIJJ8Sdd94ZM2fOjNNPPz0uuuiitZ5j6tSpsWzZsh7H0IFbp/QKgCxKSrmqj2KxGPl8PvL5fBSLxWa/lLZRj15EaAaQrlp6oRkAAEDWNXXbqAcffDC+//3vR0TEUUcdFR/5yEfiAx/4QPfzxx57bFx99dVrPUdHR0d0dHT0eMz2H0AjJUn1P1soFKJQKNRvMhlRj15EaAaQrlp6EaEZAABAtjX9nhe53KuXxPfp0ycGDhwYw4YN635u/fXXj2XLljVragBrZCuP5tALoN3oBQAAQPWa+nHTrbbaKh555JHur2fNmhWjR4/u/vrxxx+PkSNHNmNqALQQvQAAAADIlqZeefGpT30qurq6ur/ecccdezz/85//PPbff/+0pwWwVknJJ2nTphdAO9ILAACA6jV18eLEE09c6/MXXnhhSjMBKF+te5hTOb0A2pFeAAAAVK/p97wAaDf2MAegHHoBAABQPYsXABUq2QYEgDLoBQAAQPUsXgBUyDYgAJRDLwAAAKrXp9kTAAAAAAAAeD1XXgBUyB7mAJRDLwAAAKpn8QKgQt6MAqAcegEAAFA9ixcAFSp5MwqAMugFAABA9SxeAFQoKXkzCoB10wsAAIDquWE3AAAAAADQUlx5UaNPb35WKuPMee7lVMbpN+h9qYwTEbHqxVtSGWerUZekMk5Eev88/GXFS6mMs2BZep8YPWKzDVIbq1ZJUv3PFovFKBaLERFRKBSiUCjUaVZU669L70plnB02PCqVcX70t+mpjBMR0a8jnbHS6kW/wf+ayjgRER96yxdSGefWF3+cyjgRERusPDKVcf51s/VSGaceaulFhGYAAADZZvECoEK17GHuzSeA7Kj1nheaAQAAZJnFC4AKJW7ACkAZ9AIAAKB6Fi8AKlTrJ2kByAa9AAAAqJ4bdgMAAAAAAC3FlRcAFbINCADl0AsAAIDqWbwAqFCp2RMAoC3oBQAAQPUsXgBUyCdpASiHXgAAAFTP4gVAhdyAFYBy6AUAAED1LF4AVMgnaQEoh14AAABUr0+zJwAAAAAAAPB6rrwAqFApafYMAGgHegEAAFC9llu8SJIkcjmX2AOtyzYgrUEvgFanFwAAANVruW2jOjo64qGHHmr2NADeVClyVR/Uj14Ara6WXmgGAACQdU278mLy5MlrfLyrqysuuuii2HjjjSMi4tJLL01zWgDrlNgGJFV6AbQrvQAAAKhe0xYvLrvsshgzZkxssMEGPR5PkiQeeuihWG+99craDqSzszM6OzvfcI5S5HItd1EJAFWoVy8i1tyMiCTCJ5wBAAAAWkrTFi8uvPDC+M53vhNf/epXY//99+9+vH///jFjxozI5/NlnWf69Olxzjnn9Hhs/Y6tY9igbeo6X4DXlOxhnqp69SJizc14deGib30mC/A6egEAAFC9pl2eMGXKlLj++uvjU5/6VJx22mnxyiuvVHWeqVOnxrJly3ocQwduXefZAvyT/cvTVa9eRKy5GS14+yegl3DPCwAAgOpV9Y7NPffcE8cdd1yMGzcunnzyyYiIuPbaa+Pee++t6Dy77bZbzJ07N5599tkYO3Zs/PGPfyx764/XdHR0xNChQ3sctowCGilJqj/S9sQTT8S+++4b+Xw+dt555/iv//qvVMdvpV5ErLkZtowCGqWWXqTdjGb3AgAA4I0qfpf/xz/+cRx00EExaNCg+P3vf9+9d/iyZcviwgsvrHgCQ4YMiWuuuSamTp0aEyZMiK6urorPAZCmUpKr+khbv3794rLLLov58+fHHXfcEZ/97Gdj5cqVqYytF0DW1dKLtJvRzF4AAACsScWLF+eff35ceeWV8d3vfjf69+/f/fiee+4Z8+bNq3oixxxzTMyZMyduvPHG2HLLLas+D0CjJZGr+kjbyJEjY5dddomIiBEjRsTw4cPj+eefT2VsvQCyrpZepN2MZvYCAABgTSpevFiwYEHss88+qz0+bNiwWLp0aU2T2XzzzeOwww6L9dZbr6bzAPQWd999dxx66KExatSoyOVycfPNN6/2PcViMbbaaqsYOHBg7LHHHjF79uw1nmvu3LnR1dUVW2yxRYNn/Sq9AEhPO/cCAABgTSpevBgxYkQsXLhwtcfvvffeeOtb31qXSQG0slJS/VGplStXxpgxY6JYLK7x+euvvz4mT54c06ZNi3nz5sWYMWPioIMOimeeeabH9z3//PNx/PHHx3e+851qXnJV9ALIulp6UWkz2rkXAAAAa9Kv0h844YQT4pRTTomrrroqcrlcPPXUUzFr1qw47bTT4qyzzmrEHAFaSi37kHd2dnbf++E1HR0d0dHRscbvP+SQQ+KQQw550/NdeumlccIJJ8SkSZMiIuLKK6+MW2+9Na666qqYMmVK95iHH354TJkyJd797ndXPfdK6QWQdbXet6KSZrRzLwAAANak4isvpkyZEh/+8IfjgAMOiBUrVsQ+++wT//7v/x6f/OQn4+STT27EHAFaSi37l0+fPj2GDRvW45g+fXpV83j55Zdj7ty5MWHChO7H+vTpExMmTIhZs2a9OtckiY9+9KOx//77x0c+8pG6vP5y6QWQdbXe86JezWj1XgAAAKxJxVde5HK5OPPMM+P000+PhQsXxooVKyKfz8eQIUMaMT+AllPN9k+vmTp1akyePLnHY2921cW6PPfcc9HV1RWbbrppj8c33XTTePjhhyMi4te//nVcf/31sfPOO3fvf37ttdfGTjvtVNWYldALIOtq6UVE/ZrR6r0AAABYk4oXL14zYMCAyOfz9ZwLQK+3ti2iGmGvvfaKUqmU2nhrohcA1UmzGa3QCwAAgNerePFiv/32i1zuzffv/cUvflHThABaXRK17WFeL8OHD4++ffvGkiVLejy+ZMmSGDFiRJNm9U96AWSdXgAAAFSv4nte7LLLLjFmzJjuI5/Px8svvxzz5s1zWTmQCaWk+qNYLEY+n498Ph/FYrGmeQwYMCB23XXXmDlz5j/nVirFzJkzY9y4cbW+zJrpBZB1tfSins1o9V4AAACsScVXXnzta19b4+Nf+tKXYsWKFTVPCKDVlZLqP0lbKBSiUCiU/f0rVqyIhQsXdn+9aNGiuP/++2OjjTaK0aNHx+TJk2PixIkxduzY2H333eOyyy6LlStXxqRJk6qeY73oBZB1tfQiorJmtHMvAAAA1qTqe1680XHHHRe77757XHLJJfU6JUBLqvH+qxWZM2dO7Lffft1fv3bj1okTJ8aMGTPi6KOPjmeffTbOPvvsePrpp2OXXXaJ22+/fbWbsrYSvQCyQi8AAACqV7fFi1mzZsXAgQPrdToAImLfffeNJFn7218nnXRSnHTSSSnNqHZ6AVB/vbEXAABAtlW8eHHkkUf2+DpJkli8eHHMmTMnzjrrrLpNrF1c8dfzmj2FuvrIpmemNla/wf+ayjirlt+cyjgREZPe/rtUxrn3lZ+mMs42cVQq40REfHfxglTGObUO56hlG5Bisdi9b3mlW0i1m3bpxdD1tktlnIf+fkMq46T1eiIiPjcqnb8jemMv3j/616mNlZb+fdK5OfUlT92Tyjin1OEctW4blaVmAAAAvFHFixfDhg3r8XWfPn1iu+22i3PPPTcOPPDAuk0MoFWVavjZLL35pBdA1tXSi4hsNQMAAOCNKlq86OrqikmTJsVOO+0UG264YaPmBNDSkho/SZsFegGgFwAAALXoU8k39+3bNw488MBYunRpg6YD0PpKNRxZoRcAtfUiS80AAABYk4oWLyIidtxxx3j00UcbMReAtlBKqj+yRC+ArKulF1lrBgAAwBtVvHhx/vnnx2mnnRa33HJLLF68OJYvX97jAODNFYvFyOfzkc/nu2/C2lvpBUBtstQMAACANyr7nhfnnntufO5zn4v3vve9ERHx/ve/P3K5f+7jmyRJ5HK56Orqqv8sAVpIEtXvYZ6Fm6/qBcCraulFRDaaAQAA8GbKXrw455xz4sQTT4xf/vKXjZwPQMuzlcfa6QXAq/QCAACgemUvXiTJq799jR8/vmGTAWgHtX6StrfTC4BX6QUAAED1yl68iIge234AZJVP0q6bXgDoBQAAQC0qWrzYdttt1/mG1PPPP1/ThABof3oBAAAAQC0qWrw455xzYtiwYY2aC0BbqOWTtMViMYrFYkT07hux6gVA7VdeZKUZAAAAa1LR4sUxxxwTm2yySaPmAtAWatnDPCtvPukFQO33vMhKMwAAANak7MUL+5cDvMoe5munFwCv0gsAAIDqlb14kSSN/+1r5cqVccMNN8TChQtj5MiR8aEPfSg23njjtf5MZ2dndHZ29ngsSUqRy/Vp5FSBDCs1ewItrlV7EaEZQLr0AgAAoHplv1tTKpXqvgVIPp/vvmHrE088ETvuuGOceuqpceedd8a0adMin8/HokWL1nqO6dOnx7Bhw3ocy19a+88A1CJJclUfWdCqvYhYczM6X3murnMFeE0tvchKMwAAAN5MUz9q+vDDD8eqVasiImLq1KkxatSoeOyxx2L27Nnx2GOPxc477xxnnnnmWs8xderUWLZsWY9j6MCt05g+ACmpRy9e+9k3NqOj//BGTx8AAACACrXMPhmzZs2KL33pSzFs2LCIiBgyZEicc845ce+996715zo6OmLo0KE9Dtt/AI1UquEoFouRz+cjn89HsVhswuzbX7W9iNAMIF219EIzAACArCv7nheN8tqNXV966aUYOXJkj+c222yzePbZZ5sxLYA3VcsNWAuFQhQKhfpNJkP0Amg3td6wWzMAAIAsa/rixQEHHBD9+vWL5cuXx4IFC2LHHXfsfu6xxx4r6wasAGlq/O2oWRO9ANqNXgAAAFSvqYsX06ZN6/H1kCFDenz9s5/9LPbee+80pwSwTiU3UU2dXgDtSC8AAACq11KLF2908cUXpzQTAFqZXgAAAABkS9O3jQJoN7YBAaAcegEAAFA9ixcAFar1BqwAZINeAAAAVM/iBUCFSs2eAABtQS8AAACq16fZEwBoN0lS/VEsFiOfz0c+n49isdjslwJAA9XSC80AAACyzpUXACkqFApRKBSaPQ0A2oBmAAAAWWbxAqBCpcg1ewoAtAG9AAAAqJ7FC4AKJW7ACkAZ9AIAAKB6Fi8AKuQGrACUQy8AAACqZ/ECoEIln6QFoAx6AQAAUL1euXixffKu1Mb6a9yVyjg7bHhUKuNcu+SCVMaJiNh8g31TGWfaO+elMk5ExNV/eXcq4/QblM7/T88N7kplnIiIh/5+Q0oj/UfNZ/BeVO+ye7/3pTLO7PVSGSZV0x45L5Vx0urFpLf/LpVxIiJ+unjfVMbpN+jiVMaJiOg3JJ37O/x16V2pjFMPegEAAFC9Ps2eAAAAAAAAwOv1yisvABrJNiAAlEMvAAAAqmfxAqBCiTejACiDXgAAAFTPtlEAFSrVcBSLxcjn85HP56NYLDZh9gCkpZZeaAYAAJB1rrwAqFAt24AUCoUoFAr1mwwALavWbaM0AwAAyDJXXgAAAAAAAC3FlRcAFbKFOQDl0AsAAIDqWbwAqFCt24AAkA16AQAAUD2LFwAVSiLX7CkA0Ab0AgAAoHoWLwAq5JO0AJRDLwAAAKrnht0AAAAAAEBLceUFQIV8khaAcugFAABA9SxeAFTIe1EAlEMvAAAAqtfUbaPmzZsXixYt6v762muvjT333DO22GKL2GuvveK6665r4uwA1qyUVH9QHb0A2lEtvdAMAAAg65q6eDFp0qT485//HBER3/ve9+KTn/xkjB07Ns4888zYbbfd4oQTToirrrpqrefo7OyM5cuX9zhKyao0pg9kVFLD/6hOPXoRoRlAumrphWYAAABZ19Rtox555JF4+9vfHhERV1xxRXz961+PE044ofv53XbbLS644IL42Mc+9qbnmD59epxzzjk9Htu6492xzcC9GjNpIPN8GjZ99ehFhGYA6dILAACA6jX1yovBgwfHc889FxERTz75ZOy+++49nt9jjz16bBOyJlOnTo1ly5b1OLbu+JeGzRmA9NWjFxGaAQAAANAumrp4ccghh8S3vvWtiIgYP358/OhHP+rx/A033BBve9vb1nqOjo6OGDp0aI+jT859yIHGSWo4qE49ehGhGUC6aumFZgAAAFnX1HdsvvzlL8eee+4Z48ePj7Fjx8ZXv/rVuOuuu2KHHXaIBQsWxH333Rc33XRTM6cIsJpatgEpFotRLBYjIqJQKEShUKjTrHo3vQDaUa3bRmkGAACQZU1dvBg1alT8/ve/j4suuih+9rOfRZIkMXv27HjiiSdizz33jF//+tcxduzYZk4RYDVJDW9GefOpOnoBtKNaehGhGQAAQLY1fa+MDTbYIC666KK46KKLmj0VgLKUmj2BjNILoN3oBQAAQPWaes8LAAAAAACAN2r6lRcA7abWPcwByAa9AAAAqJ7FC4AK1bqHOQDZoBcAAADVs3gBUCF7mANQDr0AAAConsULgAr5JC0A5dALAACA6lm8AKiQT9ICUA69AAAAqF6fZk8AAAAAAADg9Vx5AVChxD4gAJRBLwAAAKpn8QKgQiXvRQFQBr0AAACoXq9cvPifZZemNtbJW5yVyjhDB+RSGefGOCqVcSIiBifrpzLOBX8+N5VxIiIuGJTOOKs6f57KOMeMujuVcSIi3rvB6amNVSvvRfUuaTXjI5uemco42w5Lb0fIWc+8lMo4LyddqYxz7ZILUhknIuLaXtaLiIhJo+9NZRy9AAAAyIZeuXgB0Eg+SQtAOfQCAACgem7YDQAAAAAAtBRXXgBUyCdpASiHXgAAAFTP4gVAhRK7mANQBr0AAAConsULgAr5JC0A5dALAACA6rnnBUCFkqT6oxmOOOKI2HDDDeMDH/hAcyYAkFG19KIZzdALAACglVi8AOjlTjnllPj+97/f7GkA0OL0AgAAaCUWLwAqVIqk6qMZ9t1331h//fWbMjZAltXSi2Y0Qy8AAIBWYvECoEJpbgFy9913x6GHHhqjRo2KXC4XN99882rfUywWY6uttoqBAwfGHnvsEbNnz679RQJQszS3jdILAACgt7F4AVChUg1HpVauXBljxoyJYrG4xuevv/76mDx5ckybNi3mzZsXY8aMiYMOOiieeeaZKkYDoJ5q6UWlzdALAACgt+nX7AkAtJskxbuoHnLIIXHIIYe86fOXXnppnHDCCTFp0qSIiLjyyivj1ltvjauuuiqmTJmS1jQBWAO9AAAAqJ7FC4AKlWp4L6qzszM6Ozt7PNbR0REdHR0Vn+vll1+OuXPnxtSpU7sf69OnT0yYMCFmzZpV/SQBqItaehFRv2boBQAA0I5sGwWQounTp8ewYcN6HNOnT6/qXM8991x0dXXFpptu2uPxTTfdNJ5++unurydMmBAf/OAH47bbbovNN9/cG1UAbaJezdALAACgHTX1youTTz45jjrqqNh7772bOQ2AipSi+o/STp06NSZPntzjsWquuqjE//zP/zT0/GnQC6Ad1dKLiPSb0Rt6AQAA9B5NXbwoFotxxRVXxDbbbBMf//jHY+LEiTFixIiKzrGmy+kjkojI1W2eAK9Xyxbm1W4RtSbDhw+Pvn37xpIlS3o8vmTJkor/Lm119ehFhGYA6ar1lhf1akaWegEAAPQeTd826o477oj3vve9cckll8To0aPjsMMOi1tuuSVKpVJZP7+my+kjyvtZgGqUIqn6KBaLkc/nI5/PR7FYrGkeAwYMiF133TVmzpz5z7mVSjFz5swYN25crS+z5dTaiwjNANJVSy/q2Yys9QIAAOgdmr54sdNOO8Vll10WTz31VPzgBz+Izs7OOPzww2OLLbaIM888MxYuXLjWn586dWosW7asx9ECLwvoxZKk+qNQKMT8+fNj/vz5USgU1jnWihUr4v7774/7778/IiIWLVoU999/fzz++OMRETF58uT47ne/G9dcc0089NBD8alPfSpWrlwZkyZNauQfQVPU2osIzQDSVUsvKm2GXgAAAL1NU7eNer3+/fvHUUcdFUcddVQ8/vjjcdVVV8WMGTPioosuiq6urjf9uTVfTm/7D6B3mDNnTuy3337dX7+29/nEiRNjxowZcfTRR8ezzz4bZ599djz99NOxyy67xO23377aTVl7k2p7EaEZQO+lFwAAQG/TMosXrzd69Oj40pe+FNOmTXPjQKDl1HoD1krsu+++kaxj0/STTjopTjrppJRm1Fr0AmhlegEAAFC9pi5ebLnlltG3b983fT6Xy8V73vOeFGcEsG6lWu/ASsX0AmhHegEAAFC9pm70vWjRoth4442bOQWAiiU1/K+eN+zOEr0A2lEtvdAMAAAg61py2yiAVlaq4WcLhUJZN+oGoP3V0osIzQAAALLN4gVAhdLcwxyA9qUXAAAA1WvqtlEAAAAAAABvZPECoEJJklR92L8cIDtq6YVmAAAAWWfbKIAK1bINiP3LAbKj1m2jNAMAAMgyixcAFbKHOQDl0AsAAIDqWbwAqFASpWZPAYA2oBcAAADVc88LAAAAAACgpbjyAqBCtgEBoBx6AQAAUD1XXgBUqBRJ1UexWIx8Ph/5fD6KxWKzXwoADVRLLzQDAADIulySJL3uI2H5jY5Nbaxtc1unMs7gvn1TGadfn1wq40RE/GTFj1IZ532D/y2VcSIi/vryC6mMc8+yb6YyzqoXb0llnIiIPUbdlMo4c/5+Zc3nePcGp1T9s79Z+vWax6e+crn+qYyzw4ZHpTJOmv51g+1SGefbz9yQyjiHDflAKuNERFy75ILUxkpLWs04eOQvUhnnzqVfrvkctfQiQjMAAIBss20UQIWSnBuwArBuegEAAFA920YBAAAAAAAtxZUXABVyA1YAyqEXAAAA1bN4AVChUtgGBIB10wsAAIDq2TYKoEJJlKo+isVi5PP5yOfzUSwWm/1SAGigWnqhGQAAQNa58gKgQqUabsBaKBSiUCjUcTYAtKpaehGhGQAAQLZZvACokG1AACiHXgAAAFTPtlEAAAAAAEBLceUFQIV8khaAcugFAABA9SxeAFQo8WYUAGXQCwAAgOpZvACoUCm6mj0FANqAXgAAAFTP4gVAhXySFoBy6AUAAED13LAbIEXFYjHy+cYUwi8AABqDSURBVHzk8/koFovNng4ALUwzAACALGv64sXll18exx9/fFx33XUREXHttddGPp+P7bffPr7whS/EqlWrmjxDgJ5KuVLVR6FQiPnz58f8+fOjUCg0+6W0Fb0A2k0tvdAMAAAg65q6bdT5558fX/nKV+LAAw+MU089NR577LG4+OKL49RTT40+ffrE1772tejfv3+cc845b3qOzs7O6Ozs7PFYKemKPrm+jZ4+kFH2ME9fPXoRseZmRCQRkWvY3IHs0gsAAIDqNXXxYsaMGTFjxow48sgj44EHHohdd901rrnmmjj22GMjImL77bePM844Y61vRk2fPn2154cP3DHeMmjnhs4dyC57mKevHr2IWHMzXl24sOAN1J9eAAAAVK+p20Y99dRTMXbs2IiIGDNmTPTp0yd22WWX7uff9a53xVNPPbXWc0ydOjWWLVvW49h44DsaOW0g40pJV9UH1alHLyLW3IwW2EER6KVq6YVmAAAAWdfUd2xGjBgR8+fPj4iIRx55JLq6urq/joh48MEHY5NNNlnrOTo6OmLo0KE9DltGAfQu9ehFxJqbYcsoAAAAgNbT1G2jjj322Dj++OPjsMMOi5kzZ8YZZ5wRp512Wvztb3+LXC4XF1xwQXzgAx9o5hQBVmMbkPTpBdCO9AIAAKB6TV28OOecc2LQoEExa9asOOGEE2LKlCkxZsyYOOOMM+LFF1+MQw89NM4777xmThFgNYkbsKZOL4B2pBcAAADVa+riRZ8+feILX/hCj8eOOeaYOOaYY5o0I4B1K/kkber0AmhHegEAAFC9pi5eALQj24AAUA69AAAAqJ7FC4AKJYltQABYN70AAACoXp9mTwAgS4rFYuTz+cjn81EsFps9HQBamGYAAABZ5soLgArVsod5oVCIQqFQx9kA0KpqveeFZgAAAFlm8QKgQknYBgSAddMLAACA6lm8AKhQkrgBKwDrphcAAADVs3gBUKFatwEBIBv0AgAAoHpu2A0AAAAAALQUV14AVChJ7GEOwLrpBQAAQPV65eLFhCHbpTbWcy+l80vpPa/8JpVxDh68VyrjRER8dOOjUhlno45cKuNERPzwkW+mMs7Zbzs7lXG+uONvUxknIuK3Tx2R2li1SmwD0qvsPezkVMZ54OU7Uhln+coFqYwTEfGvG5yVyjif3jSdXvy9M0llnDRdtF06/x9FREzePp1m3L54/1TGqQe9AAAAqF6vXLwAaCQ3YAWgHHoBAABQPYsXABVKwjYgAKybXgAAAFTP4gVAhXySFoBy6AUAAED1+jR7AgAAAAAAwP9v7/6DqqrzP46/rtdAFvB3KFCg+APRlFVYGXQ3181VGQc1Z8stK5Rqp+26gayabttQ6ypaY2Mpg7qWtpmpo8G6aEPEJupu5g+WRltDMftlhDXlD3BAuffz/WMnvl6zTfDcH1yej+b8cc+99/P+HEJeM+d9zufgStx5AQAtxJW0AIDrQV4AAAAAQOvRvACAFnKJk1EAgB9GXgAAAABA67FsFAC0kDGuVm/5+fkaPHiwBg8erPz8fF8fCgDAg24kL8gMAAAAAO0dd14AQAsZ42z1dx0OhxwOh4WzAQD4qxvJC4nMAAAAANC+cecFAAAAAAAAAADwK9x5AQAtZFjDHABwHcgLAAAAAGg9mhcA0ELGcDIKAPDDyAsAAAAAaD2aFwDQQpyMAgBcD/ICAAAAAFrPp82LmpoaFRQUaN++faqpqVGHDh0UFxenqVOnaubMmbLb7b6cHgBcE8uA+AaZAaCtIS8AAAAAoPV89sDuQ4cOKSEhQbt27dLly5d14sQJJSUlKTQ0VHPnztXtt9+uCxcu+Gp6AAA/QmYAAAAAAAC0Lz5rXmRnZ2vOnDk6dOiQ9u7dqw0bNuj48ePavHmzPvzwQ128eFF//OMff3CcxsZGnT9/3m1zmiYvHAGA9soYV6s3tI4nM8NFZgDwkBvJCzIDAAAAQHvns+ZFRUWF7r///ubX9957ryoqKlRbW6tu3brpmWee0bZt235wnLy8PHXp0sVtO3R+ryenDqCd40SU93kyMz5tPOjJqQNox2heAAAAAEDr+ax5ERERoZqamubXtbW1ampqUufOnSVJAwYM0Ndff/2D4yxcuFDnzp1z25I7/8xj8wYAyXUDG1rDk5lxa/BPPDZvAO3djeQFmQEAAACgffPZA7unTp2qRx55RM8++6yCg4O1aNEijRkzRiEhIZKkqqoqRUdH/+A4wcHBCg4Odttnt/n0OeQAAhxXw3qfJzOjA5kBwEPICwAAAABoPZ+dsfnzn/+smpoapaeny+l0KjU1VRs3bmx+32azKS8vz1fTA4DvZbga1uvIDABtEXkBAAAAAK3ns+ZFWFiYtmzZooaGBjU1NSksLMzt/fHjx/toZgAAf0NmAAAAAAAAtC8+XyujU6dOvp4CALQIy4D4DpkBoC0hLwAAAACg9XzevACAtsfp6wkAANoE8gIAAAAAWovmBQC0EFfSAgCuB3kBAAAAAK1H8wIAWoyTUQCA60FeAAAAAEBrdfD1BAAAAAAAAAAAAK5E8wIAWsq4Wr/5QHFxseLj4zVgwACtW7fOJ3MAgHbpRvLCB5lBXgAAAADwJywbBQAtZGR8PYXr1tTUpJycHL399tvq0qWLkpKSdOedd6pHjx6+nhoABDzyAgAAAABajzsvAKDFXDewedeBAwc0ZMgQRUdHKywsTGlpaXrzzTe9Pg8AaJ9uJC+8mxnkBQAAAAB/Q/MCAFrKmNZvLbRnzx6lp6crKipKNptNRUVF3/lMfn6++vTpo06dOiklJUUHDhxofu/zzz9XdHR08+vo6GidPn26VYcNAGihG8mLFmYGeQEAAAAg0NC8AIAWMjfwX0vV19crMTFR+fn513x/y5YtysnJUW5urioqKpSYmKgJEybozJkzN3qYAIAbdCN50dLMIC8AAAAABBqeeQEAXtTY2KjGxka3fcHBwQoODr7m59PS0pSWlva94z333HN6+OGHNWvWLEnS6tWrtXPnTr300ktasGCBoqKi3K6cPX36tEaOHGnBkQAAPK0lmUFeAAAAAAg4BqahocHk5uaahoaGgKnFMfl/HW/W4pj8R25urpHktuXm5l7XdyWZwsLC5teNjY3Gbre77TPGmAceeMBMnjzZGGPM5cuXTf/+/c1nn31mLly4YAYOHGi++uori46mfQq033H+PrSNWoFWx5u12mpeGNP6zCAvAAAAAAQCmzGtWIQ9wJw/f15dunTRuXPn1Llz54CoxTH5fx1v1uKY/EdL77y4ks1mU2FhoaZOnSrp/9cn/9e//qXU1NTmz82fP1/l5eV69913JUk7duzQ3Llz5XK5NH/+fP3mN7+x7oDaoUD7HefvQ9uoFWh1vFmrreaF1PrMIC8AAAAABAKWjQIAL7reRoWVJk+erMmTJ3u1JgDgxnk7M8gLAAAAAP6EB3YDQBvVs2dP2e121dbWuu2vra1V7969fTQrAIC/IS8AAAAAtEU0LwCgjQoKClJSUpLKysqa97lcLpWVlbktCwIAaN/ICwAAAABtEctG6b+35Ofm5nrltnxv1eKY/L+ON2txTG1XXV2dqqurm1+fOnVKlZWV6t69u2JiYpSTk6OMjAwlJydr5MiRWrFiherr6zVr1iwfzjqwBdrvOH8f2katQKvjzVrkBXkBAAAAoG3igd0A4Md2796tsWPHfmd/RkaGNmzYIElatWqVnn32WX3xxRf68Y9/rBdeeEEpKSlenikAwJfICwAAAACBhuYFAAAAAAAAAADwKzzzAgAAAAAAAAAA+BWaFwAAAAAAAAAAwK/QvJCUn5+vPn36qFOnTkpJSdGBAwcsr7Fnzx6lp6crKipKNptNRUVFlteQpLy8PP3kJz9ReHi4IiIiNHXqVFVVVVlep6CgQMOGDVPnzp3VuXNnpaam6o033rC8ztWWLl0qm82m7Oxsy8d+6qmnZLPZ3LZBgwZZXkeSTp8+rfvuu089evRQSEiIhg4dqkOHDllep0+fPt85JpvNJofDYWkdp9OpJ598Un379lVISIj69eunRYsWyROr0l24cEHZ2dmKjY1VSEiIRo0apYMHD1peB7gW8qJ1Ai0zvJkXkncyIxDzQiIzAAAAAKAta/fNiy1btignJ0e5ubmqqKhQYmKiJkyYoDNnzlhap76+XomJicrPz7d03KuVl5fL4XBo//79Ki0t1eXLlzV+/HjV19dbWueWW27R0qVLdfjwYR06dEi/+MUvNGXKFL3//vuW1rnSwYMHtWbNGg0bNsxjNYYMGaKamprmbd++fZbX+OabbzR69GjddNNNeuONN/Sf//xHy5cvV7du3SyvdfDgQbfjKS0tlSTdddddltZZtmyZCgoKtGrVKh07dkzLli3TM888o5UrV1paR5IeeughlZaW6pVXXtGRI0c0fvx4jRs3TqdPn7a8FnAl8qL1AjEzvJEXkvcyIxDzQiIzAAAAAKBNM+3cyJEjjcPhaH7tdDpNVFSUycvL81hNSaawsNBj41/pzJkzRpIpLy/3eK1u3bqZdevWeWTsCxcumAEDBpjS0lIzZswYk5WVZXmN3Nxck5iYaPm4V3v88cfNT3/6U4/XuZasrCzTr18/43K5LB130qRJJjMz023ftGnTzIwZMyytc/HiRWO3201xcbHb/hEjRpgnnnjC0lrA1cgLa7XlzPBWXhjju8xo63lhDJkBAAAAAG1du77z4tKlSzp8+LDGjRvXvK9Dhw4aN26c3nnnHR/OzDrnzp2TJHXv3t1jNZxOpzZv3qz6+nqlpqZ6pIbD4dCkSZPc/l95wokTJxQVFaW4uDjNmDFDn3zyieU1duzYoeTkZN11112KiIjQ8OHD9Ze//MXyOle7dOmSNm7cqMzMTNlsNkvHHjVqlMrKynT8+HFJ0nvvvad9+/YpLS3N0jpNTU1yOp3q1KmT2/6QkBCPXfUMSOSFlQIlM7yRF5JvMiMQ8kIiMwAAAACgrevo6wn40ldffSWn06levXq57e/Vq5c++OADH83KOi6XS9nZ2Ro9erRuu+02y8c/cuSIUlNT1dDQoLCwMBUWFmrw4MGW19m8ebMqKio8vkZ1SkqKNmzYoPj4eNXU1Ojpp5/Wz372Mx09elTh4eGW1fnwww9VUFCgnJwc/eEPf9DBgwf12GOPKSgoSBkZGZbVuVpRUZHOnj2rmTNnWj72ggULdP78eQ0aNEh2u11Op1OLFy/WjBkzLK0THh6u1NRULVq0SAkJCerVq5dee+01vfPOO+rfv7+ltYArkRc3LpAyw1t5IfkmMwIhLyQyAwAAAADaunbdvAh0DodDR48e9djVhfHx8aqsrNS5c+e0bds2ZWRkqLy83NKTUZ9++qmysrJUWlr6nSsnrXblVZ/Dhg1TSkqKYmNjtXXrVj344IOW1XG5XEpOTtaSJUskScOHD9fRo0e1evVqjzYvXnzxRaWlpSkqKsrysbdu3apXX31VmzZt0pAhQ1RZWans7GxFRUVZfkyvvPKKMjMzFR0dLbvdrhEjRuiee+7R4cOHLa0DtCeezgspsDLDW3kh+SYzAiUvJDIDAAAAANqydt286Nmzp+x2u2pra93219bWqnfv3j6alTVmz56t4uJi7dmzR7fccotHagQFBTVfuZiUlKSDBw/q+eef15o1ayyrcfjwYZ05c0YjRoxo3ud0OrVnzx6tWrVKjY2NstvtltW7UteuXTVw4EBVV1dbOm5kZOR3TtYlJCRo+/btlta50scff6y33npLr7/+ukfGnzdvnhYsWKBf//rXkqShQ4fq448/Vl5enuUno/r166fy8nLV19fr/PnzioyM1PTp0xUXF2dpHeBK5MWNC+TM8FReSN7PjEDKC4nMAAAAAIC2rF0/8yIoKEhJSUkqKytr3udyuVRWVuaxdbg9zRij2bNnq7CwUP/4xz/Ut29fr9V2uVxqbGy0dMw77rhDR44cUWVlZfOWnJysGTNmqLKy0mONC0mqq6vTyZMnFRkZaem4o0ePVlVVldu+48ePKzY21tI6V1q/fr0iIiI0adIkj4x/8eJFdejg/ufEbrfL5XJ5pJ4khYaGKjIyUt98841KSko0ZcoUj9UCyAvrBVJmeCovJO9nRiDmhURmAAAAAEBb1K7vvJCknJwcZWRkKDk5WSNHjtSKFStUX1+vWbNmWVqnrq7O7YrMU6dOqbKyUt27d1dMTIxldRwOhzZt2qS//e1vCg8P1xdffCFJ6tKli0JCQiyrs3DhQqWlpSkmJkYXLlzQpk2btHv3bpWUlFhWQ/rvetVXr78eGhqqHj16WL4u+9y5c5Wenq7Y2Fh9/vnnys3Nld1u1z333GNpnTlz5mjUqFFasmSJ7r77bh04cEBr167V2rVrLa3zLZfLpfXr1ysjI0MdO3rmn3x6eroWL16smJgYDRkyRP/+97/13HPPKTMz0/JaJSUlMsYoPj5e1dXVmjdvngYNGmT5v1ngauRF6wVaZngrLyTvZkag5YVEZgAAAABAm2ZgVq5caWJiYkxQUJAZOXKk2b9/v+U13n77bSPpO1tGRoalda5VQ5JZv369pXUyMzNNbGysCQoKMjfffLO54447zJtvvmlpje8zZswYk5WVZfm406dPN5GRkSYoKMhER0eb6dOnm+rqasvrGGPM3//+d3PbbbeZ4OBgM2jQILN27VqP1DHGmJKSEiPJVFVVeazG+fPnTVZWlomJiTGdOnUycXFx5oknnjCNjY2W19qyZYuJi4szQUFBpnfv3sbhcJizZ89aXge4FvKidQItM7yZF8Z4LzMCLS+MITMAAAAAoC2zGWOM91olAAAAAAAAAAAA/1u7fuYFAAAAAAAAAADwPzQvAAAAAAAAAACAX6F5AQAAAAAAAAAA/ArNCwAAAAAAAAAA4FdoXgAAAAAAAAAAAL9C8wIAAAAAAAAAAPgVmhcAAAAAAAAAAMCv0LwAAAAAAAAAAAB+heYFAsrMmTM1derU5tc///nPlZ2d7fV57N69WzabTWfPnvV6bQDADyMvAAAAAADwbzQv4BUzZ86UzWaTzWZTUFCQ+vfvrz/96U9qamryaN3XX39dixYtuq7PcgIJAHyPvAAAAAAAAJLU0dcTQPsxceJErV+/Xo2Njdq1a5ccDoduuukmLVy40O1zly5dUlBQkCU1u3fvbsk4AADvIS8AAAAAAAB3XsBrgoOD1bt3b8XGxuq3v/2txo0bpx07djQv3bF48WJFRUUpPj5ekvTpp5/q7rvvVteuXdW9e3dNmTJFH330UfN4TqdTOTk56tq1q3r06KH58+fLGONW8+plQBobG/X444/r1ltvVXBwsPr3768XX3xRH330kcaOHStJ6tatm2w2m2bOnClJcrlcysvLU9++fRUSEqLExERt27bNrc6uXbs0cOBAhYSEaOzYsW7zBAC0DHkBAAAAAABoXsBnQkJCdOnSJUlSWVmZqqqqVFpaquLiYl2+fFkTJkxQeHi49u7dq3/+858KCwvTxIkTm7+zfPlybdiwQS+99JL27dunr7/+WoWFhf+z5gMPPKDXXntNL7zwgo4dO6Y1a9YoLCxMt956q7Zv3y5JqqqqUk1NjZ5//nlJUl5env76179q9erVev/99zVnzhzdd999Ki8vl/Tfk2bTpk1Tenq6Kisr9dBDD2nBggWe+rEBQLtDXgAAAAAA0P6wbBS8zhijsrIylZSU6He/+52+/PJLhYaGat26dc3Lf2zcuFEul0vr1q2TzWaTJK1fv15du3bV7t27NX78eK1YsUILFy7UtGnTJEmrV69WSUnJ99Y9fvy4tm7dqtLSUo0bN06SFBcX1/z+t0uGREREqGvXrpL+e+XtkiVL9NZbbyk1NbX5O/v27dOaNWs0ZswYFRQUqF+/flq+fLkkKT4+XkeOHNGyZcss/KkBQPtDXgAAAAAA0H7RvIDXFBcXKywsTJcvX5bL5dK9996rp556Sg6HQ0OHDnVbt/y9995TdXW1wsPD3cZoaGjQyZMnde7cOdXU1CglJaX5vY4dOyo5Ofk7S4F8q7KyUna7XWPGjLnuOVdXV+vixYv65S9/6bb/0qVLGj58uCTp2LFjbvOQ1HziCgDQcuQFAAAAAACgeQGvGTt2rAoKChQUFKSoqCh17Pj/v36hoaFun62rq1NSUpJeffXV74xz8803t6p+SEhIi79TV1cnSdq5c6eio6Pd3gsODm7VPAAA/xt5AQAAAAAAaF7Aa0JDQ9W/f//r+uyIESO0ZcsWRUREqHPnztf8TGRkpN59913dfvvtkqSmpiYdPnxYI0aMuObnhw4dKpfLpfLy8uZlQK707ZW8Tqezed/gwYMVHBysTz755HuvwE1ISNCOHTvc9u3fv/+HDxIAcE3kBQAAAAAA4IHd8EszZsxQz549NWXKFO3du1enTp3S7t279dhjj+mzzz6TJGVlZWnp0qUqKirSBx98oEcffVRnz5793jH79OmjjIwMZWZmqqioqHnMrVu3SpJiY2Nls9lUXFysL7/8UnV1dQoPD9fcuXM1Z84cvfzyyzp58qQqKiq0cuVKvfzyy5KkRx55RCdOnNC8efNUVVWlTZs2acOGDZ7+EQEARF4AAAAAABCoaF7AL/3oRz/Snj17FBMTo2nTpikhIUEPPvigGhoamq+s/f3vf6/7779fGRkZSk1NVXh4uO68887/OW5BQYF+9atf6dFHH9WgQYP08MMPq76+XpIUHR2tp59+WgsWLFCvXr00e/ZsSdKiRYv05JNPKi8vTwkJCZo4caJ27typvn37SpJiYmK0fft2FRUVKTExUatXr9aSJUs8+NMBAHyLvAAAAAAAIDDZzPc9rRIAAAAAAAAAAMAHuPMCAAAAAAAAAAD4FZoXAAAAAAAAAADAr9C8AAAAAAAAAAAAfoXmBQAAAAAAAAAA8Cs0LwAAAAAAAAAAgF+heQEAAAAAAAAAAPwKzQsAAAAAAAAAAOBXaF4AAAAAAAAAAAC/QvMCAAAAAAAAAAD4FZoXAAAAAAAAAADAr9C8AAAAAAAAAAAAfoXmBQAAAAAAAAAA8Cv/B+nz7mukLWWkAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["Confusion matrix on test data"],"metadata":{"id":"DQfeLNjJn45o"}},{"cell_type":"code","source":["plot_confusion_matrices_grid(test_cm_history, title_prefix=\"Test Epoch\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"jKRKCtVYnw48","executionInfo":{"status":"ok","timestamp":1763145452025,"user_tz":480,"elapsed":7548,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"c202a5f1-6a4d-4e7f-c037-07c898dd745d"},"execution_count":46,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABi8AAASmCAYAAABWYjjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Wl8VOX9v/HPJIFhTVgiu4iKCMMSNBRFZbFSKFoQ3LeK0LoOaqWopFYRt1hbFf0xiNIq7uK+b5SiuKAIiG0NsihuyCIqCYsEkrn/D/yTEhPgnFnuMyfnevd1HmQmmfueFHMx+XLOhIwxRgAAAAAAAAAAABkiy+sNAAAAAAAAAAAA7IrhBQAAAAAAAAAAyCgMLwAAAAAAAAAAQEZheAEAAAAAAAAAADIKwwsAAAAAAAAAAJBRGF4AAAAAAAAAAICMwvACAAAAAAAAAABkFIYXAAAAAAAAAAAgozC8AAAAAAAAAAAAGYXhBZBCb7zxhkKhkJ588kmvtwIAyGD0AgDgBL0AADhFM1AXMbxADaFQyNHxxhtvJL3W1q1bde211zp+rJ0/iHd3PPbYY0nvyUubN2/WpEmT9Otf/1otWrRQKBTSzJkzvd4WANSKXnjngw8+0Lhx49S9e3c1btxYHTt21CmnnKLly5d7vTUAqIFeeOfjjz/WySefrAMOOECNGjVSfn6+BgwYoBdeeMHrrQFArWhG5rjxxhsVCoXUo0cPr7eCAMvxegPIPA8++GC1jx944AHNnj27xu3dunVLeq2tW7dq8uTJkqRBgwY5/rpLLrlEv/jFL2rc3q9fv6T35KUNGzbouuuuU8eOHVVQUJCSGANAutAL7/zlL3/RO++8o5NPPlm9evXS2rVrNXXqVB166KF67733eIEBIKPQC+988cUX2rRpk0aPHq127dpp69ateuqppzRixAjdfffdOu+887zeIgBUQzMyw9dff62bbrpJjRs39norCDiGF6jhrLPOqvbxe++9p9mzZ9e43Uv9+/fXSSed5PU2Uq5t27Zas2aN2rRpo4ULF9YaQwDIFPTCO+PHj9cjjzyi+vXrV9126qmnqmfPnrr55pv10EMPebg7AKiOXnjn2GOP1bHHHlvttnHjxqmwsFC33XYbwwsAGYdmZIYJEybo8MMPV2VlpTZs2OD1dhBgXDYKCYnH45oyZYq6d++uBg0aqHXr1jr//PP1ww8/VPu8hQsXaujQocrPz1fDhg21//77a+zYsZKkzz//XPvss48kafLkyVWn2V177bUp2WMoFNK4ceP08MMP6+CDD1aDBg1UWFioefPm1fjcDz/8UMOGDVNubq6aNGmiY445Ru+9916Nz9u4caMuu+wyderUSeFwWB06dNDZZ59d4wd5PB7XjTfeqA4dOqhBgwY65phjtHLlyr3uORwOq02bNok/aQDIMPQiPb044ogjqg0uJOmggw5S9+7dtXTpUpffAQDwHr1ITy9qk52drX333VcbN25M6OsBwGs0I73NmDdvnp588klNmTLF9fMGUo0zL5CQ888/XzNnztSYMWN0ySWXaNWqVZo6dao+/PBDvfPOO6pXr57Wr1+vIUOGaJ999tHEiRPVrFkzff7553r66aclSfvss4/uuusuXXjhhRo1apROOOEESVKvXr32uv6mTZtqnfy2bNlSoVCo6uM333xTs2bN0iWXXKJwOKxp06bp17/+tRYsWFB1SY2PP/5Y/fv3V25urq644grVq1dPd999twYNGqQ333xThx12mKSf3o+if//+Wrp0qcaOHatDDz1UGzZs0PPPP6+vv/5a+fn5VevefPPNysrK0oQJE1RaWqpbbrlFZ555pt5///3Ev+kA4EP0wl4vjDFat26dunfv7vprAcBr9CK9vdiyZYt+/PFHlZaW6vnnn9crr7yiU0891dHXAkCmoRnpa0ZlZaUuvvhi/f73v1fPnj33+vlA2hlgL6LRqNn1j8pbb71lJJmHH3642ue9+uqr1W5/5plnjCTzwQcf7Paxv/32WyPJTJo0ydFe5s6dayTt9lizZk3V5+68beHChVW3ffHFF6ZBgwZm1KhRVbeNHDnS1K9f33z66adVt33zzTemadOmZsCAAVW3XXPNNUaSefrpp2vsKx6PV9tft27dTHl5edX9d9xxh5Fk/vOf/zh6nsYY88EHHxhJ5r777nP8NQDgJXrxE9u92OnBBx80ksw//vEP118LADbRi5/Y7MX5559ftf+srCxz0kknme+//97R1wKAl2jGT2w1Y+rUqSYvL8+sX7/eGGPMwIEDTffu3Z18e4C04MwLuPbEE08oLy9Pv/rVr6pNmgsLC9WkSRPNnTtXZ5xxhpo1ayZJevHFF1VQUKB69eqlbA/XXHON+vfvX+P2Fi1aVPu4X79+KiwsrPq4Y8eOOv744/XCCy+osrJSkvT6669r5MiROuCAA6o+r23btjrjjDM0Y8YMlZWVKTc3V0899ZQKCgo0atSoGuvuOlmXpDFjxlS7nMfOvX722We8iSqAwKAX9nrxySefKBqNql+/fho9erTjrwOATEAv0t+LP/zhDzrppJP0zTff6PHHH1dlZaW2b9++168DgExDM9LXjO+++07XXHONrr766qpLagFeY3gB11asWKHS0lK1atWq1vvXr18vSRo4cKBOPPFETZ48WbfffrsGDRqkkSNH6owzzlA4HE5qDz179tTgwYP3+nkHHXRQjdu6dOmirVu36ttvv5Ukbd26VQcffHCNz+vWrZvi8bi++uorde/eXZ9++qlOPPFER/vr2LFjtY+bN28uSTWuvwgAdRm92LtU9GLt2rU67rjjlJeXpyeffFLZ2dmOvxYAMgG92Ltke9G1a1d17dpVknT22WdryJAhGj58uN5///0av/QCgExGM/Yu0Wb8+c9/VosWLXTxxRc7WgewgeEFXIvH42rVqpUefvjhWu/fOZ0NhUJ68skn9d577+mFF17Qa6+9prFjx+rWW2/Ve++9pyZNmtjctlW7+8WRMcbyTgDAO/Ri75LtRWlpqYYNG6aNGzfqrbfeUrt27VK5PQCwgl7sXapfX5x00kk6//zztXz58lp/aQYAmYpm7F0izVixYoXuueceTZkyRd98803V7du2bdOOHTv0+eefKzc3t8bZJUC6MbyAawceeKD++c9/6sgjj1TDhg33+vmHH364Dj/8cN1444165JFHdOaZZ+qxxx7T73//+7T/K58VK1bUuG358uVq1KhRVdAaNWqkZcuW1fi8Tz75RFlZWdp3330l/fS8//vf/6Z1vwBQl9CL9Nq2bZuGDx+u5cuX65///KcikUja1wSAdKAX9v3444+SfhqCA4Cf0Iz0WL16teLxuC655BJdcsklNe7ff//9demll2rKlClp2wNQmyyvNwD/OeWUU1RZWanrr7++xn0VFRXauHGjpJ9OR/v5VLd3796SpPLyckk//ZCWVPU1qTZ//nwtXry46uOvvvpKzz33nIYMGaLs7GxlZ2dryJAheu655/T5559Xfd66dev0yCOP6KijjlJubq4k6cQTT9RHH32kZ555psY6nFEBADXRi/T1orKyUqeeeqrmz5+vJ554Qv369UvJ4wKAF+hF+nqx8/Ipu9qxY4ceeOABNWzYkME3AN+hGelpRo8ePfTMM8/UOLp3766OHTvqmWee0e9+97uk1wHc4swLuDZw4ECdf/75Ki4u1pIlSzRkyBDVq1dPK1as0BNPPKE77rhDJ510ku6//35NmzZNo0aN0oEHHqhNmzZpxowZys3N1bHHHitJVX9hnjVrlrp06aIWLVqoR48ee33Tubfeekvbtm2rcXuvXr3Uq1evqo979OihoUOH6pJLLlE4HNa0adMkSZMnT676nBtuuEGzZ8/WUUcdpYsuukg5OTm6++67VV5erltuuaXq8y6//HI9+eSTOvnkkzV27FgVFhbq+++/1/PPP6/p06eroKAgqe/rTlOnTtXGjRurTtN74YUX9PXXX0uSLr74YuXl5aVkHQBIN3qRvl788Y9/1PPPP6/hw4fr+++/10MPPVTt/rPOOivpNQDAFnqRvl6cf/75Kisr04ABA9S+fXutXbtWDz/8sD755BPdeuutdfqyKQDqJpqRnmbk5+dr5MiRNW7feaZFbfcBVhhgL6LRqKntj8o999xjCgsLTcOGDU3Tpk1Nz549zRVXXGG++eYbY4wxixcvNqeffrrp2LGjCYfDplWrVuY3v/mNWbhwYbXHeffdd01hYaGpX7++kWQmTZq0273MnTvXSNrtsevXSjLRaNQ89NBD5qCDDjLhcNgccsghZu7cuTUed/HixWbo0KGmSZMmplGjRuboo4827777bo3P++6778y4ceNM+/btTf369U2HDh3M6NGjzYYNG6rt74knnqj2datWrTKSzH333bfb57bTfvvtt9vnt2rVqr1+PQB4hV78T7p7MXDgwD0+PwDIZPTif9Ldi0cffdQMHjzYtG7d2uTk5JjmzZubwYMHm+eee26PXwcAmYJm/I+N30n93MCBA0337t1dfx2QKiFjuN4N6qZQKKRoNKqpU6d6vRUAQAajFwAAJ+gFAMApmgGkBu95AQAAAAAAAAAAMgrDCwAAAAAAAAAAkFEYXgAAAAAAAAAAgIzCe14AAAAAAAAAAICMwpkXAAAAAAAAAAAgozC8AAAAAAAAAAAAGYXhBQDUYRs3blSfPn3Uu3dv9ejRQzNmzPB6SwCADEQvAABO0QwAgC118j0vKre8Ym2tnCYjrK1V15zQcqKVdebteN3KOpL0t/2HWVnnL1+usLJOs3i+lXUkaX7pNCvrGLMj6ceojL+R8NdmZw1Ken03KisrVV5erkaNGmnLli3q0aOHFi5cqJYtW1rdRyar/PE1K+vkNPqNlXVsys891Mo6G8oWW1mnW/NTrKwj2fv5autna13kdS8ku82gF3tn6zUGry/8wWYzbFj6w+PW1rL1vbP5nJJthp96IdGMvaEXQGrUtdebUvB6sXHjRg0ePFgVFRWqqKjQpZdeqnPPPdfVY+SkaW8AgAyQnZ2tRo0aSZLKy8tljFEdnFkDAJJELwAATtEMAIATTZs21bx586oNu0844QRXw24uGwUAbsXjiR8uzZs3T8OHD1e7du0UCoX07LPP1vicWCymTp06qUGDBjrssMO0YMGCavdv3LhRBQUF6tChgy6//HLl59s7owYAAi2ZXrhsBr0AAB+z2AuJZgCAb1nuRbJSMexmeAEAblkMxZYtW1RQUKBYLFbr/bNmzdL48eM1adIkLV68WAUFBRo6dKjWr19f9TnNmjXTRx99pFWrVumRRx7RunXrEn7qAAAXLL64oBcA4GOWfxlFMwDApwI47GZ4AQBuJRGK8vJylZWVVTvKy8t3u9SwYcN0ww03aNSoUbXef9ttt+ncc8/VmDFjFIlENH36dDVq1Ej33ntvjc9t3bq1CgoK9NZbb6XsWwEA2IMkX1y4aQa9AAAfs/zLKJoBAD4VwGE3wwsAcMuYhI/i4mLl5eVVO4qLixPaxvbt27Vo0SINHjy46rasrCwNHjxY8+fPlyStW7dOmzZtkiSVlpZq3rx5Ovjgg5P/HgAA9i6JXqSyGfQCADJckr1w+w+k9oRmAEAGs9yLTBh2M7wAALeSmHIXFRWptLS02lFUVJTQNjZs2KDKykq1bt262u2tW7fW2rVrJUlffPGF+vfvr4KCAvXv318XX3yxevbsmfS3AADgQJL/MipVzaAXAJDhkuxFKv+BFM0AgAyWQb2wNezOSWh3AICEhMNhhcNha+v17dtXS5YssbYeACB1bDaDXgCAfxUVFWn8+PHVbktnP2gGAPhTKnuxp2H3J598IumnYfd5551X9UbdiQy7GV4AgFsJXCcwHfLz85WdnV3jeoHr1q1TmzZtPNoVAKAKvQAAOJFkL1I57KYZAJDBMqgXTqRi2M1lowDALYtvjrQn9evXV2FhoebMmbPL1uKaM2eO+vXrl9K1AAAJsPyGertDLwAgw2VILySaAQAZLYN6YWvYzfACANxKIhSxWEyRSESRSESxWGyvS23evFlLliypmlSvWrVKS5Ys0ZdffilJGj9+vGbMmKH7779fS5cu1YUXXqgtW7ZozJgx6fwOAACcSPLFhZtm0AsA8DGLvZBoBgD4luVe7ImtYTeXjQIAt5KYVkejUUWjUcefv3DhQh199NFVH++8NuHo0aM1c+ZMnXrqqfr22291zTXXaO3aterdu7deffXVGtccBAB4IMl/3eSmGfQCAHzMYi8kmgEAvmW5F5s3b9bKlSurPt457G7RooU6duyo8ePHa/To0erTp4/69u2rKVOmpHzYzfACADLYoEGDZIzZ4+eMGzdO48aNs7QjAEAmohcAAKdoBgDAiUwYdns6vNiwYYPuvfdezZ8/X2vXrpUktWnTRkcccYTOOecc7bPPPl5uDwBqFTKpvU4gnKEZAPyGXniDXgDwG3rhDXoBwG9s9yITht2evefFBx98oC5duujOO+9UXl6eBgwYoAEDBigvL0933nmnunbtqoULF3q1PQDYvQx5c6QgoRkAfCmD3lAvKOgFAF+iF9bRCwC+FMBeeHbmxcUXX6yTTz5Z06dPVygUqnafMUYXXHCBLr74Ys2fP3+Pj1NeXq7y8vJqt+VU7FA4XC/lewYASVJ8z1PnPYnFYlVviuT2WoNBltZmxLcrHK6f8j0DQDK9kGhGIniNAcCXkuwF3KMXAHwpgL3w7MyLjz76SJdddlmNSEhSKBTSZZddpiVLluz1cYqLi5WXl1ftuPlvs9KwYwD4/5KYckejUZWUlKikpIRfQrmQ1mb8lWYASJMk/2UUzXCP1xgAfCnJXsRiMUUiEUUikaqhN/aMXgDwpQD2wrMzL9q0aaMFCxaoa9eutd6/YMECR2/uUVRUVPVmITvlVLyRii0CADJEWpsRfzMlewQAeI/XGACCiLPz3KMXAILIj73wbHgxYcIEnXfeeVq0aJGOOeaYqiisW7dOc+bM0YwZM/S3v/1tr48TDocVDoer3Va5hdPzAKSRT68T6GdpbcaPXDIKQJrQC+t4jQHAl+iFdfQCgC8FsBeeDS+i0ajy8/N1++23a9q0aaqsrJQkZWdnq7CwUDNnztQpp5zi1fYAYPdM8GLhNZoBwJfohXX0AoAv0Qvr6AUAXwpgLzwbXkjSqaeeqlNPPVU7duzQhg0bJEn5+fmqV48pNYAMFsBJdyagGQB8h154gl4A8B164Ql6AcB3AtgLz96we1f16tVT27Zt1bZtWyIBIPPFTcKHH98cKdPQDAC+kUQvaEby6AUA36AXnqIXAHwjyV74kadnXgCALyUx6fbjmyMBABKU5L+MohkAEBD0AgDgRJK9iMViVUNuv7SD4QUAAAAAAAAAAHWYXwYWu2J4AQBuBfAagwCABNALAIAT9AIA4EQAe8HwAgBcCgUwFgAA9+gFAMAJegEAcCKIvWB4AQBuGX++yREAwDJ6AQBwgl4AAJwIYC8YXgCAWwGcdAMAEkAvAABO0AsAgBMB7EWW1xsAgCCJxWKKRCKKRCKKxWJebwcAkMFoBgDACXoBAKirOPMCANxKYtIdjUYVjUZTuBkAQMZK8l9G0QwACAh6AQBwIslexGKxqiG3X9rB8AIA3IoH7xqDAIAE0AsAgBP0AgDgRJK98MvAYlcMLwDArQBeYxAAkAB6AQBwgl4AAJwIYC/q5PAip8kIa2tVVM62sk7P/BlW1rHp6e9u9noLKXf354dbWWdp6eNW1rmj+9VW1pGk+aXWlkpeAGNRl+U0+o2VdWz1ok3zK62sI0kD6g2xss7TWmxlHZtWmPesrDO02QQr60hSr+YNrazz11XXW1knJehFnWLrNYatXkhSTvavrKyTn3uolXU2lNnrxdIf7Px9vF/eRVbWgcfoRZ1CLxJnqxeS3WbYUBe/d3Xt/6OUCGAv6uTwAgDSynBaNwDAAXoBAHCCXgAAnAhgL7K83gAAAAAAAAAAAMCuOPMCANwK4Gl6AIAE0AsAgBP0AgDgRAB7wZkXAOBW3CR8xGIxRSIRRSIRxWIxr58JACCdkugFzQCAAEmyFwCAgAhgLxheAIBb8XjCRzQaVUlJiUpKShSNRr1+JgCAdEqiFzQDAAIkyV4w7AaAgAhgL7hsFAC4FcDT9AAACaAXAAAnkuxFNBplyA0AQRDAXnDmBQAAAAAAAAAAyCiceQEAbvn0OoEAAMvoBQDACXoBAHAigL1geAEAbhkuAwIAcIBeAACcoBcAACcC2AuGFwDgVgAn3QCABNALAIAT9AIA4EQAe8HwAgDc4g1YAQBO0AsAgBP0AgDgRAB7wRt2AwAAAAAAAACAjMKZFwDgVgBP0wMAJIBeAACcoBcAACcC2IuMPvPiq6++0tixY/f4OeXl5SorK6t2SMH7PxKARfF4wkcsFlMkElEkElEsFvP6mdQZTnoh0QwAliXRC5qRPrzGAJBxkuwF0oNeAMg4AexFRg8vvv/+e91///17/Jzi4mLl5eVVOyR//p8BwCfiJuEjGo2qpKREJSUlikajXj+TOsNJLySaAcCyJHpBM9KH1xgAMk6SvWDYnR70AkDGCWAvPL1s1PPPP7/H+z/77LO9PkZRUZHGjx9f7ba8vBZJ7QsA9sjwl1HbUtELiWYAsIxeeILXGAB8J8leRKNRhtwJoBcAfCeAvfB0eDFy5EiFQiEZs/tT6kKh0B4fIxwOKxwO//yrUrA7ANiNAF5j0Gup6IVEMwBYRi88wWsMAL5DLzxBLwD4TgB74ello9q2baunn35a8Xi81mPx4sVebg8AkCHoBQDAKZoBAHCCXgBA5vN0eFFYWKhFixbt9v69TcABwBPJXGMQCaEXAHwpyWvSIjE0A4Dv0AtP0AsAvhPAXnh62ajLL79cW7Zs2e39nTt31ty5cy3uCAAciHMNc9voBQBfoheeoBkAfIdeeIJeAPCdAPbC0+FF//7993h/48aNNXDgQEu7AQCHfDqt9jN6AcCX6IUnaAYA36EXnqAXAHwngL3wdHgBAL4UwFgAABJALwAATtALAIATAeyFp+95AQAAAAAAAAAA8HOceQEAbgXwGoMAgATQCwCAE/QCAOBEAHvB8AIA3DLBO00PAJAAegEAcIJeAACcCGAvGF4AgFsBvMYgACAB9AIA4AS9AAA4EcBe8J4XAOBW3CR8xGIxRSIRRSIRxWIxr58JACCdkugFzQCAAKEXAAAnkuyFH3HmBQBYFI1GFY1Gvd4GAMAHaAYAwAl6AQBwIhaLVQ25/dIOhhcA4FYA3yAJAJAAegEAcIJeAACcSLIXfhlY7IrhBQC45dNT7QAAltELAIAT9AIA4EQAe1Enhxd/2O9qa2vlZP/KyjoVZc9aWee4jm9bWUeS/tjrKivr/OOLH6ysI0njDmhmZZ2LzJ+srFNaEbwfio4EMBZ12UUd7DTDWi+2vmhlHUkq6v6+lXX6VVxkZZ35P0yzso5k789d/Wwry0iSPi3bYW8xv6AXdUrRAddYWadN8yutrCPZa0abNna+d/3y7PRCkuaX2muGDTa/d7mmkZV1llpZJUXoRZ1yRis7r9dtvb6QpIofX7KyTk7D46ysI0ndmp9iZZ2lPzxuZZ0NZYutrAOPBbAXdXJ4AQBpFcBYAAASQC8AAE7QCwCAEwHsBcMLAHDJJBGLUAr3AQDIbMn0QqIZABAU9AIA4EQQe5Hl9QYAAAAAAAAAAAB2xZkXAOCWCd5pegCABNALAIAT9AIA4EQAe8HwAgDcCuA1BgEACaAXAAAn6AUAwIkA9oLhBQC4FcBYAAASQC8AAE7QCwCAEwHsBcMLAHArgLEAACSAXgAAnKAXAAAnAtgL3rAbAAAAAAAAAABkFM68AAC3AjjpBgAkgF4AAJygFwAAJwLYC4YXAOCSCWAsAADu0QsAgBP0AgDgRBB7wfACANwKYCwAAAmgFwAAJ+gFAMCJAPaC4QUAuBXAWAAAEkAvAABO0AsAgBMB7AXDCwBwK4CxAAAkgF4AAJygFwAAJwLYiyyvN/Djjz/q7bffVklJSY37tm3bpgceeMCDXQFAesRiMUUiEUUiEcViMa+34yv0AkDQ0IzE0AsAgBP0AgAyn6fDi+XLl6tbt24aMGCAevbsqYEDB2rNmjVV95eWlmrMmDF7fIzy8nKVlZVVOypMRbq3DiDIjEn4iEajKikpUUlJiaLRqNfPxDdS0Qup9mZU0gwA6ZJEL2hGYtLZC15jAEibJHvBsNs9Xl8A8KUA9sLT4cWVV16pHj16aP369Vq2bJmaNm2qI488Ul9++aXjxyguLlZeXl6144PSt9K4awBBZ+KJH0hMKnoh1d6MRWU0A0B6JNMLmpGYdPZi/g/z0rRrAEGXbC8YdruXzl58vOXtNO0aQNAFsReeDi/effddFRcXKz8/X507d9YLL7ygoUOHqn///vrss88cPUZRUZFKS0urHb/I65/mnQMItLhJ/EBCUtELqfZmFObSDABpkkwvaEZC0tmLfs0HpHHnAAKNXliXzl50b3xUGncOINAC2AtPhxc//vijcnL+957hoVBId911l4YPH66BAwdq+fLle32McDis3NzcakdOiPchB5BGAQtFJkhFL6Tam5FNMwCkSwBfXHgtnb3gNQaAtKEX1vH6AoAvBbAXnv5E7dq1qxYuXKhu3bpVu33q1KmSpBEjRnixLQBAhqEXAAAn6AUAwAl6AQD+4OmZF6NGjdKjjz5a631Tp07V6aefLmP8ORUCUHdx/XL76AUAP+I9L+yjFwD8iF7YRy8A+FEQe+Hp8KKoqEgvv/zybu+fNm2a4nGffmcB1F0BO0UvE9ALAL4UwNO6vUYvAPgSvbCOXgDwpQD2ggvxAYBb/B0WAOAEvQAAOEEvAABOBLAXDC8AwCXj02k1AMAuegEAcIJeAACcCGIvPL1sFAAAAAAAAAAAwM9x5gUAuBXA0/QAAAmgFwAAJ+gFAMCJAPaC4QUAuBW8s/QAAImgFwAAJ+gFAMCJAPaC4QUAuBTEawwCANyjFwAAJ+gFAMCJIPaC4QUAuBXA0/QAAAmgFwAAJ+gFAMCJAPaC4QUAuGQCGAsAgHv0AgDgBL0AADgRxF5keb0BAAAAAAAAAACAXXHmBQC4FcBJNwAgAfQCAOAEvQAAOBHAXtTJ4cXS0h+trdWt+SlW1nmo/wdW1nnps8OtrCNJOS1OsrLO87+40so6kjR22atW1rm50zAr63Rpss3KOpJ0QsuJ1tZKVhBP06vLpn19vddbSKnzDnzP2lr3fGqnGTmNfmNlnaIDrrGyjiQVf3adlXVs/mzdUllhbS2/oBd1y7M/fGJlnQ1li62sI0lnd3rXyjprv7bz8zUnd6SVdSTp9cMnWFlnyHt/s7LO0GZ2no8ktW/YwMo6Q2XvOSWLXtQtr2+z83sBm45rO9fKOhWbn7eyjiTlNBlhZZ3L97/ayjp/XWXvdW2/vIusrWXDCmPvNXSygtiLOjm8AIC0CmAsAAAJoBcAACfoBQDAiQD2guEFALhkjNc7AAD4Ab0AADhBLwAATgSxF7xhNwAAAAAAAAAAyCiceQEALgXxGoMAAPfoBQDACXoBAHAiiL1geAEAbgUwFgCABNALAIAT9AIA4EQAe8HwAgBcCuKkGwDgHr0AADhBLwAATgSxF7znBQC4ZEzih21fffWVBg0apEgkol69eumJJ56wvwkACKhkemG7GfQCALzjp15INAMAvOK3XqQCZ14AgFvxkNc7cCwnJ0dTpkxR7969tXbtWhUWFurYY49V48aNvd4aANR99AIA4ISPeiHRDADwjM968dVXX+m3v/2t1q9fr5ycHF199dU6+eSTXT0GwwsAqMPatm2rtm3bSpLatGmj/Px8ff/997ywAABUQy8AAE7RDACAE6kYdnPZKABwycQTP9yaN2+ehg8frnbt2ikUCunZZ5+t8TmxWEydOnVSgwYNdNhhh2nBggW1PtaiRYtUWVmpfffd1/1GAACuJdMLt82gFwDgXzZ7IdEMAPAr271IVtu2bdW7d29J1YfdbjC8AACXjAklfLi1ZcsWFRQUKBaL1Xr/rFmzNH78eE2aNEmLFy9WQUGBhg4dqvXr11f7vO+//15nn3227rnnnoSeMwDAvWR64bYZ9AIA/MtmLySaAQB+ZbsXmTDsZngBAC4lM+UuLy9XWVlZtaO8vHy3aw0bNkw33HCDRo0aVev9t912m84991yNGTNGkUhE06dPV6NGjXTvvfdWfU55eblGjhypiRMn6ogjjkj59wMAULtk/2WUm2bQCwDwL9v/kpZmAIA/2e5FJgy7GV4AgEvJhKK4uFh5eXnVjuLi4oT2sX37di1atEiDBw+uui0rK0uDBw/W/Pnzf9qrMTrnnHP0y1/+Ur/97W9T8vwBAM4k++IiVc2gFwCQ2WwOu/eGZgBA5rLdi0wYdns+vFi6dKnuu+8+ffLJJ5KkTz75RBdeeKHGjh2rf/3rX3v9+tq+6XFTke5tA0BCioqKVFpaWu0oKipK6LE2bNigyspKtW7dutrtrVu31tq1ayVJ77zzjmbNmqVnn31WvXv3Vu/evfWf//wn6efhhWR7IdXeDMmkcdcAkLhUNYNepKYXcVOZzm0DQMJS+Q+kgtSMdPXCJPLPmwHAAj/+g9qchL4qRV599VUdf/zxatKkibZu3apnnnlGZ599tgoKChSPxzVkyBC9/vrr+uUvf7nbxyguLtbkyZOr3XZg+Eh1btg/3dsHEFCJXCdwp3A4rHA4nMLd7NlRRx2leNz/f3lORS+k2pshhSRlp23vAIIrmV5IdptBL6qrrRf5DXpon4a90rl9AAGVbC+Kioo0fvz4arelsx91oRnp7EXD+u3UuEGHdG4fQEBlUi/2NOzeORTeOezu1atX1ftlPPjgg+rZs6fjdTw98+K6667T5Zdfru+++0733XefzjjjDJ177rmaPXu25syZo8svv1w333zzHh+jtn+RdkCDfpaeAYAgMvFQwkcq5efnKzs7W+vWrat2+7p169SmTZuUruW1VPRCqr0ZGXASIoA6KplepLIZ9CI1vWjZoLuFZwAgiJLtRTgcVm5ubrUj0V9GBaUZ6exFo3A7C88AQBBlUi+c2DnsXrJkSdXhZnAhefwbm48//ljnnHOOJOmUU07Rpk2bdNJJJ1Xdf+aZZ+rf//73Hh+jtm96VsjTE0oA1HHGJH6kUv369VVYWKg5c+ZU3RaPxzVnzhz161e3hrip6IVUezN+OvMCAFIvmV6kshn0IjW9yApxlh6A9MiUXkjBaUY6exEK8Y+jAKRHJvXC1rDb85+oodBPvzTKyspSgwYNlJeXV3Vf06ZN//+/igWAzGFMKOEjFospEokoEokoFovtda3NmzdXTacladWqVVqyZIm+/PJLSdL48eM1Y8YM3X///Vq6dKkuvPBCbdmyRWPGjEnnt8AT9AKA3yTTC7fNoBf/Qy8A+I3NXkg0Yyd6AcBvbPdiT2wNuz09RaFTp05asWKFDjzwQEnS/Pnz1bFjx6r7v/zyS7Vt29ar7QFAykWjUUWjUcefv3DhQh199NFVH++8NuHo0aM1c+ZMnXrqqfr22291zTXXaO3aterdu7deffXVGtcc9Dt6ASCI3DSDXvyEXgAIIl5juEcvAASR215s3rxZK1eurPp457C7RYsW6tixo8aPH6/Ro0erT58+6tu3r6ZMmZLyYbenw4sLL7xQlZWVVR/36NGj2v2vvPLKXt8cCQBsS/V7V+zJoEGDZPZybt+4ceM0btw4SzvyBr0A4Ef0wj56AcCPbPZCohkSvQDgT7Z7kQnDbk+HFxdccMEe77/pppss7QQAnEv1dQKxd/QCgB/RC/voBQA/ohf20QsAfmS7F5kw7OadrQHAJWN4g2cAwN7RCwCAE/QCAOBEEHvh+Rt2A4DfxOOhhI9UvjkSACCzJdMLmgEAwZFsLwAAwRDEXjC8AACXjEn8iEajKikpUUlJias3SQIA+E8yvaAZABAcyfaCYTcABEMQe8FlowAAAAAAAHwqGo0y5AYA7JUfe8HwAgBcCuI1BgEA7tELAIAT9AIA4EQQe8HwAgBcCmIsAADu0QsAgBP0AgDgRBB7wfACAFyKBzAWAAD36AUAwAl6AQBwIoi94A27AcAlEw8lfPjxzZEAAIlJphc0AwCCI9leAACCIYi9YHgBABZFo1GVlJSopKTEd2+SBACwi2YAAJxg2A0AcMKPvaiTl416bePfvN5Cyt0dv8jKOue0OMnKOpJUUfaslXVyckdaWUeSpvb4s5V1fv/vG6ys0635KVbWkaRLO3SxtlayjPF6B8DuLd36vbW1chr9xso6dbEXf9jvaivrLC390co6kvRl6Esr68w78jIr66QCvahblv7wuNdbSLkPd6y0sk5O7k1W1qnY/LyVdSQpp8kIK+vY+vv4osp/WVlHkl5bs9jKOme0+pOVdVIh2V5Eo1GG3BlkQ5mdP+M2lZmtVtax9bNVqnuvMfJzD7WyjiStMO9ZWcfWf0t/6WrntVkqBLEXdXJ4AQDpFMRrDAIA3KMXAAAn6AUAwIkg9oLhBQC4ZAIYCwCAe/QCAOAEvQAAOBHEXjC8AACXgjjpBgC4Ry8AAE7QCwCAE0HsBW/YDQAAAAAAAAAAMgrDCwBwyZhQwkcsFlMkElEkElEsFvP6qQAA0iiZXtAMAAgOegEAcCLZXvgRl40CAJfiSXxtNBpVNBpN2V4AAJkrmV5INAMAgoJeAACcSLYXsVisasjtl3YwvAAAl/w6rQYA2EUvAABO0AsAgBPJ9sIvA4tdMbwAAJeC+AZJAAD36AUAwAl6AQBwIoi9YHgBAC7xL6MAAE7QCwCAE/QCAOBEEHvBG3YDAAAAAAAAAICMwpkXAOBS3Hi9AwCAH9ALAIAT9AIA4EQQe5FxwwtjjEKh4J0CA8A/gniaXiaiFwAyHb3IHDQDQCajF5mDXgDIZEHsRcZdNiocDmvp0qVebwMAdiuuUMJHLBZTJBJRJBJRLBbz+qn4Gr0AkOmS6QXNSC2aASCTJdsLpA69AJDJgtgLz868GD9+fK23V1ZW6uabb1bLli0lSbfddpvNbQHAXpkkTtOLRqOKRqOp20wA0AsAfpVMLySakQiaAcCPku1FLBarGnLTDmfoBQA/CmIvPBteTJkyRQUFBWrWrFm1240xWrp0qRo3buzoVL3y8nKVl5f/7FYj+XSaBACoLlW9kGgGANR1vMYAEER++QVUJqEXAILIj73wbHhx00036Z577tGtt96qX/7yl1W316tXTzNnzlQkEnH0OMXFxZo8efLPbg1Jyk7dZgFgF/EAXmPQS6nqhUQzANhFL+zjNQYAP6IX9tELAH4UxF549p4XEydO1KxZs3ThhRdqwoQJ2rFjR0KPU1RUpNLS0mpHBr6VB4A6JGjXF/Raqnoh0QwAdgXxmrRe4zUGAD+iF/bRCwB+FMReJPQT9a233tJZZ52lfv36afXq1ZKkBx98UG+//barx/nFL36hRYsW6dtvv1WfPn303//+1/GlP3YKh8PKzc2tdnB6HoB0MibxI2gyqRcSzQBgVzK9oBm8xgAQHPTCHXoBIKiC2AvXw4unnnpKQ4cOVcOGDfXhhx9WXduvtLRUN910k+sNNGnSRPfff7+Kioo0ePBgVVZWun4MALApbkIJH0FCLwAEXTK9oBk0A0Bw0Avn6AWAIAtiL1wPL2644QZNnz5dM2bMUL169apuP/LII7V48eKEN3Laaadp4cKFevrpp7Xffvsl/DgAkG5GoYSPIKEXAIIumV7QjJ/QDABBQC+coxcAgiyIvXD9ht3Lli3TgAEDatyel5enjRs3JrWZDh06qEOHDkk9BgAgM9ALAIBTNAMA4AS9AIBgcX3mRZs2bbRy5coat7/99ts64IADUrIpAMhkcZP4EST0AkDQJdMLmvETmgEgCOiFc/QCQJAFsReuhxfnnnuuLr30Ur3//vsKhUL65ptv9PDDD2vChAm68MIL07FHAMgoyVxfMBaLKRKJKBKJKBaLef1U0opeAAi6ZK9JSzNoBoBgCOI1zBNFLwAEWRB74fqyURMnTlQ8HtcxxxyjrVu3asCAAQqHw5owYYIuvvjidOwRADJKMtcJjEajikajKdxN5qIXAIIu2evK0gyaASAYku1FLBarGnLX9XbQCwBBFsReuB5ehEIhXXXVVbr88su1cuVKbd68WZFIRE2aNEnH/gAg4/j1VDvb6AWAoKMXztEMAEGWbC/88guoVKAXAIIsiL1wPbzYqX79+opEIqncCwCgDqIXAACnaAYAwAl6AQDB4Hp4cfTRRysU2v0pKv/617+S2hAAZLpkT9MLCnoBIOjohXM0A0CQ0Qvn6AWAIAtiL1wPL3r37l3t4x07dmjJkiX673//q9GjR6dqXwCQsbgMiDP0AkDQ0QvnaAaAIKMXztELAEEWxF64Hl7cfvvttd5+7bXXavPmzUlvCAAyXdwEb9KdCHoBIOjohXM0A0CQ0Qvn6AWAIAtiL7JS9UBnnXWW7r333lQ9HABkLJPEAXoBIDiS6QXN+AnNABAE9CJ59AJAEASxFykbXsyfP18NGjRI1cMBAOooegEAcIpmAACcoBcAUDe5vmzUCSecUO1jY4zWrFmjhQsX6uqrr07ZxpJxTedrrK31xHefWFkn1zSyss7cI/5oZR1J+vuRC62sU/nlfVbWkaSnRy2zss7QZhOsrDO55w4r60jSpH9vs7LO+Sl4jCCeppcIP/RCki7qYGcv076+3so680unWVlHkh7s/Scr6+TkjrSyTsWGx62sI0nn9fy3lXVe2/g3K+tI9to04B07z8nolqQfg14454dmnNHKzs+8R9bfZGUdSVr6g52fe92an2JlnZwmI6ysI9lrxnGdF1hZZ2mZvQb2y7vIyjo2/1t6WJOT+np64ZwfemHrZ56tn+GSvdcYtv4+KdW91xg9D3rSyjqS9G3lSivr5OceamWdKz+x81pdkq5Qcr+zDmIvXA8v8vLyqn2clZWlgw8+WNddd52GDBmSso0BQKaKe70Bn6AXAIKOXjhHMwAEGb1wjl4ACLIg9sLV8KKyslJjxoxRz5491bx583TtCQAymgngpNstegEA9MIpmgEg6OiFM/QCQNAFsReu3vMiOztbQ4YM0caNG9O0HQDIfPEkjqCgFwCQXC9oBgAEB71whl4ACLog9sL1G3b36NFDn332WTr2AgC+EDeJH7FYTJFIRJFIRLFYzOunklb0AkDQJdMLmgEAwUEvnKMXAIIs2V74kevhxQ033KAJEyboxRdf1Jo1a1RWVlbtAADsXjQaVUlJiUpKShSNRr3eTlrRCwBIDs2gGQDgBL2gFwDghB+H3Y7f8+K6667TH//4Rx177LGSpBEjRigU+t91towxCoVCqqysTP0uASCDGAXvGoNu0AsA+Am92DuaAQD0wgl6AQDJ9yIajfpuyO14eDF58mRdcMEFmjt3bjr3AwAZz6+n2tlCLwDgJ/Ri72gGANALJ+gFAASzF46HF8b89N0ZOHBg2jYDAH7Av4zaM3oBAD+hF3tHMwCAXjhBLwAgmL1wPLyQVO2UPAAIqiBOut2iFwBAL5yiGQCCjl44Qy8ABF0Qe+FqeNGlS5e9xuL7779PakMAAP+jFwAAp2gGAMAJegEAweNqeDF58mTl5eWlay8A4AtBnHS7RS8AgF44RTMABB29cIZeAAi6IPbC1fDitNNOU6tWrdK1FwDwhSBeY9AtegEA9MIpmgEg6OiFM/QCQNAFsReOhxdcWxAAfhLESbcb9AIAfkIv9o5mAAC9cIJeAEAwe+F4eGFM+r87W7Zs0eOPP66VK1eqbdu2Ov3009WyZcs9fk15ebnKy8ur3VZhKpQTcnVSCQA4Fvd6AxkuU3sh1d6MSlOhbJoBIA3oxd6luxn0AoAf0Iu981Mv4qZSWaHsdG0VQIAFsRdZTj8xHo+n/PS8SCRS9WZKX331lXr06KHLLrtMs2fP1qRJkxSJRLRq1ao9PkZxcbHy8vKqHW9/Py+l+wSAXRkTSvgIgkzthVR7MxaVvZXSvQLATsn0gmYkJp29+HjL2ynbJwDsil7snZ968d22j1O2TwDYVRB74Xh4kQ6ffPKJKioqJElFRUVq166dvvjiCy1YsEBffPGFevXqpauuumqPj1FUVKTS0tJqx1EtBtjYPgDAklT0YufX/rwZhbn90719AIAl6exF98ZHpXv7AABL0tmLlg26p3v7ABAYGXPe8/z58zV9+nTl5eVJkpo0aaLJkyfrtNNO2+PXhcNhhcPhardxySgA6RTE0/QySaK9kGpvBpcAAZAu9MJb9AKAX9ALb6W6F1wyCkC6BLEXnv8NfOebLm3btk1t27atdl/79u317bfferEtANitIL5BUiagFwD8hl54g14A8Bt64Q16AcBvgtgLz4cXxxxzjHJyclRWVqZly5apR48eVfd98cUXjt4gCQBsCmArMgK9AOA39MIb9AKA39ALb9ALAH4TxF54OryYNGlStY+bNGlS7eMXXnhB/ftzLXIAmSXu0zc58jN6AcCP6IV99AKAH9EL++gFAD8KYi8yanjxc3/9618t7QQAkMnoBQDACXoBAHCCXgCAP2R5vQEA8BuTxBGLxRSJRBSJRBSLxTzYPQDAlmR6QTMAIDiS7QUAIBiC2AuGFwDgUtwkfkSjUZWUlKikpETRaNTrpwIASKNkekEzACA4ku0Fw24ACIYg9sLzN+wGAL+Je70BAIAv0AsAgBPJ9iIajTLkBoAACGIvGF4AgEvGr+faAQCsohcAACfoBQDAiSD2gstGAQAAAAAAAACAjMKZFwDgUlwhr7cAAPABegEAcIJeAACcCGIvGF4AgEtBPE0PAOAevQAAOEEvAABOBLEXDC8AwCXegBUA4AS9AAA4QS8AAE4EsRcMLwDApXgAJ90AAPfoBQDACXoBAHAiiL2ok8OLz8oqra31beVKO+vIzjpHv7vYyjqSNLXHn62sM7qPne+dJM1cebiVdU7OHWllnbKPLrKyjiTNL73D0krFST9CAFtRpzWuZ2edbs1PsbKOrS5J0m+X3GRlnX55dn4WTSj8j5V1JOmeZX2srHNvrpVlJEmL4v+yt5hP0AskIj/3UGtrbSiz83f/pT88bmWdoc0mWFlHkvof+IaVdd76aoiVdXJy/2ZlHUmaXzrN2lp+QS/qlqMbH2xpJTuvLyR7P8df22jvZ5Gt1xi2evGfr86wso4k5Vj6nRRqCmIvsrzeAAAAAAAAAAAAwK7q5JkXAJBOQTxNDwDgHr0AADhBLwAATgSxFwwvAMAlE8BYAADcoxcAACfoBQDAiSD2guEFALgU93oDAABfoBcAACfoBQDAiSD2guEFALgUxNP0AADu0QsAgBP0AgDgRBB7wRt2AwAAAAAAAACAjMKZFwDgUgAH3QCABNALAIAT9AIA4EQQe8HwAgBcCuJpegAA9+gFAMAJegEAcCKIvWB4AQAuGYW83gIAwAfoBQDACXoBAHAiiL1geAEALgVx0g0AcI9eAACcoBcAACeC2AvesBsAAAAAAAAAAGQUzrwAAJeCOOkGALhHLwAATtALAIATQewFwwsAcCmArQAAJIBeAACcoBcAACeC2AtPLxu1ePFirVq1qurjBx98UEceeaT23XdfHXXUUXrsscc83B0A1C5uEj+QGHoBwI+S6QXNSAy9AOBH9MI+egHAj4LYC0+HF2PGjNGnn34qSfr73/+u888/X3369NFVV12lX/ziFzr33HN177337vExysvLVVZWVu2oNBU2tg8goEwS/0NiUtELqfZmVNAMAGmSTC9oRmLS2QteYwBIF3phH70A4EdB7IWnw4sVK1booIMOkiRNmzZNd9xxh+644w5dcMEFuv3223X33Xfr1ltv3eNjFBcXKy8vr9rx3y1v29g+gIDy25R71KhRat68uU466SRvNpACqeiFVHsz3t/4Vrq3DyCg/PYvo+jF/9TWi495jQEgTfzWC8n/zUhnLxaV8foCQHr4sRfJ8nR40ahRI23YsEGStHr1avXt27fa/Ycddli10/hqU1RUpNLS0mpHj8ZHpW3PAOA3l156qR544AGvt5GUVPRCqr0ZhzXrn5Y9A4Df0Iv/qa0X3XmNAQBV/N6MdPaiMJfXFwCwU7LDbk+HF8OGDdNdd90lSRo4cKCefPLJavc//vjj6ty58x4fIxwOKzc3t9qRHeJ9yAGkj0ni8MKgQYPUtGlTj1ZPjVT0Qqq9GTk0A0CaJNMLL5pBL/6H1xgAbPJbLyT/N4NeAPAjP/Yi2WG3p8OLv/zlL5ozZ44GDhyofffdV7feeqv69++v8847TwMHDtS1116rm2++2cstAkANNk/RmzdvnoYPH6527dopFArp2WefrfE5sVhMnTp1UoMGDXTYYYdpwYIFyT/JDEMvAPiRzdO66cVP6AUAP7J9GRCaQS8A+JMfLxuV7LDb0+FFu3bt9OGHH6pfv3569dVXZYzRggUL9Prrr6tDhw565513dOyxx3q5RQCowZjED7e2bNmigoICxWKxWu+fNWuWxo8fr0mTJmnx4sUqKCjQ0KFDtX79+iSfZWahFwD8KJleuG0GvfgJvQDgRzZ7IdEMiV4A8CfbvciEYbfn57I1a9ZMN998MxNtAL4RT+Jry8vLVV5eXu22cDiscDhc6+cPGzZMw4YN2+3j3XbbbTr33HM1ZswYSdL06dP10ksv6d5779XEiROT2GnmoRcA/CaZXkjumkEv/odeAPCbZHvhFs34Cb0A4De2e7Fz2D127FidcMIJNe7fOeyePn26DjvsME2ZMkVDhw7VsmXL1KpVq5TswdMzLwAgaIqLi5WXl1ftKC4uTuixtm/frkWLFmnw4MFVt2VlZWnw4MGaP39+qrYMAPBIqppBLwCgbisvL1dZWVm14+fDb6doBgDUXW57MWzYMN1www0aNWpUrffvOuyORCKaPn26GjVqpHvvvTdle2Z4AQAuJXN9waKiIpWWllY7ioqKEtrHhg0bVFlZqdatW1e7vXXr1lq7dm3Vx4MHD9bJJ5+sl19+WR06dOBFBwBYkuw1aVPVDHoBAJkt2V6k8h9I0QwAyFyZ1Atbw27PLxsFAH6TyHUCd9rTJaLS5Z///KfV9QAAP0mmF5L9ZtALAPBGsr0oKirS+PHjq92W7n7QDACwL5N6sadh9yeffFL18eDBg/XRRx9py5Yt6tChg5544gn169fP8ToMLwDAJdvXGNyd/Px8ZWdna926ddVuX7dundq0aePRrgAAO9ELAIATyfYilcNumgEAmSuTeuFUssNuLhsFAC4Zk/iRSvXr11dhYaHmzJlTdVs8HtecOXNcTbEBAOmRTC9S2Qx6AQCZLVN6IdEMAMhkmdQLW8NuhhcA4FI8iSMWiykSiSgSiSgWi+11rc2bN2vJkiVasmSJJGnVqlVasmSJvvzyS0nS+PHjNWPGDN1///1aunSpLrzwQm3ZskVjxoxJ6XMGALiXTC/cNoNeAIB/2eyFRDMAwK9s92JPbA27uWwUAFgUjUYVjUYdf/7ChQt19NFHV32889qEo0eP1syZM3Xqqafq22+/1TXXXKO1a9eqd+/eevXVV2tccxAA4D9umkEvACC4eI0BAHDCbS82b96slStXVn28c9jdokULdezYUePHj9fo0aPVp08f9e3bV1OmTEn5sJvhBQC4ZFJ9rt0eDBo0aK/rjRs3TuPGjbO0IwCAU/QCAOCEzV5INAMA/Mp2LzJh2M3wAgBcitttBQDAp+gFAMAJegEAcMJ2LzJh2F0nhxcPrb/R2loXdbjayjrHtSu3ss7oT6wsI0lavdXOW648tP46K+tI0kO5dtap2Py8lXV67vuQlXUk6Y7udv5bSgVeW9Qtf111vZV1+uVdZGWdPx/Y2co6kvTf0t9YWaf4Mzs/x+eXWllGkjTFVi+2vmhnIUk5jez8eRjabIKVdVKBXtQtj6y/yco6tl5fSFLBfsdaWeeqL162ss5rG/9mZR2bcnKnWVnH1usLSWrT7lor6/xt/2FW1kkFelG3TPvazusLm704Yx87a92x9iUr60jS/FI7P19tsdULyd5rDFuvL2y9Vk+FIPaCN+wGAJfiJvEjlW+OBADIbMn0gmYAQHAk2wsAQDAEsRcMLwDAomg0qpKSEpWUlLh6kyQAQPDQDACAEwy7AQBO+LEXdfKyUQCQTn6dVgMA7KIXAAAnku1FNBplyA0AARDEXjC8AACXTCCvMggAcIteAACcoBcAACeC2AuGFwDgEv+SFgDgBL0AADhBLwAATgSxFwwvAMAlE8BYAADcoxcAACfoBQDAiSD2gjfsBgCL/PjmSAAAb9AMAAAAAEHG8AIAXIrLJHxEo1GVlJSopKTEd2+SBABwJ5le0AwACI5ke8GwGwCCIYi94LJRAOBSEE/TAwC4Ry8AAE4k24toNMqQGwACIIi9YHgBAC7Fvd4AAMAX6AUAwAl6AQBwIoi9YHgBAC4Z/iktAMABegEAcIJeAACcCGIvGF4AgEvx4LUCAJAAegEAcIJeAACcCGIveMNuAAAAAAAAAACQUTwdXlx88cV66623vNwCALgWl0n4iMViikQiikQiisViXj8V36AXAPwomV7QjMTQCwB+lGwv4B69AOBHQeyFp8OLWCymQYMGqUuXLvrLX/6itWvXun6M8vJylZWVVTvk0/8zAPiDMYkf0WhUJSUlKikpUTQa9fqp+EYqeiHRDAB2JdMLmpEYegHAj5LtBcNu9+gFAD8KYi88v2zU66+/rmOPPVZ/+9vf1LFjRx1//PF68cUXFY87e//04uJi5eXlVTuC+d7rAGwJ2pQ7UyTbC4lmALAriP8yKhPQCwB+k2wvGHYnhl4A8Jsg9sLz4UXPnj01ZcoUffPNN3rooYdUXl6ukSNHat9999VVV12llStX7vHri4qKVFpaWu3IgKcFoA5LZsqNxCXbC4lmALAr2X8ZhcTQCwB+Qy+8QS8A+E0Qe5ExP1Hr1aunU045Ra+++qo+++wznXvuuXr44Yd18MEH7/HrwuGwcnNzqx1SyM6mAQDWJdoLiWYAQJDQCwCAE/QCADJXxgwvdtWxY0dde+21WrVqlV599VWvtwMA1XAJkMxBLwBkMi4blTnoBYBMRi8yB70AkMmC2IscLxffb7/9lJ2dvdv7Q6GQfvWrX1ncEQDsXdyv59r5GL0A4Ef0wj56AcCP6IV99AKAHwWxF54OL1atWuXl8gCQEOPTabWf0QsAfkQv7KMXAPyIXthHLwD4URB74enwAgD8KO71BgAAvkAvAABO0AsAgBNB7EVGvucFAGSyZK4vGIvFFIlEFIlEFIvFvH4qAIA0SvaatDQDAIKBXgAAnAhiLzjzAgAsikajikajXm8DAOADNAMA4AS9AAA44cdeMLwAAJdMAN8gCQDgHr0AADhBLwAATgSxFwwvAMCleADfIAkA4B69AAA4QS8AAE4EsRcMLwDApSDGAgDgHr0AADhBLwAATgSxFwwvAMAlo7jXWwAA+AC9AAA4QS8AAE4EsRdZXm8AAAAAAAAAAABgV5x5AQAuBfE0PQCAe/QCAOAEvQAAOBHEXjC8AACXghgLAIB79AIA4AS9AAA4EcRe1MnhxVmtrrK21oebvrOyztwVG6ysc1Gr31hZR5IaZNv5D+6aztdYWUey95yKD/3Ayjr/+fQUK+tI0ikHLbSyziUpeIx4AK8xWJfZ+hlx3crrrKzT9suJVtaRpLMPKLeyTv6GQ62sc2mb46ysI0lvr//RyjrndJpvZR1Jqtj4tJV1cpqdYGUdqTjpR6AXdcslHa+2ss6dX15vZR1J6rbF3t/1bOjW3N7zGdm8q5V1Fn+/1co6/du/amUdSVr7tZ2/ex3X8W0r60jS6CS/nl7ULRd1sNMLW7+PkqS5W+z8TmpIg19bWUeSPszubGWdk1va6cX7G+z0QpKOa/eGlXVsvb44rtO7VtZJhSD2gve8AACXTCie8BGLxRSJRBSJRBSLxbx+KgCANEqmFzQDAIKDXgAAnAhiL+rkmRcAkKmi0aii0ajX2wAA+ADNAAA4QS8AAE74sRcMLwDApSBeYxAA4B69AAA4QS8AAE4EsRcMLwDApSBeYxAA4B69AAA4QS8AAE4EsRcMLwDAJRPAWAAA3KMXAAAn6AUAwIkg9oLhBQC4FA8FLxYAAPfoBQDACXoBAHAiiL1geAEALgXxND0AgHv0AgDgBL0AADgRxF5keb0BAAAAAAAAAACAXXHmBQC4FMRJNwDAPXoBAHCCXgAAnAhiLxheAIBLQXyDJACAe/QCAOAEvQAAOBHEXjC8AACX4qr0egsAAB+gFwAAJ+gFAMCJIPaC4QUAuBTESTcAwD16AQBwgl4AAJwIYi94w24AsCgWiykSiSgSiSgWi3m9HQBABqMZAAAAAILM8+HF1KlTdfbZZ+uxxx6TJD344IOKRCLq2rWr/vSnP6miosLjHQJAdfFQPOEjGo2qpKREJSUlikajXj8VX6EXAPwmmV7QjMTRCwB+k2wvGHYnhl4A8Jsg9sLTy0bdcMMNuuWWWzRkyBBddtll+uKLL/TXv/5Vl112mbKysnT77berXr16mjx58m4fo7y8XOXl5dVuqzQVyg5xRSwA6RHEawx6LRW9kGpvRoWpUA7NAJAG9MI+egHAj5LtRTQaZcjtUjp7we+kAKRLEHvh6U/TmTNnaubMmTrhhBP00UcfqbCwUPfff7/OPPNMSVLXrl11xRVX7DEWxcXFNe7v2WigCpoMSufWAQRYEK8x6LVU9EKqvRkDmg/SoJa/TNfWAQQYvbAvnb3omztIhzc7Om17BxBc9MK+dPaiT9NB6ptHLwCkXhB74ello7755hv16dNHklRQUKCsrCz17t276v5DDz1U33zzzR4fo6ioSKWlpdWOHo2PSue2AQRc3FQmfCAxqeiFVHszjmoxIF3bBhBwyfSCZiQmnb3ok9c/XdsGEHD0wr509qIwl14ASI8g9sLT4UWbNm1UUlIiSVqxYoUqKyurPpakjz/+WK1atdrjY4TDYeXm5lY7OD0PAOqWVPRCqr0ZXAIEAOoOegEAcCKdveB3UgCQOp7+RD3zzDN19tln6/jjj9ecOXN0xRVXaMKECfruu+8UCoV044036qSTTvJyiwBQQxBP0/MavQDgR/TCPnoBwI/ohX30AoAfBbEXng4vJk+erIYNG2r+/Pk699xzNXHiRBUUFOiKK67Q1q1bNXz4cF1//fVebhEAajC8Aat19AKAH9EL++gFAD+iF/bRCwB+FMReeDq8yMrK0p/+9Kdqt5122mk67bTTPNoRAOxdPICTbq/RCwB+RC/soxcA/Ihe2EcvAPhREHvBhfgAwKUgnqYHAHCPXgAAnKAXAAAngtgLhhcA4JIxwTtNDwDgHr0AADhBLwAATgSxF1lebwAAAAAAAAAAAGBXnHkBAC4F8RqDAAD36AUAwAl6AQBwIoi9YHgBAC4ZBe80PQCAe/QCAOAEvQAAOBHEXjC8AACXjAnepBsA4B69AAA4QS8AAE4EsRcMLwDApSCepgcAcI9eAACcoBcAACeC2AvesBsAAAAAAAAAAGQUzrwAAJeMCd41BgEA7tELAIAT9AIA4EQQe1Enhxffbi+3tlbbnFwr66zY8Z6Vdd7f0NHKOpL00p/WW1nnlL+0s7KOJM3b8bqVde7p8isr6xQf/pGVdSTpiSXdrK2VLBPA0/Tqsg3bjJV1hjabYGWdp7+72co6ktSj+TVW1rmo1W+srPNduZ0/C5L02sa/WVnn4UP+ZGUdSTqnyyIr61SUPWtlnVSgF3XLhm12Xiye0HKilXUke83ol3eRlXVObtvSyjqS9N8f7Pz3basXtv4/kqSe+z1iZZ3/fH2WlXVSgV7ULRu32+mFrd9HSdL876ZZWadf2z9bWUeSDlFnK+v894ftVtax1QvJ3mvbNh1vsLLO2m+utbJOKgSxF1w2CgBcMiae8BGLxRSJRBSJRBSLxbx+KgCANEqmFzQDAIKDXgAAnAhiL+rkmRcAkE5Gif9Lmmg0qmg0msLdAAAyVTK9kGgGAAQFvQAAOBHEXjC8AACXjAneaXoAAPfoBQDACXoBAHAiiL3gslEAAAAAAAAAACCjcOYFALgUxEk3AMA9egEAcIJeAACcCGIvGF4AgEtxBS8WAAD36AUAwAl6AQBwIoi9YHgBAC4FcdINAHCPXgAAnKAXAAAngtgLhhcA4JIxlV5vAQDgA/QCAOAEvQAAOBHEXvCG3QAAAAAAAAAAIKNw5gUAuGQCeI1BAIB79AIA4AS9AAA4EcReMLwAAJeCeI1BAIB79AIA4AS9AAA4EcReMLwAAJeCGAsAgHv0AgDgBL0AADgRxF54OrxYs2aN7rrrLr399ttas2aNsrKydMABB2jkyJE655xzlJ2d7eX2AKBWQTxNLxPQDAB+Qy+8QS8A+A298Aa9AOA3QeyFZ2/YvXDhQnXr1k0vv/yyduzYoRUrVqiwsFCNGzfWhAkTNGDAAG3atMmr7QEAMgjNAAA4QS8AAE7QCwDwB8+GF3/4wx902WWXaeHChXrrrbc0c+ZMLV++XI899pg+++wzbd26VX/+85/3+jjl5eUqKyurdsRNhYVnACCojIknfCAx6WxGJc0AkCbJ9IJmJIZeAPAjemEfvQDgR0HshWfDi8WLF+u3v/1t1cdnnHGGFi9erHXr1ql58+a65ZZb9OSTT+71cYqLi5WXl1ft+Gzb/HRuHUDABS0UmSCdzVhU9lY6tw4gwIL44sJr6ezFx1veTufWAQQYvbCPXgDwoyD2wrPhRatWrbRmzZqqj9etW6eKigrl5uZKkg466CB9//33e32coqIilZaWVjsOaNAvbfsGACmexIFEpLMZhbn907ZvAEGXTC9oRiLS2YvujY9K274BBB29sI1eAPCn4PXCszfsHjlypC644AL99a9/VTgc1vXXX6+BAweqYcOGkqRly5apffv2e32ccDiscDhc7baskKfvQw6gjvPrtNrP0tmMbJoBIE3ohX30AoAf0Qv76AUAPwpiLzz7iXrDDTdozZo1Gj58uCorK9WvXz899NBDVfeHQiEVFxd7tT0A2C3j02m1n9EMAH5EL+yjFwD8iF7YRy8A+FEQe+HZ8KJJkyaaNWuWtm3bpoqKCjVp0qTa/UOGDPFoZwCATEMzAABO0AsAgBP0AgD8wfNz2Ro0aOD1FgDAlSCeppcpaAYAP6EX3qEXAPyEXniHXgDwkyD2wvPhBQD4T6XXGwAA+AK9AAA4QS8AAE4ErxcMLwDApSBOugEA7tELAIAT9AIA4EQQe8HwAgBcC14sAACJoBcAACfoBQDAieD1IsvrDQAAAAAAAAAAAOyK4QUAuGXiiR8eePHFF3XwwQfroIMO0t///ndP9gAAgZRMLzxoBr0AAI/4rBcSzQAATwSwF1w2CgBcMjJeb8GxiooKjR8/XnPnzlVeXp4KCws1atQotWzZ0uutAUCdRy8AAE74qRcSzQAArwSxF5x5AQCuxZM47FqwYIG6d++u9u3bq0mTJho2bJhef/116/sAgGBKphd2m0EvAMBL/umFRDMAwDvB6wXDCwBwy5jED5fmzZun4cOHq127dgqFQnr22WdrfE4sFlOnTp3UoEEDHXbYYVqwYEHVfd98843at29f9XH79u21evXqhJ42AMClZHrhshn0AgB8zGIvJJoBAL4VwF4wvAAAl0wS/3Nry5YtKigoUCwWq/X+WbNmafz48Zo0aZIWL16sgoICDR06VOvXr0/2aQIAkpRML9w2g14AgH/Z7IVEMwDAr4LYC97zAgAsKi8vV3l5ebXbwuGwwuFwrZ8/bNgwDRs2bLePd9ttt+ncc8/VmDFjJEnTp0/XSy+9pHvvvVcTJ05Uu3btqk21V69erb59+6bgmQAA0s1NM+gFAAQXrzEAAE74shcGZtu2bWbSpElm27ZtdWYtnlPmr2NzLZ5T5pg0aZKRVO2YNGmSo6+VZJ555pmqj8vLy012dna124wx5uyzzzYjRowwxhizY8cO07lzZ/P111+bTZs2mS5dupgNGzak6NkEU137M87PB3+sVdfWsbmWX3thTOLNoBeZoS7+Gec5sY4Xa9W1ddKB1xj+xn+3mb+OzbV4Tpm/ju21UsmPvWB4YYwpLS01kkxpaWmdWYvnlPnr2FyL55Q5tm3bZkpLS6sdTmP381CsXr3aSDLvvvtutc+7/PLLTd++fas+fu6558xBBx1kDjzwQHP33Xen5HkEWV37M87PB3+sVdfWsbmWX3thTOLNoBeZoS7+Gec5sY4Xa9W1ddKB1xj+xn+3mb+OzbV4Tpm/ju21UsmPveCyUQBg0Z5Ox0uXESNGaMSIEVbXBAAkz3Yz6AUA+BOvMQAATvixF7xhNwD4VH5+vrKzs7Vu3bpqt69bt05t2rTxaFcAgExDLwAATtEMAIATtnrB8AIAfKp+/foqLCzUnDlzqm6Lx+OaM2eO+vXr5+HOAACZhF4AAJyiGQAAJ2z1gstG6adTZiZNmmTltBlba/GcMn8dm2vxnPxr8+bNWrlyZdXHq1at0pIlS9SiRQt17NhR48eP1+jRo9WnTx/17dtXU6ZM0ZYtWzRmzBgPd1231bU/4/x88MdadW0dm2vRC3rhlbr4Z5znxDperFXX1skENCOz8N9t5q9jcy2eU+avY3stL2VCL0L//w03AAAZ6I033tDRRx9d4/bRo0dr5syZkqSpU6fqr3/9q9auXavevXvrzjvv1GGHHWZ5pwAAL9ELAIBTNAMA4EQm9ILhBQAAAAAAAAAAyCi85wUAAAAAAAAAAMgoDC8AAAAAAAAAAEBGYXghKRaLqVOnTmrQoIEOO+wwLViwIOVrzJs3T8OHD1e7du0UCoX07LPPpnwNSSouLtYvfvELNW3aVK1atdLIkSO1bNmylK9z1113qVevXsrNzVVubq769eunV155JeXr/NzNN9+sUCikP/zhDyl/7GuvvVahUKja0bVr15SvI0mrV6/WWWedpZYtW6phw4bq2bOnFi5cmPJ1OnXqVOM5hUIhRaPRlK5TWVmpq6++Wvvvv78aNmyoAw88UNdff73ScVW6TZs26Q9/+IP2228/NWzYUEcccYQ++OCDlK8D1IZeJKauNcNmLyQ7zaiLvZBoBrxDLxJT13oh1b3XGLZ6IfEaA8FBM9yjF8nhd1KJoxf2BX54MWvWLI0fP16TJk3S4sWLVVBQoKFDh2r9+vUpXWfLli0qKChQLBZL6eP+3JtvvqloNKr33ntPs2fP1o4dOzRkyBBt2bIlpet06NBBN998sxYtWqSFCxfql7/8pY4//nh9/PHHKV1nVx988IHuvvtu9erVK21rdO/eXWvWrKk63n777ZSv8cMPP+jII49UvXr19Morr6ikpES33nqrmjdvnvK1Pvjgg2rPZ/bs2ZKkk08+OaXr/OUvf9Fdd92lqVOnaunSpfrLX/6iW265Rf/3f/+X0nUk6fe//71mz56tBx98UP/5z380ZMgQDR48WKtXr075WsCu6EXi6mIzbPRCsteMutgLiWbAG/QicXWxF1Ldeo1hqxcSrzEQDDQjMfQicfxOKjn0wgMm4Pr27Wui0WjVx5WVlaZdu3amuLg4bWtKMs8880zaHn9X69evN5LMm2++mfa1mjdvbv7+97+n5bE3bdpkDjroIDN79mwzcOBAc+mll6Z8jUmTJpmCgoKUP+7PXXnlleaoo45K+zq1ufTSS82BBx5o4vF4Sh/3uOOOM2PHjq122wknnGDOPPPMlK6zdetWk52dbV588cVqtx966KHmqquuSulawM/Ri9TyczNs9cIY75rh914YQzPgHXqRWn7uhTF1/zVGunphDK8xEAw0I3XohTP8Tipx9MIbgT7zYvv27Vq0aJEGDx5cdVtWVpYGDx6s+fPne7iz1CktLZUktWjRIm1rVFZW6rHHHtOWLVvUr1+/tKwRjUZ13HHHVfv/Kh1WrFihdu3a6YADDtCZZ56pL7/8MuVrPP/88+rTp49OPvlktWrVSocccohmzJiR8nV+bvv27XrooYc0duxYhUKhlD72EUccoTlz5mj58uWSpI8++khvv/22hg0bltJ1KioqVFlZqQYNGlS7vWHDhmn7V8+ARC9Sqa40w0YvJG+aURd6IdEMeINepE5d6YVUd19jpLMXEq8xUPfRjNSgF+7wO6nE0QuPeD098dLq1auNJPPuu+9Wu/3yyy83ffv2Tdu6sjTlrqysNMcdd5w58sgj0/L4//73v03jxo1Ndna2ycvLMy+99FJa1nn00UdNjx49zI8//miMMWmbcr/88svm8ccfNx999JF59dVXTb9+/UzHjh1NWVlZStcJh8MmHA6boqIis3jxYnP33XebBg0amJkzZ6Z0nZ+bNWuWyc7ONqtXr075Y1dWVporr7zShEIhk5OTY0KhkLnppptSvo4xxvTr188MHDjQrF692lRUVJgHH3zQZGVlmS5duqRlPcAYepEKdakZtnphjDfNqCu9MIZmwD56kby61Atj6vZrjHT2whheY6DuoxnJoReJ4XdSyaEX9jG8qMOhuOCCC8x+++1nvvrqq7Q8fnl5uVmxYoVZuHChmThxosnPzzcff/xxStf48ssvTatWrcxHH31UdVu6QvFzP/zwg8nNzU35aYf16tUz/fr1q3bbxRdfbA4//PCUrvNzQ4YMMb/5zW/S8tiPPvqo6dChg3n00UfNv//9b/PAAw+YFi1apCV+K1euNAMGDDCSTHZ2tvnFL35hzjzzTNO1a9eUrwXsRC+SV5ebka5eGONNM+pKL4yhGbCPXiSvLvfCmLr1GiOdvTCG1xio+2hGcuhFYvidVHLohX2BHl6Ul5eb7OzsGj+0zz77bDNixIi0rWsjFNFo1HTo0MF89tlnaV1nV8ccc4w577zzUvqYzzzzTNUPhJ2HJBMKhUx2drapqKhI6Xo/16dPHzNx4sSUPmbHjh3N7373u2q3TZs2zbRr1y6l6+zq888/N1lZWebZZ59Ny+N36NDBTJ06tdpt119/vTn44IPTsp4xxmzevNl88803xhhjTjnlFHPsscembS2AXqReXWtGOnphjP1m1MVeGEMzYA+9SL261gtj6sZrjHT3whheY6DuoxmpRS+c4XdSqUEv7An0e17Ur19fhYWFmjNnTtVt8Xhcc+bMSdt18tLNGKNx48bpmWee0b/+9S/tv//+1taOx+MqLy9P6WMec8wx+s9//qMlS5ZUHX369NGZZ56pJUuWKDs7O6Xr7Wrz5s369NNP1bZt25Q+7pFHHqlly5ZVu2358uXab7/9UrrOru677z61atVKxx13XFoef+vWrcrKqv7jJDs7W/F4PC3rSVLjxo3Vtm1b/fDDD3rttdd0/PHHp20tgF6kXl1qRrp6IdlvRl3shUQzYA+9SL261Aup7rzGSHcvJF5joO6jGalFL5zhd1KpQS8s8nZ24r3HHnvMhMNhM3PmTFNSUmLOO+8806xZM7N27dqUrrNp0ybz4Ycfmg8//NBIMrfddpv58MMPzRdffJHSdS688EKTl5dn3njjDbNmzZqqY+vWrSldZ+LEiebNN980q1atMv/+97/NxIkTTSgUMq+//npK16lNuk7R++Mf/2jeeOMNs2rVKvPOO++YwYMHm/z8fLN+/fqUrrNgwQKTk5NjbrzxRrNixQrz8MMPm0aNGpmHHnoopevsVFlZaTp27GiuvPLKtDy+McaMHj3atG/f3rz44otm1apV5umnnzb5+fnmiiuuSPlar776qnnllVfMZ599Zl5//XVTUFBgDjvsMLN9+/aUrwXsil4krq41w1YvjLHbjLrWC2NoBrxBLxJX13phTN18jWGjF8bwGgPBQDMSQy8Sx++kkkMv7Av88MIYY/7v//7PdOzY0dSvX9/07dvXvPfeeylfY+7cuUZSjWP06NEpXae2NSSZ++67L6XrjB071uy3336mfv36Zp999jHHHHOMlUgYk75QnHrqqaZt27amfv36pn379ubUU081K1euTPk6xhjzwgsvmB49ephwOGy6du1q7rnnnrSsY4wxr732mpFkli1blrY1ysrKzKWXXmo6duxoGjRoYA444ABz1VVXmfLy8pSvNWvWLHPAAQeY+vXrmzZt2phoNGo2btyY8nWA2tCLxNS1ZtjshTH2mlHXemEMzYB36EVi6lovjKmbrzFs9MIYXmMgOGiGe/QiOfxOKnH0wr6QMcak9lwOAAAAAAAAAACAxAX6PS8AAAAAAAAAAEDmYXgBAAAAAAAAAAAyCsMLAAAAAAAAAACQURheAAAAAAAAAACAjMLwAgAAAAAAAAAAZBSGFwAAAAAAAAAAIKMwvAAAAAAAAAAAABmF4QUAAAAAAAAAAMgoDC9Qp5xzzjkaOXJk1ceDBg3SH/7wB+v7eOONNxQKhbRx40brawMA9o5eAACcoBcAAKdoBpB6DC9gxTnnnKNQKKRQKKT69eurc+fOuu6661RRUZHWdZ9++mldf/31jj6XH+4A4D16AQBwgl4AAJyiGYB/5Xi9AQTHr3/9a913330qLy/Xyy+/rGg0qnr16qmoqKja523fvl3169dPyZotWrRIyeMAAOyhFwAAJ+gFAMApmgH4E2dewJpwOKw2bdpov/3204UXXqjBgwfr+eefrzqt7sYbb1S7du108MEHS5K++uornXLKKWrWrJlatGih448/Xp9//nnV41VWVmr8+PFq1qyZWrZsqSuuuELGmGpr/vwUvfLycl155ZXad999FQ6H1blzZ/3jH//Q559/rqOPPlqS1Lx5c4VCIZ1zzjmSpHg8ruLiYu2///5q2LChCgoK9OSTT1Zb5+WXX1aXLl3UsGFDHX300dX2CQBwh14AAJygFwAAp2gG4E8ML+CZhg0bavv27ZKkOXPmaNmyZZo9e7ZefPFF7dixQ0OHDlXTpk311ltv6Z133lGTJk3061//uuprbr31Vs2cOVP33nuv3n77bX3//fd65pln9rjm2WefrUcffVR33nmnli5dqrvvvltNmjTRvvvuq6eeekqStGzZMq1Zs0Z33HGHJKm4uFgPPPCApk+fro8//liXXXaZzjrrLL355puSfgraCSecoOHDh2vJkiX6/e9/r4kTJ6br2wYAgUMvAABO0AsAgFM0A/AJA1gwevRoc/zxxxtjjInH42b27NkmHA6bCRMmmNGjR5vWrVub8vLyqs9/8MEHzcEHH2zi8XjVbeXl5aZhw4bmtddeM8YY07ZtW3PLLbdU3b9jxw7ToUOHqnWMMWbgwIHm0ksvNcYYs2zZMiPJzJ49u9Y9zp0710gyP/zwQ9Vt27ZtM40aNTLvvvtutc/93e9+Z04//XRjjDFFRUUmEolUu//KK6+s8VgAgL2jFwAAJ+gFAMApmgH4F+95AWtefPFFNWnSRDt27FA8HtcZZ5yha6+9VtFoVD179qx2TcGPPvpIK1euVNOmTas9xrZt2/Tpp5+qtLRUa9as0WGHHVZ1X05Ojvr06VPjNL2dlixZouzsbA0cONDxnleuXKmtW7fqV7/6VbXbt2/frkMOOUSStHTp0mr7kKR+/fo5XgMAUB29AAA4QS8AAE7RDMCfGF7AmqOPPlp33XWX6tevr3bt2ikn539//Bo3blztczdv3qzCwkI9/PDDNR5nn332SWj9hg0buv6azZs3S5JeeukltW/fvtp94XA4oX0AAPaMXgAAnKAXAACnaAbgTwwvYE3jxo3VuXNnR5976KGHatasWWrVqpVyc3Nr/Zy2bdvq/fff14ABAyRJFRUVWrRokQ499NBaP79nz56Kx+N68803NXjw4Br375yyV1ZWVt0WiUQUDof15Zdf7nY63q1bNz3//PPVbnvvvff2/iQBALWiFwAAJ+gFAMApmgH4E2/YjYx05plnKj8/X8cff7zeeustrVq1Sm+88YYuueQSff3115KkSy+9VDfffLOeffZZffLJJ7rooou0cePG3T5mp06dNHr0aI0dO1bPPvts1WM+/vjjkqT99ttPoVBIL774or799ltt3rxZTZs21YQJE3TZZZfp/vvv16effqrFixfr//7v/3T//fdLki644AKtWLFCl19+uZYtW6ZHHnlEM2fOTPe3CAAgegEAcIZeAACcohlA5mB4gYzUqFEjzZs3Tx07dtQJJ5ygbt266Xe/+522bdtWNfX+4x//qN/+9rcaPXq0+vXrp6ZNm2rUqFF7fNy77rpLJ510ki666CJ17dpV5557rrZs2SJJat++vSZPnqyJEyeqdevWGjdunCTp+uuv19VXX63i4mJ169ZNv/71r/XSSy9p//33lyR17NhRTz31lJ599lkVFBRo+vTpuummm9L43QEA7EQvAABO0AsAgFM0A8gcIbO7d5IBAAAAAAAAAADwAGdeAAAAAAAAAACAjMLwAgAAAAAAAAAAZBSGFwAAAAAAAAAAIKMwvAAAAAAAAAAAABmF4QUAAAAAAAAAAMgoDC8AAAAAAAAAAEBGYXgBAAAAAAAAAAAyCsMLAAAAAAAAAACQURheAAAAAAAAAACAjMLwAgAAAAAAAAAAZBSGFwAAAAAAAAAAIKMwvAAAAAAAAAAAABmF4QUAAAAAAAAAAMgoDC8AAAAAAAAAAEBGYXgBAAAAAAAAAAAyCsMLAAAAAAAAAACQURheAAAAAAAAAACAjMLwAkihN954Q6FQSE8++aTXWwEAZDB6AQBwgl4AAJyiGaiLGF6ghlAo5Oh44403kl5r69atuvbaax0/1s4fxLs7HnvssaT35KU9Pb/33nvP6+0BQDX0wnuLFy/WiBEj1KJFCzVq1Eg9evTQnXfe6fW2AKAaeuGdc845Z4/Pb/Xq1V5vEQCqoRneWrFihU477TR16NBBjRo1UteuXXXddddp69atXm8NAZXj9QaQeR588MFqHz/wwAOaPXt2jdu7deuW9Fpbt27V5MmTJUmDBg1y/HWXXHKJfvGLX9S4vV+/fknvKRPU9vw6d+7s0W4AoHb0wluvv/66hg8frkMOOURXX321mjRpok8//VRff/2111sDgGrohXfOP/98DR48uNptxhhdcMEF6tSpk9q3b+/RzgCgdjTDO1999ZX69u2rvLw8jRs3Ti1atND8+fM1adIkLVq0SM8995zXW0QAMbxADWeddVa1j9977z3Nnj27xu1e6t+/v0466SSvt5E2df35Aagb6IV3ysrKdPbZZ+u4447Tk08+qawsTqYFkLnohXf69etX45dpb7/9trZu3aozzzzTo10BwO7RDO88+OCD2rhxo95++211795dknTeeecpHo/rgQce0A8//KDmzZt7vEsEDa90kZB4PK4pU6aoe/fuatCggVq3bq3zzz9fP/zwQ7XPW7hwoYYOHar8/Hw1bNhQ+++/v8aOHStJ+vzzz7XPPvtIkiZPnlx1mt21116bkj2GQiGNGzdODz/8sA4++GA1aNBAhYWFmjdvXo3P/fDDDzVs2DDl5uaqSZMmOuaYY2q9TNPGjRt12WWXqVOnTgqHw+rQoYPOPvtsbdiwocb358Ybb1SHDh3UoEEDHXPMMVq5cqWr/W/atEkVFRXunjQAZBh6kZ5ePPLII1q3bp1uvPFGZWVlacuWLYrH44l/EwDAY/Qi/a8vdnrkkUcUCoV0xhlnJPT1AOA1mpGeZpSVlUmSWrduXe32tm3bKisrS/Xr13fzLQBSgjMvkJDzzz9fM2fO1JgxY3TJJZdo1apVmjp1qj788EO98847qlevntavX68hQ4Zon3320cSJE9WsWTN9/vnnevrppyVJ++yzj+666y5deOGFGjVqlE444QRJUq9evfa6/qZNm2r8cJakli1bKhQKVX385ptvatasWbrkkksUDoc1bdo0/frXv9aCBQvUo0cPSdLHH3+s/v37Kzc3V1dccYXq1aunu+++W4MGDdKbb76pww47TJK0efNm9e/fX0uXLtXYsWN16KGHasOGDXr++ef19ddfKz8/v2rdm2++WVlZWZowYYJKS0t1yy236Mwzz9T777/v6Ps7ZswYbd68WdnZ2erfv7/++te/qk+fPo6+FgAyCb1ITy/++c9/Kjc3V6tXr9bIkSO1fPlyNW7cWL/97W91++23q0GDBnv93gBAJqEX6X19sdOOHTv0+OOP64gjjlCnTp1cfS0AZAqakZ5mDBo0SH/5y1/0u9/9TpMnT1bLli317rvv6q677tIll1yixo0b7/V7A6ScAfYiGo2aXf+ovPXWW0aSefjhh6t93quvvlrt9meeecZIMh988MFuH/vbb781ksykSZMc7WXu3LlG0m6PNWvWVH3uztsWLlxYddsXX3xhGjRoYEaNGlV128iRI039+vXNp59+WnXbN998Y5o2bWoGDBhQdds111xjJJmnn366xr7i8Xi1/XXr1s2Ul5dX3X/HHXcYSeY///nPHp/fO++8Y0488UTzj3/8wzz33HOmuLjYtGzZ0jRo0MAsXrzY0fcIALxCL35ioxe9evUyjRo1Mo0aNTIXX3yxeeqpp8zFF19sJJnTTjvN0fcIALxCL35ioxc/98ILLxhJZtq0aa6+DgC8QjN+YqsZ119/vWnYsGG153XVVVc5+v4A6cCZF3DtiSeeUF5enn71q19VmzQXFhaqSZMmmjt3rs444ww1a9ZMkvTiiy+qoKBA9erVS9kerrnmGvXv37/G7S1atKj2cb9+/VRYWFj1cceOHXX88cfrhRdeUGVlpaSf3vB05MiROuCAA6o+r23btjrjjDM0Y8YMlZWVKTc3V0899ZQKCgo0atSoGuvuOlmXfjpzYtfT6Xbu9bPPPquartfmiCOO0BFHHFH18YgRI3TSSSepV69eKioq0quvvrrbrwWATEMv0teLzZs3a+vWrbrgggt05513SpJOOOEEbd++XXfffbeuu+46HXTQQbv9egDIJPQifb34uUceeUT16tXTKaec4vhrACCT0Iz0NqNTp04aMGCATjzxRLVs2VIvvfSSbrrpJrVp00bjxo3b49cC6cDwAq6tWLFCpaWlatWqVa33r1+/XpI0cOBAnXjiiZo8ebJuv/12DRo0SCNHjtQZZ5yhcDic1B569uypwYMH7/XzavvFTZcuXbR161Z9++23kqStW7fq4IMPrvF53bp1Uzwe11dffaXu3bvr008/1Yknnuhofx07dqz28c43NPr59Red6Ny5s44//ng9/fTTqqysVHZ2tuvHAAAv0Iu9S7QXDRs2lCSdfvrp1W4/44wzdPfdd2v+/PkMLwD4Br3Yu1S8vti8ebOee+45DR06VC1btnT8dQCQSWjG3iXajMcee0znnXeeli9frg4dOkj66R9IxeNxXXnllTr99NPpB6xjeAHX4vG4WrVqpYcffrjW+3e+4VEoFNKTTz6p9957Ty+88IJee+01jR07Vrfeeqvee+89NWnSxOa2rdrdgMEYk9Dj7bvvvtq+fbu2bNmi3NzcZLYGANbQi71LtBft2rXTxx9/XOPN9Ha+iEtkWA4AXqEXe5eK1xfPPvustm7dqjPPPDNV2wIA62jG3iXajGnTpumQQw6pGlzsNGLECM2cOVMffviho6ENkEoML+DagQceqH/+85868sgjq/7l554cfvjhOvzww3XjjTfqkUce0ZlnnqnHHntMv//972uc2pZqK1asqHHb8uXL1ahRo6qgNWrUSMuWLavxeZ988omysrK07777Svrpef/3v/9N635357PPPlODBg3qdFwB1D30In0KCws1e/ZsrV69utq/1Prmm28k/e9FGwD4Ab2w4+GHH1aTJk00YsQIa2sCQKrRjPRZt25d1Vkau9qxY4ckqaKiIq3rA7XJ8noD8J9TTjlFlZWVuv7662vcV1FRoY0bN0r66V99/nyq27t3b0lSeXm5pJ9+SEuq+ppUmz9/vhYvXlz18VdffaXnnntOQ4YMUXZ2trKzszVkyBA999xz+vzzz6s+b926dXrkkUd01FFHVZ3pcOKJJ+qjjz7SM888U2OdRM+o+Lmdpw3u6qOPPtLzzz+vIUOGKCuL/2QB+Ae9SF8vdl6r/B//+Ee12//+978rJydHgwYNSsk6AGADvUhfL3b69ttv9c9//lOjRo2q+h4BgB/RjPQ1o0uXLvrwww+1fPnyarc/+uijysrKUq9evVKyDuAGZ17AtYEDB+r8889XcXGxlixZoiFDhqhevXpasWKFnnjiCd1xxx066aSTdP/992vatGkaNWqUDjzwQG3atEkzZsxQbm6ujj32WEk/XbM7Eolo1qxZ6tKli1q0aKEePXrs9Q2E3nrrLW3btq3G7b169ar2w7RHjx4aOnSoLrnkEoXDYU2bNk2SNHny5KrPueGGGzR79mwdddRRuuiii5STk6O7775b5eXluuWWW6o+7/LLL9eTTz6pk08+WWPHjlVhYaG+//57Pf/885o+fboKCgqS+r5K0qmnnqqGDRvqiCOOUKtWrVRSUqJ77rlHjRo10s0335z04wOATfQifb045JBDNHbsWN17772qqKjQwIED9cYbb+iJJ55QUVGR2rVrl/QaAGALvUhfL3aaNWuWKioquGQUAN+jGelrxuWXX65XXnlF/fv317hx49SyZUu9+OKLeuWVV/T73/+e1xjwhgH2IhqNmtr+qNxzzz2msLDQNGzY0DRt2tT07NnTXHHFFeabb74xxhizePFic/rpp5uOHTuacDhsWrVqZX7zm9+YhQsXVnucd9991xQWFpr69esbSWbSpEm73cvcuXONpN0eu36tJBONRs1DDz1kDjroIBMOh80hhxxi5s6dW+NxFy9ebIYOHWqaNGliGjVqZI4++mjz7rvv1vi87777zowbN860b9/e1K9f33To0MGMHj3abNiwodr+nnjiiWpft2rVKiPJ3Hfffbt9bsYYc8cdd5i+ffuaFi1amJycHNO2bVtz1llnmRUrVuzx6wAgE9CL/0l3L4wxZvv27ebaa681++23n6lXr57p3Lmzuf322/f6dQDgNXrxPzZ6YYwxhx9+uGnVqpWpqKhw9PkAkCloxv/YaMb7779vhg0bZtq0aWPq1atnunTpYm688UazY8eOvX4tkA4hY1J8PiqQIUKhkKLRqKZOner1VgAAGYxeAACcoBcAAKdoBpAaXEAfAAAAAAAAAABkFIYXAAAAAAAAAAAgozC8AAAAAAAAAAAAGYX3vAAAAAAAAAAAABmFMy8AAAAAAAAAAEBGYXgBAAAAAAAAAAAyCsMLAAAAAAAAAACQMhs3blSfPn3Uu3dv9ejRQzNmzHD9GHXyPS8qt7xiba2cJiOsrJOfe6iVdTaULbayjiQd3OIkK+ss+/5JK+tIde852fpzJ9n7s2fMjqQfozL+RsJfm501KOn13di4caMGDx6siooKVVRU6NJLL9W5555rdQ+ZzlYzbPUC/jC02QQr67y28W9W1pGkbs1PsbJOs3i+lXXe3XhH0o+RTC8ku82gF3tHL+CFuvg6sC4+p2RfY/ipFxLN2Bt6AaQGvajJb72orKxUeXm5GjVqpC1btqhHjx5auHChWrZs6fgxctK4PwCAx5o2bap58+ZVC8UJJ5zgKhQAgLqPXgAAnKIZAAAnsrOz1ahRI0lSeXm5jDFyex4Fl40CALfi8cQPy1IRCgBAgpLpheVm0AsA8JCPeiHRDADwjOVezJs3T8OHD1e7du0UCoX07LPP1vicWCymTp06qUGDBjrssMO0YMGCavdv3LhRBQUF6tChgy6//HLl57s7k57hBQC4FbBQAAASZPHFBb0AAB8L4C+jAAAJsNyLLVu2qKCgQLFYrNb7Z82apfHjx2vSpElavHixCgoKNHToUK1fv77qc5o1a6aPPvpIq1at0iOPPKJ169a52gPDCwBwK2ChAAAkyOKLC3oBAD4WwF9GAQASYLkXw4YN0w033KBRo0bVev9tt92mc889V2PGjFEkEtH06dPVqFEj3XvvvTU+t3Xr1iooKNBbb73lag8MLwDALWMSPsrLy1VWVlbtKC8v3+1SmRAKAECCkuiF22bQCwDwMYu9kGgGAPiW5V7syfbt27Vo0SINHjy46rasrCwNHjxY8+fPlyStW7dOmzZtkiSVlpZq3rx5Ovjgg12tw/ACANxKYspdXFysvLy8akdxcXFC27AVCgBAgpL8l1Gpaga9AIAMlyG9kGgGAGS0DOrFhg0bVFlZqdatW1e7vXXr1lq7dq0k6YsvvlD//v1VUFCg/v376+KLL1bPnj1drZOT0O4AAAkpKirS+PHjq90WDocTeqw9heKTTz6R9FMozjvvvKo30UskFAAAb6SqGfQCAOo2XmMAAJxIZS+c6Nu3r5YsWZLUYzC8AAC3ErhO4E7hcDitYfi5VIQCAJCgJHoh2W0GvQAAD/moFxLNAADPZFAv8vPzlZ2dXeM9j9atW6c2bdqkZA2Jy0YBgHsW3xxpT2yFAgCQIMtvqLc79AIAMlyG9EKiGQCQ0TKoF/Xr11dhYaHmzJmzy/bimjNnjvr165eydRheAIBbAQsFACBBGfLigl4AQIbLkF5INAMAMlqSvYjFYopEIopEIorFYntdbvPmzVqyZEnV2XarVq3SkiVL9OWXX0qSxo8frxkzZuj+++/X0qVLdeGFF2rLli0aM2ZMyp4yl40CALeSeIEQi8WqAhGNRhWNRvf4+Zs3b9bKlSurPt4ZihYtWqhjx44aP368Ro8erT59+qhv376aMmVKykMBAEhQkr9QctMMegEAPmaxFxLNAADfSrIXThqxq4ULF+roo4+u+njn+2WMHj1aM2fO1Kmnnqpvv/1W11xzjdauXavevXvr1VdfrfG+SclgeAEAFvkxFAAAb7hpBr0AgODiNQYAIB0GDRokY8weP2fcuHEaN25c2vbg6fBiw4YNuvfeezV//nytXbtWktSmTRsdccQROuecc7TPPvt4uT0AqFXIpPbU7D3JhFBkCpoBwG/ohTfoBQC/sdkLiWbsRC8A+I3tXmQCz97z4oMPPlCXLl105513Ki8vTwMGDNCAAQOUl5enO++8U127dtXChQu92h4A7F6GXI82SGgGAF/KoGuYBwW9AOBL9MI6egHAlwLYC8/OvLj44ot18skna/r06QqFQtXuM8boggsu0MUXX6z58+fv8XHKy8tVXl5e7bacih0Kh+ulfM8AIEmK7/lfKSH1aAYAX6IX1tELAL5EL6yjFwB8KYC98OzMi48++kiXXXZZjUhIUigU0mWXXVb1TuZ7UlxcrLy8vGrHzX+blYYdA8D/l8SUOxaLKRKJKBKJVL2pHvaOZgDwpST/ZRTNcI9eAPAlemEdvQDgSwHshWdnXrRp00YLFixQ165da71/wYIFjt4MqqioqOrNpXbKqXgjFVsEgJRz+2Z6+AnNABBENMM9egEgiOiFe/QCQBD5sReeDS8mTJig8847T4sWLdIxxxxTFYV169Zpzpw5mjFjhv72t7/t9XHC4bDC4XC12yq3cHoegDTy6XUC/YxmAPAlemEdvQDgS/TCOnoBwJcC2AvPhhfRaFT5+fm6/fbbNW3aNFVWVkqSsrOzVVhYqJkzZ+qUU07xansAsHsmeLHwGs0A4Ev0wjp6AcCX6IV19AKALwWwF54NLyTp1FNP1amnnqodO3Zow4YNkqT8/HzVq8eUGkAGC+CkOxPQDAC+Qy88QS8A+A698AS9AOA7AeyFp8OLnerVq6e2bdt6vQ0AcCZuvN5BoNEMAL5BLzxFLwD4Br3wFL0A4BsB7EWW1xsAAN+JxxM+YrGYIpGIIpGIYrGY188EAJBOSfSCZgBAgNALAIATAexFRpx5AQBBEY1GFY1Gvd4GAMAHaAYAwAl6AQBwwo+9YHgBAG4F8BqDAIAE0AsAgBP0AgDgRAB7wfACAFwKBTAWAAD36AUAwAl6AQBwIoi9YHgBAG6Z4L1BEgAgAfQCAOAEvQAAOBHAXjC8AAC3AjjpBgAkgF4AAJygFwAAJwLYiyyvNwAAAAAAAAAAANInFospEokoEokoFot5vR1HGF4AgFvxeMKHH0MBAEhQEr2gGQAQIPQCAOBEkr2IRqMqKSlRSUmJotGo18/GES4bBQBuxRO/xmA0GvVNIAAASUqiFxLNAIDAoBcAACeS7IUfMbwAALcCeI1BAEAC6AUAwAl6AQBwIoC9qJPDi5wmI6ytVVE528o6Odm/srKOTcu+f9LrLaTcdxWfeb2FlNpQttjrLWSmAMaiLrPVDHqR+fJzD7W21qL4v6ytZcvSHx73egspdkfyD0Ev6pS61guJZvhBXfz7eF18TkmjF3UKvUiczb+P87Mo8xVm/dLKOq/JR38WAtiLOjm8AIC0MsE7TQ8AkAB6AQBwgl4AAJwIYC94w24AAAAAAAAAAJBROPMCANwK4Gl6AIAE0AsAgBP0AgDgRAB7wfACANyKB+80PQBAAugFAMAJegEAcCKAveCyUQDgVjye8BGLxRSJRBSJRBSLxbx+JgCAdEqiFzQDAAKEXgAAnAhgLzjzAgDcSuI0vWg0qmg0msLNAAAyVpKnddMMAAgIegEAcCKAveDMCwAAAAAAAAAAkFE48wIA3ArgNQYBAAmgFwAAJ+gFAMCJAPaC4QUAuGWSO00PABAQ9AIA4AS9AAA4EcBeMLwAALcCOOkGACSAXgAAnKAXAAAnAtgLhhcA4FaSb5AEAAgIegEAcIJeAACcCGAveMNuAAAAAAAAAACQUTjzAgDcCuBpegCABNALAIAT9AIA4EQAe5HRZ1589dVXGjt27B4/p7y8XGVlZdUOKXj/RwKwKB5P/EBaOOmFRDMAWJZML2hG2vAaA0DGoRcZiV4AyDgB7EVGDy++//573X///Xv8nOLiYuXl5VU7JH/+nwHAJ+Im4SMWiykSiSgSiSgWi3n9TOoMJ72QaAYAy5LoBc1IH15jAMg49CIj0QsAGSeAvQgZYzwbCT///PN7vP+zzz7TH//4R1VWVu72c8rLy1VeXl7ttry8FpJCqdjiXlVUzrayTk72r6ysg+Tk5x5qZZ0NZYutrFMXGbMj+cd45eqEvzY07Pqk1w+iVPRC8rYZ9CLz2foZbhO9SJzXvZBoRqL8/hrDVi8kmgGkSrLNoBfeoBfO2eqFzb+P8/fkzDe02QQr67y28W9W1pHoRSI8fc+LkSNHKhQKaU/zk1Bozz/ww+GwwuHwz78qBbsDgN0I4DUGvZaKXkg0A4Bl9MITvMYA4Dv0whP0AoDvBLAXnl42qm3btnr66acVj8drPRYvZgoKAKAXAADnaAYAwAl6AQCZz9PhRWFhoRYtWrTb+/c2AQcATyRzjUEkhF4A8KUkr0mLxNAMAL5DLzxBLwD4TgB74elloy6//HJt2bJlt/d37txZc+fOtbgjAHAgzhuw2UYvAPgSvfAEzQDgO/TCE/QCgO8EsBeeDi/69++/x/sbN26sgQMHWtoNADjk02m1n9ELAL5ELzxBMwD4Dr3wBL0A4DsB7IWnwwsA8KUAxgIAkAB6AQBwgl4AAJwIYC88fc8LAAAAAAAAAACAn+PMCwBwK4DXGAQAJIBeAACcoBcAACcC2AuGFwDglgneaXoAgATQCwCAE/QCAOBEAHvB8AIA3ArgNQYBAAmgFwAAJ+gFAMCJAPaC97wAALfiJvEDABAcyfSCZgBAcNALAIATSfYiFospEokoEokoFot5/WwcYXgBABb5MRQAAG/QDACAE/QCAOBENBpVSUmJSkpKFI1Gvd6OI1w2CgDcSuINkqLRqG8CAQBIUpJvqEczACAg6AUAwAnesBsAsFecmg0AcIJeAACcoBcAACcC2Is6ObzIzz3U2lo52b+ysk7Fjy9ZWSen4XFW1pGkg1ucZGWdZd8/aWUdSWqZc4CVdTZosZV1sBsBjEVd1i/vIivrHNfyNSvrVGx90co6ktSmzTVW1tlQZudnnq11JHt/VxnabIKVdSRpUfxfVtax+f9T0uhFnWLr765tml9pZR3JXjNyGv3GyjpI3AUdrra21pNldl7b0gt4pVvzU6ysY+v3UZK930n1b2NnHYnfqyTD1p/xL/WllXV8JYC9qJPDCwBIqwDGAgCQAHoBAHCCXgAAnAhgLxheAIBLJolYhFK4DwBAZkumFxLNAICgoBcAACeC2IssrzcAAAAAAAAAAACwK868AAC3TPBO0wMAJIBeAACcoBcAACcC2AuGFwDgVgCvMQgASAC9AAA4QS8AAE4EsBcMLwDArQDGAgCQAHoBAHCCXgAAnAhgLxheAIBbAYwFACAB9AIA4AS9AAA4EcBe8IbdAAAAAAAAAAAgo3DmBQC4FcBJNwAgAfQCAOAEvQAAOBHAXjC8AACXTABjAQBwj14AAJygFwAAJ4LYC4YXAOBWAGMBAEgAvQAAOEEvAABOBLAXDC8AwK0AxgIAkAB6AQBwgl4AAJwIYC8YXgCAWwGMBQAgAfQCAOAEvQAAOBHAXmR5vYEff/xRb7/9tkpKSmrct23bNj3wwAMe7AoAkGnoBQDACXoBAHCCXgBA5vN0eLF8+XJ169ZNAwYMUM+ePTVw4ECtWbOm6v7S0lKNGTNmj49RXl6usrKyaocx8XRvHUCQGZPwEYvFFIlEFIlEFIvFvH4mvpGKXki1NyNuKtK5dQBBlkQvaEZi0tuLynRuHUCQ0Qvr6AUAXwpgLzwdXlx55ZXq0aOH1q9fr2XLlqlp06Y68sgj9eWXXzp+jOLiYuXl5VU7tpZ/k8ZdAwg6E0/8iEajKikpUUlJiaLRqNdPxTdS0Qup9masLl+Ypl0DCLpkekEzEpPOXnz/Y81/mQsAqUAv7EtnL77b9nGadg0g6ILYC0+HF++++66Ki4uVn5+vzp0764UXXtDQoUPVv39/ffbZZ44eo6ioSKWlpdWORuF2ad45gECLm8QPJCQVvZBqb0b7cJ807hxAoCXTC5qRkHT2okXDSBp3DiDQ6IV16exFywbd07hzAIEWwF54Orz48ccflZPzv/cMD4VCuuuuuzR8+HANHDhQy5cv3+tjhMNh5ebmVjtCIc/fygNAXRawUGSCVPRCqr0ZWaGcvX8hACQigC8uvJbeXmSna9sAgo5eWEcvAPhSAHvh6W9sunbtqoULF6pbt27Vbp86daokacSIEV5sCwCQYegFAMAJegEAcIJeAIA/eHqKwqhRo/Too4/Wet/UqVN1+umnyxh/ToUA1F3JXF8QiaEXAPwo2WvSwj16AcCP6IV99AKAHwWxF54OL4qKivTyyy/v9v5p06YpHvfpdxZA3RWwU/QyAb0A4EsBPK3ba/QCgC/RC+voBQBfCmAvuNA3ALjF32EBAE7QCwCAE/QCAOBEAHvB8AIAXDI+nVYDAOyiFwAAJ+gFAMCJIPbC08tGAQAAAAAAAAAA/BxnXgCAWwE8TQ8AkAB6AQBwgl4AAJwIYC8YXgCAW8E7Sw8AkAh6AQBwgl4AAJwIYC8YXgCAS0G8xiAAwD16AQBwgl4AAJwIYi8YXgCAWwE8TQ8AkAB6AQBwgl4AAJwIYC8YXgCASyaAsQAAuEcvAABO0AsAgBNB7EWW1xsAAAAAAAAAAADYFWdeAIBbAZx0AwASQC8AAE7QCwCAEwHsRZ0cXmwoW+z1FlJu3EHvWVmnYuuLVtaRpJxGv7GyTn7uoVbWkaRl3z9pZZ1+eRdZWef77PVW1pHsfe9SIYin6dVl80uneb2FlOrZ/ktra61de52VdWz14oxWf7KyjiQ9sv4mK+uU5R1uZR1JGlBviJV1ljbvbGWdVKAXdYuf/q7iVPcOM62sY+s1hq1eSPb+Pm7r7ykfbfru/7F37/FSlfXix797c9mACF5IARHNvE4qHCGNvKBJkJbXY2ZZEp5DZWOZhAb5K8IblmXWcczq/BQzS8zUU1qmhzSt8BAiVt6SJDUFlUwQzK3sWb8//LmPWxDmttfM7PV+91p/7JnZ8zxDxKeZZ9azUhknImLr3julM9CgdIapBb3oWR78x7X1nkLN9e7/vlTGSfczqZ71PjBNWxSHpDLO860rUxknzc8Nq5XFXvTIxQuAbpXBWABQAb0AoBR6AUApMtgLixcAZUqSes8AgGagFwCUQi8AKEUWe+GC3QAAAAAAQENx5gVAmbK4xyAA5dMLAEqhFwCUIou9sHgBUK4MxgKACugFAKXQCwBKkcFeWLwAKFMWV7oBKJ9eAFAKvQCgFFnshWteAJQpSSo/AMiOanqhGQDZoRcAlKLZevHEE0/EwQcfHLlcLvbee+/48Y9/XPZzWLwAKFexpfIjZbUIBQAVqqYXKTdDLwDqqIl6EaEZAHXTZL3o3bt3XHzxxfHAAw/ErbfeGp/97Gdj7dq15T1HN80NgAbwWihGjx4dK1asiDFjxsThhx8em222Wb2nBkAD0QsASqUZAJRi2LBhMWzYsIiIGDp0aAwZMiSee+65snrhzAuAMiXFyo+0DRs2LEaPHh0RXUMBQPerphdpN0MvAOqnmXoRoRkA9ZJ2L+6888444ogjYvjw4dHS0hI33njjeo8pFAqx4447Rr9+/WK//faLhQsXbvC57rnnnujo6Ijtt9++rDlYvAAoU5K0VHyUqxFCAUBlqulFuc3QC4DmlWYvIjQDoFml3Yu1a9fGqFGjolAobPD+efPmxbRp02LWrFmxePHiGDVqVEyaNCmeeeaZLo977rnn4qSTTorvfve7Zc/B4gVAmdJc5W6EUABQmTS/GaUXAM0r7W/SagZAc0q7F4cddlice+65ccwxx2zw/osuuiimTp0aU6ZMiVwuF5dddlkMGDAgLr/88s7HtLe3x9FHHx0zZsyId73rXWXPwTUvAMpUzanZ7e3t0d7e3uW2tra2aGtr2+DjDzvssDjssMPe9PleH4qIiMsuuyxuvvnmuPzyy2PGjBmdY1YTCgAqU+1WHuU0Qy8AmleavYjQDIBmlXYvNubll1+Oe+65J2bOnNl5W2tra0yYMCEWLFjw6nyTJD72sY/Fu9/97vjoRz9a0ZzrfubFgw8+GFdccUU89NBDERHx0EMPxSmnnBInn3xy/OpXv9rk77e3t8fq1au7HBFJN88aoDJz5syJwYMHdznmzJlT0XO9FooJEyZ03tYdoWgU1fYiQjOA5lKrZuiFXgA9m/cYldELIGtq2YuVK1dGR0dHbLvttl1u33bbbWPFihUREfHb3/425s2bFzfeeGOMHj06Ro8eHX/84x/LGqeuZ17ccsstcdRRR8XAgQPjxRdfjBtuuCFOOumkGDVqVBSLxZg4cWLceuut8e53v/tNn2POnDkxe/bsN9zaEhG9unXuQHZVsk/ga2bOnBnTpk3rclslK9wRGw/Fa/8H/LVQ7L333p172V511VWx1157VTRmvdSiFxGaAaSrml5E1K4ZeqEXQGNrlF5EZKcZegE0o0bqRSkOOOCAKBarO12krmdenH322XHGGWfE3//+97jiiiviwx/+cEydOjVuu+22mD9/fpxxxhlxwQUXbPQ5Zs6cGatWrepyNMAJJUAPlhRbKj7a2tpi0KBBXY40QrFkyZLOo5neVLymFr2I0AwgXdX0Iu1m6EVXegGkqZl6EdEzmqEXQDNqpF4MGTIkevXqFU8//XSX259++ukYOnRoLV5uRNT5X9T7778/Pvaxj0VExPHHHx8vvPBCHHfccZ33n3jiifGHP/xho8+xoT/0V1e5AbpHklR+1FJaoWgEtehFhGYA6aqmF7Vshl7oBdDYGqUXEdlphl4AzaiRetG3b98YM2ZMzJ8/v/O2YrEY8+fPj3HjxtVsnLovB7e0vPqPemtra/Tr1y8GDx7ced/mm2/+/1etARpHkrRUfNRSWqFoFHoBNJtqepEkLVEoFCKXy0Uul4tCoVDxPPRCL4DGVm0vailLzdALoNmk/f5izZo1nWfYRUQsW7YslixZEo8//nhEREybNi2+973vxZVXXhkPPvhgnHLKKbF27dqYMmVKzV5zXa95seOOO8YjjzwSb3vb2yIiYsGCBTFy5MjO+x9//PEYNmxYvaYHUHOFQqEzEPl8PvL5/EYfv2bNmli6dGnnz6+FYquttoqRI0fGtGnTYvLkyTF27NjYd9994+KLL655KBqBXgBZVEonXqMXr9ILIIu8xyifXgBZVM77i4iIRYsWxSGHHNL582vXy5g8eXLMnTs3PvjBD8azzz4bX/rSl2LFihUxevTouOWWW9a7blI16rp4ccopp0RHR0fnz3vuuWeX+3/xi19s8uJIAGlLipV/u6kZQ9EI9AJoRtX0olx68Sq9AJpRtb3wHqN8egE0ozTfX0REHHzwwZFsYr+pU089NU499dRum0NdFy8++clPbvT+888/P6WZAJSu1vsEbkwjhKIR6AXQjPQifXoBNKM0exGhGRF6ATSntHvRCOq6eAHQjGq9rywAPZNeAFAKvQCgFFnshcULgDIVUz5ND4DmpBcAlEIvAChFFnvRWu8JADSbJKn8KBQKkcvlIpfLdV5UD4CeqZpeaAZAdugFAKXIYi+ceQGQonIvpgdAdmkGAKXQCwBK0Yy9sHgBUKYs7jEIQPn0AoBS6AUApchiLyxeAJQpi7EAoHx6AUAp9AKAUmSxFxYvAMpUzGAsACifXgBQCr0AoBRZ7IXFC4AyJcXsxQKA8ukFAKXQCwBKkcVetNZ7AgBZUigUIpfLRS6Xi0KhUO/pANDANAOAUugFAKVoxl4486JJ3P7ig6mM03vAOamMExGxbs1PUxmn98AjUxknImLIoH1SGWfBqktTGSdNu211XL2nULIkqfx38/l85PP52k2GppHWvw/PdixNZZyIiN4D3p/KOD2xF8duPSOVce585dZUxomIWPD3xamMM2mL6amMUwvV9CJCM7Kqmf4/Ual6Wi8i0mtGWn8fBhUHpDJORMSC565LZRy9gNrZY8vjUxknrV5E9Lz3GOMGfyqVcSIiHknuTmWclf9I5/3FObt+MZVxaiGLvbB4AVCmLO4xCED59AKAUugFAKXIYi8sXgCUKclgLAAon14AUAq9AKAUWeyFxQuAMmVxpRuA8ukFAKXQCwBKkcVeuGA3AAAAAADQUCxeAJQpSVoqPgDIjmp6oRkA2aEXAJSi2l4UCoXI5XKRy+WiUCjU++WUxOIFQJmKVRzNGAoAKlNNLzQDIDv0AoBSVNuLfD4fDzzwQDzwwAORz+fTfwEVcM0LgDJV8+2mfD7fNIEAoDrVfhtWMwCyQS8AKEUWz7azeAFQpixeIAmA8ukFAKXQCwBKkcVeWLwAKFMWV7oBKJ9eAFAKvQCgFFnshWteAAAAAAAADcWZFwBlKib1ngEAzUAvACiFXgBQiiz2ouEWL5IkiZaW7J0CAzSPLJ6m14j0Amh0etE4NANoZHrROPQCaGRZ7EXDbRvV1tYWDz74YL2nAfCmitFS8UHt6AXQ6KrphWbUlmYAjUwvGodeAI0si72o25kX06ZN2+DtHR0dccEFF8TWW28dEREXXXRRmtMC2KSkitP0CoVCFAqFiIjI5/ORz+drNKueSy+AZlVNLyI0oxKaATQjvUifXgDNKIu9qNvixcUXXxyjRo2KLbbYosvtSZLEgw8+GJtttllJp+q1t7dHe3v7G25NIpp0NQno2ZolDo2kVr2I0AyguWhG+bzHALJIL8qnF0AWNWMv6rZ4cf7558d3v/vd+PrXvx7vfve7O2/v06dPzJ07N3K5XEnPM2fOnJg9e/Ybbm2JiF61myzA6xQzuMdgPdWqFxGaAaRLL9LnPQbQjPQifXoBNKMs9qJu17yYMWNGzJs3L0455ZSYPn16vPLKKxU9z8yZM2PVqlVdjga8lAfQg2Rtf8F6q1UvIjQDSFcW96StN+8xgGakF+nTC6AZZbEXFf2Letddd8VHPvKRGDduXDz55JMREXHVVVfFb37zm7Ke5x3veEfcc8898eyzz8bYsWPjT3/6U8lbf7ymra0tBg0a1OVweh7QnZKk8iNrGqkXEZoBpKuaXmiG9xhAduhFefQCyKos9qLsxYuf/OQnMWnSpOjfv3/ce++9nXv7rVq1Ks4///yyJzBw4MC48sorY+bMmTFhwoTo6Ogo+zkA0lRMWio+skQvgKyrpheaoRlAduhF6fQCyLIs9qLsxYtzzz03Lrvssvje974Xffr06bx9//33j8WLF1c8kRNOOCEWLVoU119/feywww4VPw9Ad0uipeIjS/QCyLpqeqEZr9IMIAv0onR6AWRZFntR9gW7H3744TjooIPWu33w4MHx/PPPVzWZESNGxIgRI6p6DgAag14AUCrNAKAUegGQLWWfeTF06NBYunTperf/5je/iZ122qkmkwJoZMWk8iNL9ALIump6oRmv0gwgC/SidHoBZFkWe1H24sXUqVPjtNNOi//5n/+JlpaWeOqpp+Lqq6+O6dOnxymnnNIdcwRoKFnbX7BSegFkXRb3pK2UZgBZphel0wsgy7LYi7K3jZoxY0YUi8U49NBD48UXX4yDDjoo2traYvr06fHpT3+6O+YI0FCq2SewUChEoVCIiIh8Ph/5fL5W02o4egFkXbX7ymqGZgDZoBel0wsgy7LYi7IXL1paWuKss86KM844I5YuXRpr1qyJXC4XAwcO7I75ATScak61a5Y41IJeAFlX7anZmqEZQDboRen0AsiyLPai7MWL1/Tt2zdyuVwt5wJAD6QXAJRKMwAohV4AZEPZixeHHHJItLS8+Skqv/rVr6qaEECjq/Y0vazQCyDr9KJ0mgFkmV6UTi+ALMtiL8pevBg9enSXn1955ZVYsmRJ/OlPf4rJkyfXal4ADava0/SyQi+ArNOL0mkGkGV6UTq9ALIsi70oe/HiG9/4xgZv//KXvxxr1qypekIAja6YZG+luxJ6AWSdXpROM4As04vS6QWQZVnsRWutnugjH/lIXH755bV6OoCGlVRxoBdAdlTTC814lWYAWaAX1dMLIAuy2IuaLV4sWLAg+vXrV6unA6CH0gsASqUZAJRCLwB6prK3jTr22GO7/JwkSSxfvjwWLVoUX/ziF2s2sWqMG/yp1MZasOrSVMZ5+LnrUhnnK7un999h74FHpjJOx7PXpDJORMThuyxKZZxfxuJUxvnkiPT+Ply3+ubUxqpWFk/Tq0Qz9CJNK1en87/bNB279YxUxkmrF+tWXpvKOBERvYccn9pYPc0vn/9aSiPNqfoZ9KJ0zdCMIYP2SWWctP5/f5pOHvZ/UhknrV5EpNeMtHrxcCqjvCqt/y2l14uIapuhF6XTi/+V5vuLB/+Rzr95/7n3WamME9Hz3mP0xPcXaX2++80V6X0e9X/iS1X9fhZ7UfbixeDBg7v83NraGrvttlucffbZMXHixJpNDKBRFes9gSahF0DW6UXpNAPIMr0onV4AWZbFXpS1eNHR0RFTpkyJvfbaK7bccsvumhNAQ0syuNJdLr0A0ItSaQaQdXpRGr0Asi6LvSjrmhe9evWKiRMnxvPPP99N0wFofMUqjqzQC4DqeqEZANmhF6XRCyDrstiLsi/Yveeee8ajjz7aHXMBaArFpPIjS/QCyLpqeqEZANmhF6XTCyDLstiLshcvzj333Jg+fXrcdNNNsXz58li9enWXA4A3VygUIpfLRS6Xi0KhUO/pdCu9AKiOZmgGQCn0Qi8AStGMvSj5mhdnn312fO5zn4vDDz88IiKOPPLIaGn53322kiSJlpaW6OjoqP0sARpIEpXvMZjP5yOfz9dwNo1HLwBeVU0vIjQjQjOAbNCLTdMLgGz2ouTFi9mzZ8cnP/nJuP3227tzPgANr1lPtUuLXgC8Si82TTMA9KIUegGQzV6UvHiRJK/+6YwfP77bJgPQDKpd6e7p9ALgVXqxaZoBoBel0AuAbPai5MWLiOhySh5AVmVxpbtcegGgF6XSDCDr9KI0egFkXRZ7Udbixa677rrJWDz33HNVTQiA5qcXAJRKMwAohV4AZE9ZixezZ8+OwYMHd9dcAJpCFle6y6UXAHpRKs0Ask4vSqMXQNZlsRdlLV6ccMIJsc0223TXXACaQhb3GCyXXgDoRak0A8g6vSiNXgBZl8VelLx4YW9BgFdlcaW7HHoB8Cq92DTNANCLUugFQDZ7UfLiRZJ0/5/O2rVr49prr42lS5fGsGHD4kMf+lBsvfXWG/2d9vb2aG9v73JbMVkXrS1lnVQCULJivSfQ4Bq1FxEbbkZEEpHBby8A3U8vNq27m1HLXiRJMVpaWrtrqkCG6cWm6QVANntR8r+mxWKx5qfn5XK5zospPfHEE7HnnnvG6aefHrfddlvMmjUrcrlcLFu2bKPPMWfOnBg8eHCX48n2RTWdJ8DrJUlLxUcWNGovIjbcjGzmH0hDNb3QjMp0Zy9ebH+qZvMEeD292DS9AMhmL+q6FPzQQw/FunXrIiJi5syZMXz48Hjsscdi4cKF8dhjj8Xee+8dZ5111kafY+bMmbFq1aoux3ZtY9OYPgApqUUvXvvdNzajzikEoIa6sxcD2oZ39/QBSIleADSHhtlbacGCBXHZZZf9/2/BRgwcODBmz54dJ5xwwkZ/r62tLdra2rrcZssooDv5nn59VdqLiA03w5ZRQHfRi/qqdS9sAQJ0F72oL70AmkUWe1H3T/lfu+jSSy+9FMOGDety33bbbRfPPvtsPaYF8KayeIGkRqAXQLPRi/rQC6DZ6EV96AXQbLLYi7ovXhx66KHRu3fvWL16dTz88MOx5557dt732GOPlXSBJIA0ZbAVDUEvgGajF/WhF0Cz0Yv60Aug2WSxF3VdvJg1a1aXnwcOHNjl55/97Gdx4IEHpjklgE0qNulFjpqZXgDNSC/SpxdAM9KL9OkF0Iyy2IuGWrx4owsvvDClmQDQyPQCgFLoBQCl0AuA5lD3baMAmk0WT9MDoHx6AUAp9AKAUmSxF631ngBAsykmlR+FQiFyuVzkcrkoFAr1fikAdKNqeqEZANmhFwCUIou9cOYFQJmKVfxuPp+PfD5fs7kA0Liq6UWEZgBkhV4AUIos9sLiBUCZkiyepwdA2fQCgFLoBQClyGIvbBsFAAAAAAA0FGdeAJSpGC31ngIATUAvACiFXgBQiiz2wuIFQJmyeJoeAOXTCwBKoRcAlCKLvbB4AVCmai+QBEA26AUApdALAEqRxV5YvAAoUzGDK90AlE8vACiFXgBQiiz2okcuXgxqGZDaWEMG7ZPaWGn4/EPnpDbWJ0d8MZVxtn3bV1MZJyJixd++lMo4vQd9LZVx7nvh76mMExGxcvXi1MaqVgZb0aPtseXxqYzzbMfSVMZJ839L1//9gtTGSsNeu1yX2ljrVt+Yyji9Bx2dyjhsmF70LAf1mZjKOHcOSmWYiEivGZcvPzeVcdJ8bzZ0p3Qa2BN7sUvLO1MZZ2V4f0F9HLnZ4amM89NURnlVWr349z+cl8o4aUrrPUZavYhIrxkLVl2ayjjNJIu9aK33BAAAAAAAAF6vR555AdCdsniaHgDl0wsASqEXAJQii72weAFQpiSDsQCgfHoBQCn0AoBSZLEXFi8AylSs9wQAaAp6AUAp9AKAUmSxFxYvAMqUxdP0ACifXgBQCr0AoBRZ7IULdgMAAAAAAA3FmRcAZcrgQjcAFdALAEqhFwCUIou9sHgBUKYsnqYHQPn0AoBS6AUApchiLyxeAJQpiZZ6TwGAJqAXAJRCLwAoRRZ7YfECoExZXOkGoHx6AUAp9AKAUmSxFy7YDQAAAAAANBRnXgCUKYsr3QCUTy8AKIVeAFCKLPbC4gVAmTLYCgAqoBcAlEIvAChFFntR122jFi9eHMuWLev8+aqrror9998/tt9++zjggAPimmuuqePsADasmFR+UBm9AJpRNb3QjMroBdCM9CJ9egE0oyz2oq6LF1OmTIm//OUvERHxn//5n/GJT3wixo4dG2eddVa84x3viKlTp8bll1++0edob2+P1atXdzmKybo0pg9kVFLFf6hMLXoR8WbN6Oju6QMZVU0vNKMy3dmLDu8xgG6iF+nTC6AZZbEXdd026pFHHolddtklIiIuvfTS+OY3vxlTp07tvP8d73hHnHfeeXHyySe/6XPMmTMnZs+e3eW2t7XtHzv3P7B7Jg1kXrOuVjezWvQiYsPNGNJvz3hL/71rP2kg8/Qifd3Zi937Hxi5AeNrP2kg8/Qifd3Zi9EDx8c+mx9S+0kDmdeMvTjmmGPijjvuiEMPPTSuu+66sn+/rmdeDBgwIFauXBkREU8++WTsu+++Xe7fb7/9upzGtyEzZ86MVatWdTl26jeu2+YM0GyOOeaY2HLLLeO4446r91QqVoteRGy4GVv3e3u3zBmg2ejF/9pQL3brv3+3zBmgGTV7M7qzF6MG+jItwGtOO+20+P73v1/x79d18eKwww6Lb3/72xERMX78+PVWX6699trYeeedN/ocbW1tMWjQoC5Ha4vrkAPdJ6niqIdqQ9EIatGLiDdrRq9umTNANb2oRzP04n9tqBe9vMcAukmz9SKi+ZuhF0AzasZeHHzwwbH55ptX/Pt1/Rf1K1/5Suy///4xfvz4GDt2bHz961+PO+64I/bYY494+OGH4+67744bbrihnlMEWE+znaZ38MEHxx133FHvaVRFL4BmpBfp0wugGTVbLyKavxl6ATSjtHtx5513xoUXXhj33HNPLF++PG644YY4+uijuzymUCjEhRdeGCtWrIhRo0bFf/zHf6x3Nls16nrmxfDhw+Pee++NcePGxS233BJJksTChQvj1ltvjREjRsRvf/vbOPzww+s5RYD1JEnlR7nuvPPOOOKII2L48OHR0tISN95443qPKRQKseOOO0a/fv1iv/32i4ULF1b/IhuMXgDNqJpelNsMvXiVXgDNKM1eRGhGhF4AzSntXqxduzZGjRoVhUJhg/fPmzcvpk2bFrNmzYrFixfHqFGjYtKkSfHMM89U+Ur/V93PZdtiiy3iggsuiAsuuKDeUwEoSTHFsV4LxcknnxzHHnvseve/ForLLrss9ttvv7j44otj0qRJ8fDDD8c222yT4ky7n14AzUYv6kMvgGaTZi8iNOM1egE0m7R7cdhhh8Vhhx32pvdfdNFFMXXq1JgyZUpERFx22WVx8803x+WXXx4zZsyoyRzqvngBkCXt7e3R3t7e5ba2trZoa2vb4OMbIRQA1Ec5zdALgOzyHgOAUpTbi415+eWX45577omZM2d23tba2hoTJkyIBQsWVD3Xzues2TMBZEQxqfyYM2dODB48uMsxZ86ciubxWigmTJjQeVt3hAKAylTTi1o2Qy8AGluj9CJCMwAaWSP1YuXKldHR0RHbbrttl9u33XbbWLFiRefPEyZMiA984APx85//PEaMGFF2S5x5AVCmSvYJfM3MmTNj2rRpXW6rZIU7YuOheOihhzp/njBhQtx3332xdu3aGDFiRPz4xz+OcePGVTQmAKWrphcRtWuGXgA0tkbpRYRmADSyRupFqf77v/+7qt+3eAFQpmr2GKz0dLxqVBsKACpT7Z60aTdDLwDqo9l6EaEZAPXQSL0YMmRI9OrVK55++ukutz/99NMxdOjQmowRYdsogLIlSeVHLaUVCgAqU00vatkMvQBobI3SiwjNAGhkjdSLvn37xpgxY2L+/PmdtxWLxZg/f35Nz8SzeAFQpmIVR6FQiFwuF7lcLgqFQlXzSCsUAFSmml7Ushl6AdDYqu1FLWkGQONK+/3FmjVrYsmSJbFkyZKIiFi2bFksWbIkHn/88YiImDZtWnzve9+LK6+8Mh588ME45ZRTYu3atTFlypSavWbbRgGkKJ/PRz6fL/nxa9asiaVLl3b+/Foottpqqxg5cmRMmzYtJk+eHGPHjo199903Lr744pqHAoD6KKcZegGQXYVCofNDqFLaoRkA2VTuZ1KLFi2KQw45pPPn166XMXny5Jg7d2588IMfjGeffTa+9KUvxYoVK2L06NFxyy23rHfdpGpYvAAoU1Lrc+02ohFCAUBl9AKAUlTbi2b8MAqA8qX5/iIi4uCDD97kmKeeemqceuqp3TYHixcAZSqm2IpGCAUAldELAEqRZi8iNAOgWaXdi0bQIxcvfvn811Ib69itZ6QyzqTh6fxXddZjqQwTERHXrb45lXFWrl6cyjgREb0HHZ3KOOtevCmVcXoPeH8q40REfHibL6Q2VrUy2Ioe7cF/XJvKOJ8Z+cVUxmnb+n2pjBMRccXfe9a/42n9XYiI6D0onbHS6kVExNChX0plnKlD0mtTtfSiZ7n+7xekMk6a/5/o763vTmWctN6fpfn/+9PS095fRKTXiyGD9kllnFrQi57l8uXnpjJOmn/H03ov88Pn03l/EdHz3mOk9f4iIr1mpNWLD2+R3nvoamWxFz1y8QKgO2VxpRuA8ukFAKXQCwBKkcVetNZ7AgBZUigUIpfLRS6X67yoHgBsiGYAUAq9AKAUzdgLZ14AlKmale5yL6YHQPOq9ptRmgGQDXoBQCmy2AuLFwBlSjK5yyAA5dILAEqhFwCUIou9sHgBUKYs7jEIQPn0AoBS6AUApchiLyxeAJQpyWAsACifXgBQCr0AoBRZ7IULdgMAAAAAAA3F4gVAmYqRVHwUCoXI5XKRy+WiUCjU+6UA0I2q6YVmAGSHXgBQiiz2wrZRAGWq5jS9fD4f+Xy+dpMBoGFVe1q3ZgBkg14AUIos9sLiBUCZivWeAABNQS8AKIVeAFCKLPbC4gVAmZIsXiEJgLLpBQCl0AsASpHFXli8AChTMXutAKACegFAKfQCgFJksRcu2A0AAAAAADQUZ14AlKkYGVzqBqBsegFAKfQCgFJksRd1PfPi05/+dNx1111VPUd7e3usXr26yxEZ/C8SSE+SVH4UCoXI5XKRy+WiUCjU+6U0jVr0IkIzgHRV0wvNqIxeAM1IL9KnF0AzymIv6rp4USgU4uCDD45dd901vvKVr8SKFSvKfo45c+bE4MGDuxzZvPY6kJZiJBUf+Xw+HnjggXjggQcin8/X+6U0jVr0IkIzgHRV0wvNqIxeAM1IL9KnF0AzymIv6n7Ni1tvvTUOP/zw+NrXvhYjR46Mo446Km666aYoFkv7x37mzJmxatWqLkcDvCygB6tmlZvKVduLCM0A0lXtN6OojF4AzUYv6kMvgGaTxV7U/V/UvfbaKy6++OJ46qmn4gc/+EG0t7fH0UcfHdtvv32cddZZsXTp0o3+fltbWwwaNKjLEdGSzuQBSE21vYjQDIAs0AsASqEXAI2v7osXr+nTp08cf/zxccstt8Sjjz4aU6dOjauvvjp22223ek8NoItqTtGjenoBNItqT+umOnoBNAu9qC+9AJpFFnvRMIsXrzdy5Mj48pe/HMuWLYtbbrml3tMB6KKYJBUf1JZeAI2sml5oRm3pBdDI9KJx6AXQyLLYi971HHyHHXaIXr16ven9LS0t8Z73vCfFGQFsWtKkq9XNTC+AZqQX6dMLoBnpRfr0AmhGWexFXRcvli1bVs/hASpS+uXbqBW9AJqRXqRPL4BmpBfp0wugGWWxFw25bRRAI6tmf8FCoRC5XC5yuVwUCoV6vxQAulG1e9JqBkA26AUApchiL+p65gVA1uTz+cjn8/WeBgBNQDMAKIVeAFCKZuyFxQuAMiVNepEjANKlFwCUQi8AKEUWe2HxAqBMxQxeIAmA8ukFAKXQCwBKkcVeWLwAKFMWYwFA+fQCgFLoBQClyGIvLF4AlCmJYr2nAEAT0AsASqEXAJQii71orfcEAAAAAAAAXs+ZFwBlyuJpegCUTy8AKIVeAFCKLPbC4gVAmbIYCwDKpxcAlEIvAChFFnvRIxcvxg3+VGpjXf/3C1IZZ8RmX0xlnIP6TExlnIiIO1+5NbWxepq3j5ibyjjrVt+YyjgREUNHnJ3SSLOrfoZiBvcYpHrfevycVMbZY8vjUxknTUMG7ZPKOGk2cPm61amMM3Tol1IZJyJixd/SGevA7Zvn/z/oRc+S1r9FP3zm/FTGiUjvNU3aYnoq4/zy+a+lMk5ExG5bHZfKOA8/d10q4xw47OepjBORXi96Dzo6lXFqQS+oxMrVi1Mb6/ct70xlnDGt705lnIiIX0Y6f35ptTbNvw9pNcP7i/VlsReueQFQpqSlWPFRKBQil8tFLpeLQqFQ75cCQDeqpheaAZAdegFAKbLYix555gVAo8rn85HP5+s9DQCagGYAUAq9AKAUzdgLixcAZcriHoMAlE8vACiFXgBQiiz2wuIFQJmyuMcgAOXTCwBKoRcAlCKLvbB4AVCmJIOxAKB8egFAKfQCgFJksRcWLwDKVGzJXiwAKJ9eAFAKvQCgFFnshcULgDJl8TQ9AMqnFwCUQi8AKEUWe9Fa7wkAAAAAAAC8njMvAMqUxZVuAMqnFwCUQi8AKEUWe2HxAqBMWbxAEgDl0wsASqEXAJQii72weAFQpmJ01HsKADQBvQCgFHoBQCmy2AuLFwBlyuJKNwDl0wsASqEXAJQii71wwW4AAAAAAKCh1H3x4pJLLomTTjoprrnmmoiIuOqqqyKXy8Xuu+8eX/jCF2LdunV1niFAV8WWYsVHoVCIXC4XuVwuCoVCvV9KU9ELoNlU0wvNqJxeAM1GL+pDL4Bmk8Ve1HXbqHPPPTe++tWvxsSJE+P000+Pxx57LC688MI4/fTTo7W1Nb7xjW9Enz59Yvbs2W/6HO3t7dHe3t7ltmKyLlpb7IgFdI9q9hjM5/ORz+drOJtsqEUvIjbcjIgkIlq6be5AdlW7J61mlK87e5EkxWhpqft3v4AeSC/S5/0F0Iyy2Iu6fsI/d+7cmDt3bhx77LFx3333xZgxY+LKK6+ME088MSIidt999zjzzDM3Gos5c+asd/+Itn1j+37v7Na5A9mVxT0G660WvYjYcDNefWPRq3smDmSaXqSvO3vRv+/w2KzfiG6bO5BdepE+7y+AZpTFXtT1q0NPPfVUjB07NiIiRo0aFa2trTF69OjO+/fZZ5946qmnNvocM2fOjFWrVnU5tmsb253TBjKumHRUfFCZWvQiYsPNaIAdFIEeqppeaEZlurMXA9qGd9e0gYzTi/R5fwE0oyz2oq7/og4dOjQeeOCBiIh45JFHoqOjo/PniIj7778/ttlmm40+R1tbWwwaNKjLYcsogJ6lFr2I2HAznNIN0HN0Zy9sGQXQc3h/AdAc6vop/4knnhgnnXRSHHXUUTF//vw488wzY/r06fH3v/89Wlpa4rzzzovjjjuunlMEWE8WT9OrN70AmpFepE8vgGakF+nTC6AZZbEXdV28mD17dvTv3z8WLFgQU6dOjRkzZsSoUaPizDPPjBdffDGOOOKIOOecc+o5RYD1JFVeIIny6QXQjPQifXoBNCO9SJ9eAM0oi72o6+JFa2trfOELX+hy2wknnBAnnHBCnWYEsGnFDK5015teAM1IL9KnF0Az0ov06QXQjLLYCxeHAChTFk/TA6B8egFAKfQCgFJksRcWLwDKlCTZO00PgPLpBQCl0AsASpHFXrTWewIAAAAAAACv58wLgDJlcY9BAMqnFwCUQi8AKEUWe2HxAqBMSWTvND0AyqcXAJRCLwAoRRZ7YfECoExJkr2VbgDKpxcAlEIvAChFFnth8QKgTFk8TQ+A8ukFAKXQCwBKkcVeuGA3AAAAAADQUJx5AVCmJMneHoMAlE8vACiFXgBQiiz2okcuXgxqGZDaWB/e5gupjPPD529OZZzjBr0vlXEiIqYNSWesL6xenMo4aXp7y86pjDN0xNmpjBMRseKpL6c2VrWSDJ6m15PtseXxqYyzRXFIKuMs+MelqYwTETFpi+mpjLN1376pjHPvK0tTGSci4sFV16YyTlp/vyMieg86OpVx1q35aSrj1IJe9CxjWt+dyjibbT0xlXEiIq7/+wWpjLPdsMNTGeeTA7+YyjgREdetTuf9WVoO2Grr1MZK6z2GXlAv4wZ/KpVxHknuTmWciIgFq9J5j5HWn12aY6X1Z5emtP7u9R6Uzp/duhdvSmWcWshiL2wbBVCmJClWfBQKhcjlcpHL5aJQKNT7pQDQjarphWYAZIdeAFCKLPaiR555AdCdkqj8NL18Ph/5fL6GswGgUVXTiwjNAMgKvQCgFFnshcULgDIlSfZO0wOgfHoBQCn0AoBSZLEXto0CAAAAAAAaijMvAMqUxZVuAMqnFwCUQi8AKEUWe2HxAqBMxcheLAAon14AUAq9AKAUWeyFxQuAMmVxpRuA8ukFAKXQCwBKkcVeWLwAKFOSdNR7CgA0Ab0AoBR6AUApstgLF+wGAAAAAAAaijMvAMqUZHCPQQDKpxcAlEIvAChFFnth8QKgTFncYxCA8ukFAKXQCwBKkcVeWLwAKFMWYwFA+fQCgFLoBQClyGIv6rp4sXz58vj2t78dv/nNb2L58uXR2toaO+20Uxx99NHxsY99LHr16lXP6QFsUBZP02sEmgE0G72oD70Amo1e1IdeAM0mi72o2wW7Fy1aFHvssUf8/Oc/j1deeSUeeeSRGDNmTGy22WYxffr0OOigg+KFF16o1/QAaCCaAUAp9AKAUugFQHOo2+LFZz/72Tj99NNj0aJFcdddd8XcuXPjz3/+c1xzzTXx6KOPxosvvhj/5//8n00+T3t7e6xevbrLUUzWpfAKgKxKkmLFB5Xp3mZ0pPAKgCyqpheaURnvMYBmpBfp0wugGWWxF3VbvFi8eHF89KMf7fz5wx/+cCxevDiefvrp2HLLLeOrX/1qXHfddZt8njlz5sTgwYO7HI++tKA7pw5kXNZC0Qi6sxl/f+n+7pw6kGFZfHNRb95jAM1IL9LXnb14sn1Rd04dyLAs9qJuixfbbLNNLF++vPPnp59+OtatWxeDBg2KiIhddtklnnvuuU0+z8yZM2PVqlVdjp36jeu2eQNEFKs4qER3NmPrfm/vtnkDWVdNLzSjEt5jAM1JL9LWnb3Yrm1st80byLrs9aJuF+w++uij45Of/GRceOGF0dbWFuecc06MHz8++vfvHxERDz/8cGy33XabfJ62trZoa2vrcltrS12vQw70cM26Wt3MurcZLsQHdA+9SJ/3GEAz0ov06QXQjLLYi7r9i3ruuefG8uXL44gjjoiOjo4YN25c/OAHP+i8v6WlJebMmVOv6QG8qaRJV6ubmWYAzUgv0qcXQDPSi/TpBdCMstiLui1eDBw4MObNmxcvvfRSrFu3LgYOHNjl/okTJ9ZpZgA0Gs0AoBR6AUAp9AKgOdT9XLZ+/frVewoAZcniaXqNQjOAZqIX9aMXQDPRi/rRC6CZZLEXdV+8AGg+HfWeAABNQS8AKIVeAFCK7PXC4gVAmbK40g1A+fQCgFLoBQClyGIvLF4AlC17sQCgEnoBQCn0AoBSZK8XrfWeAAAAAAAAwOtZvAAoV1Ks/KiDm266KXbbbbfYZZdd4j//8z/rMgeATKqmF3Vohl4A1EmT9SJCMwDqIoO9sG0UQJmSSOo9hZKtW7cupk2bFrfffnsMHjw4xowZE8ccc0xsvfXW9Z4aQI+nFwCUopl6EaEZAPWSxV448wKgbMUqjnQtXLgw3v72t8d2220XAwcOjMMOOyxuvfXW1OcBkE3V9CLdZugFQD01Ty8iNAOgfrLXC4sXAOVKksqPMt15551xxBFHxPDhw6OlpSVuvPHG9R5TKBRixx13jH79+sV+++0XCxcu7Lzvqaeeiu22267z5+222y6efPLJil42AGWqphdlNkMvAJpYir2I0AyAppXBXli8AChTUsV/yrV27doYNWpUFAqFDd4/b968mDZtWsyaNSsWL14co0aNikmTJsUzzzxT7csEoErV9KLcZugFQPNKsxcRmgHQrLLYC9e8AEhRe3t7tLe3d7mtra0t2traNvj4ww47LA477LA3fb6LLroopk6dGlOmTImIiMsuuyxuvvnmuPzyy2PGjBkxfPjwLqvaTz75ZOy77741eCUAdLdymqEXANnlPQYApWjKXiQkL730UjJr1qzkpZde6jFjeU2NP06aY3lNjWPWrFlJRHQ5Zs2aVdLvRkRyww03dP7c3t6e9OrVq8ttSZIkJ510UnLkkUcmSZIkr7zySrLzzjsnf/vb35IXXngh2XXXXZOVK1fW6NVkU0/7O+7fh+YYq6eNk+ZYzdqLJKm8GXrRGHri33GvyTj1GKunjdMdvMdobv532/jjpDmW19T446Q9Vi01Yy8sXiRJsmrVqiQiklWrVvWYsbymxh8nzbG8psbx0ksvJatWrepylBq7N4biySefTCIi+d3vftflcWeccUay7777dv78X//1X8kuu+ySvO1tb0u+853v1OR1ZFlP+zvu34fmGKunjZPmWM3aiySpvBl60Rh64t9xr8k49Rirp43THbzHaG7+d9v446Q5ltfU+OOkPVYtNWMvbBsFkKKNnY7XXY488sg48sgjUx0TgOql3Qy9AGhO3mMAUIpm7IULdgM0qSFDhkSvXr3i6aef7nL7008/HUOHDq3TrABoNHoBQKk0A4BSpNULixcATapv374xZsyYmD9/fudtxWIx5s+fH+PGjavjzABoJHoBQKk0A4BSpNUL20bFq6fMzJo1K5XTZtIay2tq/HHSHMtral5r1qyJpUuXdv68bNmyWLJkSWy11VYxcuTImDZtWkyePDnGjh0b++67b1x88cWxdu3amDJlSh1n3bP1tL/j/n1ojrF62jhpjqUXelEvPfHvuNdknHqM1dPGaQSa0Vj877bxx0lzLK+p8cdJe6x6aoRetPz/C24A0IDuuOOOOOSQQ9a7ffLkyTF37tyIiLjkkkviwgsvjBUrVsTo0aPjW9/6Vuy3334pzxSAetILAEqlGQCUohF6YfECAAAAAABoKK55AQAAAAAANBSLFwAAAAAAQEOxeBERhUIhdtxxx+jXr1/st99+sXDhwpqPceedd8YRRxwRw4cPj5aWlrjxxhtrPkZExJw5c+Id73hHbL755rHNNtvE0UcfHQ8//HDNx/n2t78de++9dwwaNCgGDRoU48aNi1/84hc1H+eNLrjggmhpaYnPfvazNX/uL3/5y9HS0tLl2H333Ws+TkTEk08+GR/5yEdi6623jv79+8dee+0VixYtqvk4O+6443qvqaWlJfL5fE3H6ejoiC9+8Yvx1re+Nfr37x9ve9vb4pxzzonu2JXuhRdeiM9+9rOxww47RP/+/eNd73pX/P73v6/5OLAhelGZntaMNHsRkU4zemIvIjSD+tGLyvS0XkT0vPcYafUiwnsMskMzyqcX1fGZVOX0In2ZX7yYN29eTJs2LWbNmhWLFy+OUaNGxaRJk+KZZ56p6Thr166NUaNGRaFQqOnzvtGvf/3ryOfzcffdd8dtt90Wr7zySkycODHWrl1b03FGjBgRF1xwQdxzzz2xaNGiePe73x1HHXVU3H///TUd5/V+//vfx3e+853Ye++9u22Mt7/97bF8+fLO4ze/+U3Nx/jHP/4R+++/f/Tp0yd+8YtfxAMPPBBf//rXY8stt6z5WL///e+7vJ7bbrstIiI+8IEP1HScr3zlK/Htb387LrnkknjwwQfjK1/5Snz1q1+N//iP/6jpOBER//7v/x633XZbXHXVVfHHP/4xJk6cGBMmTIgnn3yy5mPB6+lF5XpiM9LoRUR6zeiJvYjQDOpDLyrXE3sR0bPeY6TViwjvMcgGzaiMXlTOZ1LV0Ys6SDJu3333TfL5fOfPHR0dyfDhw5M5c+Z025gRkdxwww3d9vyv98wzzyQRkfz617/u9rG23HLL5D//8z+75blfeOGFZJdddkluu+22ZPz48clpp51W8zFmzZqVjBo1qubP+0af//znkwMOOKDbx9mQ0047LXnb296WFIvFmj7v+973vuTkk0/uctuxxx6bnHjiiTUd58UXX0x69eqV3HTTTV1u32effZKzzjqrpmPBG+lFbTVzM9LqRZLUrxnN3osk0QzqRy9qq5l7kSQ9/z1Gd/UiSbzHIBs0o3b0ojQ+k6qcXtRHps+8ePnll+Oee+6JCRMmdN7W2toaEyZMiAULFtRxZrWzatWqiIjYaqutum2Mjo6OuOaaa2Lt2rUxbty4bhkjn8/H+973vi7/XXWHRx55JIYPHx477bRTnHjiifH444/XfIyf/vSnMXbs2PjABz4Q22yzTfzLv/xLfO9736v5OG/08ssvxw9+8IM4+eSTo6WlpabP/a53vSvmz58ff/7znyMi4r777ovf/OY3cdhhh9V0nHXr1kVHR0f069evy+39+/fvtm89Q4Re1FJPaUYavYioTzN6Qi8iNIP60Iva6Sm9iOi57zG6sxcR3mPQ82lGbehFeXwmVTm9qJN6r57U05NPPplERPK73/2uy+1nnHFGsu+++3bbuJHSKndHR0fyvve9L9l///275fn/8Ic/JJtttlnSq1evZPDgwcnNN9/cLeP86Ec/Svbcc8/kn//8Z5IkSbetcv/85z9Prr322uS+++5LbrnllmTcuHHJyJEjk9WrV9d0nLa2tqStrS2ZOXNmsnjx4uQ73/lO0q9fv2Tu3Lk1HeeN5s2bl/Tq1St58skna/7cHR0dyec///mkpaUl6d27d9LS0pKcf/75NR8nSZJk3Lhxyfjx45Mnn3wyWbduXXLVVVclra2tya677tot40GS6EUt9KRmpNWLJKlPM3pKL5JEM0ifXlSvJ/UiSXr2e4zu7EWSeI9Bz6cZ1dGLyvhMqjp6kT6LFz04FJ/85CeTHXbYIXniiSe65fnb29uTRx55JFm0aFEyY8aMZMiQIcn9999f0zEef/zxZJtttknuu+++ztu6KxRv9I9//CMZNGhQzU877NOnTzJu3Lgut336059O3vnOd9Z0nDeaOHFi8v73v79bnvtHP/pRMmLEiORHP/pR8oc//CH5/ve/n2y11VbdEr+lS5cmBx10UBIRSa9evZJ3vOMdyYknnpjsvvvuNR8LXqMX1evJzeiuXiRJfZrRU3qRJJpB+vSiej25F0nSs95jdGcvksR7DHo+zaiOXlTGZ1LV0Yv0ZXrxor29PenVq9d6/2ifdNJJyZFHHtlt46YRinw+n4wYMSJ59NFHu3Wc1zv00EOTj3/84zV9zhtuuKHzH4TXjohIWlpakl69eiXr1q2r6XhvNHbs2GTGjBk1fc6RI0cm//Zv/9bltksvvTQZPnx4Tcd5vb/+9a9Ja2trcuONN3bL848YMSK55JJLutx2zjnnJLvttlu3jJckSbJmzZrkqaeeSpIkSY4//vjk8MMP77axQC9qr6c1ozt6kSTpN6Mn9iJJNIP06EXt9bReJEnPeI/R3b1IEu8x6Pk0o7b0ojQ+k6oNvUhPpq950bdv3xgzZkzMnz+/87ZisRjz58/vtn3yuluSJHHqqafGDTfcEL/61a/irW99a2pjF4vFaG9vr+lzHnroofHHP/4xlixZ0nmMHTs2TjzxxFiyZEn06tWrpuO93po1a+Ivf/lLDBs2rKbPu//++8fDDz/c5bY///nPscMOO9R0nNe74oorYpttton3ve993fL8L774YrS2dv3npFevXlEsFrtlvIiIzTbbLIYNGxb/+Mc/4pe//GUcddRR3TYW6EXt9aRmdFcvItJvRk/sRYRmkB69qL2e1IuInvMeo7t7EeE9Bj2fZtSWXpTGZ1K1oRcpqu/aSf1dc801SVtbWzJ37tzkgQceSD7+8Y8nW2yxRbJixYqajvPCCy8k9957b3LvvfcmEZFcdNFFyb333ps89thjNR3nlFNOSQYPHpzccccdyfLlyzuPF198sabjzJgxI/n1r3+dLFu2LPnDH/6QzJgxI2lpaUluvfXWmo6zId11it7nPve55I477kiWLVuW/Pa3v00mTJiQDBkyJHnmmWdqOs7ChQuT3r17J+edd17yyCOPJFdffXUyYMCA5Ac/+EFNx3lNR0dHMnLkyOTzn/98tzx/kiTJ5MmTk+222y656aabkmXLliXXX399MmTIkOTMM8+s+Vi33HJL8otf/CJ59NFHk1tvvTUZNWpUst9++yUvv/xyzceC19OLyvW0ZqTViyRJtxk9rRdJohnUh15Urqf1Ikl65nuMNHqRJN5jkA2aURm9qJzPpKqjF+nL/OJFkiTJf/zHfyQjR45M+vbtm+y7777J3XffXfMxbr/99iQi1jsmT55c03E2NEZEJFdccUVNxzn55JOTHXbYIenbt2/ylre8JTn00ENTiUSSdF8oPvjBDybDhg1L+vbtm2y33XbJBz/4wWTp0qU1HydJkuRnP/tZsueeeyZtbW3J7rvvnnz3u9/tlnGSJEl++ctfJhGRPPzww902xurVq5PTTjstGTlyZNKvX79kp512Ss4666ykvb295mPNmzcv2WmnnZK+ffsmQ4cOTfL5fPL888/XfBzYEL2oTE9rRpq9SJL0mtHTepEkmkH96EVlelovkqRnvsdIoxdJ4j0G2aEZ5dOL6vhMqnJ6kb6WJEmS2p7LAQAAAAAAULlMX/MCAAAAAABoPBYvAAAAAACAhmLxAgAAAAAAaCgWLwAAAAAAgIZi8QIAAAAAAGgoFi8AAAAAAICGYvECAAAAAABoKBYvAAAAAACAhmLxgh7lYx/7WBx99NGdPx988MHx2c9+NvV53HHHHdHS0hLPP/986mMDsGl6AUAp9AKAUmkG1J7FC1LxsY99LFpaWqKlpSX69u0bO++8c5x99tmxbt26bh33+uuvj3POOaekx/rHHaD+9AKAUugFAKXSDGheves9AbLjve99b1xxxRXR3t4eP//5zyOfz0efPn1i5syZXR738ssvR9++fWsy5lZbbVWT5wEgPXoBQCn0AoBSaQY0J2dekJq2trYYOnRo7LDDDnHKKafEhAkT4qc//WnnaXXnnXdeDB8+PHbbbbeIiHjiiSfi+OOPjy222CK22mqrOOqoo+Kvf/1r5/N1dHTEtGnTYosttoitt946zjzzzEiSpMuYbzxFr729PT7/+c/H9ttvH21tbbHzzjvH//2//zf++te/xiGHHBIREVtuuWW0tLTExz72sYiIKBaLMWfOnHjrW98a/fv3j1GjRsV1113XZZyf//znseuuu0b//v3jkEMO6TJPAMqjFwCUQi8AKJVmQHOyeEHd9O/fP15++eWIiJg/f348/PDDcdttt8VNN90Ur7zySkyaNCk233zzuOuuu+K3v/1tDBw4MN773vd2/s7Xv/71mDt3blx++eXxm9/8Jp577rm44YYbNjrmSSedFD/60Y/iW9/6Vjz44IPxne98JwYOHBjbb799/OQnP4mIiIcffjiWL18e3/zmNyMiYs6cOfH9738/Lrvssrj//vvj9NNPj4985CPx61//OiJeDdqxxx4bRxxxRCxZsiT+/d//PWbMmNFdf2wAmaMXAJRCLwAolWZAk0ggBZMnT06OOuqoJEmSpFgsJrfddlvS1taWTJ8+PZk8eXKy7bbbJu3t7Z2Pv+qqq5LddtstKRaLnbe1t7cn/fv3T375y18mSZIkw4YNS7761a923v/KK68kI0aM6BwnSZJk/PjxyWmnnZYkSZI8/PDDSUQkt9122wbnePvttycRkfzjH//ovO2ll15KBgwYkPzud7/r8th/+7d/Sz70oQ8lSZIkM2fOTHK5XJf7P//5z6/3XABsml4AUAq9AKBUmgHNyzUvSM1NN90UAwcOjFdeeSWKxWJ8+MMfji9/+cuRz+djr7326rKn4H333RdLly6NzTffvMtzvPTSS/GXv/wlVq1aFcuXL4/99tuv877evXvH2LFj1ztN7zVLliyJXr16xfjx40ue89KlS+PFF1+M97znPV1uf/nll+Nf/uVfIiLiwQcf7DKPiIhx48aVPAYAXekFAKXQCwBKpRnQnCxekJpDDjkkvv3tb0ffvn1j+PDh0bv3//7122yzzbo8ds2aNTFmzJi4+uqr13uet7zlLRWN379//7J/Z82aNRERcfPNN8d2223X5b62traK5gHAxukFAKXQCwBKpRnQnCxekJrNNtssdt5555Ieu88++8S8efNim222iUGDBm3wMcOGDYv/+Z//iYMOOigiItatWxf33HNP7LPPPht8/F577RXFYjF+/etfx4QJE9a7/7VV9o6Ojs7bcrlctLW1xeOPP/6mq+N77LFH/PSnP+1y2913373pFwnABukFAKXQCwBKpRnQnFywm4Z04oknxpAhQ+Koo46Ku+66K5YtWxZ33HFHfOYzn4m//e1vERFx2mmnxQUXXBA33nhjPPTQQ/GpT30qnn/++Td9zh133DEmT54cJ598ctx4442dz3nttddGRMQOO+wQLS0tcdNNN8Wzzz4ba9asic033zymT58ep59+elx55ZXxl7/8JRYvXhz/8R//EVdeeWVERHzyk5+MRx55JM4444x4+OGH44c//GHMnTu3u/+IAAi9AKA0egFAqTQDGofFCxrSgAED4s4774yRI0fGscceG3vssUf827/9W7z00kudq96f+9zn4qMf/WhMnjw5xo0bF5tvvnkcc8wxG33eb3/723HcccfFpz71qdh9991j6tSpsXbt2oiI2G677WL27NkxY8aM2HbbbePUU0+NiIhzzjknvvjFL8acOXNijz32iPe+971x8803x1vf+taIiBg5cmT85Cc/iRtvvDFGjRoVl112WZx//vnd+KcDwGv0AoBS6AUApdIMaBwtyZtdSQYAAAAAAKAOnHkBAAAAAAA0FIsXAAAAAABAQ7F4AQAAAAAANBSLFwAAAAAAQEOxeAEAAAAAADQUixcAAAAAAEBDsXgBAAAAAAA0FIsXAAAAAABAQ7F4AQAAAAAANBSLFwAAAAAAQEOxeAEAAAAAADQUixcAAAAAAEBDsXgBAAAAAAA0FIsXAAAAAABAQ7F4AQAAAAAANBSLFwAAAAAAQEOxeAEAAAAAADQUixdQQ3fccUe0tLTEddddV++pANAgtAEAAADKZ/GC9bS0tJR03HHHHVWP9eKLL8aXv/zlkp/rtQ+A3uy45pprqp5Tvd1zzz3x3ve+NwYNGhSbb755TJw4MZYsWVLvaQEZpw31s2bNmpg1a1a8973vja222ipaWlpi7ty5b/r4Bx98MN773vfGwIEDY6uttoqPfvSj8eyzz6Y3YQAAAKiB3vWeAI3nqquu6vLz97///bjtttvWu32PPfaoeqwXX3wxZs+eHRERBx98cMm/95nPfCbe8Y53rHf7uHHjqp5TPS1evDgOOOCA2H777WPWrFlRLBbj0ksvjfHjx8fChQtjt912q/cUgYzShvpZuXJlnH322TFy5MgYNWrURhd1/va3v8VBBx0UgwcPjvPPPz/WrFkTX/va1+KPf/xjLFy4MPr27ZvexAEAAKAKFi9Yz0c+8pEuP999991x2223rXd7PR144IFx3HHH1XsaNffFL34x+vfvHwsWLIitt946Il7972PXXXeNL3zhC/GTn/ykzjMEskob6mfYsGGxfPnyGDp0aCxatGiDCzSvOf/882Pt2rVxzz33xMiRIyMiYt999433vOc9MXfu3Pj4xz+e1rQBAACgKraNoiLFYjEuvvjiePvb3x79+vWLbbfdNj7xiU/EP/7xjy6PW7RoUUyaNCmGDBkS/fv3j7e+9a1x8sknR0TEX//613jLW94SERGzZ8/u3N7jy1/+ck3m2NLSEqeeempcffXVsdtuu0W/fv1izJgxceedd6732HvvvTcOO+ywGDRoUAwcODAOPfTQuPvuu9d73PPPPx+nn3567LjjjtHW1hYjRoyIk046KVauXLnen895550XI0aMiH79+sWhhx4aS5cu3eSc77rrrpgwYULnwkXEqx9ajR8/Pm666aZYs2ZNBX8SAOnQhu5pQ1tbWwwdOrSk1/eTn/wk3v/+93cuXERETJgwIXbddde49tprS3oOAAAAaATOvKAin/jEJ2Lu3LkxZcqU+MxnPhPLli2LSy65JO6999747W9/G3369IlnnnkmJk6cGG95y1tixowZscUWW8Rf//rXuP766yMi4i1veUt8+9vfjlNOOSWOOeaYOPbYYyMiYu+9997k+C+88MJ6HwpFRGy99dbR0tLS+fOvf/3rmDdvXnzmM5+Jtra2uPTSS+O9731vLFy4MPbcc8+IiLj//vvjwAMPjEGDBsWZZ54Zffr0ie985ztx8MEHx69//evYb7/9IuLVPccPPPDAePDBB+Pkk0+OffbZJ1auXBk//elP429/+1sMGTKkc9wLLrggWltbY/r06bFq1ar46le/GieeeGL8z//8z0ZfV3t7e/Tv33+92wcMGBAvv/xy/OlPf4p3vvOdm/zzAagHbeieNpTqySefjGeeeSbGjh273n377rtv/PznP6/JOAAAAJCKBDYhn88nr/+rctdddyURkVx99dVdHnfLLbd0uf2GG25IIiL5/e9//6bP/eyzzyYRkcyaNaukudx+++1JRLzpsXz58s7HvnbbokWLOm977LHHkn79+iXHHHNM521HH3100rdv3+Qvf/lL521PPfVUsvnmmycHHXRQ521f+tKXkohIrr/++vXmVSwWu8xvjz32SNrb2zvv/+Y3v5lERPLHP/5xo69vr732Snbddddk3bp1nbe1t7cnI0eOTCIiue6660r5YwLodtrwqjTa8Hq///3vk4hIrrjiije97/vf//56951xxhlJRCQvvfRSyWMBAABAPTnzgrL9+Mc/jsGDB8d73vOeLt9wHTNmTAwcODBuv/32+PCHPxxbbLFFRETcdNNNMWrUqOjTp0/N5vClL30pDjzwwPVu32qrrbr8PG7cuBgzZkznzyNHjoyjjjoqfvazn0VHR0dERNx6661x9NFHx0477dT5uGHDhsWHP/zh+N73vherV6+OQYMGxU9+8pMYNWpUHHPMMeuN+/pv9EZETJkypctFUV+b66OPPtr5rd4N+dSnPhWnnHJK/Nu//VuceeaZUSwW49xzz43ly5dHRMQ///nPN/1dgHrShu5rQ6lea0RbW9t69/Xr16/zMRu6HwAAABqNxQvK9sgjj8SqVatim2222eD9zzzzTEREjB8/Pv71X/81Zs+eHd/4xjfi4IMPjqOPPjo+/OEPV/3ByV577RUTJkzY5ON22WWX9W7bdddd48UXX4xnn302IiJefPHF2G233dZ73B577BHFYjGeeOKJePvb3x5/+ctf4l//9V9Lmt/r9xqPiNhyyy0jItbb9/2NPvnJT8YTTzwRF154YVx55ZURETF27Ng488wz47zzzouBAweWND5A2rRh0yptQ6le23awvb19vfteeumlLo8BAACARmfxgrIVi8XYZptt4uqrr97g/a9daLWlpSWuu+66uPvuu+NnP/tZ/PKXv4yTTz45vv71r8fdd9/doz+I79Wr1wZvT5Jkk7973nnnxfTp0+P++++PwYMHx1577RVf+MIXIuLVD9cAGpE2bFo1bSjFsGHDIiI6z9Z7veXLl8dWW23lrAsAAACahsULyva2t70t/vu//zv233//kr7B+c53vjPe+c53xnnnnRc//OEP48QTT4xrrrkm/v3f/329LTVq7ZFHHlnvtj//+c8xYMCAzg/SBgwYEA8//PB6j3vooYeitbU1tt9++4h49XX/6U9/6tb5vmbLLbeMAw44oPPn//7v/44RI0bE7rvvnsr4AOXShvrbbrvt4i1veUssWrRovfsWLlwYo0ePTn9SAAAAUKHWek+A5nP88cdHR0dHnHPOOevdt27dunj++ecj4tVtMN74bdLXPjh5bUuLAQMGRER0/k6tLViwIBYvXtz58xNPPBH/9V//FRMnToxevXpFr169YuLEifFf//Vf8de//rXzcU8//XT88Ic/jAMOOCAGDRoUERH/+q//Gvfdd1/ccMMN641Tq2/Nbsi8efPi97//fXz2s5+N1lb/kwUakzak24Y386//+q9x0003xRNPPNF52/z58+PPf/5zfOADH0h9PgAAAFApZ15QtvHjx8cnPvGJmDNnTixZsiQmTpwYffr0iUceeSR+/OMfxze/+c047rjj4sorr4xLL700jjnmmHjb294WL7zwQnzve9+LQYMGxeGHHx4Rr+69ncvlYt68ebHrrrvGVlttFXvuuecmL1x61113de7f/Xp777137L333p0/77nnnjFp0qT4zGc+E21tbXHppZdGRMTs2bM7H3PuuefGbbfdFgcccEB86lOfit69e8d3vvOdaG9vj69+9audjzvjjDPiuuuuiw984ANx8sknx5gxY+K5556Ln/70p3HZZZfFqFGjqvpzjYi488474+yzz46JEyfG1ltvHXfffXdcccUV8d73vjdOO+20qp8foLtoQ/e1ISLikksuieeffz6eeuqpiIj42c9+Fn/7298iIuLTn/50DB48OCIivvCFL8SPf/zjOOSQQ+K0006LNWvWxIUXXhh77bVXTJkypSZzAQAAgFQksAn5fD7Z0F+V7373u8mYMWOS/v37J5tvvnmy1157JWeeeWby1FNPJUmSJIsXL04+9KEPJSNHjkza2tqSbbbZJnn/+9+fLFq0qMvz/O53v0vGjBmT9O3bN4mIZNasWW86l9tvvz2JiDc9Xv+7EZHk8/nkBz/4QbLLLrskbW1tyb/8y78kt99++3rPu3jx4mTSpEnJwIEDkwEDBiSHHHJI8rvf/W69x/39739PTj311GS77bZL+vbtm4wYMSKZPHlysnLlyi7z+/GPf9zl95YtW5ZERHLFFVe86WtLkiRZunRpMnHixGTIkCFJW1tbsvvuuydz5sxJ2tvbN/p7AGnThv/V3W1IkiTZYYcd3vT1LVu2rMtj//SnPyUTJ05MBgwYkGyxxRbJiSeemKxYsWKTYwAAAEAjaUmSOuxpACloaWmJfD4fl1xySb2nAkCD0AYAAABoDjbQBwAAAAAAGorFCwAAAAAAoKFYvAAAAAAAABqKa14AAAAAAAANxZkXAAAAAABAQ7F4AQAAAAAANBSLFwAAAAAAQEPpXe8JdIeOtb9IbazeA49MbSwa35BB+6QyzsrVi1MZZ48tj09lnIiIB/9xbSrjJMkrVT9HR/GOin+3V+vBVY9fjueffz4mTJgQ69ati3Xr1sVpp50WU6dOTXUOjS6tZugFPV1azchKLyLSbYZeAAAAjaZHLl4A8KrNN9887rzzzhgwYECsXbs29txzzzj22GNj6623rvfUAGggegEAADQaixcA5SoWK//dlDfr69WrVwwYMCAiItrb2yNJkkiSJN1JAGRVNb2ISLUZegEAADQa17wAKFexWPlRpjvvvDOOOOKIGD58eLS0tMSNN9643mMKhULsuOOO0a9fv9hvv/1i4cKFXe5//vnnY9SoUTFixIg444wzYsiQIZW+cgDKUU0vymyGXgAAAD2NxQuAcqW4eLF27doYNWpUFAqFDd4/b968mDZtWsyaNSsWL14co0aNikmTJsUzzzzT+Zgtttgi7rvvvli2bFn88Ic/jKeffrrilw5AGVJcvNALAACgp7F4AVCuJKn4aG9vj9WrV3c52tvb33Soww47LM4999w45phjNnj/RRddFFOnTo0pU6ZELpeLyy67LAYMGBCXX375eo/ddtttY9SoUXHXXXfV7I8CgI2oohflNkMvAACAnsbiBUC5qvgW7Zw5c2Lw4MFdjjlz5lQ0jZdffjnuueeemDBhQudtra2tMWHChFiwYEFERDz99NPxwgsvRETEqlWr4s4774zddtut+j8DADatyjMvatUMvQAAAJqRC3YDpGjmzJkxbdq0Lre1tbVV9FwrV66Mjo6O2Hbbbbvcvu2228ZDDz0UERGPPfZYfPzjH++88OqnP/3p2GuvvSqbPACpqlUz9AIAAGhGFi8AylXBtSte09bWVvFiRSX23XffWLJkSWrjAfA6VfQiIt1m6AUAANBoLF4AlKvKD6NqZciQIdGrV6/1Lqj69NNPx9ChQ+s0KwA66QUAAEDFXPMCoFxV7F9eKBQil8tFLpeLQqFQ1TT69u0bY8aMifnz579uasWYP39+jBs3rtpXCUC1qrzmRa2aoRcAAEAzcuYFQLmq+CZtPp+PfD5f8uPXrFkTS5cu7fx52bJlsWTJkthqq61i5MiRMW3atJg8eXKMHTs29t1337j44otj7dq1MWXKlIrnCECNVHnmRTnN0AsAAKCnsXgB0MAWLVoUhxxySOfPr124dfLkyTF37tz44Ac/GM8++2x86UtfihUrVsTo0aPjlltuWe+irAD0bHoBAAD0NC1JkiT1GnzlypVx+eWXx4IFC2LFihURETF06NB417veFR/72MfiLW95S0XP27H2F7Wc5kb1HnhkamPR+IYM2ieVcVauXpzKOHtseXwq40REPPiPa1MZJ0leqfo5iit/UvHvtg7516rHz6pmb4Ze0NOl1Yys9CJCMwAAgGyr2zUvfv/738euu+4a3/rWt2Lw4MFx0EEHxUEHHRSDBw+Ob33rW7H77rvHokWL6jU9gDdXzR7mVEQzgKZU5TUvAAAAsqxu20Z9+tOfjg984ANx2WWXRUtLS5f7kiSJT37yk/HpT386FixYsNHnaW9vj/b29i639V73SrS19an5nAEiIqJYtxPWMkszgKakFwAAABWr25kX9913X5x++unrfQgVEdHS0hKnn356LFmyZJPPM2fOnBg8eHCX44KvzeuGGQP8f1V8i7ZQKEQul4tcLheFQqHer6RpaAbQlKo880IzAACALKvbmRdDhw6NhQsXxu67777B+xcuXFjSBQRnzpzZeUHC1/Red0ctpghQc/l8PvL5fL2n0XQ0A8gizQAAALKsbosX06dPj49//ONxzz33xKGHHtr5odPTTz8d8+fPj+9973vxta99bZPP09bWFm1tbV1u61hr+w+gG9mHPHWaATQlvQAAAKhY3RYv8vl8DBkyJL7xjW/EpZdeGh0dHRER0atXrxgzZkzMnTs3jj/++HpND+DNJT6MSptmAE1JLwAAACpWt8WLiIgPfvCD8cEPfjBeeeWVWLlyZUREDBkyJPr08S1YoIH5Jm1daAbQdPQCAACgYnVdvHhNnz59YtiwYfWeBkBpikm9Z5BpmgE0Db0AAACoWGu9JwDQdIrFio9CoRC5XC5yuVwUCoV6vxIAulMVvdAMAAAg6xrizAuArMjn85HP5+s9DQCagGYAAABZZvECoFz2MAegFHoBAABQMYsXAGVq8WEUACXQCwAAgMpZvAAoV+ICrACUQC8AAAAqZvECoFy+SQtAKfQCAACgYq31ngAAAAAAAMDrWbwAKFexWPFRKBQil8tFLpeLQqFQ71cCQHeqoheaAQAAZJ1towDKVax8D/N8Ph/5fL6GkwGgYVXRiwjNAAAAss3iBUC57GEOQCn0AgAAoGI9cvGi98AjUxtrXcdtqYzTu9d7UhmnJxoyaJ96T6FpPfiPa+s9hcbkw6geJa1m9MRepPXv68rVi1MZJ81epPWa0vRsx9J6T6Hx6AUAAEDFeuTiBUC3SqrbBgSAjNALAACAirlgNwAAAAAA0FCceQFQLtuAAFAKvQAAAKiYxQuAchVtAwJACfQCAACgYraNAihXsVjxUSgUIpfLRS6Xi0KhUO9XAkB3qqIXmgEAAGSdMy8AylXFNiD5fD7y+XwNJwNAw6py2yjNAAAAssyZFwAAAAAAQENx5gVAuexhDkAp9AIAAKBiFi8AypVUtw0IABmhFwAAABWzeAFQLt+kBaAUegEAAFAxixcA5aryAqwAZIReAAAAVMwFuwEAAAAAgIbizAuActkGBIBS6AUAAEDFGvrMiyeeeCJOPvnkjT6mvb09Vq9e3eWI8EYR6EbFYuUH3aKUXkRoBpCyanqhGQAAQMY19OLFc889F1deeeVGHzNnzpwYPHhwlyPCmz2gGxWTio9CoRC5XC5yuVwUCoV6v5Ieo5ReRGgGkLIqeqEZAABA1rUkSVK3r5z+9Kc/3ej9jz76aHzuc5+Ljo6ON31Me3t7tLe3d7lt8OCtIqKlFlPcpHUdt6UyTu9e70llnJ5oyKB96j2Fmlu5enG9p9C0kuSV6p/jF1+s+HdbDjun6vGzqBa9iKhvM3piL9L69zWtf/PS7EVP/He8p/19qHcvIjQDAADItrpe8+Loo4+OlpaW2Nj6SUvLxj9Qamtri7a2tjf+Vg1mB/Am7GGeulr0IkIzgJTpBQAAQMXqum3UsGHD4vrrr49isbjBY/HinvetRADKpxcAAAAA2VLXxYsxY8bEPffc86b3b+pbtgB1Uc0e5lREL4CmVOU1LwAAALKsrttGnXHGGbF27do3vX/nnXeO22+/PcUZAZSg6ALPadMLoCnpBQAAQMXqunhx4IEHbvT+zTbbLMaPH5/SbABK5NuwqdMLoCnpBQAAQMXqungB0JR8GAVAKfQCAACgYnW95gUAAAAAAMAbOfMCoFz2MAegFHoBAABQMYsXAOVKbAMCQAn0AgAAoGIWLwDKZQ9zAEqhFwAAABWzeAFQLh9GAVAKvQAAAKiYC3YDpKhQKEQul4tcLheFQqHe0wGggWkGAACQZc68AChXFRdgzefzkc/nazgZABpWlRfs1gwAACDLLF4AlMs2IACUQi8AAAAqZvGiSr17vSeVcdb98+ZUxund/32pjJOmlasXpzbWkEH7pDLOpC2mpzLOPcVfpTJORLr/PVXNh1E9Slr/u+1pvYiIOHBoOmOtjHT+feiJvUjzNb2l186pjJPW34ea0AsAAICKWbwAKJcPowAohV4AAABUzOIFQJmSKj6MaqnhPABobNX0IkIzAACAbGut9wQAAAAAAABez5kXAOVKbAMCQAn0AgAAoGIWLwDKZQ9zAEqhFwAAABWzeAFQLh9GAVAKvQAAAKiYxQuAcvkwCoBS6AUAAEDFXLAbAAAAAABoKM68ACiXb9ICUAq9AAAAqJjFC4AyJT6MAqAEegEAAFA5ixcA5fJhFACl0AsAAICKWbwAKJcPowAohV4AAABUzOIFQLl8GAVAKfQCAACgYq31nsA///nP+M1vfhMPPPDAeve99NJL8f3vf78OswKg0egFAAAAQHbUdfHiz3/+c+yxxx5x0EEHxV577RXjx4+P5cuXd96/atWqmDJlykafo729PVavXt3liPAtN6AbJUnFR6FQiFwuF7lcLgqFQr1fSdOoRS8iNtyMJCl259SBLKuiF5oBAABkXV0XLz7/+c/HnnvuGc8880w8/PDDsfnmm8f+++8fjz/+eMnPMWfOnBg8eHCXI8IHUUD3SYqVH/l8Ph544IF44IEHIp/P1/ulNI1a9CJiw814sf2pbpo1kHXV9EIzAACArKvr4sXvfve7mDNnTgwZMiR23nnn+NnPfhaTJk2KAw88MB599NGSnmPmzJmxatWqLkcD7IYF9GTFpPKDitSiFxEbbsaAtuHdOHMg06rphWYAAAAZV9dP+f/5z39G797/e83wlpaW+Pa3vx1HHHFEjB8/Pv785z9v8jna2tpi0KBBXY6Ilm6cNZB5PohKXS16EbHhZrS0WPAGuonFCwAAgIr13vRDus/uu+8eixYtij322KPL7ZdccklERBx55JH1mBYADUYvAAAAALKlrl83PeaYY+JHP/rRBu+75JJL4kMf+lAkiW+dAY2lmv3LqYxeAM2o2mteAAAAZFldFy9mzpwZP//5z9/0/ksvvTSKRe/cgAZjC5DU6QXQlGwbBQAAULG6bhsF0JR8Rg5AKfQCAACgYhYvAMqU+DYsACXQCwAAgMrVddsoAAAAAACAN3LmBUC5bAMCQCn0AgAAoGIWLwDKZRcQAEqhFwAAABWzeAFQJnuYA1AKvQAAAKicxQuActkGBIBS6AUAAEDFLF4AlCnxYRQAJdALAACAyrXWewIAAAAAAACv58wLgHL5Ji0ApdALAACAilm8aBJ7Db8ylXHWvXhTKuNERPQe8P5Uxpm0xfRUxomI+OXzX0tlnMe33DmVcXZpeWcq40REvCWl11QLtgHpWVauXlzvKdRU7/7vS22stJrRe8ClqYwzZNA+qYwTkd7fuz22PD6VcSIinu1Ymso4af73VC29AAAAqJzFC4By+TAKgFLoBQAAQMUsXgCUKUnqPQMAmoFeAAAAVM4FuwEAAAAAgIbizAuAMtnDHIBS6AUAAEDlLF4AlMuHUQCUQi8AAAAqZvECoEy+SQtAKfQCAACgchYvAMrkAqwAlEIvAAAAKueC3QDlKrZUfqTsiSeeiIMPPjhyuVzsvffe8eMf/zj1OQBkVjW9SLkZegEAADQaZ14A9GC9e/eOiy++OEaPHh0rVqyIMWPGxOGHHx6bbbZZvacGQAPRCwAAoNFYvAAoUzPtYT5s2LAYNmxYREQMHTo0hgwZEs8995wPowBSoBcAAACVs20UQJmSpKXio1x33nlnHHHEETF8+PBoaWmJG2+8cb3HFAqF2HHHHaNfv36x3377xcKFCzf4XPfcc090dHTE9ttvX/Y8AChfNb0otxl6AQAA9DQWLwDKlBQrP8q1du3aGDVqVBQKhQ3eP2/evJg2bVrMmjUrFi9eHKNGjYpJkybFM8880+Vxzz33XJx00knx3e9+t5KXDEAFqulFuc3QCwAAoKexbRRAmarZBqS9vT3a29u73NbW1hZtbW0bfPxhhx0Whx122Js+30UXXRRTp06NKVOmRETEZZddFjfffHNcfvnlMWPGjM4xjz766JgxY0a8613vqnzyAJSl2m2jymmGXgAAAD1N3c+8ePDBB+OKK66Ihx56KCIiHnrooTjllFPi5JNPjl/96leb/P329vZYvXp1lyMi6eZZA1Rmzpw5MXjw4C7HnDlzKnqul19+Oe65556YMGFC522tra0xYcKEWLBgQUREJEkSH/vYx+Ld7353fPSjH63Ja6iXansRoRlAc6lVM7LWCwAAoGeo6+LFLbfcEqNHj47p06fHv/zLv8Qtt9wSBx10UCxdujQee+yxmDhx4iY/kNrQm7qIJro6ItB0qtm/fObMmbFq1aoux8yZMyuax8qVK6OjoyO23XbbLrdvu+22sWLFioiI+O1vfxvz5s2LG2+8MUaPHh2jR4+OP/7xj1X/GaStFr2I0AwgXdVe86JWzchSLwAAgJ6jrttGnX322XHGGWfEueeeG9dcc018+MMfjlNOOSXOO++8iIiYOXNmXHDBBfHud7/7TZ9j5syZMW3atC63DR68VbfOG8i2pFj+hbdfs7EtorrDAQccEMVi8384X4tevPY4zQDSUk0vItJtRk/pBQAA0HPU9cyL+++/Pz72sY9FRMTxxx8fL7zwQhx33HGd95944onxhz/8YaPP0dbWFoMGDepyRFT3RhFgY5Kk8qOWhgwZEr169Yqnn366y+1PP/10DB06tLaD1VktehGhGUC6qulFLZuRpV4AAAA9R92vedHS8uqHRq2trdGvX7//v4XHqzbffPNYtWpVvaYGsEHVbAFSKBQil8tFLpeLQqFQ1Tz69u0bY8aMifnz53feViwWY/78+TFu3LhqX2bD0Qug2VS7bVStmpG1XgAAAD1DXbeN2nHHHeORRx6Jt73tbRERsWDBghg5cmTn/Y8//ngMGzasXtMDqLl8Ph/5fL7kx69ZsyaWLl3a+fOyZctiyZIlsdVWW8XIkSNj2rRpMXny5Bg7dmzsu+++cfHFF8fatWtjypQp3TH9utELIIvKaYZeAAAAPU1dFy9OOeWU6Ojo6Px5zz337HL/L37xi03uXw6Qtmr3MC/HokWL4pBDDun8+bXrNUyePDnmzp0bH/zgB+PZZ5+NL33pS7FixYoYPXp03HLLLetdlLXZ6QXQjPQCAACgci1JUutd2OuvpaVPvadQc3tseXwq4/zxyZNSGScioveA96cyzqQtpqcyTkTEL5//WirjpPX3YYvikFTGiYh4vnVlKuM88NzVVT/H08f9W8W/u+11/7fq8amtntiMtKx78aZUxkmrF0MG7ZPKOBERK1cvTmWctHoREfFsx9JNP6iJPLvqf6p+jmp6EaEZAABAttX1zAuAZpQkLvAMwKbpBQAAQOUsXgCUqZjiNiAANC+9AAAAqFxrvScA0GySpPKjUChELpeLXC4XhUKh3i8FgG5UTS80AwAAyDpnXgCkKJ/PRz6fr/c0AGgCmgEAAGSZxQuAMtnDHIBS6AUAAEDlLF4AlMmHUQCUQi8AAAAqZ/ECoExFH0YBUAK9AAAAqJzFC4AyJUUfRgGwaXoBAABQudZ6TwAgSwqFQuRyucjlclEoFOo9HQAamGYAAABZ5syLJrFH606pjNN7wPtTGSciYt3qG1MZp/ego1MZJyJi0hbT0xkoSWeYe5JfpTNQRBzUOjG1saqVVPHnn8/nI5/P124yUEdpNWPdmp+mMk7vgUemMk5ExB5bHp/KOA/+49pUxknTsVvPqPcUSlZNLyI0AwAAyDaLFwBlsoc5AKXQCwAAgMpZvAAoU+LDKABKoBcAAACVs3gBUCbfpAWgFHoBAABQORfsBgAAAAAAGoozLwDKZBsQAEqhFwAAAJVz5gVAmYpVHIVCIXK5XORyuSgUCnWYPQBpqaYXmgEAAGSdMy8AylTNN2nz+Xzk8/kazgaARlXtmReaAQAAZJnFC4AyuQArAKXQCwAAgMpZvAAokz3MASiFXgAAAFTONS8AAAAAAICG4swLgDIVk3rPAIBmoBcAAACVa7jFiyRJoqXFKfZA47INSGPQC6DR6QUAAEDlGm7bqLa2tnjwwQfrPQ2AN1WMlooPakcvgEZXTS80AwAAyLq6nXkxbdq0Dd7e0dERF1xwQWy99dYREXHRRRelOS2ATUqq2AakUChEoVCIiIh8Ph/5fL5Gs+q59AJoVtX0IkIzAACAbKvb4sXFF18co0aNii222KLL7UmSxIMPPhibbbZZSduBtLe3R3t7+xtuTSJ8Ww1oQD58Kl+tehGhGUBz0QwAACDL6rZ4cf7558d3v/vd+PrXvx7vfve7O2/v06dPzJ07N3K5XEnPM2fOnJg9e/Ybbm2JiF61myzA6xTtYZ6qWvUiQjOAdOkFAABA5ep2zYsZM2bEvHnz4pRTTonp06fHK6+8UtHzzJw5M1atWtXlaMBLeQA9iP3L01WrXkRoBpAu17wAAACoXEWf2Nx1113xkY98JMaNGxdPPvlkRERcddVV8Zvf/Kas53nHO94R99xzTzz77LMxduzY+NOf/lTy1h+vaWtri0GDBnU5bP8BdKckqfzImkbqRYRmAOmqphdZbAYAAMDrlb148ZOf/CQmTZoU/fv3j3vvvbdz7/BVq1bF+eefX/YEBg4cGFdeeWXMnDkzJkyYEB0dHWU/B0CaiklLxUeW6AWQddX0ImvNAAAAeKOyFy/OPffcuOyyy+J73/te9OnTp/P2/fffPxYvXlzxRE444YRYtGhRXH/99bHDDjtU/DwA3S2JloqPLNELIOuq6UXWmgEAAPBGZV+w++GHH46DDjpovdsHDx4czz//fFWTGTFiRIwYMaKq5wCgMegFAAAAAJUq+8yLoUOHxtKlS9e7/Te/+U3stNNONZkUQCMrJpUfWaIXQNZV04usNQMAAOCNyl68mDp1apx22mnxP//zP9HS0hJPPfVUXH311TF9+vQ45ZRTumOOAA3F/uWl0Qsg61zzAgAAoHJlbxs1Y8aMKBaLceihh8aLL74YBx10ULS1tcX06dPj05/+dHfMEaChVLMPeaFQiEKhEBER+Xw+8vl8rabVcPQCyLpqr1uRpWYAAAC8UdmLFy0tLXHWWWfFGWecEUuXLo01a9ZELpeLgQMHdsf8ABpONVt5ZOnDJ70Asq7arZ+y1AwAAIA3Knvx4jV9+/aNXC5Xy7kA0APpBQAAAADlKnvx4pBDDomWljc/Bf5Xv/pVVRMCaHTVbgOSFXoBZJ1eAAAAVK7sxYvRo0d3+fmVV16JJUuWxJ/+9KeYPHlyreYF0LCq3QYkK/QCyDq9AAAAqFzZixff+MY3Nnj7l7/85VizZk3VEwJodMXEN2lLoRdA1ukFAABA5Vpr9UQf+chH4vLLL6/V0wE0rKSKA70AsqOaXmgGAACQdTVbvFiwYEH069evVk8HQA+lFwAAAABsStnbRh177LFdfk6SJJYvXx6LFi2KL37xizWbWDWGDNontbFWrl6cyjjX//2CVMb58DZfSGWciIjeg45OZZx1K69NZZyIiN5Djk9trJ7m+kjnf0sR51T9DLYBKU0z9CIivWak1Ys0zdzpS6mM03vgkamMoxfNIa3/T6QXAAAA9VX24sXgwYO7/Nza2hq77bZbnH322TFx4sSaTQygURXrPYEmoRdA1ukFAABA5cpavOjo6IgpU6bEXnvtFVtuuWV3zQmgoSW+SbtJegGgFwAAANUo65oXvXr1iokTJ8bzzz/fTdMBaHzFKo6s0AuA6nqRpWYAAABsSNkX7N5zzz3j0Ucf7Y65ADSFYlL5kSV6AWRdNb3IWjMAAADeqOzFi3PPPTemT58eN910UyxfvjxWr17d5QDgzRUKhcjlcpHL5aJQKNR7Ot1KLwCqk6VmAAAAvFHJ17w4++yz43Of+1wcfvjhERFx5JFHRkvL/+7jmyRJtLS0REdHR+1nCdBAkqh8D/N8Ph/5fL6Gs2k8egHwqmp6EZGNZgAAALyZkhcvZs+eHZ/85Cfj9ttv7875ADQ8W3lsnF4AvEovAAAAKlfy4kWSvPrua/z48d02GYBmUO03aXs6vQB4lV4AAABUruTFi4josu0HQFb5Ju2m6QWAXgAAAFSjrMWLXXfddZMfSD333HNVTQiA5qcXAAAAAFSjrMWL2bNnx+DBg7trLgBNwTdpN00vAPQCAACgGmUtXpxwwgmxzTbbdNdcAJqCPcw3TS8A9AIAAKAaJS9e2L8c4FW+SbtxegHwKr0AAACoXMmLF0nS/e++1q5dG9dee20sXbo0hg0bFh/60Idi66233ujvtLe3R3t7e5fbkqQYLS2t3TlVIMOK9Z5Ag2vUXkRoBpAuvQAAAKhcyZ/WFIvFmm8BksvlOi/Y+sQTT8See+4Zp59+etx2220xa9asyOVysWzZso0+x5w5c2Lw4MFdjhfbn6rpPAFeL0laKj6yoFF7EaEZQLqq6UVWmgEAAPBm6vpV04ceeijWrVsXEREzZ86M4cOHx2OPPRYLFy6Mxx57LPbee+8466yzNvocM2fOjFWrVnU5BrQNT2P6AKSkFr147Xc1AwAAAKDxlXXB7u60YMGCuOyyy2Lw4MERETFw4MCYPXt2nHDCCRv9vba2tmhra+tym+0/gO5kG5D6qrQXEZoBpEsvAAAAKlf3xYvXLuz60ksvxbBhw7rct91228Wzzz5bj2kBvCkXYK0PvQCajV4AAABUru6LF4ceemj07t07Vq9eHQ8//HDsueeenfc99thjJV2AFSBNPouqD70Amo1eAAAAVK6uixezZs3q8vPAgQO7/Pyzn/0sDjzwwDSnBLBJRRdRTZ1eAM1ILwAAACrXUIsXb3ThhRemNBMAGpleAAAAAGRL3beNAmg2tgEBoBR6AQAAULnWek8AoNkUk8qPQqEQuVwucrlcFAqFer8UALpRNb3QDAAAIOuceQFQpmIVv5vP5yOfz9dsLgA0rmp6EaEZAABAtlm8AChTYh8QAEqgFwAAAJWzbRQAAAAAANBQnHkBUKZitNR7CgA0Ab0AAAConMULgDLZBgSAUugFAABA5SxeAJSp2guwApANegEAAFA5ixcAZSr6Ji0AJdALAACAyvXIxYsxre9Obax7BqUzzsrVi1MZ54fPnJ/KOGk68G13pDbWutU3pjJO70FHpzIOG+azqJ7loD4TUxnnzh7Wi4iIOY+enco4Qwbtk8o4e+1yXSrjRPTMXuyx5fGpjPPgP65NZZxa0AsAAIDKtdZ7AgAAAAAAAK/XI8+8AOhOtgEBoBR6AQAAUDmLFwBlSnwYBUAJ9AIAAKByFi8AylSs9wQAaAp6AQAAUDmLFwBlsg0IAKXQCwAAgMq5YDcAAAAAANBQnHkBUCZfpAWgFHoBAABQOYsXAGWyDQgApdALAACAylm8AChTEi31ngIATUAvAAAAKmfxAqBMvkkLQCn0AgAAoHIu2A0AAAAAADQUZ14AlMk3aQEohV4AAABUzuIFQJl8FgVAKfQCAACgcnXdNmrx4sWxbNmyzp+vuuqq2H///WP77bePAw44IK655po6zg5gw4pJ5QeV0QugGVXTC80AAACyrq6LF1OmTIm//OUvERHxn//5n/GJT3wixo4dG2eddVa84x3viKlTp8bll1++0edob2+P1atXdzmKybo0pg9kVFLFf6hMLXoRseFmdGgG0E2q6YVmAAAAWVfXbaMeeeSR2GWXXSIi4tJLL41vfvObMXXq1M773/GOd8R5550XJ5988ps+x5w5c2L27Nldbntb2/6xc/8Du2fSQOb5Nmz6atGLiA03Y/f+B0ZuwPjaTxrIPL0AAACoXF3PvBgwYECsXLkyIiKefPLJ2Hfffbvcv99++3XZJmRDZs6cGatWrepy7NRvXLfNGaDZHHPMMbHlllvGcccdV++pVKwWvYjYcDN2679/t8wZoNn0hF4AAAA9R10XLw477LD49re/HRER48ePj+uuu67L/ddee23svPPOG32Otra2GDRoUJejtcV1yIHuk1Rx1MNpp50W3//+9+s0em3UohcRG25GL80Aukk1vahHM3pCLwAAgJ6jrp/YfOUrX4n9998/xo8fH2PHjo2vf/3rcccdd8Qee+wRDz/8cNx9991xww031HOKAOtptm1ADj744LjjjjvqPY2q6AXQjPQCAACgcnU982L48OFx7733xrhx4+KWW26JJEli4cKFceutt8aIESPit7/9bRx++OH1nCLAepKk8qNcd955ZxxxxBExfPjwaGlpiRtvvHG9xxQKhdhxxx2jX79+sd9++8XChQurf5ENRi+AZlRNL8pthl4AAAA9TV0XLyIitthii7jgggvi/vvvj3/+85/R3t4ef/3rX+Pqq6+OsWPH1nt6AOspVnGUa+3atTFq1KgoFAobvH/evHkxbdq0mDVrVixevDhGjRoVkyZNimeeeaaC0RqbXgDNpppelNsMvQAAAHoaG30DpKi9vT3a29u73NbW1hZtbW0bfPxhhx0Whx122Js+30UXXRRTp06NKVOmRETEZZddFjfffHNcfvnlMWPGjNpNHIDUldMMvQAAAHqaup95AdBsiknlx5w5c2Lw4MFdjjlz5lQ0j5dffjnuueeemDBhQudtra2tMWHChFiwYEGtXi4AFaqmF7Vshl4AAADNyJkXAGWq5NoVr5k5c2ZMmzaty21vdtbFpqxcuTI6Ojpi22237XL7tttuGw899FDnzxMmTIj77rsv1q5dGyNGjIgf//jHMW7cuIrGBKB01fQionbN0AsAAKAZWbwAKFMl1654zca2iOou//3f/53qeAC8qppeRKTfDL0AAAAaicULgDJV+03aWhkyZEj06tUrnn766S63P/300zF06NA6zQqA1+gFAABA5VzzAqBMxSqOQqEQuVwucrlcFAqFqubRt2/fGDNmTMyfP/9/51Ysxvz5823zAdAAqulFLZuhFwAAQDNy5gVAivL5fOTz+ZIfv2bNmli6dGnnz8uWLYslS5bEVlttFSNHjoxp06bF5MmTY+zYsbHvvvvGxRdfHGvXro0pU6Z0x/QBSFE5zdALAACgp7F4AVCmJMV9QBYtWhSHHHJI58+vXbh18uTJMXfu3PjgBz8Yzz77bHzpS1+KFStWxOjRo+OWW25Z76KsAKRPLwAAACpn8QKgTMUU9zA/+OCDN/nh16mnnhqnnnpqSjMCoFR6AQAAULkeuXjxy+e/ltpY4wZ/KpVxjh/xvlTGuXb1zamMExGxcvXiVMZZsOrSVMaJiOg9KJ2x1r14UyrjvG/4HamM02wa5Pqr1Mj1f78glXEmbTE9lXG2G3Z4KuNERCx46c+pjPPgP65NZZyVkU6XIiJ6D0rnNaXVi4iIoUO/lMo4Qwbtk8o4taAXAAAAleuRixcA3SnNb9IC0Lz0AgAAoHKt9Z4AQJYUCoXI5XKRy+WiUCjUezoANDDNAAAAssyZFwBlquabtPl8PvL5fO0mA0DDqvbMC80AAACyzOIFQJkSu5gDUAK9AAAAqJzFC4Ay2cMcgFLoBQAAQOUsXgCUKfFhFAAl0AsAAIDKuWA3AAAAAADQUCxeAJSpGEnFR6FQiFwuF7lcLgqFQr1fCgDdqJpeaAYAAJB1to0CKFM124Dk8/nI5/O1mwwADavabaM0AwAAyDKLFwBlKtZ7AgA0Bb0AAAConMULgDIlrsAKQAn0AgAAoHIWLwDKVPRZFAAl0AsAAIDKuWA3AAAAAADQUOq6ePHpT3867rrrrnpOAaBsxUgqPqiMXgDNqJpeaAYAAJB1dV28KBQKcfDBB8euu+4aX/nKV2LFihVlP0d7e3usXr26yxHe7AHdKEkqPwqFQuRyucjlclEoFOr9UppGLXoRoRlAuqrphWYAAABZV/dto2699dY4/PDD42tf+1qMHDkyjjrqqLjpppuiWCyW9Ptz5syJwYMHdzkiSvtdgEpU8y3afD4fDzzwQDzwwAORz+fr/VKaSrW9iNAMIF3VnnmhGQAAQJbVffFir732iosvvjieeuqp+MEPfhDt7e1x9NFHx/bbbx9nnXVWLF26dKO/P3PmzFi1alWXowFeFtCDVfMtWipXbS8iNANIV7VnXgAAAGRZw3xi06dPnzj++OPjlltuiUcffTSmTp0aV199dey2224b/b22trYYNGhQlyOiJZ1JA5C6SnsRoRkAAAAAzaJhFi9eb+TIkfHlL385li1bFrfccku9pwPQhYuvNg69ABqZC3YDAABUrnc9B99hhx2iV69eb3p/S0tLvOc970lxRgCbVrSXR+r0AmhGegEAAFC5ui5eLFu2rJ7DA1Qk8W3Y1OkF0Iz0AgAAoHJ1XbwAaEbFek8AgKagFwAAAJVryGteADSyavYvLxQKkcvlIpfLRaFQqPdLAaAbVXvNC80AAACyzJkXACnK5/ORz+frPQ0AmoBmAAAAWWbxAqBMiQuwAlACvQAAAKicxQuAMhVdgBWAEugFAABA5SxeAJTJh1EAlEIvAAAAKmfxAqBMSRTrPQUAmoBeAAAAVK613hMAAAAAAAB4PWdeAJTJNiAAlEIvAAAAKmfxAqBMPowCoBR6AQAAUDmLF1VasOrSVMZ5JNknlXF6oiGD0vuzW7l6cSrj9B7w/lTGWbfmp6mMExHRe+CRKY00p+pnKNrDnAr88vmvpTPQ8+kMExFx7NYzUhnnwVRG6Zm9OHDYz1MZJyJixVNfTmWc9HpRPb0AAAConGteAJQpaSlWfBQKhcjlcpHL5aJQKNT7pQDQjarphWYAAABZ58wLgBTl8/nI5/P1ngYATUAzAACALLN4AVAme5gDUAq9AAAAqJzFC4Ay2cMcgFLoBQAAQOUsXgCUKfFhFAAl0AsAAIDKWbwAKFOxxYdRAGyaXgAAAFTO4gVAmWwDAkAp9AIAAKByrfWeAAAAAAAAwOs58wKgTL5JC0Ap9AIAAKByFi8AyuQCrACUQi8AAAAqZ/ECoEzF6Kj3FABoAnoBAABQOYsXAGXyTVoASqEXAAAAlXPBbgAAAAAAoKHUffHikksuiZNOOimuuRCfJy0AABoiSURBVOaaiIi46qqrIpfLxe677x5f+MIXYt26dXWeIUBXxZZixUehUIhcLhe5XC4KhUK9X0pT0Qug2VTTC80AAACyrq7bRp177rnx1a9+NSZOnBinn356PPbYY3HhhRfG6aefHq2trfGNb3wj+vTpE7Nnz37T52hvb4/29vY33JpEREu3zh3Irmr2MM/n85HP52s4m2yoRS8iNANIV7XXvNAMAAAgy+q6eDF37tyYO3duHHvssXHffffFmDFj4sorr4wTTzwxIiJ23333OPPMMzf6YdScOXM2cH9LRPTqvokDmWYP8/TVohcRmgGkSy8AAAAqV9dto5566qkYO3ZsRESMGjUqWltbY/To0Z3377PPPvHUU09t9DlmzpwZq1at6nI0wG5YQA9WTDoqPqhMLXoRoRlAuqrphWYAAABZV9dPbIYOHRoPPPBAREQ88sgj0dHR0flzRMT9998f22yzzUafo62tLQYNGtTlsP0HQM9Si15EaAYAAABAs6jrtlEnnnhinHTSSXHUUUfF/Pnz48wzz4zp06fH3//+92hpaYnzzjsvjjvuuHpOEWA9tgFJn14AzUgvAAAAKlfXxYvZs2dH//79Y8GCBTF16tSYMWNGjBo1Ks4888x48cUX44gjjohzzjmnnlMEWE9S5QVYKZ9eAM1ILwAAACpX18WL1tbW+MIXvtDlthNOOCFOOOGEOs0IYNOKvkmbOr0AmpFeAAAAVK6uixcAzcg2IACUQi8AAAAqZ/ECoExJYhsQADZNLwAAACrXWu8JAAAAAAAAvJ4zLwDKZA9zAEqhFwAAAJWzeAFQpiRsAwLApukFAABA5SxeAJQpSXyTFoBN0wsAAIDKWbwAKJNtQAAohV4AAABUzgW7AQAAAACAhuLMC4AyJYk9zAHYNL0AAACoXI9cvBg3+FOpjfVIcncq46xcvTiVcfbY8vhUxomIGLPFu1MZ5/GWx1MZJyJiZaTz31Naf8dP2imdv98REevW/DS1saqV2AakR0nr371nO5amMk5avYiIWNuxLpVxJm0xPZVxfvn811IZp6d634g7Uxln3Ys3pTJOLegFAABA5WwbBVCmJClWfBQKhcjlcpHL5aJQKNT7pQDQjarphWb8v/buP6iqOv/j+Ot6DWQBf4cCBYo/kExZhZVBd3PdXJVxUHO23LJCqXbarhvIqum2DbWuojU2ljqoa2mbmToarIs2RGyi7mb+YGm0NRSzX0ZY3/IHOKDc+/n+0cSK2irXc39weT6c88c99/J5fw4Cr5nzPudzAAAAALR1AXnnBQB4kpH7y4A4HA45HA4LZwMA8Fc3khcSmQEAAACgbaN5AQAtZAzLgAAAro28AAAAAAD3sWwUAAAAAAAAAADwK9x5AQAtxJW0AIDrQV4AAAAAgPtoXgBAC7nEySgAwLWRFwAAAADgPpoXANBCXEkLALge5AUAAAAAuI/mBQC0kDFOX08BANAKkBcAAAAA4D4e2A0AAAAAAAAAAPwKd14AQAsZ1jAHAFwH8gIAAAAA3EfzAgBaiDXMAQDXg7wAAAAAAPfRvACAFuJkFADgepAXAAAAAOA+nzYvqqurlZ+frz179qi6ulrt2rVTXFycJk2apGnTpslut/tyegBwVSwD4htkBoDWhrwAAAAAAPf57IHdBw4cUEJCgnbs2KGLFy/q2LFjSkpKUmhoqGbNmqU77rhD586d89X0AAB+hMwAAAAAAABoW3zWvMjOztbMmTN14MAB7d69W+vWrdPRo0e1ceNGffTRRzp//rz++Mc/XnOchoYGnT17ttnmMo1eOAIAbZUxLrc3uMezmeH0whEAaItuJC/IDAAAAABtnc+aF+Xl5XrggQeaXt93330qLy9XTU2NunTpomeffVZbtmy55jh5eXnq1KlTs+1kwwFPTh1AG8eJKO/zZGb8X/0Hnpw6gDaM5gUAAAAAuM9nzYuIiAhVV1c3va6pqVFjY6M6duwoSerXr5+++eaba44zb948nTlzptkWHZzssXkDgOS6gQ3u8GRmdOsw0GPzBtDW3UhekBkAAAAA2jafPbB70qRJevTRR/Xcc88pODhY8+fP18iRIxUSEiJJqqysVHR09DXHCQ4OVnBwcLN97Ww+fQ45gADH1bDe59nM4EHfADyDvAAAAAAA9/nsLP+f//xnVVdXKz09XU6nU6mpqVq/fn3T+zabTXl5eb6aHgD8IMPVsF5HZgBojcgLAAAAAHCfz5oXYWFh2rRpk+rr69XY2KiwsLBm748ZM8ZHMwMA+BsyAwAAAAAAoG3x+fpKHTp08PUUAKBFWAbEd8gMAK0JeQEAAAAA7vN58wIAWh+nrycAAGgVyAsAAAAAcBfNCwBoIa6kBQBcD/ICAAAAANxH8wIAWoyTUQCA60FeAAAAAIC72vl6AgAAAAAAAAAAAJeieQEALWVc7m8+UFRUpPj4ePXr109r1qzxyRwAoE26kbzwQWaQFwAAAAD8CctGAUALGRlfT+G6NTY2KicnR++88446deqkpKQk3XXXXerWrZuvpwYAAY+8AAAAAAD3cecFALSY6wY279q3b58GDhyo6OhohYWFKS0tTW+99ZbX5wEAbdON5IV3M4O8AAAAAOBvaF4AQEsZ4/7WQrt27VJ6erqioqJks9lUWFh4xWdWrFihXr16qUOHDkpJSdG+ffua3vviiy8UHR3d9Do6OlonT55067ABAC10I3nRwswgLwAAAAAEGpoXANBC5gb+tVRdXZ0SExO1YsWKq76/adMm5eTkKDc3V+Xl5UpMTNTYsWN16tSpGz1MAMANupG8aGlmkBcAAAAAAg3PvAAAL2poaFBDQ0OzfcHBwQoODr7q59PS0pSWlvaD4z3//PN65JFHNH36dEnSypUrtX37dr388suaO3euoqKiml05e/LkSQ0bNsyCIwEAeFpLMoO8AAAAABBwDEx9fb3Jzc019fX1AVOLY/L/Ot6sxTH5j9zcXCOp2Zabm3tdXyvJFBQUNL1uaGgwdru92T5jjHnwwQfNhAkTjDHGXLx40fTt29d8/vnn5ty5c6Z///7m66+/tuho2qZA+xnn70PrqBVodbxZq7XmhTHuZwZ5AQAAACAQ2IxxYxH2AHP27Fl16tRJZ86cUceOHQOiFsfk/3W8WYtj8h8tvfPiUjabTQUFBZo0aZKk/65P/q9//UupqalNn5szZ47Kysr03nvvSZK2bdumWbNmyeVyac6cOfrNb35j3QG1QYH2M87fh9ZRK9DqeLNWa80Lyf3MIC8AAAAABAKWjQIAL7reRoWVJkyYoAkTJni1JgDgxnk7M8gLAAAAAP6EB3YDQCvVvXt32e121dTUNNtfU1Ojnj17+mhWAAB/Q14AAAAAaI1oXgBAKxUUFKSkpCSVlpY27XO5XCotLW22LAgAoG0jLwAAAAC0Riwbpe9uyc/NzfXKbfneqsUx+X8db9bimFqv2tpaVVVVNb0+ceKEKioq1LVrV8XExCgnJ0cZGRlKTk7WsGHDtHTpUtXV1Wn69Ok+nHVgC7Sfcf4+tI5agVbHm7XIC/ICAAAAQOvEA7sBwI/t3LlTo0aNumJ/RkaG1q1bJ0lavny5nnvuOX355Zf68Y9/rBdffFEpKSlenikAwJfICwAAAACBhuYFAAAAAAAAAADwKzzzAgAAAAAAAAAA+BWaFwAAAAAAAAAAwK/QvJC0YsUK9erVSx06dFBKSor27dtneY1du3YpPT1dUVFRstlsKiwstLyGJOXl5eknP/mJwsPDFRERoUmTJqmystLyOvn5+Ro8eLA6duyojh07KjU1VW+++abldS63aNEi2Ww2ZWdnWz72008/LZvN1mwbMGCA5XUk6eTJk7r//vvVrVs3hYSEaNCgQTpw4IDldXr16nXFMdlsNjkcDkvrOJ1OPfXUU+rdu7dCQkLUp08fzZ8/X55Yle7cuXPKzs5WbGysQkJCNHz4cO3fv9/yOsDVkBfuCbTM8GZeSN7JjEDMC4nMAAAAAIDWrM03LzZt2qScnBzl5uaqvLxciYmJGjt2rE6dOmVpnbq6OiUmJmrFihWWjnu5srIyORwO7d27VyUlJbp48aLGjBmjuro6S+vccsstWrRokQ4ePKgDBw7oF7/4hSZOnKgPPvjA0jqX2r9/v1atWqXBgwd7rMbAgQNVXV3dtO3Zs8fyGt9++61GjBihm266SW+++ab+85//aMmSJerSpYvltfbv39/seEpKSiRJd999t6V1Fi9erPz8fC1fvlxHjhzR4sWL9eyzz2rZsmWW1pGkhx9+WCUlJXr11Vd16NAhjRkzRqNHj9bJkyctrwVcirxwXyBmhjfyQvJeZgRiXkhkBgAAAAC0aqaNGzZsmHE4HE2vnU6niYqKMnl5eR6rKckUFBR4bPxLnTp1ykgyZWVlHq/VpUsXs2bNGo+Mfe7cOdOvXz9TUlJiRo4cabKysiyvkZubaxITEy0f93JPPPGE+elPf+rxOleTlZVl+vTpY1wul6Xjjh8/3mRmZjbbN3nyZDN16lRL65w/f97Y7XZTVFTUbP/QoUPNk08+aWkt4HLkhbVac2Z4Ky+M8V1mtPa8MIbMAAAAAIDWrk3feXHhwgUdPHhQo0ePbtrXrl07jR49Wu+++64PZ2adM2fOSJK6du3qsRpOp1MbN25UXV2dUlNTPVLD4XBo/Pjxzf6vPOHYsWOKiopSXFycpk6dqk8//dTyGtu2bVNycrLuvvtuRUREaMiQIfrLX/5ieZ3LXbhwQevXr1dmZqZsNpulYw8fPlylpaU6evSoJOn999/Xnj17lJaWZmmdxsZGOZ1OdejQodn+kJAQj131DEjkhZUCJTO8kReSbzIjEPJCIjMAAAAAoLVr7+sJ+NLXX38tp9OpHj16NNvfo0cPffjhhz6alXVcLpeys7M1YsQI3X777ZaPf+jQIaWmpqq+vl5hYWEqKCjQbbfdZnmdjRs3qry83ONrVKekpGjdunWKj49XdXW1nnnmGf3sZz/T4cOHFR4eblmdjz76SPn5+crJydEf/vAH7d+/X48//riCgoKUkZFhWZ3LFRYW6vTp05o2bZrlY8+dO1dnz57VgAEDZLfb5XQ6tWDBAk2dOtXSOuHh4UpNTdX8+fOVkJCgHj166PXXX9e7776rvn37WloLuBR5ceMCKTO8lReSbzIjEPJCIjMAAAAAoLVr082LQOdwOHT48GGPXV0YHx+viooKnTlzRlu2bFFGRobKysosPRn12WefKSsrSyUlJVdcOWm1S6/6HDx4sFJSUhQbG6vNmzfroYcesqyOy+VScnKyFi5cKEkaMmSIDh8+rJUrV3q0efHSSy8pLS1NUVFRlo+9efNmvfbaa9qwYYMGDhyoiooKZWdnKyoqyvJjevXVV5WZmano6GjZ7XYNHTpU9957rw4ePGhpHaAt8XReSIGVGd7KC8k3mREoeSGRGQAAAADQmrXp5kX37t1lt9tVU1PTbH9NTY169uzpo1lZY8aMGSoqKtKuXbt0yy23eKRGUFBQ05WLSUlJ2r9/v1544QWtWrXKshoHDx7UqVOnNHTo0KZ9TqdTu3bt0vLly9XQ0CC73W5ZvUt17txZ/fv3V1VVlaXjRkZGXnGyLiEhQVu3brW0zqU++eQTvf3223rjjTc8Mv7s2bM1d+5c/frXv5YkDRo0SJ988ony8vIsPxnVp08flZWVqa6uTmfPnlVkZKSmTJmiuLg4S+sAlyIvblwgZ4an8kLyfmYEUl5IZAYAAAAAtGZt+pkXQUFBSkpKUmlpadM+l8ul0tJSj63D7WnGGM2YMUMFBQX6xz/+od69e3uttsvlUkNDg6Vj3nnnnTp06JAqKiqatuTkZE2dOlUVFRUea1xIUm1trY4fP67IyEhLxx0xYoQqKyub7Tt69KhiY2MtrXOptWvXKiIiQuPHj/fI+OfPn1e7ds3/nNjtdrlcLo/Uk6TQ0FBFRkbq22+/VXFxsSZOnOixWgB5Yb1AygxP5YXk/cwIxLyQyAwAAAAAaI3a9J0XkpSTk6OMjAwlJydr2LBhWrp0qerq6jR9+nRL69TW1ja7IvPEiROqqKhQ165dFRMTY1kdh8OhDRs26G9/+5vCw8P15ZdfSpI6deqkkJAQy+rMmzdPaWlpiomJ0blz57Rhwwbt3LlTxcXFltWQvluv+vL110NDQ9WtWzfL12WfNWuW0tPTFRsbqy+++EK5ubmy2+269957La0zc+ZMDR8+XAsXLtQ999yjffv2afXq1Vq9erWldb7ncrm0du1aZWRkqH17z/zKp6ena8GCBYqJidHAgQP173//W88//7wyMzMtr1VcXCxjjOLj41VVVaXZs2drwIABlv/OApcjL9wXaJnhrbyQvJsZgZYXEpkBAAAAAK2agVm2bJmJiYkxQUFBZtiwYWbv3r2W13jnnXeMpCu2jIwMS+tcrYYks3btWkvrZGZmmtjYWBMUFGRuvvlmc+edd5q33nrL0ho/ZOTIkSYrK8vycadMmWIiIyNNUFCQiY6ONlOmTDFVVVWW1zHGmL///e/m9ttvN8HBwWbAgAFm9erVHqljjDHFxcVGkqmsrPRYjbNnz5qsrCwTExNjOnToYOLi4syTTz5pGhoaLK+1adMmExcXZ4KCgkzPnj2Nw+Ewp0+ftrwOcDXkhXsCLTO8mRfGeC8zAi0vjCEzAAAAAKA1sxljjPdaJQAAAAAAAAAAAP9bm37mBQAAAAAAAAAA8D80LwAAAAAAAAAAgF+heQEAAAAAAAAAAPwKzQsAAAAAAAAAAOBXaF4AAAAAAAAAAAC/QvMCAAAAAAAAAAD4FZoXAAAAAAAAAADAr9C8AAAAAAAAAAAAfoXmBQLKtGnTNGnSpKbXP//5z5Wdne31eezcuVM2m02nT5/2em0AwLWRFwAAAAAA+DeaF/CKadOmyWazyWazKSgoSH379tWf/vQnNTY2erTuG2+8ofnz51/XZzmBBAC+R14AAAAAAABJau/rCaDtGDdunNauXauGhgbt2LFDDodDN910k+bNm9fscxcuXFBQUJAlNbt27WrJOAAA7yEvAAAAAAAAd17Aa4KDg9WzZ0/Fxsbqt7/9rUaPHq1t27Y1Ld2xYMECRUVFKT4+XpL02Wef6Z577lHnzp3VtWtXTZw4UR9//HHTeE6nUzk5OercubO6deumOXPmyBjTrObly4A0NDToiSee0K233qrg4GD17dtXL730kj7++GONGjVKktSlSxfZbDZNmzZNkuRyuZSXl6fevXsrJCREiYmJ2rJlS7M6O3bsUP/+/RUSEqJRo0Y1mycAoGXICwAAAAAAQPMCPhMSEqILFy5IkkpLS1VZWamSkhIVFRXp4sWLGjt2rMLDw7V7927985//VFhYmMaNG9f0NUuWLNG6dev08ssva8+ePfrmm29UUFDwP2s++OCDev311/Xiiy/qyJEjWrVqlcLCwnTrrbdq69atkqTKykpVV1frhRdekCTl5eXpr3/9q1auXKkPPvhAM2fO1P3336+ysjJJ3500mzx5stLT01VRUaGHH35Yc+fO9dS3DQDaHPICAAAAAIC2h2Wj4HXGGJWWlqq4uFi/+93v9NVXXyk0NFRr1qxpWv5j/fr1crlcWrNmjWw2myRp7dq16ty5s3bu3KkxY8Zo6dKlmjdvniZPnixJWrlypYqLi3+w7tGjR7V582aVlJRo9OjRkqS4uLim979fMiQiIkKdO3eW9N2VtwsXLtTbb7+t1NTUpq/Zs2ePVq1apZEjRyo/P199+vTRkiVLJEnx8fE6dOiQFi9ebOF3DQDaHvICAAAAAIC2i+YFvKaoqEhhYWG6ePGiXC6X7rvvPj399NNyOBwaNGhQs3XL33//fVVVVSk8PLzZGPX19Tp+/LjOnDmj6upqpaSkNL3Xvn17JScnX7EUyPcqKipkt9s1cuTI655zVVWVzp8/r1/+8pfN9l+4cEFDhgyRJB05cqTZPCQ1nbgCALQceQEAAAAAAGhewGtGjRql/Px8BQUFKSoqSu3b//fHLzQ0tNlna2trlZSUpNdee+2KcW6++Wa36oeEhLT4a2prayVJ27dvV3R0dLP3goOD3ZoHAOB/Iy8AAAAAAADNC3hNaGio+vbte12fHTp0qDZt2qSIiAh17Njxqp+JjIzUe++9pzvuuEOS1NjYqIMHD2ro0KFX/fygQYPkcrlUVlbWtAzIpb6/ktfpdDbtu+222xQcHKxPP/30B6/ATUhI0LZt25rt27t377UPEgBwVeQFAAAAAADggd3wS1OnTlX37t01ceJE7d69WydOnNDOnTv1+OOP6/PPP5ckZWVladGiRSosLNSHH36oxx57TKdPn/7BMXv16qWMjAxlZmaqsLCwaczNmzdLkmJjY2Wz2VRUVKSvvvpKtbW1Cg8P16xZszRz5ky98sorOn78uMrLy7Vs2TK98sorkqRHH31Ux44d0+zZs1VZWakNGzZo3bp1nv4WAQBEXgAAAAAAEKhoXsAv/ehHP9KuXbsUExOjyZMnKyEhQQ899JDq6+ubrqz9/e9/rwceeEAZGRlKTU1VeHi47rrrrv85bn5+vn71q1/pscce04ABA/TII4+orq5OkhQdHa1nnnlGc+fOVY8ePTRjxgxJ0vz58/XUU08pLy9PCQkJGjdunLZv367evXtLkmJiYrR161YVFhYqMTFRK1eu1MKFCz343QEAfI+8AAAAAAAgMNnMDz2tEgAAAAAAAAAAwAe48wIAAAAAAAAAAPgVmhcAAAAAAAAAAMCv0LwAAAAAAAAAAAB+heYFAAAAAAAAAADwKzQvAAAAAAAAAACAX6F5AQAAAAAAAAAA/ArNCwAAAAAAAAAA4FdoXgAAAAAAAAAAAL9C8wIAAAAAAAAAAPgVmhcAAAAAAAAAAMCv0LwAAAAAAAAAAAB+heYFAAAAAAAAAADwK/8PgZf69OoITJAAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"LnKNKbpDuKp_"},"source":["Things to do:\n","1) Try different hidden layer sizes [Go to section](#scrollTo=l2dFZYW3uKp9)\n","\n","2) Try different learning rates [Go to section](#scrollTo=ZyJ5B0zGuKp-)\n","\n","3) Try different batch sizes [Go to section](#scrollTo=WL8udzY9uKp9)\n","\n","When making changes to the selected cell run all the cells below"]},{"cell_type":"markdown","metadata":{"id":"zyu9LkaluKp_"},"source":["# Plotting convolutional filters\n","In filter visualization:\n","\n","blue are values above 0\n","\n","white are values equal to 0\n","\n","red are values bigger than 0"]},{"cell_type":"code","execution_count":56,"metadata":{"id":"5defOCFzuKp_","executionInfo":{"status":"ok","timestamp":1763145869030,"user_tz":480,"elapsed":41,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}}},"outputs":[],"source":["def visualize_conv_filters(model):\n"," for name, layer in model.named_modules():\n"," if isinstance(layer, torch.nn.Conv2d):\n"," W = layer.weight.data.clone()\n","\n"," # Normalize weights to [0,1]\n"," # W = (W - W.min()) / (W.max() - W.min())\n","\n"," out_channels = W.shape[0]\n"," in_channels = W.shape[1]\n","\n"," print(f\"\\nVisualizing {name}: {out_channels} filters, each with {in_channels} channel kernels\")\n","\n"," # For each filter (output channel)\n"," for f in range(out_channels):\n"," fig, axes = plt.subplots(1, in_channels, figsize=(in_channels * 2, 2))\n"," fig.suptitle(f\"{name} — Filter {f}\")\n","\n"," # If only 1 channel, matplotlib gives a single axis, wrap it\n"," if in_channels == 1:\n"," axes = [axes]\n","\n"," for c in range(in_channels):\n"," w = W[f, c].cpu().numpy()\n"," vmax = np.abs(w).max() # symmetric range\n"," vmin = -vmax\n"," axes[c].imshow(w, cmap='bwr', vmin=vmin, vmax=vmax)\n"," axes[c].axis('off')\n","\n"," plt.tight_layout()\n"," plt.show()\n"]},{"cell_type":"code","execution_count":57,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"1VPpYgjFuKp_","executionInfo":{"status":"ok","timestamp":1763145871958,"user_tz":480,"elapsed":2364,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"cec5d601-1bba-4af2-9a6a-c8b49e8621ca"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Visualizing conv1: 6 filters, each with 1 channel kernels\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAJ0AAADJCAYAAAA5OTA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAACvJJREFUeJzt3X9sk3UCx/FPO8s63eYcGSNAXDtJYCqSczDnD1I8RIKggO4HYFwYhjVuOklcDMo/nj9Ql6jbxZGAJmxBYlhnzgj05jBOncYDSeTUKGO6sXgbKkQZq2Uz0O/9YdbjoQXa3vZh531eSf/Y8zz9fr+D956nfYBiM8YYiBDZL/UC5P+PohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaIbJ+bPn4/58+eHvz5y5AhsNhsaGxsv2ZrGyh8uuv3796OyshL5+flwOByw2WyXekkAAJvNFvUxefLkmMfw+/146qmnxm6R59HX14eSkhJkZGQgPT0dy5YtQ3d3d8LjXTaKaxsX/H4/Xn/9ddxwww3Izc3F4cOHL/WSwhYuXIiysjLLtpSUFABAW1vbRZ/v9/vR0NBADS8QCOD222/HwMAAnnzySTgcDrzyyivweDw4ePAgJk6cGP+g5g/mhx9+MMFg0BhjTFVVlRkv3yIAU1VVFfPxPT09BoDZtm1beNtYfD+hUCj86xXNiy++aACY/fv3h7d98803JikpyTzxxBMJzZnQ5bWvrw8PPvggpkyZguTkZLjdbjz00EP47bffwsd0d3ejuLgYmZmZuPzyy1FYWIg9e/ZYxvnggw9gs9nQ3NyM5557DtOmTYPT6cSCBQvw7bffho97+OGHkZqaimAwGLGWVatWYfLkyThz5gwAIDs7O3z2+F9y7mu6c61ZswYNDQ0ArJfqEaFQCHV1dbjuuuvgdDqRnZ0Nr9eLX375xTKOy+XC0qVL8e6772LOnDlISUnBli1bzjtvS0sL5s6di7lz54a3zZw5EwsWLEBzc3NC32vcl9f+/n4UFBTgxIkTqKiowMyZM9HX14eWlhYEg0FMmDABP/74I2655RYEg0FUV1dj4sSJaGpqwj333IOWlhasWLHCMuYLL7wAu92OmpoaDAwMoLa2Fvfffz/27dsHACgtLUVDQwP27NmD4uLi8POCwSB27dqFNWvWICkpKaFfAKahoSEcP37csi0tLQ3JyckXfa7X60V/fz/27t2L7du3R93f2NiI8vJyVFdXo6enB6+++io+//xzfPLJJ3A4HOFjOzs7sWrVKni9Xqxbtw4zZsyIOmcoFMIXX3yBtWvXRuwrKChAW1sbBgcHkZaWdtH1W8R7aiwrKzN2u9189tlnEftCoZAxxpj169cbAKajoyO8b3Bw0LjdbuNyucyZM2eMMca0t7cbACYvL88MDw+Hj62vrzcAzJdffhked+rUqea+++6zzNfc3GwAmI8++ijqWsfb5TXaY+Ty6fF4jMfjCR8fz+W1o6PDADA7duywbG9tbY3YnpOTYwCY1tbWi6752LFjBoB5+umnI/Y1NDQYAObQoUMXHedccV1eQ6EQ3n77bdx9992YM2dOxP6R073f70dBQQFuu+228L7U1FRUVFTgyJEj+Prrry3PKy8vx4QJE8Jfz5s3DwDC75BsNhuKi4vh9/sRCATCx+3cuRNTp061zDOeLVu2DHv37rU8Fi1a9F+P6/P5cOWVV2LhwoU4fvx4+JGfn4/U1FS0t7dbjne73THNe+rUKQCIeiZ2Op2WY+IR1+X12LFjOHnyJK6//voLHtfb24ubbropYnteXl54/9ljXH311ZbjrrrqKgCwvB4pLS1FXV0d3nnnHaxevRqBQAB+vx9er3fUbov8/PPPltel8cjMzLT84EQzbdo03HHHHQmNfyFdXV0YGBjApEmTou7/6aefLF+73e6Yxh15bTw8PByxb2hoyHJMPMbFLZPzvR4zZ/1N+sLCQrhcLjQ3N2P16tXYtWsXTp06hdLS0lFbx7333osPP/wwoee2t7df8I3AWAqFQpg0aRJ27NgRdX9WVpbl61hDyczMRHJyMo4ePRqxb2TblClT4lxtnNFlZWUhPT0dX3311QWPy8nJQWdnZ8T2Q4cOhfcnoqSkBPX19Th58iR27twJl8uFwsLChMaK5qWXXop4txer2bNnj9o6zud8Z/RrrrkG7733Hm699dZRfedut9sxa9YsHDhwIGLfvn37kJubG/+bCMQZnd1ux/Lly/HGG2/gwIEDEa/rjDGw2Wy46667UFdXh08//RQ333wzAODXX3/F1q1b4XK5cO2118a9UOD3S2xtbS2amprQ2tqKRx99NKFxzic/P39UxxttV1xxBQDgxIkTyMjICG8vKSnB5s2b8cwzz2DTpk2W55w+fRqBQMByfDyKioqwYcMGy+93Z2cn3n//fdTU1CQ0ZtyX102bNqGtrQ0ejwcVFRXIy8vD0aNH4fP58PHHHyMjIwMbNmzAm2++icWLF6O6uhqZmZloampCT08P3nrrLdjtif3p24033ojp06dj48aNGB4ejnpp7e3tDd9SGPkJffbZZwH8foZ94IEHEpp7PBj5oaiursaiRYuQlJSElStXwuPxwOv14vnnn8fBgwdx5513wuFwoKurCz6fD/X19SgqKkpozsrKSrz22mtYsmQJampq4HA48PLLLyM7OxuPPfZYYt9I3O93jTG9vb2mrKzMZGVlmeTkZJObm2uqqqostz2+++47U1RUZDIyMozT6TQFBQVm9+7dlnFGbpn4fD7L9mi3C0Zs3LjRADDTp0+PuraRMaM9zr4lwYaL/IlELLdMTp8+bR555BGTlZVlbDZbxO2TrVu3mvz8fJOSkmLS0tLMrFmzzOOPP276+/vDx+Tk5JglS5bEtfbvv//eFBUVmfT0dJOammqWLl1qurq64hrjbDZj9O9ehesP97dMZPxTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohO62D+fbvfuMVzGOZqaeHMB6Kn10eZyVyykzQUAOOd/6BlTMX72n850QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohM5mjDGxHNjTM9ZL+Q/3vzp4kwEo/us82ly+tX+nzQUAfxtaTJtrxYrYjtOZTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqG7LNYDGxvHcBXn+MvyVN5kAJxO3lwz1vM+WwQA+vt5cw0OxnacznRCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iELuaPlejuHstlWK3b/CfeZOB+rARbIHCpVxBJZzqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iELubPMtn+521juQ4L7z/KaXMBwJbKf9Lm8hyeTZsLAFaupE4XE53phE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ3NGGMu9SLk/4vOdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RC92/I3ZRR657EJwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAJ0AAADJCAYAAAA5OTA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAACjtJREFUeJzt3H1IlWcDx/HfrTN103Vmj9lT0TlWrLQ3mM1cKwxaRa1ab2ZaiRF5aDpbe8Y26J9BW0U10JWDIpbSItKCWHWwF7BXohdWo4jsTf0joxeWlnM1yuv5Y3jwzmM756g/Zft94PzhfV/nuq4j3+7zUh3LGGMgQhTS1RuQfx9FJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RddNTJgwARMmTPD+XF1dDcuyUFxc3GV76iz/uOjOnTuHjz/+GElJSQgLC4NlWV29JQCAZVk+b3369PF7Do/Hg6+//rrzNulDZWUlVq5cibFjxyIiIgKWZaG6urpdc77WMVvrPjweD7Zt24aRI0di4MCBuH79eldvyWvSpEnIysqyHYuMjAQAHD58+G/v7/F4UFRURA3vzJkz+P7775GYmIiEhARcunSp3XP+46Jbvnw5vvzyS0RGRiIvL69bRff2229j0aJFPs/16NGDvJu/GGPw9OlTb/wvmzlzJurq6hAdHY2NGzd2SHRBPb3euXMHS5cuRd++fREeHo74+HgsX74cf/75p3fM7du3kZaWhpiYGLz++utISUnBwYMHbfMcO3YMlmWhtLQU3377Lfr374+IiAhMnDgRN2/e9I7Ly8tDVFQUGhsbW+0lIyMDffr0wYsXLwAAcXFxbf4Cu7OXX9O9LDs7G0VFRQDsT9XNmpqaUFBQgGHDhiEiIgJxcXFwu9149OiRbR6Xy4Xp06fj0KFDGD16NCIjI7Fly5Y2142JiUF0dHT7HtxLAr7S1dbWIjk5GXV1dcjJycHQoUNx584d7NmzB42NjejRowfu3buHsWPHorGxEfn5+ejVqxdKSkowc+ZM7NmzB7Nnz7bNuW7dOoSEhODzzz9HfX091q9fj4ULF+Ls2bMAgPT0dBQVFeHgwYNIS0vz3q+xsRH79+9HdnY2QkND2/mr6HxPnz7Fw4cPbceio6MRHh7+t/d1u92ora3FkSNHsGPHDp/ni4uLsWTJEuTn56OqqgqbN2/GxYsXcfr0aYSFhXnHVlZWIiMjA263G8uWLcOQIUPa/+ACYQKUlZVlQkJCzPnz51uda2pqMsYY8+mnnxoA5uTJk95zT548MfHx8cblcpkXL14YY4ypqKgwAExCQoJ59uyZd2xhYaEBYC5fvuydt1+/fmbu3Lm29UpLSw0Ac+LECZ97zc3NNUE8xE4BwOdt+/btxhhjUlNTTWpqqnd8VVWV7bwxbT+ekydPGgBm586dtuPl5eWtjjudTgPAlJeXB/wYNmzYYACYqqqqgO/bUkBPr01NTdi3bx9mzJiB0aNHtzrffLn3eDxITk7GuHHjvOeioqKQk5OD6upqXL161Xa/JUuW2F7TjB8/HsBfT9HN86alpcHj8aChocE7bvfu3ejXr59tne7so48+wpEjR2y3KVOmtHvesrIy9OzZE5MmTcLDhw+9t6SkJERFRaGiosI2Pj4+vkPWDVZAT68PHjzA48ePMXz48FeOq6mpwZgxY1odT0hI8J5vOceAAQNs49566y0AsL0eSU9PR0FBAX7++WdkZmaioaEBHo8Hbre7wz4W+e2332yvSwMRExPzt28G+vfvjw8++CCo+V/lxo0bqK+vR+/evX2ev3//vu3n+Pj4Dt9DILrFu9e2Xo+ZFv+SPiUlBS6XC6WlpcjMzMT+/fvxxx9/ID09vcP2MWfOHBw/fjyo+1ZUVLzyjUBnampqQu/evbFz506f52NjY20/d/UbrYCii42NxZtvvokrV668cpzT6URlZWWr49euXfOeD8b8+fNRWFiIx48fY/fu3XC5XEhJSQlqLl++++67Vu/2/DVq1KgO20db2rqiDxo0CEePHsX777/f5UH5I6DoQkJCMGvWLPz000+4cOFCq9d1xhhYloVp06ahoKAAZ86cwXvvvQcA+P3337F161a4XC4kJiYGtdn09HSsX78eJSUlKC8vx4oVK4Kapy1JSUkdOl9He+ONNwAAdXV1cDgc3uPz58/HDz/8gNWrV2PNmjW2+zx//hwNDQ228V0t4KfXNWvW4PDhw0hNTUVOTg4SEhJw9+5dlJWV4dSpU3A4HPjqq6+wa9cuTJ06Ffn5+YiJiUFJSQmqqqqwd+9ehIQE97dv77zzDgYPHoxVq1bh2bNnPp9aa2pqvB8pXLhwAQDwzTffAPjrCrt48eKg1u4Omv9Q5OfnY8qUKQgNDcWCBQuQmpoKt9uNtWvX4tKlS5g8eTLCwsJw48YNlJWVobCwEPPmzQtqzfr6emzatAkAcPr0aQDA5s2b4XA44HA4kJeXF/ikwbzlrampMVlZWSY2NtaEh4ebgQMHmtzcXNvHHrdu3TLz5s0zDofDREREmOTkZHPgwAHbPM0fmZSVldmO+/q4oNmqVasMADN48GCfe2ue09et5UcSbABMbm5um+f9+cjk+fPn5pNPPjGxsbHGsqxWH59s3brVJCUlmcjISBMdHW1GjBhhvvjiC1NbW+sd43Q6zYcffuj3vpv34evmdDr9nqclyxj9v1fh+sf9KxPp/hSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohM7v76cL8gsqg/LLL7y1AGBi4l3aWpn/+y9tLQBgfh3f1Kn+jdOVTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndBZxhjj18gdOzp5Ky0cOMBbCwCys2lL/drXz+9e6CAuF2+tnj39G6crndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdELn/3eZDBnSyVtp4fp13loAcOwYb60ff+StxV4vNNSvYbrSCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzr/v1bis886eSstOJ28tQBg+nTeWsXFvLUAIC6Ot1Zenl/DdKUTOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6F7ze+S773biNux+TcygrQUADv9/C+227z+reYsBWDHiOHU9f+hKJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugsY4zp6k3Iv4uudEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RC939sZxXjbKYkgwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAJ0AAADJCAYAAAA5OTA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAACp5JREFUeJzt3H9o1PUDx/HX3ZzbdOac7iY63G0ZutSCJmv9YlLNmeWPdPPUbCijHTqbgSKCCEFpIQVbuCBLdKTFfiTij2P+gFlbhD9IQ9HUdA5yzR/otHlmzHv3R9998tppd5+2l6Pv6wH3xz6fz73f7xvPfT53H+UcxhgDESLng16A/P9RdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3S9xIQJEzBhwgTr5/Pnz8PhcGDTpk0PbE095T8X3cGDB7Fo0SJkZmYiOjoaDofjQS8JAOBwOEI+hg4dGvYYPp8Pb7/9ds8tMoStW7fC4/EgPT0d/fr1w6hRo7B06VK0tbXZHrNP9y2vd/D5fPjss8/w2GOPIT09HadPn37QS7Lk5uaisLAwaFtcXBwAYM+ePf/4fJ/Ph4qKCmp4xcXFGDZsGObNm4cRI0bg2LFjWLduHXw+H77//ntr/REx/zGtra3G7/cbY4wpKSkxveUlAjAlJSVhH9/U1GQAmI0bN1rbeuL1BAIB6/cVSn19fZdtlZWVBoD59NNPbc1p6/J64cIFFBUVYdiwYYiJiUFaWhoWLlyI33//3Trm3LlzKCgoQGJiIvr164fs7Gzs2rUraJz9+/fD4XCguroaq1evRkpKCmJjY/HCCy/gp59+so5bvHgx4uPj4ff7u6xlzpw5GDp0KO7cuQMASE5OtvfX94D9/T3d382fPx8VFRUAgi/VnQKBAMrKyjBmzBjExsYiOTkZXq8X165dCxrH7XbjlVdewe7duzF+/HjExcXhk08+ue+6/u7VV18FAJw8eTKCV/iXiC+vLS0tyMrKQltbG4qLizF69GhcuHABtbW18Pv96Nu3Ly5evIinn34afr8fpaWlGDx4MCorKzF16lTU1tZai+70/vvvw+l0YtmyZbh+/TrWrl2L1157DQcOHAAAeDweVFRUYNeuXSgoKLCe5/f7sWPHDsyfPx9RUVG2fgFMv/32G65cuRK0bcCAAYiJifnH53q9XrS0tGDv3r34/PPPQ+7ftGkTFixYgNLSUjQ1NWHdunU4cuQIvv32W0RHR1vHnjp1CnPmzIHX68Ubb7yBUaNGRfQ6WltbAQBDhgyJ6HmWSE+NhYWFxul0mkOHDnXZFwgEjDHGvPXWWwaAaWhosPb9+uuvJi0tzbjdbnPnzh1jzJ+nbgAmIyPD3L592zq2vLzcADDHjh2zxh0+fLiZOXNm0HzV1dUGgPnmm29CrrW3XV5DPTovnzk5OSYnJ8c6PpLLa0NDgwFgtmzZErS9rq6uy/bU1FQDwNTV1dl+LUVFRSYqKsqcPn3a1vMjurwGAgFs27YNU6ZMwfjx47vs7zzd+3w+ZGVl4dlnn7X2xcfHo7i4GOfPn8eJEyeCnrdgwQL07dvX+vm5554D8OclunPcgoIC+Hw+tLe3W8dVVVVh+PDhQfP0ZtOmTcPevXuDHnl5ef963JqaGgwcOBC5ubm4cuWK9cjMzER8fDzq6+uDjk9LS7M97xdffIENGzZg6dKleOSRR2yNEdHl9fLly7hx4wbGjh173+Oam5vx5JNPdtmekZFh7b97jBEjRgQdN2jQIAAIej/i8XhQVlaG7du3Y+7cuWhvb4fP54PX6+222yJXr14Nel8aicTExKA/nFBSUlLw4osv2hr/fs6cOYPr16/D5XKF3H/p0qWgn9PS0mzN09DQgKKiIuTl5WH16tW2xgB6yS2Te70fM3f9T/rs7Gy43W5UV1dj7ty52LFjB27dugWPx9Nt65gxYwa+/vprW8+tr6+/7weBnhQIBOByubBly5aQ+5OSkoJ+tvNB64cffsDUqVMxduxY1NbWok8f++lE9MykpCQ89NBDOH78+H2PS01NxalTp7ps//HHH639dsyaNQvl5eW4ceMGqqqq4Ha7kZ2dbWusUD788MMun/bC9fjjj3fbOu7lXmf0hx9+GPv27cMzzzzTI5/cz549i0mTJsHlcsHn8yE+Pv5fjRdRdE6nE9OnT8fmzZtx+PDhLu/rjDFwOByYPHkyysrK8N133+Gpp54CANy8eRPr16+H2+3Go48+amuxHo8Ha9euRWVlJerq6rBkyRJb49xLZmZmt47X3fr37w8AaGtrQ0JCgrV91qxZ+Pjjj/HOO+9gzZo1Qc/p6OhAe3t70PGRaG1txcSJE+F0OrF79+4uZ007Ij5HrlmzBnv27EFOTg6Ki4uRkZGBX375BTU1NWhsbERCQgJWrFiBL7/8Ei+99BJKS0uRmJiIyspKNDU14auvvoLTae9f35544gmMHDkSK1euxO3bt0NeWpubm61bCocPHwYAvPvuuwD+PMO+/vrrtubuDTr/KEpLS5GXl4eoqCjMnj0bOTk58Hq9eO+993D06FFMnDgR0dHROHPmDGpqalBeXo78/Hxbc06aNAnnzp3D8uXL0djYiMbGRmtfcnIycnNzIx/Uzkfe5uZmU1hYaJKSkkxMTIxJT083JSUlQbc9zp49a/Lz801CQoKJjY01WVlZZufOnUHjdN4yqampCdoe6nZBp5UrVxoAZuTIkSHX1jlmqMfdtyTY8A//IhHOLZOOjg7z5ptvmqSkJONwOLrcPlm/fr3JzMw0cXFxZsCAAWbcuHFm+fLlpqWlxTomNTXVvPzyyxGtu7t/n47/DSxC85/7XybS+yk6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCV3430/X1NSDywhWddDed+LaFQjw5urGLw4Ny+bNvLlWrQrvOJ3phE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ3DGGPCOfDnn3t6KX9JGXSTNxmAhcv60+bat482FQDggw94c02bFt5xOtMJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndGF/l8mhQz29lL+0tvLmAgCXizfX8eO8uQAgP58318CB4R2nM53QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhC/trJbBqVQ8v5S7PP8+bCwA6OnhzzZvHmwsAJk/mzbVxY1iH6UwndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0IX/XSbXrvXwUu6yYgVvLgCIjeXN9dFHvLkAwOXizXXxYliH6UwndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6ML/WgmRbqIzndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3Q/QEipYmrLJ5KxgAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAJ0AAADJCAYAAAA5OTA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAACq1JREFUeJzt3X9M1PUDx/HX8UNAz+Io0CmLw/zOLqWcx5B+DRcZM+2XgaBNpmtxUwr9w7mabrZl5FhtsAUrVypLcoItl3qR1qisWMVWy+YyLOAPEX+sgOjQ1Ht//3B89CNX3l3ykm/f12O7TT6fz73fb/Tp53P3UU+HMcZAhCjmei9A/v8oOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKbpRYs6cOZgzZ471dWdnJxwOB7Zt23bd1jRS/nXRff3111i5ciW8Xi/i4+PhcDiu95IAAA6HI+Rj4sSJYY/h9/vxwgsvjNwiQ3jvvfdQUFCASZMmISEhAenp6SgsLMQPP/wQ9Zhx13B9o4Lf78ebb76JO+64A1OmTMFPP/10vZdkmTt3LkpLS23bkpKSAAD79++/6vP9fj9qa2up4R06dAgulwurVq3CzTffjJ6eHmzZsgU5OTlobW3FnXfeGfmg5l+mp6fHBAIBY4wx5eXlZrR8iwBMeXl52Md3dHQYAGbr1q3WtpH4foLBoPXzFa6enh4TFxdnfD5fVHNGdXk9duwYnnrqKeuUm5mZiRUrVuDPP/+0jvnll19QVFSElJQUjB07Frm5udi3b59tnE8++QQOhwONjY146aWXkJ6ejsTEROTn5+Po0aPWcc888wycTicCgcCwtSxevBgTJ07EhQsXAAATJkywzh7/S658TXelZcuWoba2FoD9Uj0kGAyiuroa06dPR2JiIiZMmACfz4fffvvNNo7b7caCBQvw4YcfIjs7G0lJSXjjjTciWmtaWhrGjh2L3t7eiJ43JOLLa3d3N3JyctDb24uysjLcdtttOHbsGHbt2oVAIIAxY8bgxIkTuPvuuxEIBFBRUYGbbroJ9fX1eOSRR7Br1y48/vjjtjE3bdqEmJgYrFmzBn19faiqqsKTTz6Jr776CgBQXFyM2tpa7Nu3D0VFRdbzAoEA9uzZg2XLliE2NjaqnwCmM2fO4PTp07Zt48ePR0JCwlWf6/P50N3djQMHDuDtt98OuX/btm1Yvnw5Kioq0NHRgddeew3ffvstvvjiC8THx1vHHjlyBIsXL4bP58PTTz+NadOmXXX+3t5enDt3Dj09PaiurkZ/fz/y8/PD+K5DiPTUWFpaamJiYsw333wzbF8wGDTGGLN69WoDwBw8eNDa9/vvv5vMzEzjdrvNhQsXjDHGtLS0GADG4/GYs2fPWsfW1NQYAObQoUPWuJMnTzZPPPGEbb7GxkYDwHz22Wch1zraLq+hHkOXz7y8PJOXl2cdH8nl9eDBgwaAaWhosG1vbm4etj0jI8MAMM3NzRGtf9q0adaanU6nWb9+vfXrGKmILq/BYBC7d+/Gww8/jOzs7GH7h073fr8fOTk5uPfee619TqcTZWVl6OzsxOHDh23PW758OcaMGWN9fd999wG4eIkeGreoqAh+vx8DAwPWcTt37sTkyZNt84xmjz76KA4cOGB7FBQU/ONxm5qacOONN2Lu3Lk4ffq09fB6vXA6nWhpabEdn5mZGfG8W7duRXNzM+rq6uDxeDA4OGi9pIlURJfXU6dOob+/HzNmzPjb47q6ujB79uxh2z0ej7X/8jFuueUW23EulwsAbK9HiouLUV1djffffx9LlizBwMAA/H4/fD7fNbst8uuvv9pel0YiJSXF9hsnlPT0dDzwwANRjf932tvb0dfXh7S0tJD7T548afs6MzMz4jnuuusu68clJSXWr+Urr7wS8Vij4pbJX70eM5f9Tfrc3Fy43W40NjZiyZIl2LNnDwYHB1FcXHzN1rFw4UJ8+umnUT23paXlb98IjKRgMIi0tDQ0NDSE3J+ammr7+p++0XK5XLj//vvR0NAw8tGlpqbihhtuuOqNwYyMDBw5cmTY9h9//NHaH41FixahpqYG/f392LlzJ9xuN3Jzc6MaK5RXX3112Lu9cEV1vypCf3VGv/XWW/HRRx/hnnvuob1zHxwcRF9fX1TPjSi6mJgYPPbYY9i+fTva2tqGva4zxsDhcOChhx5CdXU1WltbrdPyH3/8gc2bN8PtduP222+ParHFxcWoqqpCfX09mpubsWrVqqjG+Ster/eajnetjRs3DsDFd5LJycnW9kWLFqGurg4vvvgiKisrbc85f/48BgYGbMdH4uTJk8Mu252dnfj4449Dvq4PR8SX18rKSuzfvx95eXkoKyuDx+PB8ePH0dTUhM8//xzJycl47rnnsGPHDsybNw8VFRVISUlBfX09Ojo68O677yImJro/fZs1axamTp2KdevW4ezZsyEvrV1dXdYthba2NgDAxo0bAVw8wy5dujSquUeDod8UFRUVKCgoQGxsLEpKSpCXlwefz4eXX34Z3333HR588EHEx8ejvb0dTU1NqKmpQWFhYVRzZmVlIT8/HzNnzoTL5UJ7ezveeustnDt3Dps2bYruG4nmLW9XV5cpLS01qampJiEhwUyZMsWUl5fbbnv8/PPPprCw0CQnJ5vExESTk5Nj9u7daxtn6JZJU1OTbXuo2wVD1q1bZwCYqVOnhlzb0JihHpffkmDDVf5EIpxbJufPnzfPPvusSU1NNQ6HY9jtk82bNxuv12uSkpLM+PHjTVZWllm7dq3p7u62jsnIyDDz588Pe90bNmww2dnZxuVymbi4ODNp0iRTUlJivv/++7DHuJLDGP27V+H61/0tExn9FJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iELuzPp3v++ZFcht0V/6nMiFu4kDfXZR/dS3HmDG+ud94J7zid6YRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0Qld2B8rcfToSC7DzhPXzpsMwMaN/6HNVVlJmwoA0NbGnS8cOtMJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndA5jjAnrQMdIL+WSBQt4cwHA3r28ubKzeXMBwOuv8+byesM7Tmc6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0Qhf2x0pMnz7SS7nk8GHeXABQVcWbKymJNxcAxMby5lqxIrzjdKYTOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6ML+LBN88MEIL+WSrLXzaHMBQGsrby7n7u28yQCgro4315dfhnWYznRCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iELvyPlRC5RnSmEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohO6/wLsXJIIWbzMdgAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAJ0AAADJCAYAAAA5OTA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAACo9JREFUeJzt3X9M1PUDx/HX5/wiYFCIA126uFNSUPuxUCK14Zbo/JW/QBSV6ZrcDLpquWxza7XKHFsbbNGmayWoa4Ka88cNf2z4c8x0y+90TTLjcJNWOfMHERbe+/tHX+7rBw65O+El6/t6bPcHn8/n3u/3uaefu/vIPlrGGAMRIsfDXoD8/1F0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdP3E1KlTMXXq1MDPPp8PlmVhy5YtD21NfeUfF90333yDV199FRkZGYiKioJlWQ97SQAAy7KCPoYNGxbyGF6vF++9917fLTIEOTk5sCwLJSUlEY/xr15cT7/g9Xrx+eef4+mnn8bIkSPx/fffP+wlBeTk5KCwsNC2LTY2FgBw6NChHp/v9XpRUVHx0MLbvXs36uvrH3icf1x0a9aswbp16xAbG4uSkpJ+Fd3o0aOxfPnyoPsGDhxIXs3fjDFoa2sLxN+dtrY2vPXWW1i3bh3efffdB5ozorfXq1ev4pVXXsHjjz+O6OhouFwurFmzBn/++WfgmB9//BF5eXlITEzEoEGDkJWVhQMHDtjGOXr0KCzLQnV1NT766COMGDECMTExeOmll/DDDz8EjispKUFcXBxaW1u7rGXp0qUYNmwY7t69CwAYOnRoj3+A/VHnz3SdrVy5EhUVFQDsb9Ud/H4/ysrKMG7cOMTExGDo0KFwu9347bffbOM4nU7MmTMHBw8exIQJExAbG4tNmzb1uL7S0lL4/X6sXbs2shd4j7DPdM3NzcjMzMSNGzdQVFSEtLQ0XL16FTt37kRraysGDhyIn3/+GZMmTUJrays8Hg+GDBmCyspKvPzyy9i5cycWLFhgG3Pjxo1wOBxYu3Ytbt68idLSUixbtgynT58GAOTn56OiogIHDhxAXl5e4Hmtra3Yt28fVq5ciQEDBjzgH0Xfa2trw7Vr12zb4uPjER0d3eNz3W43mpubcfjwYWzdujXo/i1btmDVqlXweDxobGzEp59+im+//RanTp1CVFRU4NiGhgYsXboUbrcbq1evxpgxY+4795UrV7Bx40Z88cUXvfMX2oSpsLDQOBwOc+bMmS77/H6/McaYN954wwAwJ06cCOy7ffu2cblcxul0mrt37xpjjKmrqzMATHp6urlz507g2PLycgPAnD9/PjDu8OHDzaJFi2zzVVdXGwDm+PHjQddaXFxsIniJfQJA0MeXX35pjDEmOzvbZGdnB45vbGy07Tem+9dz4sQJA8Bs377dtr22trbL9pSUFAPA1NbWhrz23NxcM2nSJNtrKS4uDvn5nYX19ur3+7Fnzx7MnTsXEyZM6LK/43Tv9XqRmZmJKVOmBPbFxcWhqKgIPp8P3333ne15q1atsn2mefHFFwH8/RbdMW5eXh68Xi9aWloCx+3YsQPDhw+3zdOfzZs3D4cPH7Y9ZsyY8cDj1tTU4LHHHkNOTg6uXbsWeGRkZCAuLg51dXW2410uV8jz1tXVYdeuXSgrK3vgdXYI6+31119/xa1btzB+/Pj7HtfU1ITnn3++y/b09PTA/nvHeOKJJ2zHDR48GABsn0fy8/NRVlaGvXv3oqCgAC0tLfB6vXC73b12WeT69eu2z6XhSExM7PHLwIgRIzBt2rSIxr+fS5cu4ebNm0hOTg66/5dffrH97HK5Qhq3vb0dHo8HK1aswMSJEx94nR36xbfX7j6PmXt+kz4rKwtOpxPV1dUoKCjAvn378McffyA/P7/X1rFw4UIcO3YsoufW1dXd94tAX/L7/UhOTsb27duD7k9KSrL9HOrnsqqqKjQ0NGDTpk3w+Xy2fbdv34bP50NycjIGDRoU1nrDii4pKQmPPvooLly4cN/jUlJS0NDQ0GX7xYsXA/sjsXjxYpSXl+PWrVvYsWMHnE4nsrKyIhormE8++aTLt71QPfPMM722ju50d0YfNWoUjhw5gsmTJ/fqN/crV67gr7/+wuTJk7vsq6qqQlVVFb7++mvMnz8/rHHDis7hcGD+/PnYtm0bzp492+VznTEGlmVh1qxZKCsrQ319PV544QUAwO+//47NmzfD6XRi7NixYS2yQ35+PkpLS1FZWYna2lq8/vrrEY3TnYyMjF4dr7c98sgjAIAbN24gISEhsH3x4sX47LPP8MEHH2DDhg2257S3t6OlpcV2fKiWLFmCZ599tsv2BQsWYNasWVi9enXQj1E9CfvtdcOGDTh06BCys7NRVFSE9PR0/PTTT6ipqcHJkyeRkJCAd955B1999RVmzpwJj8eDxMREVFZWorGxEbt27YLDEdm/vj333HNITU3F+vXrcefOnaBvrU1NTYFLCmfPngUAfPjhhwD+PsOuWLEiorn7g46/FB6PBzNmzMCAAQOwZMkSZGdnw+124+OPP8a5c+cwffp0REVF4dKlS6ipqUF5eTlyc3PDni8tLQ1paWlB97lcrrDPcAGRfOVtamoyhYWFJikpyURHR5uRI0ea4uJi22WPy5cvm9zcXJOQkGBiYmJMZmam2b9/v22cjksmNTU1tu3BLhd0WL9+vQFgUlNTg66tY8xgj3svSbChh8sMoVwyaW9vN6+99ppJSkoylmV1uXyyefNmk5GRYWJjY018fLx56qmnzNtvv22am5sDx6SkpJjZs2f36WvpifXfQURo/nG/ZSL9n6ITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0IV+f7oI71AZkW3beHMBQGoqby72f6ZSUMCbq9NtZrujM53QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhC/22ErW1fbiMTjwe3lwA8OabvLnGjePNBeBkQ2i3eugNU0KcSmc6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohC70e5n4fH23is4sizcXwL1Py/vv8+YCgH9zpwuFznRCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iELvTbSowf34fL6GTePN5cALB8OW2qMxfjaXMBQFQUdbqQ6EwndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0FnGGBPKgfX1fb2U/zl3jjcXAEybxpvrScdl3mQAcP06b66JE0M6TGc6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QhfybSVEeovOdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RC9x/YQUH2gqRK1QAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAJ0AAADJCAYAAAA5OTA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAACopJREFUeJzt3H9M1fUex/HXOYqck4BIIswfcSCysKwMR1h/HLfsh9XUEj1JxazMM4WObrp0s+3aKnFsbodNcrK2ZEk/gP4ok0vKrpW2Vrlqqz8yK6QNmuIMkEi9wPv+0TzzwEEOR3jJuq/Hdv7g++Pz+Rx8+j3ni3gcZmYQIXJe6wXI/x9FJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RTdGLFiwAAsWLAh9ffLkSTgcDuzdu/earWm0/OOi++qrr7Bu3Trk5uYiLi4ODofjWi8JAOBwOCI+0tPTox6jvr4e27ZtG71FRrBt27aI63a5XDGPOX4E1zcm1NfX44033sDtt9+OrKws/PTTT9d6SSH3338/ioqKwra53W4AwMGDB4c8v76+HhUVFfTwAGD37t1ISEgIfT1u3LiYx/rHRbd27Vps3rwZbrcbJSUlYyq6WbNm4amnnoq4b8KECeTV/M3McP78+VD8gykoKMCUKVNGZM6YXl5bWlrw3HPPYdq0aYiPj0dmZibWrl2Lixcvho759ddfsXz5cqSkpOC6665Dfn4+Dhw4EDbOJ598AofDgZqaGrz22muYMWMGXC4X7rvvPvz888+h40pKSpCQkIDu7u4Ba1m5ciXS09PR29sLAEhLSxvyGzgW9X9P19+qVatQUVEBIPyl+pK+vj4Eg0HceuutcLlcSEtLg9/vxx9//BE2jsfjwaOPPoqPP/4Y8+bNg9vtxp49e4Zcn5mhs7MTI/FLScO+0rW2tiIvLw/t7e1Ys2YNbrnlFrS0tKCurg7d3d2YMGECTp06hXvuuQfd3d0IBAK4/vrrUVVVhcWLF6Ourg6PPfZY2Jg7duyA0+nEpk2b0NHRgbKyMjz55JP48ssvAQA+nw8VFRU4cOAAli9fHjqvu7sb+/fvx6pVq67qcs9y/vx5nDlzJmxbYmIi4uPjhzzX7/ejtbUVhw4dwltvvRVx/969e/HMM88gEAigqakJu3btwrfffovPP/8ccXFxoWOPHz+OlStXwu/34/nnn8fNN9885PxZWVno6urCxIkTsXTpUuzcuRNpaWlRPOsIbJiKiorM6XTa119/PWBfX1+fmZlt2LDBANiRI0dC+86dO2eZmZnm8Xist7fXzMwOHz5sACwnJ8cuXLgQOra8vNwA2Pfffx8ad/r06bZs2bKw+WpqagyAffbZZxHXWlxcbDE8xVEBIOLjzTffNDMzr9drXq83dHxTU1PYfrPBn8+RI0cMgFVXV4dtb2hoGLA9IyPDAFhDQ0NU6w4Gg1ZSUmLV1dVWV1dn69evt/Hjx9tNN91kHR0d0X8DLjOsP5He3l5LSkqyJUuWXPG4WbNmWV5e3oDtpaWlYTFdiq6srCzsuG+++cYA2AcffBDatmHDBnO73Xbu3LnQtmXLltn06dNDsfc31qJbsmSJHTp0KOzR2tpqZlcXXSAQsEmTJtnp06etra0t7JGQkGCrV68OHZuRkWGZmZlX9Vyqq6sNgJWWlsZ0/rBeXtva2tDZ2Ynbbrvtisc1Nzfj7rvvHrA9JycntP/yMW644Yaw4yZPngwAYe9HfD4fgsEgPvzwQxQWFqKrqwv19fXw+/0j9mORs2fPhr0vHY6UlJQhbwZmzJiBhQsXxjT+lZw4cQIdHR2YOnVqxP2nT58O+zozM/Oq5issLMTGjRvR2NiILVu2DPv8MXH3Otj7MbvsTWt+fj48Hg9qampQWFiI/fv346+//oLP5xuxdTz++OP49NNPYzr38OHDV7wRGE19fX2YOnUqqqurI+5PTU0N+3okbrRmzpyJs2fPxnTusKJLTU1FUlISfvjhhysel5GRgePHjw/Y/uOPP4b2x2LFihUoLy9HZ2cn3nvvPXg8HuTn58c0ViQ7d+4ccLcXrTvuuGPE1jGYwa7oN954IxobG3HvvfdS7tzNDCdPnsTcuXNjOn9Y0TmdTixduhT79u3DsWPHMG/evAGLcTgcePjhhxEMBvHFF19g/vz5AIA///wTlZWV8Hg8mD17dkyL9fl8KCsrQ1VVFRoaGrB+/fqYxhlMbm7uiI430iZOnAgAaG9vR3Jycmj7ihUr8Prrr+OVV17B9u3bw87p6elBV1dX2PHD0dbWNuBKuXv3brS1teGhhx6Kacxhv7xu374dBw8ehNfrxZo1a5CTk4Pff/8dtbW1OHr0KJKTk7Flyxa88847WLRoEQKBAFJSUlBVVYWmpia8//77cDpj+9e3u+66C9nZ2di6dSsuXLgQ8aW1ubk59COFY8eOAQBeffVVAH9fYZ9++umY5h4LLv2lCAQCePDBBzFu3Dg88cQT8Hq98Pv9KC0txXfffYcHHngAcXFxOHHiBGpra1FeXo6CgoKY5szIyIDP58OcOXPgcrlw9OhRvPvuu7jzzjvh9/tjeyKx3H00NzdbUVGRpaamWnx8vGVlZVlxcXHYjz1++eUXKygosOTkZHO5XJaXl2cfffRR2DiX7l5ra2vDtke6c7tk69atBsCys7Mjru3SmJEel98dsgGw4uLiQfdHc/fa09NjL7zwgqWmpprD4RhwJ1tZWWm5ubnmdrstMTHR5syZYy+++GLoDtns77vXRx55JOp1r1692mbPnm2JiYkWFxdn2dnZtnnzZuvs7Ix6jP4cZvp/r8L1j/stExn7FJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iELurPp4vxAypjMrmxljcZAPz2G2+ufh8kOdr+9R8vba6XX47uOF3phE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCV3UHysxOeG/o7mOcJWVvLkA4NlneXMlJfHmAjBlCnW6qOhKJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndBF/VkmKCoaxWX009jImwsAnMS/e+vW8eYCAMwlzzc0XemETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJXfQfK3HmzCguo5+XXuLNBQAtLby5Fi/mzQWgJ0idLiq60gmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqFTdEKn6IRO0QmdohM6RSd0DjOzqI48dWqUl3KZt9/mzQUAHg9vrvR03lwA/t0+nzbXokXRHacrndApOqFTdEKn6IRO0QmdohM6RSd0ik7oFJ3QKTqhU3RCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0QqfohE7RCZ2iEzpFJ3SKTugUndApOqGL/mMlREaIrnRCp+iETtEJnaITOkUndIpO6BSd0Ck6oVN0Qvc/GDcH7BATJk8AAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\n","Visualizing conv2: 16 filters, each with 6 channel kernels\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEwVJREFUeJzt3Xuw13WB//HXQa4KhCgoYnkIV7FI+yEY3nHVEEHJG6g5hjlCNoqb2kimk+MFGXdM3NLVyg1Gsbi0uSEsiaFtXqJ1J3/lZCyklgl4Q8Ujl8Y4+0fD2U54ObD6hjc+HjPnD77fzzmvzzkOHHj6+X5OQ3Nzc3MAAAAAqFa7rX0CAAAAAPzfCDwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAJtp2LBhGTZsWMuvn3nmmTQ0NGTatGlb7ZwAgA82gQcA2Co2bNiQadOm5cQTT8yHP/zh7LTTThk4cGCuvfbarFu3bqueW0NDw1u+7b777m3+GPPnz89VV131/p3k23juuecyZsyY9OjRI927d8/o0aPz1FNPFT8PAKCshubm5uatfRIAwAdPU1NTunXrlqFDh2bUqFHp3bt3Hn300UyfPj1HHHFEFi1alIaGhq1ybg0NDTn22GNz9tlnt3q8S5cuOeWUU/KnP/0pSdKxY8ckf7mCp1+/fvnud7+bcePGJUkuuOCC3HLLLSn5V62mpqYMGjQor732Wi655JJ06NAhN910U5qbm/P4449nl112KXYuAEBZ7bf2CQAAH0wdO3bMww8/nEMOOaTlsfPOOy+NjY352te+lp/85Cc55phjttr57bPPPjnrrLPe8rmNYae05ubmrFu3Ll26dHnL52+99dYsXbo0v/jFLzJkyJAkyYgRIzJw4MDceOONmTx5csnTBQAK8hItANjOPffcczn33HOzxx57pFOnTunXr1/OP//8lqtQkuSpp57Kaaedlp49e2bHHXfM0KFDM2/evFYf58EHH0xDQ0NmzZqV6667LnvuuWc6d+6co48+OsuWLWs57oILLkjXrl2zZs2aTc7ljDPOyO67754///nP6dixY6u4s9FJJ52UJHnyySffqy/Be+5v78Hzt8aNG5dbbrklSeuXe220YcOGTJ06NR//+MfTuXPn7LbbbpkwYUJeeeWVVh+nsbExo0aNyo9//OMMHjw4Xbp0ye233/62u3PmzMmQIUNa4k6SDBgwIEcffXRmzZq1hZ8tAFADV/AAwHZs+fLlOeigg/Lqq69m/PjxGTBgQJ577rnMmTMna9asSceOHfP888/nkEMOyZo1azJx4sTssssumT59ek488cTMmTOnJbhsNGXKlLRr1y6XXnppXnvttdxwww357Gc/m8WLFydJxo4dm1tuuSXz5s3Laaed1vJ+a9asydy5czNu3LjssMMOb3vOK1euTJLsuuuu78NXpO3WrVuXl156qdVj3bp1S6dOnd71fSdMmJDly5dn4cKFufPOO9/y+WnTpuWcc87JxIkT8/TTT+eb3/xmfvnLX+bhhx9Ohw4dWo5dsmRJzjjjjEyYMCHnnXde9t1337fc3LBhQ371q1/l85///CbPHXTQQbnvvvvy+uuvp1u3bu96/gBAfQQeANiOfeUrX8nKlSuzePHiDB48uOXxq6++uuXeMFOmTMnzzz+fn/3sZznssMOS/OWlUvvvv38uvvjijB49Ou3a/e9Fv+vWrcvjjz/e8jKlnXfeORdddFGeeOKJDBw4MIcddlj69u2bmTNntgo88+bNyxtvvJGxY8e+4znfcMMN6d69e0aMGPGefR22xB133JE77rij1WN/fY+dd3LwwQdnn332ycKFCzd5mddDDz2U73znO5kxY0bOPPPMlsePOuqoHHfccZk9e3arx5ctW5YFCxZk+PDh77i5atWqrF+/Pn369NnkuY2PLV++/G0DEQBQNy/RAoDt1IYNG3LPPffkhBNOaBV3Ntr4kqH58+fnoIMOaok7SdK1a9eMHz8+zzzzTH7zm9+0er9zzjmn1T1oDj/88CRp+UlNDQ0NOe200zJ//vw0NTW1HDdz5sz07du31c7fmjx5cu6///5MmTIlPXr02PxP+j00evToLFy4sNXbu0WWtpg9e3Y+9KEP5dhjj81LL73U8nbggQema9eueeCBB1od369fvzbtrl27Nkne8gqjzp07tzoGANj+uIIHALZTL774YlavXp2BAwe+43G///3v86lPfWqTx/fbb7+W5//6Y3zkIx9pddzOO++cJK3uHzN27NhMnTo1P/rRj3LmmWemqakp8+fPz4QJE972J2PNnDkzV1xxRc4999ycf/757/r5rVq1qtV9hDZHz5493/VGyXvuuef7cpPnpUuX5rXXXkvv3r3f8vkXXnih1a/79evXpo+78cbL69ev3+S5jT92/u1uzgwA1E/gAQA2y9vdP+evfxz40KFD09jYmFmzZuXMM8/M3Llzs3bt2rd9edbChQtz9tlnZ+TIkbntttvadB4nn3xyfvrTn27+J5DkgQceeMebJL+fNmzYkN69e2fGjBlv+XyvXr1a/bqtUaZnz57p1KlTVqxYsclzGx/bY489NvNsAYBaCDwAsJ3q1atXunfvnieeeOIdj9trr72yZMmSTR7/7W9/2/L8lhgzZkxuvvnmrF69OjNnzkxjY2OGDh26yXGLFy/OSSedlMGDB2fWrFlp375tfz258cYbN/mpU211wAEHbNH7bY63u1Kpf//+uf/++3PooYe+p1fUtGvXLp/4xCfy2GOPbfLc4sWL89GPftQNlgFgOybwAMB2ql27dvnMZz6Tu+66K4899tgm9+Fpbm5OQ0NDjj/++EydOjWPPvpoDj744CTJG2+8kW9961tpbGzMxz72sS3aHzt2bG644YZMnz49CxYsyEUXXbTJMU8++WRGjhyZxsbG3HvvvZsVPA488MAtOq9SdtpppyTJq6++2up+QmPGjMmtt96aa665JpMnT271Pm+++Waampq2+P5Dp556aiZNmtTqv/eSJUuyaNGiXHrppVv0MQGAOgg8ALAdmzx5cu67774ceeSRGT9+fPbbb7+sWLEis2fPzkMPPZQePXpk0qRJ+d73vpcRI0Zk4sSJ6dmzZ6ZPn56nn346P/jBD1r9BK3NMWjQoOy999756le/mvXr12/y8qzXX389w4cPzyuvvJIvf/nLmTdvXqvn+/fv3xKcarQxQE2cODHDhw/PDjvskNNPPz1HHnlkJkyYkOuvvz6PP/54Pv3pT6dDhw5ZunRpZs+enZtvvjmnnnrqFm1+8YtfzLe//e2MHDkyl156aTp06JCvf/3r2W233XLJJZe8l58eALCNEXgAYDvWt2/fLF68OFdeeWVmzJiR1atXp2/fvhkxYkR23HHHJMluu+2WRx55JJdddlm+8Y1vZN26ddl///0zd+7cjBw58v+0P3bs2Fx33XXZe++9M2jQoFbPvfzyy3n22WeTJJMmTdrkfT/3uc9VHXhOPvnkXHjhhfn+97+fu+66K83NzTn99NOTJLfddlsOPPDA3H777bn88svTvn37NDY25qyzzsqhhx66xZvdunXLgw8+mC996Uu59tprs2HDhgwbNiw33XTTJvf2AQC2Lw3Nf31HRAAAAACqs2XXXAMAAACwzRB4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFC59m0+8sUX38fTaO3OBb2KbSXJgAHltrp2LbeVJI2N5ba6dCm3ta34r/8qt7VmTbmtJHnkkXJbl3X/53JjSdK7d7mtU04pt7UN+Pu/L7e1aMaKcmNJ8uqrxaaWtNuv2FaS/PGP5baOPrrc1rbg8svLbR1/fLmtJDms15JiWyu671tsK0n6/PaBcmNHHVVuaxvxu9+V2/rv/y63lSSf/GS5rWXLym0lyeEDyv17ML3K/ntwayv5e2Lt2nJbSbLXXuW2ui2YXW4sKfsb/u/+rk2HuYIHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDl2rf5yAsueB9Po7X57WYW20qSu+8ut3XxxeW2krKf2zXXlNvaVrz5ZrmtK64ot5Uku+9ecOzF2QXHkiX/vKjY1r7FlrYNN91Ubqt59z7lxpL806xye8cdV2wqSXJ0078VXBtdcGvrm3zPx8qNXf9kua0kmTu32NT3l5b90/RLXzyk6N4HzUMPldu6+upyW0nyu3/9/8W2+rz6h2JbSbLizROKbZX9Dr/19e/5SrGtf/zOzsW2kuTL3W8vN7ZyZbmtJBkwoOxeG7iCBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMq1b/ORs2a9j6fR2qpPzyy2lSSPPFJu64knym0lybNTf1Bw7ZSCW9uGnXYqt9WzZ7mtJBk1quDYf/QvOJb8/Ofltvbdt9zWtuCAzkvKjT22utxWksmThxTbuvvuYlNJksXT9ik7+EFy3nnltnr0KLeVpGlYuW8UPV8uNpUkOen0TsW2fvjDYlPbjCUFv1U89VS5rSTJrbeW2xowoNxWkpcay2316VNua5uwbl2xqeXLi039xSu/L7f161+X20ryjZ5fK7Z14SfadpwreAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVK59Ww989g/N7+d5tPLj+79bbCtJ+i87p9jWXnsVm0qS3PzHU4ptXVRsadsxcO1/Ftu6554hxbaS5AtfKDg2alTBsWTogKJzHyjrG/cttjV/frGpJMkLL5Tbev4P68uNJcndPy+3td9+5ba2BXvvXWzqh2+eUGwrSVbeWW5r/PhyW0nyyU+W3fugufDCclsPP1xuK0nyL/9SbqupqdxWkstOKrdV+nv81vZ8uz7Ftk4+udjUXxxxfbmtuXPLbSVZtrDoXJu4ggcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKtW/rgR/+15vfz/No5WeDLiq2lSS/m/PLYlujr/p/xbaS5KIvrC+41qng1rbh3ueHFNvaY49iU0mS4R0fKDf2hxfKbSWZ9atyW1deWW5rW9Bp1YpiW//wD32KbSXJs8+W2/r3RWX/PB1xzDFF9z5Qjjii2NQxhf+33a67ltsaPLjcVpIM+Y8by40dcEm5rW3EvfeW2+rfv9xWkqTnqGJT/7ag7PeKsWOLzn2grFpVbuvwHr8uN5Yk48YVm3r54HK//5LkqkOLzrWJK3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFSuobm5uXlrnwQAAAAAW84VPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACV+x9Yx76Pdb6sWAAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEg1JREFUeJzt3X+w13WB7/HXQUREUARFNkgPgytiRHOBVUC66BgRYZDeECXWYFxAZwxvjk1aubamxLI6iyFdbWOETSYBna0IRsXSRpDLrG3sXEdjZAO3xB+p/AhP5Crn/uF4tiOaiPDmvOHxmDl/8P1+vuf1+R7Fc3zO9/s5Dc3Nzc0BAAAAoFrtDvYJAAAAAPDBCDwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAO/TOeeck3POOaflz5s3b05DQ0MWLlx40M4JADi8CTwAwEGxe/fuLFy4MOPGjcuHP/zhHHPMMRkwYEBuuumm7Nq166CeW0NDwzt+9OzZc68/x8qVK/ONb3zjwJ3kO9iwYUO+9KUvZfjw4enYsWMaGhqyefPmoucAABwc7Q/2CQAAh6empqZMnTo1Q4cOzeWXX54ePXpk7dq1ueGGG/LTn/40P/vZz9LQ0HDQzm/UqFG59NJLW9129NFHJ0kefPDB93z8ypUrM3/+/KKRZ+3atfn2t7+dM844I/3798/69euLbQMAB5fAAwAcFB06dMiaNWsyfPjwltumTZuWxsbGlsjziU984qCd32mnnZbJkye/430dOnQofDZvam5uzq5du1pC09uNGzcu27ZtS5cuXXLLLbcIPABwGPEWLQA4xD377LO57LLL8qEPfShHHXVU+vTpkyuuuCKvvfZayzG//vWvM2HChHTr1i2dOnXK0KFDs2LFilaf55FHHklDQ0OWLl2am2++Ob17907Hjh1z3nnnZePGjS3HXXnllencuXOampr2OJdLLrkkPXv2zBtvvJEOHTq0ijtvueCCC5IkTz311P76Eux3b78Gz9tNmTIl8+fPT9L67V5v2b17d+bOnZuPfOQj6dixY0466aTMmDEjW7dubfV5Ghsbc/755+eBBx7IkCFDcvTRR+fOO+98191u3bqlS5cuH+zJAQBV8goeADiEbdmyJWeeeWa2bduW6dOn5/TTT8+zzz6be++9N01NTenQoUNeeOGFDB8+PE1NTZk5c2a6d++eRYsWZdy4cbn33ntbgstbZs+enXbt2uWaa67J9u3bM2fOnHz+85/PunXrkiQTJ07M/Pnzs2LFikyYMKHlcU1NTVm+fHmmTJmSI4444l3P+fnnn0+SnHDCCQfgK7L3du3alZdeeqnVbV26dMlRRx31no+dMWNGtmzZklWrVuX73//+O96/cOHCTJ06NTNnzsymTZty++2355e//GXWrFmTI488suXYDRs25JJLLsmMGTMybdq09OvX74M/OQDgkCPwAMAh7Lrrrsvzzz+fdevWZciQIS2333jjjWlubk7yZrB54YUX8uijj2bEiBFJ3nyr1MCBA3P11Vdn/Pjxadfuv1/0u2vXrqxfv77lbUrHH398rrrqqjzxxBMZMGBARowYkV69emXJkiWtAs+KFSvy6quvZuLEiX/2nOfMmZNjjz02Y8aM2W9fh32xYMGCLFiwoNVtd911V6ZMmfKejx02bFhOO+20rFq1ao+3ea1evTrf+973snjx4kyaNKnl9nPPPTef+tSnsmzZsla3b9y4Mffff39Gjx79wZ4QAHBI8xYtADhE7d69Oz/84Q/zmc98plXcectbbxlauXJlzjzzzJa4kySdO3fO9OnTs3nz5jz55JOtHjd16tRW16D5+Mc/nuTNt3m99XknTJiQlStXZufOnS3HLVmyJL169Wq183azZs3KQw89lNmzZ6dr167v/0nvR+PHj8+qVatafeyPyLJs2bIcd9xxGTVqVF566aWWj8GDB6dz5855+OGHWx3fp08fcQcAeE9ewQMAh6jf/e532bFjRwYMGPBnj3vmmWdy1lln7XF7//79W+7/089x8skntzru+OOPT5JW14+ZOHFi5s6dmx//+MeZNGlSdu7cmZUrV2bGjBnv+puxlixZkq9//eu57LLLcsUVV7zn83vllVdaXUfo/ejWrdt7Xii5d+/eB+Qiz08//XS2b9+eHj16vOP9L774Yqs/9+nTZ7+fAwBw6BF4AID35d2un/PWW76SZOjQoWlsbMzSpUszadKkLF++PH/4wx/e9e1Zq1atyqWXXpqxY8fmjjvu2KvzuPDCC/Pzn//8/T+BJA8//PCfvUjygbR79+706NEjixcvfsf7TzzxxFZ/frffmAUA8KcEHgA4RJ144ok59thj88QTT/zZ40455ZRs2LBhj9t/9atftdy/Ly666KLcdttt2bFjR5YsWZLGxsYMHTp0j+PWrVuXCy64IEOGDMnSpUvTvv3e/Xhy66237vFbp/bWxz72sX163Pvxbq9U6tu3bx566KGcffbZ4g0AsN8IPABwiGrXrl0++9nP5u67787jjz++x3V4mpub09DQkE9/+tOZO3du1q5dm2HDhiVJXn311Xz3u99NY2NjzjjjjH3anzhxYubMmZNFixbl/vvvz1VXXbXHMU899VTGjh2bxsbG/OQnP3lfwWPw4MH7dF6lHHPMMUmSbdu2tbqe0EUXXZTvfOc7+eY3v5lZs2a1eszrr7+enTt3HvTrDwEA9RF4AOAQNmvWrDz44IMZOXJkpk+fnv79++e5557LsmXLsnr16nTt2jXXXnttfvCDH2TMmDGZOXNmunXrlkWLFmXTpk257777Wv0Grfdj0KBBOfXUU/O1r30tf/zjH/d4e9bvf//7jB49Olu3bs2Xv/zlrFixotX9ffv2bQlONXorQM2cOTOjR4/OEUcckYsvvjgjR47MjBkz8q1vfSvr16/PJz/5yRx55JF5+umns2zZstx222353Oc+t0+b27dvz7x585Ika9asSZLcfvvt6dq1a7p27Zorr7xy/zw5AKDNEXgA4BDWq1evrFu3Ltdff30WL16cHTt2pFevXhkzZkw6deqUJDnppJPy2GOP5Stf+UrmzZuXXbt2ZeDAgVm+fHnGjh37gfYnTpyYm2++OaeeemoGDRrU6r6XX345v/nNb5Ik11577R6P/cIXvlB14LnwwgvzxS9+Mffcc0/uvvvuNDc35+KLL06S3HHHHRk8eHDuvPPOfPWrX0379u3T2NiYyZMn5+yzz97nza1bt+b6669vddutt96a5M232gk8AHDoamj+0ysiAgAAAFCdfXvNNQAAAABthsADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMq139sD/+mfDuRptDbt/wwqN5Ykr75abmvBgnJbSbJ5c7mtyZPLbbURJf9xnnVWua0kefTRcltnnlluK0lee63c1rBh5bbahOuuKzbVMPtbxbaS5PTTy23t3FluK0nOOKPc1gMPlNtqC+66q9zW1EH/Xm4syX0bP1Zs63/dP63YVpKyP9OMHFluq414+OFyW+ee8P/KjSXZ1Pmjxbb6HPtysa0k+a9juxfbOvLIYlNtw6ZN5bY6diy3lSTbthWb2tqzf7GtJHn88XJbo0bt3XFewQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHINzc3NzXtz4A03HOhT+W/jxpXbSpLBu/+13Ni2beW2kqR373Jb/fuX22orNmwoNvVC137FtpKkqanc1po15baSZHK/gn/n/+qvym21Af0K/mu6a1e5rSRZurTc1lln7tW35v3mmf9sKLZ1yinFptqG//iPYlOrn+tbbCtJ/vIvy22d9Kn/UW4sSUaMKLc1b165rbbiXwt+H3799XJbSXLaaeW2unUrt5Xk5VfKfa/o3r3YVNvwox8Vm1rdfXyxraTs//6e/xe/KDeWJKeeWm7ruOP26jCv4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKBy7ff2wL/r9PcH8jxaW/BMua0kmTCh2NTWIaOKbSXJI4+U27qgf7mttuInT/crtnX+pnnFtpLk7175YrGtGy7dVGwrSXLC6WX3DiO7d5fbOvnkcltJcs895baef76h3FiS8edsL7h2XMGtg+8X2/oW2+ratdhUkuSkX/283FhjY7mtJHnjjbJ7h5snnyy3dXrZ7/lTr+lebOuu1/+62FaS/OfV3y+21b3cl7Ft6NGj2NSIQX8stpUkEyYfVWzr/DWfKbaVJM3Pbim2tbc/GXoFDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAyrXf6yMXLTqAp/E2PXuW20ryL9vOLbbV8f8Wm0qSbNxYdu9wc/6qq8qNXX55ua0k275bbmv1s33KjSUZ8covyo0NHlxuqw246aZyWzt3lttKkhtvLLfVt2+5rSTJY4+V2xozptxWG/Bv/1Zu62/+ptxWkrz8yshiW90/+WSxrSRJ+73/EZl9UPAvxj+8+IViW0myZUvBsabNBceSgQOLzh1e/vmfi02tfmNYsa2k8M9rzz1XcCxpWLO63NiIEXt1mFfwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAULn2e33kU08dwNN4m49+tNxWks6dy2399rfltpJk4MCye4eb+/7nbcW2eu8oNpUkmTu33NY//u9nyo0lyeOby20NHlxuqw147bVyW3/7t+W2krL//Z49u9xWkuTJJ8ttjRlTbqsNmPbbG8qNtbux3FaS7gV/yPjRjf9ebCtJxq/+ctG9w06nTsWmbrml2FSS5MUXC4798JqCY8kRj/y03Nh555XbaguuvrrY1FemFJtKkvTrV3Ds+OMLjiVZs6bc1ogRe3WYV/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKhcQ3Nzc/PBPgkAAAAA9p1X8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABU7v8DcCZtD5p/4p0AAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEqlJREFUeJzt3X+s13Whx/HXAURBNCUFBooHf6ay2hVmpCV0A4+Gmj/Sg2aCQzlzGbZrmTNbbQo5tgpuWthmgkIpUreFMhWLFNRYXdPpMlNBr1ez/AEiIlbyuX84uR1RQ5Q3542Px3b+4Hw+3+/r8z0Tz+G57/d7WpqmaQIAAABAtbpt7QsAAAAA4N0ReAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAA3qFRo0Zl1KhRG/782GOPpaWlJbNmzdpq1wQAvL8JPADAVrF+/frMmjUrxx13XPbcc8/suOOOGTp0aC699NKsW7duq15bS0vLm34MGDBgk+9j4cKF+eY3v7nlLvJN/OxnP0t7e3v23nvv9O7dOwcccEDOP//8rFq1quh1AADltTRN02ztiwAA3n/WrFmTnXbaKSNGjMgxxxyTfv365e67787s2bNzxBFH5Fe/+lVaWlq2yrW1tLRkzJgxOeOMMzp9vlevXjnppJPyt7/9LUnSs2fPJK89g2fIkCG5+uqrM2HChCTJueeemyuuuCIlf9TabbfdMnDgwBx//PEZPHhw7r///sycOTN777137rnnnvTq1avYtQAAZfXY2hcAALw/9ezZM3feeWcOO+ywDZ87++yz09ramm984xv55S9/mdGjR2+169t///1z+umnv+mx18NOaU3TZN26dW8ZaubPn9/ppWNJMmzYsIwfPz5z587NWWedVeAqAYCtwUu0AGAb9+STT2bixIkZOHBgtt9++wwZMiTnnHPOhmehJMny5ctz8sknp2/fvundu3dGjBiRm266qdP9/PrXv05LS0vmzZuXKVOmZI899sgOO+yQT33qU3nkkUc2nHfuueemT58+Wbt27UbXcuqpp2bAgAF59dVX07Nnz05x53UnnHBCkuTBBx98r74E77k3vgfPG02YMCFXXHFFks4v93rd+vXrM3369Bx88MHZYYcd0r9//3R0dGTlypWd7qe1tTXHHHNMbrnllgwfPjy9evXKlVde+bbX9UY1fD0BgHfPM3gAYBv21FNP5dBDD82qVasyadKkfOhDH8qTTz6Z+fPnZ+3atenZs2f+8pe/5LDDDsvatWszefLkfPCDH8zs2bNz3HHHZf78+RsCwesuu+yydOvWLV/+8pfzwgsvZNq0afnc5z6XZcuWJUna29tzxRVX5KabbsrJJ5+84XZr167NggULMmHChHTv3v0tr/npp59O8trLjbamdevW5dlnn+30uZ122inbb7/9v7xtR0dHnnrqqSxatCjXXnvtmx6fNWtWzjzzzEyePDkrVqzI5Zdfnt///ve58847s912220496GHHsqpp56ajo6OnH322TnggAPe0ePoKl9PAGALawCAbdYZZ5zRdOvWrfntb3+70bH169c3TdM0X/rSl5okzZIlSzYce/HFF5shQ4Y0ra2tzauvvto0TdMsXry4SdIceOCBzSuvvLLh3BkzZjRJmvvvv3/D/Q4aNKg56aSTOu3NmzevSdLccccdb3vNo0ePbnbeeedm5cqVm/WY3wtJ3vTj6quvbpqmaUaOHNmMHDlyw/krVqzodLxpmuYLX/hC82Y/ai1ZsqRJ0sydO7fT52+++eaNPr/XXns1SZqbb755sx/LxIkTm+7duzd/+tOfNvs+AICuz0u0AGAbtX79+vz85z/Psccem+HDh290/PWXDC1cuDCHHnpoPv7xj2841qdPn0yaNCmPPfZY/vCHP3S63ZlnntnpPWg+8YlPJHntZV6v3+/JJ5+chQsXZs2aNRvOu/766zNo0KBOO280derU3Hbbbbnsssuyyy67vPMH/R76zGc+k0WLFnX6aGtre9f3e8MNN+QDH/hAxowZk2effXbDx7Bhw9KnT58sXry40/lDhgzZ7N0f//jHueqqq3L++ednv/32e9fXDgB0XV6iBQDbqGeeeSarV6/O0KFD3/a8xx9/PB/96Ec3+vyBBx644fg/38fgwYM7nbfrrrsmSaf3j2lvb8/06dPzi1/8IqeddlrWrFmThQsXpqOj4y1/M9b111+fiy++OBMnTsw555zzLx/f888/3+l9hN6Jvn37/ss3St5jjz22yJs8P/zww3nhhRfSr1+/Nz3+17/+tdOfhwwZslk7S5YsycSJE9PW1pYpU6Zs1n0AAPUQeACAd+St3j+n+adfBz5ixIi0trZm3rx5Oe2007JgwYK8/PLLaW9vf9PbLlq0KGeccUbGjh2bmTNnbtJ1nHjiibn99tvf+QNIsnjx4rd9k+Qtaf369enXr1/mzp37psd33333Tn/enF9tft999+W4447L0KFDM3/+/PTo4Uc+ANjW+W4PANuo3XffPTvvvHMeeOCBtz1vr732ykMPPbTR5//4xz9uOL45TjnllMyYMSOrV6/O9ddfn9bW1owYMWKj85YtW5YTTjghw4cPz7x58zY5Rnz729/e6LdObaqPfOQjm3W7d+Ktnqm0zz775Lbbbsvhhx++WfHmX3n00Udz1FFHpV+/flm4cGH69Onznm8AAF2PwAMA26hu3brl+OOPz5w5c/K73/1uo/fhaZomLS0t+fSnP53p06fn7rvvzsc+9rEkyUsvvZQf/vCHaW1tzUEHHbRZ++3t7Zk2bVpmz56dm2++Oeedd95G5zz44IMZO3ZsWltbc+ONN76j4DFs2LDNuq5SdtxxxyTJqlWrOr2f0CmnnJLvf//7ueSSSzJ16tROt/nHP/6RNWvWbPb7Dz399NM58sgj061bt9xyyy0bPRsIANh2CTwAsA2bOnVqbr311owcOTKTJk3KgQcemD//+c+54YYbsnTp0uyyyy658MIL85Of/CRHH310Jk+enL59+2b27NlZsWJFfvrTn6Zbt837nQyHHHJI9t1333zta1/LK6+8stHLs1588cW0tbVl5cqV+cpXvpKbbrqp0/F99tlnQ3Cq0esBavLkyWlra0v37t0zbty4jBw5Mh0dHfnWt76Ve++9N0ceeWS22267PPzww7nhhhsyY8aMfPazn92szaOOOirLly/PBRdckKVLl2bp0qUbjvXv3z9jxox5Tx4bAND1CDwAsA0bNGhQli1blq9//euZO3duVq9enUGDBuXoo49O7969k7z2D/+77rorX/3qV/O9730v69aty4c//OEsWLAgY8eOfVf77e3tmTJlSvbdd98ccsghnY4999xzeeKJJ5IkF1544Ua3HT9+fNWB58QTT8wXv/jFXHfddZkzZ06apsm4ceOSJDNnzsywYcNy5ZVX5qKLLkqPHj3S2tqa008/PYcffvhmb953331JkmnTpm10bOTIkQIPAGzDWpp/fkdEAAAAAKqzec+5BgAAAKDLEHgAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAULkem3xmS8sWvIw3OPXUcltJ0tZWbutHPyq3lSSrVpXbuu++cltdxWmnldu65JJyW0nSt2+5reefL7eVJEuXltsaP77cVhewYEG5rWOPeKHcWJLsvHOxqUeXF/yem2Sf264sN9bRUW6rK3jmmWJTv//f3YttJcm/fejlcmP/8z/ltpJkzpxyW6W/v3cBl15abuvi8U+UG0uSiy4qNtVcc22xrSS58cZyW8ceW26rK3j88XJb++5bbitJ/r683N/BH9y4Z7GtJDnnrL+XG9tuu006zTN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUrscmn7nHHlvwMt5g4sRyW0kycGC5rYULy20lyejRZffeb158sdhU/8P2KbaVJAcfXG5r8eJdy40lmTmz3Neyo9hS17DbbuW2FtzxgXJjSUaMKLe1T+8/lxtLkuuuK7fV8T77W7F8ebGpf+v5v8W2kiS9Dym3NW1aua0k2X//snvvMxef+mixrZbBZX9+mj792mJbR9xbbCpJ8p//WW7r2GPLbXUFe91R7r+bs876fLGtJLnq1j2LbX3nO8WmkiTjxm1XbGvXTfznkmfwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAULmWpmmaTTnxoYe29KX8vwP+/kC5sSTZb79iU3ffs32xrST52B+vLjd25pnltrqK//7vcluPPFJuK8m/X9lebGv8+GJTr+0NXFRubMyYcltdwC23lNtqO+iJcmNJMnhwua1rrim3lWTlMZ8vtrXrrsWmuobLLy+3tX3ZnzFy993ltr773XJbSTJ5crmt2bPLbXURr7xSbuugg8ptJcmMGeW2Xnqp3FaSjBpVbqt//3JbXUJbW7mt+fPLbSU554Kdim0NH15sKkky8ciCP4vuuecmneYZPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKtdjU088YMALW/I6OnnuH0OLbSXJXbeW2zq2Y2C5sST5r/8qu8eW069f0bnzziu39ZnV15YbS5J7niq3NWZMua0uoG3/FeXG/uOCcltJ8pvflNuaM6fcVpJdS/7/pa2t3FYXcFWvc4ttTZyyd7GtJMm4ceW2Zs4st5Uko0eX3XufeeCBcluPnvvdcmNJ8lzfclvTp5fbSpJjlhYc27HgVhcwYEC5rfnzy20l+cGIgs8pmTCh3FaSPPZY2b1N4Bk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVK6laZpmU058+OEtfSn/b7+ej5cbS5Lf/Kbc1u23l9tKknvvLbd1113ltrqKkSPLbY0ZU24rSc47b9vcSnLRgB8V25o6tdhU17B4cbGphwZ+sthWksycWW7r/PPLbSXJHru+VG5sxx3LbXUBr75abqv7V/6j3FiSbw/6TrGttrZiU0mSoZ/cvdzYM8+U2+oqPlnw/9+rVpXbSop+41854uhiW0lyzTXltgr/aLjVvfxyua3S/2QbNarcVvcf/qDcWJI1nz+n2FafPpt2nmfwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAACoXEvTNM3WvggAAAAANp9n8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABU7v8ATyK7Vl9uzXMAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEtpJREFUeJzt3Xuw1nWh7/HPQgQvaICKTlAuBreGYpYwRGCD5YVRS9PAhcQmLyFRip0xd2hanUp0e3QfOKZCZ1JI0QAbM4WDVyozx+psnXRSNm2x42hmFxUMMIPf+aNx7ZZgLlC+rC++XjPMwPP8nvX5PVwX73me32ppmqYJAAAAANXqtq1PAAAAAIA3R+ABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABANhMhx9+eA4//PD2Hz/55JNpaWnJ3Llzt9k5AQBvbwIPALBNbNiwIXPnzs3xxx+fd73rXdl1110zZMiQfOMb38i6deu26bm1tLRs8ts+++zT6Y+xZMmSfPWrX916J7kJt9xyS8aMGZN3vvOd6dmzZwYMGJCxY8fm0UcfLXoeAEB53bf1CQAAb09r1qzJaaedlhEjRuQzn/lM+vXrlwceeCBf+cpXcs899+Tee+9NS0vLNju/o446KpMmTepw284775wkufPOO9/w8UuWLMlVV11VNPI88sgj6dOnT84555zsueeeefbZZ3Pttddm+PDheeCBB3LIIYcUOxcAoCyBBwDYJnr06JH7778/I0eObL9t8uTJaW1tbY88Rx555DY7v/333z8TJ07c5H09evQofDZ/0zRN1q1b1x6aXuvLX/7yRrd9+tOfzoABA3LNNddk9uzZW/sUAYBtxFu0AGA79/TTT+eMM85of9vOwIEDM3Xq1PzlL39pP+aJJ57IuHHj0rdv3+yyyy4ZMWJEFi9e3OHj/PCHP0xLS0sWLlyYiy++OAMGDMhOO+2UI444Ir/+9a/bjzvrrLPSq1evrFmzZqNzOeWUU7LPPvtk/fr16dGjR4e486oTTzwxSfLYY4+9VT8Fb7nXXoPntU499dRcddVVSTq+3etVGzZsyMyZM3PQQQdlp512yt57750pU6bk+eef7/BxWltb89GPfjR33HFHhg0blp133jlz5szZrHPt169fdtlll7zwwgub9TgAoC5ewQMA27Fnnnkmw4cPzwsvvJAzzzwz73nPe/L000/n5ptvzpo1a9KjR4/87ne/y8iRI7NmzZpMmzYte+yxR+bNm5fjjz8+N998c3twedWll16abt265Qtf+EJefPHFXHbZZfnkJz+ZBx98MEnS1taWq666KosXL864cePaH7dmzZrcdtttOfXUU7PDDju87jk/++yzSZI999xzK/yMdN66devyhz/8ocNtu+22W3r27PmGj50yZUqeeeaZ3HXXXbn++us3ef/cuXNz2mmnZdq0aVm5cmW++c1v5qGHHsr999+fHXfcsf3Y5cuX55RTTsmUKVMyefLkHHDAAW+4/8ILL+SVV17Js88+m5kzZ2bVqlU54ogjOvGsAYBqNQDAdmvSpElNt27dmp///Ocb3bdhw4amaZrm85//fJOkue+++9rvW716dTNw4MCmtbW1Wb9+fdM0TbNs2bImSTN48ODm5Zdfbj921qxZTZLmkUceaf+4/fv3bz7xiU902Fu4cGGTpPnxj3/8D8/5yCOPbHbffffm+eef36Ln/FZIsslv1113XdM0TTN69Ohm9OjR7cevXLmyw/1N0zSf+9znmk19qnXfffc1SZr58+d3uH3p0qUb3b7vvvs2SZqlS5du1vkfcMAB7efcq1ev5sILL2z/dQQAtk9ewQMA26kNGzbk+9//fj72sY9l2LBhG93/6luGlixZkuHDh+ewww5rv69Xr14588wzc/755+dXv/pVhgwZ0n7faaed1uEaNB/60IeS/O1tXkOGDElLS0vGjRuXOXPm5KWXXkqvXr2SJAsWLEj//v077LzWjBkzcvfdd+fqq69O796939Tzf7NOOOGEnHXWWR1uO+igg970x120aFHe8Y535KijjurwCqGhQ4emV69eWbZsWSZMmNB++8CBAzNmzJjN2rjuuuuyatWqPPHEE7nuuuuydu3arF+/Pt26eXc+AGyvBB4A2E79/ve/z6pVqzrEmU35zW9+kw984AMb3T548OD2+//+Y7z73e/ucFyfPn2SpMP1Y9ra2jJz5sz84Ac/yIQJE/LSSy9lyZIlmTJlyut+ZawFCxbkwgsvzBlnnJGpU6e+4fP705/+1OE6Qpujb9++b3ih5AEDBmyVizyvWLEiL774Yvr167fJ+5977rkOPx44cOBmb3zwgx9s//748ePbfy0vv/zyzf5YAEAdBB4AYLO83vVzmqZp//6IESPS2tqahQsXZsKECbntttuydu3atLW1bfKxd911VyZNmpTjjjuu01/p6aSTTsqPfvSjzX8CSZYtW/YPL5K8NW3YsCH9+vXL/PnzN3n/Xnvt1eHHr/cVszqrT58++chHPpL58+cLPACwHRN4AGA7tddee2X33XfPo48++g+P23fffbN8+fKNbn/88cfb798SJ598cmbNmpVVq1ZlwYIFaW1tzYgRIzY67sEHH8yJJ56YYcOGZeHChenevXOfnlxxxRUbfdWpzjrkkEO26HGb4/VeqTRo0KDcfffdGTVq1JuON521du3avPjii0W2AIBtQ+ABgO1Ut27d8vGPfzw33HBDfvGLX2x0HZ6madLS0pJjjz02M2fOzAMPPND+1p4///nP+da3vpXW1tYceOCBW7Tf1taWyy67LPPmzcvSpUtzzjnnbHTMY489luOOOy6tra25/fbbNyt4DB06dIvOq5Rdd901yd++otXfX0/o5JNPztVXX52vf/3rmTFjRofH/PWvf81LL720xdcfeu655zZ669eTTz6Ze+65Z5PXYQIAth8CDwBsx2bMmJE777wzo0ePzplnnpnBgwfnt7/9bRYtWpSf/OQn6d27d6ZPn56bbropxxxzTKZNm5a+fftm3rx5WblyZb73ve9t8YV5Dz300Oy333750pe+lJdffnmjt2etXr06Y8aMyfPPP5/zzjsvixcv7nD/oEGDOlxLpjavBqhp06ZlzJgx2WGHHTJ+/PiMHj06U6ZMySWXXJKHH344Rx99dHbcccesWLEiixYtyqxZszJ27Ngt2jz44INzxBFH5H3ve1/69OmTFStW5Nvf/nZeeeWVXHrppW/l0wMAuhiBBwC2Y/3798+DDz6Yiy66KPPnz8+qVavSv3//HHPMMdlll12SJHvvvXd++tOf5otf/GKuvPLKrFu3Lu9973tz22235bjjjntT+21tbbn44ouz33775dBDD+1w3x//+Mc89dRTSZLp06dv9NhPfepTVQeek046KWeffXa++93v5oYbbkjTNBk/fnySZPbs2Rk6dGjmzJmTCy64IN27d09ra2smTpyYUaNGbfHm1KlTs3jx4ixdujSrV69Ov379cvTRR+eCCy7IwQcf/FY9NQCgC2pp/v6KiAAAAABUZ8tecw0AAABAlyHwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKBy3Tt74KhRW/M0Ojr++HJbSfLF/jcU2/ofv51YbCtJzvvrJeXGzj+/3FYXUfIpX3LB6nJjSTJ2bLmtG28st5Ukc+eW2zr33HJbXcAhh5Tb+uUvy20lSbOq3J/BHXrvVmwrSWbPLrc1eXK5ra5gwYJyW20HPlJuLMn7Jx1cbOuhf1tWbCtJ8txz5bba2sptdRHLCv5y/vu/l9tKknOPX1Fs67/f+E/FtpKkb99yW2efXW6rSxg3rtjUopMXFdtKkltuKbdV+nOMr32t3FZn/970Ch4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJXr3tkDTz11K57Fa/zsZ+W2kuRHIyYW2zpv0QnFtpLks/1vLbZ1dbGlruNrXyu3deuS3cqNJTnhqaeKbV154x7FtpLk7G7a9tby8MPltlpuuL7cWJIxY/+52NbSpcWmkiQLF5bbmjy53FZX0DbsP4ttPfaXg4ttJcns2QXHHv9/BceSXHppua22tnJbXcSHP9JSbutf/qXYVpLkx/sXm9pjj38qtpUk999fbuvss8ttdQX/d/qiYlvjHruh2FaS3L1buf9rf3jky8W2kuTOET2L7nWG/+UAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQue6dPfCWW7bmaXR07LHltpLkP/6j3Nb4n91abixJ795F5952Tj+93Nb131pbbizJOff+qtjWhOHFppIk/U/6b8W2ni431SW0TDil3NiAAeW2ktwx9IJiW8f824xiW0ly7bVF595WTr94ULGta//198W2kmTWnXsV2/rA3TcX20riD8XWts8+xaaWn/6vxbaSZM6ccltNU24rSUaNKrv3djJ0WEuxrUd+WfY3zuol5bbmfbdnubEkl/xmQsG1Gzt1lFfwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAACoXEvTNE2njrz11q18Kv/lfz5xQrGtJPnOd8ptPfTBz5YbS5JBg8ptnXtuua2u4pVXym0tX15uK0nLwUOKbTXve3+xrSRZMP2hYlttbcWmuoa77io2taz7UcW2kuTDL9xSbmzkyHJbpe2997Y+g7LWry+3deyx5baSLP9fdxTbOmDDY8W2kiQHHlhuq5Ofim9XHiv36/nZKwcX20qSq88u+Ht14cJyW0mWj/9Ksa0DDig21TVccUWxqUO+U/b/bBMnlts6b+zKcmNJxnxmYLGtOzr5T65X8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFC5lqZpms4ceMklW/tU/sv5F7SUG0vyzxM79VPwlpg0qdhUkmTnncttHXZYua2uonN/et4aLUMPLTeWJE8/XW5r//3LbSXJ0UeX27roonJbXcD7319u66GdR5YbS5J99y029b8/clOxrSSZ3O3b5cbOOKPcVhewfn25rXvvLbeVJEcdWfAfwR49ym0l+c/HXym2NWhQsaku4/bby2317FluK0mOuun0Ylv/Z9y1xbaSZN26clsnnlhuqys44YRyW4X/Os306eW2Lr+83FaS3NR7armxa67p1GFewQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHItTdM02/okAAAAANhyXsEDAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAULn/D5VIxg/Dp/8fAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAElBJREFUeJzt3X2wl3WB9/HPAQRBMiRFRywP4xMWYyZk4MOok0RIPuCEIJnC7cLJWTrspo2alWaKxGy7uEkD3j4ASQZodmewKpo1aSybM7kzTsriJOItKT6giHgyPWf/cDy7J3w4kHzhC6/XDH/w+12/87kO4+N7rus6DW1tbW0BAAAAoFpdtvcJAAAAAPC3EXgAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAALbQiSeemBNPPLH996tXr05DQ0Pmzp273c4JANi1CTwAwHbR2tqauXPn5rTTTstHP/rR7LHHHhk0aFCuuuqqtLS0bNdza2hoeMdf++23X6e/xtKlS3PFFVdsu5PshOHDh6ehoSFTpkzZrucBAGx73bb3CQAAu6ZNmzZl4sSJGTp0aL7yla+kX79+Wb58eS6//PLcd999+eUvf5mGhobtdn7Dhw/Pueee2+G1nj17Jknuueee9/380qVLM2vWrO0WeX76059m+fLl22UbAChP4AEAtovu3bvnwQcfzDHHHNP+2qRJk9LY2NgeeU4++eTtdn6HHnpozjnnnHd8r3v37oXP5i1tbW1paWlpD03vpqWlJRdeeGEuvvjifPvb3y50dgDA9uQWLQDYyT399NM5//zzs//++6dHjx4ZMGBALrjggrz++uvtx/zxj3/MmDFj0rdv3/Tq1StDhw7NkiVLOnydX/3qV2loaMiiRYty9dVX54ADDsjuu++ez372s3n88cfbj5syZUp69+6dTZs2bXYuZ599dvbbb7+8+eab6d69e4e487bRo0cnSR599NEP6o/gA/fXz+D5axMmTMisWbOSdLzd622tra2ZOXNmPvGJT2T33XfPvvvum6ampqxfv77D12lsbMwXvvCF3H333RkyZEh69uyZOXPmvO/5zZgxI62trbnooou27hsEAKrjCh4A2ImtXbs2Rx99dF566aVMnjw5AwcOzNNPP53bbrstmzZtSvfu3fPss8/mmGOOyaZNm9Lc3JyPfOQjmTdvXk477bTcdttt7cHlbdOnT0+XLl1y0UUX5eWXX86MGTPypS99KStWrEiSjB07NrNmzcqSJUsyZsyY9s9t2rQpd955ZyZMmJCuXbu+6zk/88wzSZK99957G/yJdF5LS0uef/75Dq996EMfSo8ePd73s01NTVm7dm2WLVuWH/3oR+/4/ty5czNx4sQ0NzfniSeeyHXXXZff//73efDBB7Pbbru1H7ty5cqcffbZaWpqyqRJk3LYYYe95/aaNWsyffr03HTTTe97pQ8AsPMQeABgJ3bppZfmmWeeyYoVKzJkyJD216+88sq0tbUleSvYPPvss/nNb36T4447Lslbt0odccQR+drXvpbTTz89Xbr8z0W/LS0tefjhh9tvU9prr70yderUPPLIIxk0aFCOO+649O/fPwsXLuwQeJYsWZJXX301Y8eOfc9znjFjRvbcc8+MHDnyA/tz2Bo33nhjbrzxxg6v3XzzzZkwYcL7fnbYsGE59NBDs2zZss1u83rggQdyww03ZMGCBRk/fnz76yeddFI+//nPZ/HixR1ef/zxx3PXXXdlxIgRnTrvCy+8MJ/61Kcybty4Th0PAOwc3KIFADup1tbW/OxnP8upp57aIe687e1bhpYuXZqjjz66Pe4kSe/evTN58uSsXr06f/jDHzp8buLEiR2eQXP88ccnees2r7e/7pgxY7J06dJs3Lix/biFCxemf//+HXb+2rRp03Lvvfdm+vTp6dOnz5Z/0x+g008/PcuWLevwq7OR5b0sXrw4H/7whzN8+PA8//zz7b8GDx6c3r175/777+9w/IABAzq9e//99+f222/PzJkz/+bzBADq4goeANhJPffcc9mwYUMGDRr0nsc9+eST+cxnPrPZ64cffnj7+//7a3zsYx/rcNxee+2VJB2eHzN27NjMnDkzP//5zzN+/Phs3LgxS5cuTVNT07v+ZKyFCxfmm9/8Zs4///xccMEF7/v9vfjiix2eI7Ql+vbt+74PSj7ggAO2yUOeV61alZdffjn9+vV7x/fXrVvX4fcDBgzo1Nd944030tzcnC9/+cv59Kc//TefJwBQF4EHANgi7/b8nLdv+UqSoUOHprGxMYsWLcr48eNz55135rXXXnvX27OWLVuWc889N6NGjcrs2bM7dR5nnnlmfv3rX2/5N5C3rnR5r4ckb0utra3p169fFixY8I7v77PPPh1+39nn6MyfPz8rV67MnDlzsnr16g7vvfLKK1m9enX69euXXr16bdV5AwA7NoEHAHZS++yzT/bcc8888sgj73ncgQcemJUrV272+mOPPdb+/tY466yzcu2112bDhg1ZuHBhGhsbM3To0M2OW7FiRUaPHp0hQ4Zk0aJF6datc/958v3vf3+znzrVWZ/85Ce36nNb4t2uVDrooINy77335thjj/1AH4K8Zs2a/OUvf8mxxx672Xvz58/P/Pnzc8cdd+SMM874wDYBgB2HwAMAO6kuXbrkjDPOyC233JKHHnpos+fwtLW1paGhIaecckpmzpyZ5cuXZ9iwYUmSV199Nddff30aGxvz8Y9/fKv2x44dmxkzZmTevHm56667MnXq1M2OefTRRzNq1Kg0NjbmF7/4xRYFj8GDB2/VeZWyxx57JEleeumlDs8TOuuss/LDH/4w3/3udzNt2rQOn3njjTeycePGrXr+0Lhx43LkkUdu9vro0aNzyimnZNKkSe94Kx4AsHMQeABgJzZt2rTcc889OeGEEzJ58uQcfvjh+dOf/pTFixfngQceSJ8+fXLJJZfk1ltvzciRI9Pc3Jy+fftm3rx5eeKJJ3L77bd3+AlaW+Koo47KwQcfnMsuuyx//vOfN7s965VXXsmIESOyfv36fP3rX8+SJUs6vH/QQQe1B6cavR2gmpubM2LEiHTt2jXjxo3LCSeckKamplxzzTV5+OGH87nPfS677bZbVq1alcWLF+faa6/NF7/4xS3eGzhwYAYOHPiO7w0YMMCVOwCwkxN4AGAn1r9//6xYsSLf+ta3smDBgmzYsCH9+/fPyJEj25/Fsu++++a3v/1tLr744vzgBz9IS0tLjjjiiNx5550ZNWrU37Q/duzYXH311Tn44INz1FFHdXjvhRdeyFNPPZUkueSSSzb77HnnnVd14DnzzDPz1a9+NT/5yU9yyy23pK2trf1Hl8+ePTuDBw/OnDlz8o1vfCPdunVLY2NjzjnnnHe8xQoA4P00tP3vJyICAAAAUJ2tu+YaAAAAgB2GwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAynXr9JFPPbUNT+Ov/Ou/lttKktmzi02tX/NKsa0k2Wvm5eXGvvOdcls7imuvLbf15JPltpLkpJOKTf3nx04ttpUkn9z76XJj/fuX29oBXHppua1rPv/rcmNJVu1/QrGta64pNpUkuen/vllurGvXcls7gvvvLzb12tBy/9xOkp4t68uNNTeX20qSyZPLbR1/fLmtHUXBvy+yeHG5rSRpayu3deSR5baSzNu9qdjWeecVm9oxXHVVua21a8ttJcmDD5bbuv76cltJzvvhZ4ptzZvXueNcwQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHLdOn3kxRdvw9Po6LUbf1xsK0l6nnxysa29FlxXbCtJ0tJSdm9Xs2FDua2pU8ttJfk/3zmw2NZ99xWbSpIMHNi/2Nbddxeb2iG0tpbbevO4E8qNJem9rtzWZZeV20qSDB1abut3vyu3tSPo1avY1Jo1xaaSJIf9eGa5sdL/oviHfyi7t6vZf/9yW4ccUm4ryaXr/rHY1v9/oNhUkqR373Jb551XbmuHMGdOua0JE8ptJRnW6z+LbV3xUrGpJMl//EfZvc5wBQ8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACV69bpI2+9dRueRkc9//3fi20lSZ56qtzWv/xLua0kGTKk7N4u5keN3yq29dLPi00lSW6+udxWnz7ltpLk7utWFVw7pODW9jduXLmtf/u3cltJ0qNHua3ht5xXbixJHnqo7N6u5MUXi00dtvTyYltJkiuvLLf1d39Xbisp+zf8rui//qvYVNNj/1hsK0muv77c1qGHlttKksceK7u3SznjjGJTPWZ8t9hWkrz+ermtDRvKbSXJFVeU3esMV/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKhct84e+Ny6tm15Hh3s89M5xbaS5IUvNhXbWru22FSSpKGh3NagclM7jGOOKbd1773ltpLkxBPLba1bV24rSXL33eW2Djmk3NYOoG/fcluPP15uK0m+sFvBv27GjSu3leS5f5pXbGufYks7hjc/N7LYVtc1a4ptJUn23rvc1tSp5baSZP36snu7mPt6nVpsq1evYlNJkokTy20NG1ZuK0kazhxdbuyOO8pt7QBWNf+g2FbvHxebSpK0tJTbGlT4f0gPv++6gmtTOnWUK3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAACoXLfOHtilYAr684SmcmNJFt1UbuuCs14oN5bkd3/8SNG9Xc3s2eW2Tjml3FaSHH10ua3vnbys3FiSHHV22b1dyIEP/79yWzOuKraVJOnTp9zWP/9zua0k+/R6teDaHgW3tr+uZ55ebmy//cptJcmVVxabeurDg4ptJclHV95edG9X89pr5ba6dy+3lSR///fltgbf+71yY0lyySVl93Yhra3ltm64odxWkozef0W5sXUt5baS5LLLym1NmdKpw1zBAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcg1tbW1t2/skAAAAANh6ruABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqNx/A6HHgrpyk5JkAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEq5JREFUeJzt3X2w1XWh7/HPVgQEIkEFCoyNmKWiqRCBkg9TBGT5QOIW9BgeR7bcizCnLDVr5GaS0XUGRxGxvOmkNxE9tyIYFB/qiHIo5+Tcy6RevWnHfMRHQsI01v2jcdcOjC3ql/3F12vGP/Zaa6/Pb4HbvX3Pb/12U6PRaAQAAACAau20vQ8AAAAAgLdH4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAeIuOOuqoHHXUUW0fP/bYY2lqasq111673Y4JAHhvE3gAgO1i06ZNufbaa3Psscdmr732Ss+ePTNs2LB861vfysaNG7frsTU1NW3xnwEDBnT4OZYtW5bZs2e/ewe5BbNnz97icXfv3r3ocQAA5XXZ3gcAALw3bdiwIaeffnpGjRqVs846K/369cuqVaty4YUX5o477sidd96Zpqam7XZ8Y8eOzWmnndbutl133TVJctttt23185ctW5b58+cXjzxJsmDBgvTq1avt45133rn4MQAAZQk8AMB20bVr19xzzz057LDD2m4788wz09zc3BZ5Pv3pT2+349t3331z6qmnbvG+rl27Fj6av2g0Gtm4cWNbaHozJ554YvbYY49CRwUAdAbeogUAO7gnnngiZ5xxRj74wQ+mW7duGTJkSKZPn54//elPbY/57W9/m0mTJqVv377p0aNHRo0alaVLl7Z7np///OdpamrKTTfdlIsvvjiDBg1K9+7d86lPfSqPPPJI2+NmzJiRXr16ZcOGDZsdy+TJkzNgwID8+c9/TteuXdvFnTeccMIJSZIHHnjgnfojeMf9/TV4/t7UqVMzf/78JO3f7vWGTZs2Zd68eTnggAPSvXv39O/fP62trXnxxRfbPU9zc3M+97nP5dZbb82IESOy6667ZuHChVs9vkajkXXr1qXRaGzbCwQAquMMHgDYgT355JMZOXJkXnrppUybNi0f/ehH88QTT+Tmm2/Ohg0b0rVr1zzzzDM57LDDsmHDhsycOTO77757rrvuuhx77LG5+eab24LLGy655JLstNNOOeecc/Lyyy9n7ty5OeWUU7J69eokSUtLS+bPn5+lS5dm0qRJbZ+3YcOGLFmyJFOnTv2Hbxl6+umnk2S7n4GycePGPPfcc+1ue9/73pdu3bpt9XNbW1vz5JNPZsWKFfnhD3+4xfuvvfbanH766Zk5c2YeffTRXHHFFfn1r3+de+65J7vsskvbYx966KFMnjw5ra2tOfPMM/ORj3xkq/t777131q9fn549e+b444/PpZdemv79+3fgVQMAtRJ4AGAHdv755+fpp5/O6tWrM2LEiLbbv/nNb7ad3XHJJZfkmWeeyd13350xY8Yk+ctbpQ466KB86UtfynHHHZeddvrrSb8bN27M/fff3/Y2pT59+mTWrFlZs2ZNhg0bljFjxmTgwIFZtGhRu8CzdOnSvPLKK2lpafmHxzx37tz07t07EyZMeMf+HLbFNddck2uuuabdbT/4wQ8yderUrX7u6NGjs++++2bFihWbvc1r5cqV+f73v58bbrghU6ZMabv96KOPzvjx47N48eJ2tz/yyCNZvnx5xo0bt9XdPn36ZMaMGRk9enS6deuWu+++O/Pnz88vf/nL3Hfffendu/dWnwMAqJPAAwA7qE2bNuXHP/5xPv/5z7eLO2944y1Dy5Yty8iRI9viTpL06tUr06ZNy/nnn5/f/OY3GTZsWNt9p59+ertr0Hzyk59M8pe3eQ0bNixNTU2ZNGlSFi5cmPXr17dd7HfRokUZOHBgu52/N2fOnNx+++258sors9tuu72t1/92HXfccZkxY0a72w444IC3/byLFy/O+9///owdO7bdGULDhw9Pr169ctddd7ULPEOGDOlQ3EmSWbNmtfv4C1/4QkaOHJlTTjklV155Zc4777y3ffwAQOck8ADADmrt2rVZt25duzizJb/73e/yiU98YrPb99tvv7b7//Y5PvShD7V7XJ8+fZKk3fVjWlpaMm/evPz0pz/NlClTsn79+ixbtiytra1v+puxFi1alK9//es544wzMn369K2+vhdeeKHddYTeir59+271QsmDBg16Vy7y/PDDD+fll19Ov379tnj/s88+2+7jIUOGvK29KVOm5Mtf/nJuv/12gQcAdmACDwDwlrzZ9XP+9oK+o0aNSnNzc2666aZMmTIlS5YsyR//+Mc3fXvWihUrctppp+WYY47JVVdd1aHjmDhxYn7xi1+89ReQ5K677vqHF0l+N23atCn9+vXLDTfcsMX799xzz3Yfb+03ZnXEXnvtlRdeeOFtPw8A0HkJPACwg9pzzz3Tu3fvrFmz5h8+bvDgwXnooYc2u/3BBx9su39bnHTSSbnsssuybt26LFq0KM3NzRk1atRmj1u9enVOOOGEjBgxIjfddFO6dOnYjyeXXnrpZr91qqM+9rGPbdPnvRVvdqbS0KFDc/vtt+fwww9/R+LN1jQajTz22GM55JBD3vUtAGD7EXgAYAe100475fjjj8/111+f++67b7Pr8DQajTQ1NeWzn/1s5s2bl1WrVmX06NFJkldeeSVXX311mpubs//++2/TfktLS+bOnZvrrrsuy5cv3+z6MMlffhX6Mccck+bm5vzsZz97S8Fj+PDh23RcpfTs2TNJ8tJLL7W7ntBJJ52UK6+8MhdddFHmzJnT7nNef/31rF+/fpuvP7R27drNzgBasGBB1q5dm/Hjx2/TcwIAdRB4AGAHNmfOnNx222058sgjM23atOy333556qmnsnjx4qxcuTK77bZbzjvvvPzoRz/KhAkTMnPmzPTt2zfXXXddHn300dxyyy3tfoPWW3HooYdmn332yQUXXJBXX311s7dn/eEPf8i4cePy4osv5itf+UqWLl3a7v6hQ4e2BacavRGgZs6cmXHjxmXnnXfOySefnCOPPDKtra359re/nfvvvz+f+cxnsssuu+Thhx/O4sWLc9lll+XEE0/cps3BgwenpaUlBx54YLp3756VK1fmxhtvzMEHH5zW1tZ38uUBAJ2MwAMAO7CBAwdm9erV+cY3vpEbbrgh69aty8CBAzNhwoT06NEjSdK/f//ce++9Offcc3P55Zdn48aNOeigg7JkyZIcc8wxb2u/paUlF198cfbZZ58ceuih7e57/vnn8/jjjyfJFi/++8UvfrHqwDNx4sScffbZufHGG3P99den0Wjk5JNPTpJcddVVGT58eBYuXJivfe1r6dKlS5qbm3Pqqafm8MMP3+bNU045Jffee29uueWWbNy4MYMHD85Xv/rVXHDBBW1/3wDAjqmp8bdXRAQAAACgOtt2zjUAAAAAnYbAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKdenwI8eOfRcP4+8sW1ZuK0nmzCk2dcuwC4ttJcnVV5fbuvXWcludxV13lds6+kP/r9xYkpVPDS229fzzxaaSJMcNXVNubNiwcludwcqV5baWLi23lSQjR5bb2nvvcltJMm1aua3Vq8ttdQbTp5fb2n//cltJMn58samH8+FiW0ny4a+3lBtbtKjcViexYkW5rX/913JbSXLffeW2Dj203FaSPP10ua2f/KTcVmfwq1+V25o5s9xWkvz7v5fbOvrocltJcufigv8Ts/vuHXqYM3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFSuS0cfOPj/rng3j6OdrvsXm0qSPDziwWJbv9xQbCpJcs45Zffea7p0+Cvo7Vv17NByY0kGDy63NebVO8qNJcmEqeW2Hn+83FZnsGhRua0rrii3lSQHH1xua82acltJMnFi2b33kAUHLSi2NX3eR4ptJUlmziw29eGmpmJbSbJwwaZiW63FljqPsUe8Wmxr7727FdtKkqE9niq29ed+Hyi2lSQ7z/12wbXzC25tf83N5baOP77cVpLMnl1ua9z//m65sST5n93LbZ19doce5gweAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKtfUaDQaHXpg07t9KH/V+B8/KDeWJP/8z+W2/uVfym0lycc/Xm5r8uRyW53Ea6+V29pl06vlxpJkjz3Kba1fX24rSUaNKre1alW5rU7gO98pt3XuwOvLjSVJx75dviNeO/mfim0lyZo15bYOOaTcVmcwcWK5rZLf8pOkS5dyW1/Zo/DPhuPHl9v6wAfKbXUWF11UbmvAgHJbSTJtWrmts84qt5Ukv/99ua0lS8ptdQavFvw5/9lny20lyYMPltvq2rXcVpIccUS5rQ4GGWfwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAACoXFOj0Wh05IFnnvluH8pffW/WmnJjSS5cPKzY1n8bv6rYVpLkiCPKbb32WrmtTmL69HJbC772eLmxJD/5j72KbR33wV8V20qSlv/+8WJbixYVm+ocXn653Nby5eW2kjxzVEuxrcIvLV889P+UGzvwwHJbncC555bb+rd/K7eVJGPGlNsaPLjcVpLMmL9fubEHHii31Uk8XvBHmueeK7eVJAMGlNvq0aPcVpK89FK5rdJf89vbd79bbuv118ttJcn553UoN7wj/st/bSq2lZT9Ht/Rrwln8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFC5pkaj0ejQI7/3vXf5UP5q/eQzi20lSa/Vd5QbW7683FaSzJ5dbqtnz3JbnUUHv3zeEfffX24rSf7zP4tN/X74ccW2kmRQn1fKjb3Hvi5Wriy3dfDB5baSpNdF55YbO/HEcltJXj3o48W2unUrNtUpXH55ua1hw8ptJcmdd5bbmjat3FZS9r9lkyeX2+osFi8utzXpAwX/MpP8r7Vjim0tW1ZsKknSt2+5re98p9xWZ/Doo+W2Xnih3FaSDBpUbqv0vzeDB5fbmjWrY49zBg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMo1NRqNxvY+CAAAAAC2nTN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACr3/wHQW40SAxhvXAAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEr9JREFUeJzt3Xuw1nWh7/HPQjQQVCRBEtNFepwtOkZKCkobpyAyL6kpS8lUtgeRvJ+jpWWj2xTdeeyAZgfdnsKUneDu6Eiy8QaplTo2XXaO9x1ao2apIIICKr/zR+OalkttgfJlffH1mlkz8jy/5/n81sLL4u2zfk9L0zRNAAAAAKhWj/V9AgAAAAC8NwIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAMAa2nfffbPvvvu2//rJJ59MS0tLZs6cud7OCQD4YBN4AID1YvXq1Zk5c2YOOuigfPSjH02fPn2y66675oILLsiKFSvW67m1tLS87cegQYO6/Bzz5s3Leeedt+5O8l3Mnj07I0eOTJ8+fdKvX7/svffeWbBgwXo5FwCgjJ7r+wQAgA+mV155JRMnTsyIESNywgknZODAgbn33ntz7rnn5s4778yCBQvS0tKy3s5v7NixOfroozvc1rt37yTJbbfd9ncfP2/evFxxxRXFI895552X888/P4cddliOPfbYvPbaa3nwwQfz9NNPFz0PAKAsgQcAWC822WST/PznP8/ee+/dftukSZPS2traHnnGjBmz3s5vp512ylFHHfW2922yySaFz+avmqbJihUr2kPTW9133305//zzc+mll+b0008vfHYAwPrkR7QAYAP39NNP57jjjss222yTD33oQxkyZEimTJmSVatWtR/z+9//Pocffnj69++fTTfdNCNGjMgtt9zS4Xl++tOfpqWlJXPmzMmFF16YbbfdNr169cpnPvOZPPHEE+3HnXTSSenbt29eeeWVTudy5JFHZtCgQXnjjTeyySabdIg7bzrkkEOSJA8//PD79SV43731Gjxvdeyxx+aKK65I0vHHvd60evXqTJs2Lbvsskt69eqVrbfeOpMnT87ixYs7PE9ra2sOOOCA3HrrrRk+fHh69+6dK6+88h13p02blkGDBuXUU09N0zRZtmzZe/tEAYBqCDwAsAF75plnsueee+b6669PW1tbLrvssnz5y1/OXXfd1R5gnnvuuey999659dZb85WvfCUXXnhhVqxYkYMOOig33nhjp+e8+OKLc+ONN+aMM87I2Wefnfvuuy9f+tKX2u9va2vL8uXLOwWiV155JXPnzs1hhx2WjTba6B3P+U9/+lOSZKuttno/vgRrbcWKFXn++ec7fKxcubJLj508eXLGjh2bJLn22mvbP/72/jPPPDP77LNPpk+fnokTJ2bWrFkZN25cXnvttQ7P9eijj+bII4/M2LFjM3369AwbNuwdd++888588pOfzGWXXZYBAwZks802y0c+8pF897vfXfMvAABQlwYA2GAdffTRTY8ePZoHHnig032rV69umqZpTjvttCZJc88997Tf9/LLLzdDhgxpWltbmzfeeKNpmqZZuHBhk6TZeeedm5UrV7YfO3369CZJ87vf/a79eQcPHtx88Ytf7LA3Z86cJklz9913v+s5jxkzptl8882bxYsXr9Xn/H5I8rYfP/jBD5qmaZrRo0c3o0ePbj9+0aJFHe5vmqY58cQTm7f7Vuuee+5pkjSzZs3qcPv8+fM73b799ts3SZr58+f/3XN+8cUXmyTNhz/84aZv377NJZdc0syePbv53Oc+1yRpZsyYsWZfBACgKl7BAwAbqNWrV+emm27KgQcemOHDh3e6/80fGZo3b1723HPPjBo1qv2+vn375vjjj8+TTz6Zhx56qMPjJk6c2OEaNJ/61KeS/PXHvN583sMPPzzz5s3r8CNCs2fPzuDBgzvsvNXUqVNzxx135OKLL06/fv3W/JN+H33hC1/I7bff3uFj3Lhx7/l5b7jhhmyxxRYZO3Zsh1cH7bHHHunbt28WLlzY4fghQ4Z0affNr/ULL7yQq6++OmeccUbGjx+fW265JUOHDs0FF1zwns8dAOi+XGQZADZQf/nLX7J06dLsuuuu73rcU089lb322qvT7TvvvHP7/X/7HNttt12H47bccssk6XD9mLa2tkybNi0333xzJkyYkGXLlmXevHmZPHnyO74z1uzZs3POOefkuOOOy5QpU/7u5/fiiy92uI7Qmujfv//fvVDytttuu04u8vz444/npZdeysCBA9/2/j//+c8dfj1kyJAuPe+bF17eeOONc9hhh7Xf3qNHj7S1teXcc8/NH/7wh06/fwDAhkHgAQDWyDtdP6dpmva/HjFiRFpbWzNnzpxMmDAhc+fOzauvvpq2tra3feztt9+eo48+Ovvvv39mzJjRpfM49NBDc9ddd635J5Bk4cKF73qR5HVp9erVGThwYGbNmvW29w8YMKDDr9/pHbPeqn///unVq1f69evX6ffozZi0ePFigQcANlACDwBsoAYMGJDNN988Dz744Lset/322+fRRx/tdPsjjzzSfv/aGD9+fKZPn56lS5dm9uzZaW1tzYgRIzodd//99+eQQw7J8OHDM2fOnPTs2bVvTy699NJO7zrVVR//+MfX6nFr4p1eqbTDDjvkjjvuyD777NPleNMVPXr0yLBhw/LAAw9k1apVHV6h9MwzzyTpHI8AgA2HwAMAG6gePXrk4IMPznXXXZdf/vKXna7D0zRNWlpa8vnPfz7Tpk3Lvffem5EjRyZJli9fnquuuiqtra0ZOnToWu23tbXl29/+dq655prMnz8/p556aqdjHn744ey///5pbW3NT37ykzUKHnvsscdanVcpffr0SZIsWbKkw/WExo8fn+9973v51re+lalTp3Z4zOuvv55ly5at9fWH2tract999+Waa67JpEmTkvz13cBmzZqVoUOHZptttlmr5wUAuj+BBwA2YFOnTs1tt92W0aNH5/jjj8/OO++cZ599NjfccEN+9rOfpV+/fjnrrLPyox/9KPvtt19OOeWU9O/fP9dcc00WLVqUH//4x+nRY+3ek2H33XfPjjvumG984xtZuXJlpx/PevnllzNu3LgsXrw4Z555Zqe3Vd9hhx3ag1ON3gxQp5xySsaNG5eNNtooRxxxREaPHp3Jkyfnoosuym9+85t89rOfzcYbb5zHH388N9xwQ6ZPn97hGjprYvLkybn66qtz4okn5rHHHst2222Xa6+9Nk899VTmzp37fn56AEA3I/AAwAZs8ODBuf/++/PNb34zs2bNytKlSzN48ODst99+2XTTTZMkW2+9dX7xi1/ka1/7Wi6//PKsWLEiu+22W+bOnZv999//Pe23tbXlwgsvzI477pjdd9+9w30vvPBC/vjHPyZJzjrrrE6PPeaYY6oOPIceemhOPvnkXH/99bnuuuvSNE2OOOKIJMmMGTOyxx575Morr8zXv/719OzZM62trTnqqKOyzz77rPVm7969s2DBgnz1q1/N97///SxfvjzDhg3LLbfc8r68AxgA0H21NH97RUQAAAAAqrN2r7kGAAAAoNsQeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQuZ5dPfDee9flaXQ0crfl5caSvPR6n2Jbq1YVm0qSDNiqKTfW0lJuq5t49dVyW73/51fKjSXJ8oL/HI4ZU24ryf9d9eViW8cdV2yqe7j11mJTF/1qXLGtJPn0p8tt7TWi8L9Pf/Wrcluf+ES5rW7g178ut/WJSyaUG0uy7Kp/K7a1117FppIkS5aU23r66XJb3caUKeW2Fiwot5Ukra3ltk46qdxWkmy5ZbmtUaPKbXUH//zP5bZOOKHcVpLcfHOxqbt2mlRsK0lGDy/456U+XWsWXsEDAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByPbt64Mhev16X59FRz6HltpJs8c3/UW5syZJyW0ny7LPltv7jP8ptdRMHHVRu62Mf+165sSTHnlBu62MfK7eVJPlJ4b0Pkh7l/r/BzTcXmypuyfym6N4/9C+3tX25qW7htNPKbR1++L+VG0ty8JJyW5/+dLmtJLk8Jxdd+8DZaqtyW489Vm4ryY+nPlps64vb/bbYVpLkoYfK7n2Q9C/4H+LXXy+3lSSHHlpsqkfhv0X/zw/7FNuaMqVrx3kFDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJXr2dUD/+W2T6zL8+jga/0WFdtKkkyaVG7rH/+x3Bbr3O3/67flxoYNK7eV5JgVTbGtmTOLTSVJliwpu/dB8kC/scW2xowpNpUkOemkclub7f7fyo0lyYwZ5ba2/0y5rW7gppvKbW152jHlxpLk5X8oNjV16tnFtpIkS75ado91Z6edis7dfXe5rf/8z4+XG0sybFi5vUOKLXUTp5xSbmvhwnJbSc7c4f8V23riiWJTSZIjjii71xVewQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHItTdM0XTryrrvW8an8jfnzy20lefnrFxXb6tu32FSSpGXQ1uXGnnuu3FZ3MWVKua3SX99Fi8ptDRlSbitJzjyz3NbIkeW2uoGxY8tt/dM/ldtKkm22Kbc1eunccmNJ/vcTBxbbOv30YlPdQhe/y3pfbLttua0kefqXz5Ybe/75cltJ8tJL5bZGjSq31V2cfXa5ralTy20lyerVxaYu+c5GxbaS5LTTym1tvHG5rW7h8svLbR1wQLmtJJOmlvs+f7fdik0lKfvHpe98p2vHeQUPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlevZ5SP33XfdncVbzZxZbivJZo88UG7soYfKbSXJLruU3fugOeecYlNDRg0utpUki7b6ZLmx//qvcltJstlmZfc+QP7938ttbfHHB8uNFXblIwcW3Rs1qujcB8oPf1hua7fdym0lSQ4+uNjUv/73+4ttJcmk41vKjTVNua3uYsKEYlNXXlXw9zLJdtttVGyr5B/PkmT48HJbv/1tua3u4EdbnVxsq98jxaaSJP96/rPFtl7u+5FiW0kyfXrRuS7xCh4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVraZqmWd8nAQAAAMDa8woeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMr9f+F9w5quJ27hAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEkVJREFUeJzt3X+w1XXh5/EXyC+B1EjRFZPLVy0xVlchQ6yFVpAxEn8QXhG+JOMIuSnZlpOr+M0ZEf0633ZgE1Kb2WCCEhCzkPslMYlMHb61qzs6omMbMg6mZYGIN3D1nv2j8c5ewUSUN7zh8Zi5M3LO55zX5+DoxafnfG6nRqPRCAAAAADV6ry3TwAAAACAD0bgAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQB4n0aMGJERI0a0//r5559Pp06dMn/+/L12TgDAgU3gAQD2ira2tsyfPz9jx47Nxz/+8fTq1SuDBg3KzJkzs23btr16bp06ddrp11FHHbXLz9HS0pIbb7xxz53kTjQ1Nb3ruZ9wwglFzwUAKKvL3j4BAODA1NramilTpmTo0KH5yle+kr59++axxx7Lt7/97fziF7/IQw89lE6dOu218xs1alQmT57c4baDDz44SfLAAw+85+NbWloyd+7copFn9uzZ2bp1a4fbNmzYkBkzZuTss88udh4AQHkCDwCwV3Tr1i2PPPJIhg0b1n7b5ZdfnqampvbIM3LkyL12fp/4xCcyadKknd7XrVu3wmfzN41GI9u2bWsPTe90/vnn73DbzJkzkyQTJ07ck6cGAOxlPqIFAPu5jRs35rLLLsvRRx+d7t27Z8CAAbniiivyxhtvtB/z+9//PuPHj0+fPn3Ss2fPDB06NCtWrOjwPL/85S/TqVOnLFmyJDfffHOOOeaY9OjRI2eddVZ+97vftR935ZVXpnfv3mltbd3hXCZMmJCjjjoqb731Vrp169Yh7rztggsuSJKsW7fuw/ot+NC98xo873TppZdm7ty5STp+3OttbW1tmT17dj71qU+lR48eOfLIIzNt2rRs2rSpw/M0NTXli1/8Yn7+859nyJAhOfjgg3PnnXe+r3P90Y9+lAEDBuz09xoA2H94Bw8A7MdefPHFnH766dm8eXOmTp2aE088MRs3bsw999yT1tbWdOvWLS+//HKGDRuW1tbWTJ8+PR/72MeyYMGCjB07Nvfcc097cHnbrbfems6dO+eb3/xmXn311dx2222ZOHFi1q5dmyRpbm7O3Llzs2LFiowfP779ca2trVm+fHkuvfTSHHTQQe96zi+99FKS5PDDD98DvyO7btu2bXnllVc63PaRj3wk3bt3f8/HTps2LS+++GJWrVqVH/7whzu9f/78+ZkyZUqmT5+e9evX5/bbb8/jjz+eRx55JF27dm0/9tlnn82ECRMybdq0XH755fnkJz+5y6/h8ccfz7p163L99dfv8mMAgEo1AID91uTJkxudO3du/OY3v9nhvra2tkaj0WhcffXVjSSNhx9+uP2+1157rTFgwIBGU1NT46233mo0Go3G6tWrG0kaAwcObGzfvr392Dlz5jSSNJ588sn25+3Xr19j3LhxHfaWLFnSSNL41a9+9XfPeeTIkY1DDjmksWnTpt16zR+GJDv9+sEPftBoNBqN4cOHN4YPH95+/Pr16zvc32g0Gl/96lcbO/uj1sMPP9xI0li0aFGH21euXLnD7f37928kaaxcuXK3Xsc3vvGNRpLG008/vVuPBwDq4SNaALCfamtry3333Zdzzz03Q4YM2eH+tz8y1NLSktNPPz2f/exn2+/r3bt3pk6dmueffz5PP/10h8dNmTKlwzVoPve5zyX528e83n7e8ePHp6WlpcMFfxcvXpx+/fp12HmnWbNm5cEHH8ytt96aww477P2/6A/Reeedl1WrVnX4Gj169Ad+3qVLl+bQQw/NqFGj8sorr7R/DR48OL17987q1as7HD9gwIDd2m1ra8vdd9+dU089NQMHDvzA5w0A7Nt8RAsA9lN/+tOfsmXLlgwaNOjvHrdhw4Z85jOf2eH2t6PAhg0bOjzHscce2+G4j370o0nS4foxzc3NmT17dn72s5/lkksuydatW9PS0pJp06a960/GWrx4cWbMmJHLLrssV1xxxXu+vr/85S8driP0fvTp0+c9L5R8zDHH7JGLPD/33HN59dVX07dv353e/8c//rHDrwcMGLBbO2vWrMnGjRvz9a9/fbceDwDUReABAN6Xd7t+TqPRaP/roUOHpqmpKUuWLMkll1yS5cuX569//Wuam5t3+thVq1Zl8uTJGTNmTO64445dOo8LL7wwa9asef8vIMnq1av/7kWS96S2trb07ds3ixYt2un9RxxxRIdfv9tPzHovixYtSufOnTNhwoTdejwAUBeBBwD2U0cccUQOOeSQPPXUU3/3uP79++fZZ5/d4fZnnnmm/f7dcdFFF2XOnDnZsmVLFi9enKampgwdOnSH49auXZsLLrggQ4YMyZIlS9Kly6798eQ73/nODj91aledcsopu/W49+Pd3ql03HHH5cEHH8yZZ5652/HmvWzfvj3Lli3LiBEjcvTRR++RDQBg3yLwAMB+qnPnzjn//POzcOHC/Pa3v93hOjyNRiOdOnXKF77whcyePTuPPfZYzjjjjCTJ66+/nrvuuitNTU056aSTdmu/ubk5t912WxYsWJCVK1fma1/72g7HrFu3LmPGjElTU1Puv//+9xU8Bg8evFvnVUqvXr2SJJs3b+5wPaGLLroo8+bNy0033ZRZs2Z1eMybb76ZrVu3fuDrD7W0tGTz5s2ZOHHiB3oeAKAeAg8A7MdmzZqVBx54IMOHD8/UqVMzcODA/OEPf8jSpUvz61//Oocddliuvfba/PjHP84555yT6dOnp0+fPlmwYEHWr1+fZcuWpXPn3fuZDKeddlqOP/74XH/99dm+ffsOH8967bXXMnr06GzatCnXXHNNVqxY0eH+4447rj041ejtADV9+vSMHj06Bx10UC6++OIMHz4806ZNyy233JInnngiZ599drp27ZrnnnsuS5cuzZw5c/KlL33pA20vWrQo3bt3z7hx4z6MlwIAVEDgAYD9WL9+/bJ27drccMMNWbRoUbZs2ZJ+/frlnHPOSc+ePZMkRx55ZB599NF861vfyne/+91s27YtJ598cpYvX54xY8Z8oP3m5ubcfPPNOf7443Paaad1uO/Pf/5zXnjhhSTJtddeu8Njv/zlL1cdeC688MJcddVVufvuu7Nw4cI0Go1cfPHFSZI77rgjgwcPzp133pnrrrsuXbp0SVNTUyZNmpQzzzzzA+1u2bIlK1asyJgxY3LooYd+GC8FAKhAp8b/f0VEAAAAAKqze++5BgAAAGCfIfAAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHJddvnIG27Yg6fxDsccU24rSYYMKbfV0lJuK8niT5T7+9bcXGxq37F8ebmtl14qt5UkL79cbOr+/zCj2FaSfPrT5baOPLLc1j6h5L8ICv/7NFu3lts6//xyW0mWTfpJsa1x44pN7ROWLSu31a1bua0k6dGj3Naowx8vN5bkN2+eWmyr5PekfcbCheW2Bg8ut5Xkr00Di23ddVexqSTJmjXltu69t9zWvuAn5b4N5403ym0lSfOwF8qNvfpqua0kV8wdVGzre9/bteO8gwcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOW67OqBP//sTXvyPDr4p38qNpUkOeSecltduw4uN5bkus8XnTvw9OxZbmvevHJbSfLEE8Wmvnjt68W2kuTLS28ptrVgQbGpfUO/fsWm1tz/WrGtJBk+c1S5seuuK7eVZFzn/1lwrez3wb2tb99yWw89VG4rSY49ttzW44efWm4sySGHFJ078PTqVW7rwQfLbSU5ePpJxba+dt99xbaSZNCg84ruHUhaWsptff8//rDcWJJ0GVlu64Ybym0l+epNPym6tyu8gwcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKddnbJ7Az8+aV3Rs5stzW5s3ltpLkhRfKbT35ZLmtfcXWz5xVbKv31VcX20qSTJpUbuvf/q3cVpIFy68ruDar4Nbe9/AF/63Y1ptvFJv6m4suKja1/eRPF9tKkttvL7f1jcHltvYFn1szs9zYf5pRbivJsGHltroU/hPriSeW21q3rtzWPqNHj2JTf/jSVcW2kuTfnXxyubGC35eS5Kyx9xcc+365rX3AvfeW23rmmX8sN5bk4Rf/udxY4f/YHnTw/ym4dtwuHeUdPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKtdlVw888cQ9eRod9X/oB+XGkowdO6XY1oJRC4ttJcnM5ycV3TvQPPJIua3RJ51UbizJT+8/qNjWWWedUWwrSXp///tF9w4kQ4eW2+p63TXlxpJky5ZiU90vvbTYVpL8wz90Lbp3QGltLTbVs2exqSTJQb9aXWzr0Uc/X2wrSc44+fWCa70Kbu0b1vQ8p9jWsMOLTSVJNrwxvNhW/3nzim0lSbp1K7t3ALnxxnJbTz1VbitJRj/0rWJb//Lfy20lyb//L+eVG/vpT3fpMO/gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHJddvXA/tPP25Pn0cH/veenxbaSZMH/uqrY1uKu3y22lSQzTlhccK254Na+YfS908qNXXllua0kzzxTbuu8oS+XG0vy3H/9H8W2Tii2tG/o+i+3lBvr3bvcVpKcckqxqaee7VpsK0lOO63o3AHlfzfPKrZ1fFOxqSTJvz76+WJb5wz6U7GtJPnP1xxRbGvevGJT+4yePctttbWV20qSBx4ot3X54YX/X/33vldu69xzy23tA55+utxWa2u5raTsPxN9+5bbSpJccknhwffmHTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACrXqdFoNPb2SQAAAACw+7yDBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKBy/w971pOBFK6BngAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAExRJREFUeJzt3X+Q1XWh//HX8lORDFHRxHQZDSUZ6wLqqjXYTfOSZooC/uAu8vXCxjfDumPlTflmPySzaa7cwFHLbzBCCmp5RckEpVJTrk52i9EcLS1/VP4IRdqAZM/3j8b93g2txeTNvvHxmNkZd8/nnNfnALJnnpxztqnRaDQCAAAAQLV6besTAAAAAODvI/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAGyho446KkcddVTn548//niampoyf/78bXZOAMCbm8ADAGwTHR0dmT9/fk444YS8/e1vz0477ZSRI0fmi1/8YtavX79Nz62pqelVP/bcc89u38ayZcty4YUXbr2TfA0rVqzI+973vuy2224ZNGhQDj300Fx99dXFzwMAKKvPtj4BAODNqb29PVOnTk1LS0s+8pGPZMiQIbnnnnvy2c9+NrfffnvuuOOONDU1bbPzO+aYY9La2trlazvuuGOS5Lbbbvub11+2bFnmzZtXNPLcdNNNOfHEE3P44YfnwgsvTFNTU5YsWZLW1tY899xz+cQnPlHsXACAsgQeAGCb6NevX+6+++4cccQRnV+bNm1ampubOyPP0Ucfvc3Ob/jw4Zk8efKrXtavX7/CZ/NnjUYj69ev7wxNf2nu3Ll529veljvuuCP9+/dPkrS1teXAAw/M/PnzBR4A2I55iRYAbOeeeuqpnHXWWdlrr73Sv3//DBs2LDNmzMjGjRs7j/nlL3+ZCRMmZPDgwRkwYEBaWlpyyy23dLmd73//+53PCLnooouy9957Z4cddsj73//+PProo53HnX322Rk4cGDa29s3O5fTTjste+65ZzZt2pR+/fp1iTuvOOmkk5IkDz300Bv1S/CG+8v34PlLZ555ZubNm5ek68u9XtHR0ZFLL700Bx10UHbYYYfsscceaWtry5o1a7rcTnNzc44//vh873vfy5gxY7LjjjvmiiuueM3dtWvXZpdddumMO0nSp0+f7Lbbbq8ZhQCA7YNn8ADAduzpp5/OoYcemhdeeCHTp0/PgQcemKeeeirXX3992tvb069fv/zud7/LEUcckfb29sycOTO77rprFixYkBNOOCHXX399Z3B5xcUXX5xevXrl3HPPzYsvvphLLrkkZ5xxRlatWpUkmTRpUubNm5dbbrklEyZM6Lxee3t7li5dmjPPPDO9e/d+zXP+7W9/myTZbbfdtsKvSPetX78+zz33XJevveUtb+kST15LW1tbnn766SxfvvxV3/+mra0t8+fPz9SpUzNz5sw89thjmTt3bh544IHcfffd6du3b+exDz/8cE477bS0tbVl2rRpOeCAA15z96ijjsqXv/zlzJo1K1OmTElTU1O+9a1v5f7778+SJUu24N4DANVpAADbrdbW1kavXr0a991332aXdXR0NBqNRuPjH/94I0njzjvv7LzspZdeagwbNqzR3Nzc2LRpU6PRaDRWrlzZSNIYMWJEY8OGDZ3Hzpkzp5Gk8bOf/azzdocOHdo4+eSTu+wtWbKkkaTxwx/+8K+e89FHH93YeeedG2vWrHld9/mNkORVP775zW82Go1GY+zYsY2xY8d2Hv/YY491ubzRaDQ++tGPNl7todadd97ZSNJYtGhRl6/feuutm3193333bSRp3Hrrrd0673Xr1jUmTpzYaGpq6jznAQMGNG688cbu33kAoEpeogUA26mOjo7ceOON+dCHPpQxY8ZsdvkrLxlatmxZDj300LznPe/pvGzgwIGZPn16Hn/88Tz44INdrjd16tQu70Hz3ve+N8mfX+b1yu1OmDAhy5Yty7p16zqPW7x4cYYOHdpl5y/Nnj07K1asyMUXX5xBgwZt+Z1+A334wx/O8uXLu3wce+yxf/ftXnfddXnrW9+aY445Js8991znx+jRozNw4MCsXLmyy/HDhg3r9m7//v0zfPjwnHLKKbnmmmuycOHCjBkzJpMnT8699977d587ANBzeYkWAGynnn322axduzYjR478q8f96le/ymGHHbbZ10eMGNF5+f+8jX322afLcbvsskuSdHn/mEmTJuXSSy/NTTfdlNNPPz3r1q3LsmXL0tbW9po/GWvx4sW54IILctZZZ2XGjBl/8/79/ve/7/I+Qlti8ODBf/ONkvfee++t8ibPjzzySF588cUMGTLkVS9/5plnunw+bNiwbt/22WefnXvvvTc//vGP06vXn/8db+LEiTnooINyzjnndL6MDgDY/gg8AMAWea33z2k0Gp3/3dLSkubm5ixZsiSnn356li5dmj/+8Y+ZNGnSq153+fLlaW1tzXHHHZfLL7+8W+cxfvz4/OAHP9jyO5Bk5cqVf/VNkremjo6ODBkyJIsWLXrVy3ffffcun3f3zZE3btyYq666Kp/61Kc6406S9O3bN+PGjcvcuXOzcePGbfYTwACArUvgAYDt1O67756dd945q1ev/qvH7bvvvnn44Yc3+/rPf/7zzstfj4kTJ2bOnDlZu3ZtFi9enObm5rS0tGx23KpVq3LSSSdlzJgxWbJkSfr06d7Dk69+9aub/dSp7nrXu971uq63JV7rmUr77bdfVqxYkSOPPPIN/clWzz//fF5++eVs2rRps8v+9Kc/paOj41UvAwC2DwIPAGynevXqlRNPPDELFy7M/fffv9n78DQajTQ1NeWDH/xgLr300txzzz05/PDDkyR/+MMfcuWVV6a5uTnvfOc7X9f+pEmTcskll2TBggW59dZbc84552x2zEMPPZTjjjsuzc3Nufnmm7coeIwePfp1nVcpO+20U5LkhRde6PJ+QhMnTsxll12WL3zhC5k9e3aX67z88stZt27d63r/oSFDhmTQoEH5zne+k89//vOdz9RZt25dli5dmgMPPNCPSgeA7ZjAAwDbsdmzZ+e2227L2LFjM3369IwYMSK/+c1vct111+Wuu+7KoEGDct555+Waa67JuHHjMnPmzAwePDgLFizIY489lhtuuKHLy322xKhRo7L//vvn/PPPz4YNGzZ7edZLL72UY489NmvWrMknP/nJ3HLLLV0u32+//TqDU41eCVAzZ87Msccem969e+fUU0/N2LFj09bWli996Uv5yU9+kg984APp27dvHnnkkVx33XWZM2dOTjnllC3e6927d84999xccMEFaWlpSWtrazZt2pSrrroqTz75ZBYuXPhG30UAoAcReABgOzZ06NCsWrUqs2bNyqJFi7J27doMHTo048aNy4ABA5Ike+yxR370ox/l05/+dL72ta9l/fr1Ofjgg7N06dIcd9xxf9f+pEmTctFFF2X//ffPqFGjulz2/PPP54knnkiSnHfeeZtdd8qUKVUHnvHjx+djH/tYrr322ixcuDCNRiOnnnpqkuTyyy/P6NGjc8UVV+Qzn/lM+vTpk+bm5kyePDlHHnnk6948//zzM2zYsMyZMyef+9znsmHDhhx88MG5/vrrc/LJJ79Rdw0A6IGaGv/zHREBAAAAqM7re841AAAAAD2GwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAyvXp7oH//M9b8zS6mj693FaSHHFEua1Zs8ptJcnsF/53ubHLLiu31UM88EC5rRUrym0lyT/+Y7mtjo5yW0kyalS5rd69y231BOPHl9v69p27lxtLkl//utxWe3u5rSTPduxabGv3wr9t29rCheW2Jr9jVbmxJPnGN4pN/ffZXy+2lZT9ffvKV8pt9RgbNpTb6tev3FaS//5pU7Gt0o+f3vGOclsDB5bb6gm++91yWyUf4ydJ/7XPFtu6/adlH2Tss0+5re7+/+cZPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKtenuwdePehjW/M8uhpwZrmtJJ+ZNbrY1uzPbii2lST54Ull995k3v3uclurV5fbSpLRP/56ubHW1nJbSRZe07/Y1uTJxaZ6hGnTym0tnvRsubEkk77/3WJbvxg+rthWkvzLv5TbWrmy3FZPMHnXcn9untir7J+bU356WLGtWU8Um0qS9PJPoFvVn3qV+z782yeLTSVJ3nXn3HJjbW3ltpKsfrhvsa2RI4tN9Qh77VVuq7293FaS9J89u9jWqP/z78W2kmTjxqJz3eLbFwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVrajQajW4d+fWvb+VT+f8OuXJasa0kaWkpt/Xkk+W2kuTqq8ttDRxYbqun+M//LLe1557ltpLksJtnlRt75plyW0m+2XJFsa2pU4tN9QhNTeW2xo0rt5Ukv/hFua2H711TbixJHn+83NY//EO5rZ7gkUfKbX3+8+W2kmTUqGJT/+tnnyi2lSQzZpTbOuSQcls9xRXlvg3njDPKbSXJwC98utzYqaeW20qy4Kfl/v6eMqXYVI9www3ltg47rNxWkuz99oIPDjs6ym0l+dLF5e7bv/1b947zDB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJXr090DVx8+bWueRxf/t6XYVJLkX/+13NbyJWvKjSX50Gm7FNtaurTYVI/x6KPltjo6ym0lSTZtKrd15ZXltpJ8Y/UVxbamTi021SNce225rfb2cltJcvzx5bbmLir3d3eSHH54ub3RxZZ6iOHDi03d91+NYltJcsiP5hTb2mmnYlNJkgcfLLd1yCHltnqKjRvLbd13X7mtJHnfJZeUG/unfyq3lW3wWPRN5Ne/Lre1//7ltpJk73e/u9zYt79dbivJ+PEnF93rDs/gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHJ9unvgyN/dvjXPo4umo99fbCtJGg8+VGzri/NGFNtKksGDi8696axeXW7rlFPKbSVJ3nF6ua0ZM8ptJblpQNG5N5X/+I9yW3df8N1yY0my8eBiU2cP/a9iW0mSX75cbmv0hHJbPcGYMcWmLrig2FSS5Oabzym29bWHC37DTTLlKyPLbU0pNtVjrFhRbqu1tdxWkuTKK8ttrV9fbivJk08WnXtTKflb2dxcbitJMnx4ua3Cd+6uu8ptHXBA947zDB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVrajQajW19EgAAAAC8fp7BAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFC5/wcQGN4b6kObAwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAE2FJREFUeJzt3Xuw1XWh9/HPRkRQvJGohcneD45G3k54ATHFRo3xrhBsNTI8jHI0RT1HR7N8asZLDo3PkRRvzTlKXhLQNEk0MSnxEqc61MRJHUu85KUkRUUupvyePxr3cQcWonzdX3q9ZvYfrPVb6/NbMMDmzW+v3dI0TRMAAAAAqtXtwz4BAAAAAN4fgQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcA4D3ab7/9st9++3X8+Mknn0xLS0uuu+66D+2cAIB/bAIPAPChWLFiRa677rocfvjh+fjHP56NNtooO+20Uy644IIsW7bsQz23lpaWVX5svfXWq/0cM2fOzNe//vW1d5Lv4uabb86gQYPSs2fP9O3bN+PGjcvChQuLnwcAUFZL0zTNh30SAMA/nsWLF2fjjTfOkCFDcuihh2bLLbfMww8/nClTpmTffffNfffdl5aWlg/l3FpaWnLggQfmuOOO63R7r169MnLkyLzxxhtJkh49eiT5yxU8bW1tufbaazN27NgkySmnnJLJkyen5KdaV155ZU4++eTsv//+GTFiRH7/+99n0qRJ2W677TJ37tz07Nmz2LkAAGV1/7BPAAD4x9SjR488+OCDGTp0aMdtJ5xwQlpbW/O1r30tP/rRj3LAAQd8aOe3/fbbZ8yYMau87+2wU1rTNFm2bFl69eq10n1vvPFGzj333Oy7776ZNWtWRxwbOnRoDjvssHz729/OqaeeWvqUAYBCfIkWAKzjnn322YwbNy4f+9jHssEGG6StrS0nnXRSx1UoSfLEE09k1KhR6dOnTzbccMMMGTIkd955Z6fn+fGPf5yWlpZMmzYtF154YbbZZpv07Nkz+++/f3772992HHfKKaekd+/eWbJkyUrncswxx2TrrbfOW2+9lR49enSKO2876qijkiSPPPLIB/VT8IH76/fg+Wtjx47N5MmTk3T+cq+3rVixIpdeeml23HHH9OzZM1tttVXGjx+fl19+udPztLa25tBDD80Pf/jD7L777unVq1euvvrqVW7Onz8/ixYtSnt7e6etQw89NL17987NN9/8Pl4xANDVuYIHANZhzz33XPbcc88sWrQoJ554Yj7xiU/k2WefzS233JIlS5akR48e+cMf/pChQ4dmyZIlmTBhQj7ykY9kypQpOfzww3PLLbd0BJe3XXzxxenWrVvOPPPMvPLKK5k4cWI+//nPZ+7cuUmS9vb2TJ48OXfeeWdGjRrV8bglS5ZkxowZGTt2bNZbb713PecXXnghSbLFFlushZ+R1bds2bKV3rtm4403zgYbbPB3Hzt+/Pg899xzmTVrVq6//vpV3n/dddfl+OOPz4QJE7JgwYJcfvnlmTdvXh588MGsv/76Hcc+9thjOeaYYzJ+/PiccMIJ2WGHHVa5uXz58iRZ5dU9vXr1yrx587JixYp06+b/9wBgndQAAOus4447runWrVvzs5/9bKX7VqxY0TRN05x++ulNkmbOnDkd97322mtNW1tb09ra2rz11ltN0zTN7NmzmyTNwIEDm+XLl3ccO2nSpCZJ8+tf/7rjefv169eMHDmy0960adOaJM3999//N8/5gAMOaDbZZJPm5ZdfXqPX/EFIssqPa6+9tmmaphk2bFgzbNiwjuMXLFjQ6f6maZovfelLzao+1ZozZ06TpLnxxhs73X733XevdHv//v2bJM3dd9/9d8/5xRdfbFpaWppx48Z1uv3RRx/tOP+FCxeuxqsHAGrkv3AAYB21YsWK3H777TnssMOy++67r3T/21/GM3PmzOy555759Kc/3XFf7969c+KJJ+bJJ5/Mb37zm06PO/744zu9B80+++yT5C9f5vX2844aNSozZ87M4sWLO46bOnVq+vXr12nnr1100UW59957c/HFF2ezzTZ77y/6A3TEEUdk1qxZnT6GDx/+vp93+vTp2XTTTXPggQdm4cKFHR+77bZbevfundmzZ3c6vq2tbbV2t9hii4wePTpTpkzJJZdckieeeCJz5sxJe3t7xxVBS5cufd/nDwB0Tb5ECwDWUS+++GJeffXV7LTTTn/zuKeeeiqDBw9e6faBAwd23P/O59h22207Hbf55psnSaf3j2lvb8+ll16aO+64I8cee2wWL16cmTNnZvz48e/6nbGmTp2ar371qxk3blxOOumkv/v6XnrppU7vI/Re9OnT5+++UfI222yzVt7k+fHHH88rr7ySLbfccpX3//GPf+z047a2ttV+7quvvjpLly7NmWeemTPPPDNJMmbMmAwYMCDf+9730rt37zU/cQCgSxN4AID35N3eP6d5x7cDHzJkSFpbWzNt2rQce+yxmTFjRpYuXZr29vZVPnbWrFk57rjjcsghh+Sqq65arfMYMWJEfvKTn7z3F5Bk9uzZf/NNktemFStWZMstt8yNN964yvv79u3b6cerek+dd7Ppppvm+9//fp5++uk8+eST6d+/f/r375+hQ4emb9++H/pVUQDA2iPwAMA6qm/fvtlkk00yf/78v3lc//7989hjj610+6OPPtpx/5oYPXp0Jk2alFdffTVTp05Na2trhgwZstJxc+fOzVFHHZXdd98906ZNS/fuq/fpySWXXLLSd51aXbvuuusaPe69eLcrlQYMGJB77703e++993uKN+/Ftttu23Gl1aJFi/KLX/wiI0eOXCtbAEDXIPAAwDqqW7duOfLII3PDDTfk5z//+Urvw9M0TVpaWnLwwQfn0ksvzcMPP5y99torSfL666/nmmuuSWtraz75yU+u0X57e3smTpyYKVOm5O67785pp5220jGPPPJIDjnkkLS2tuYHP/jBewoeu+222xqdVykbbbRRkr8ElndeOTN69OhcccUVOf/883PRRRd1esybb76ZxYsXf6BX2nz5y1/Om2++mTPOOOMDe04AoOsReABgHXbRRRflnnvuybBhw3LiiSdm4MCBef755zN9+vQ88MAD2WyzzXLOOefku9/9bg466KBMmDAhffr0yZQpU7JgwYLceuuta/xttQcNGpTtttsuX/nKV7J8+fKVvjzrtddey/Dhw/Pyyy/nrLPOyp133tnp/gEDBnQEpxq9HaAmTJiQ4cOHZ7311svRRx+dYcOGZfz48fnGN76RX/7yl/nsZz+b9ddfP48//nimT5+eSZMm5XOf+9wabV588cWZP39+Bg8enO7du+f222/PPffckwsuuCB77LHHB/nyAIAuRuABgHVYv379Mnfu3Jx33nm58cYb8+qrr6Zfv3456KCDsuGGGyZJttpqqzz00EM5++yzc9lll2XZsmXZZZddMmPGjBxyyCHva7+9vT0XXnhhtttuuwwaNKjTfX/605/yzDPPJEnOOeeclR77xS9+serAM2LEiJx66qm5+eabc8MNN6Rpmhx99NFJkquuuiq77bZbrr766px77rnp3r17WltbM2bMmOy9995rvLnzzjvntttuyx133JG33noru+yyS6ZNm5ZRo0Z9UC8LAOiiWpp3viMiAAAAANVZs2uuAQAAAOgyBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVK776h64zz5r8zQ6O/jgcltJcsst5bYOOKDcVpI88EC5rQcfLLfVVSxeXG7rC18ot5Ukt72wV7mxe+8tt5XkRz/dqNjW/vsXm+oSfvWrclu7puBYknkrdi229anuvy62lSSX3LNzsa1/+7diU13CjjuW23rhhXJbSfLP/1xua/TocltJsscmj5Ub22GHcltdRMnP9WeeNKPcWJJ861vltl5/vdxWkjMGP1Rs69//vdhUl/DNb5bbKv3naf/Tjyo3dsUV5baSzPj5R4ttHXbY6h3nCh4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVraZqmWa0jP/WptXwq7zBtWrmtJNlkk3JbL71UbitJNtus3NZHP1puq4v4j/8otzVu8PxyY0lyySXltlpaym0lOfiF/yy2NXNmsaku4YEHym19+rGCvwGTDL5mXLGtud+aW2wrSfLQQ+W2zjij3FZXcP75xaYe+Mx5xbaSZOedy21tuuipcmNJ7vpN/2JbBx1UbKrrOPnkYlOnrX9Fsa0k2WabcltnbXdbubEkC/7pqGJbbW3FprqE/uX+yMlT/+/WcmNJ8sgj5bb22qvcVpKTb92/2NYVq/lHmSt4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqFxL0zTNah357LNr+VT+1++W9Su2lSQD9vt4sa3TRjxTbCtJJp2+oNxYW1u5ra7issvKbW2/fbmtJF+8aXixrSkbnlRsK0lmj76y2NZnPlNsqmsYNKjYVMu8/y62lZT9tezfv9xWktx0U7mt5cvLbXUF119fbmvPPcttJcl//Ve5rS9cs0+5sSSZOLHc1l57ldvqKkr+xmhtLbeVJG+8UW5r8uRyW0mO7fm9Ylsl/17qCs47r9zW+ddsVW4sSf7852JTf3r8pWJbSTJmTLmtu+5aveNcwQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHItTdM0q3Pg9dev7VP5XxtuWG4rSUYOebbY1sAD+hXbSpJH/ntpubFevcptdRHDhpXb+s53ym0lSf9Fvyq2dcT/3bXYVpJMnFhua4cdym11CWedVWxqn59+s9hWkszpc0S5sSFDym0lWXD0l4tttbUVm+oa/vzncltnn11uK0muvLLY1ItPF/x8JknfT/YtN/bii+W2uoipU8tttR9f9h8Wm66/pNjW008Xm0qS/PSn5baGDy+31SXcdVexqbl9Diq2lSSDP/ZMsa15Cz9ebCtJBg0qt7V61cYVPAAAAADVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFSupWmaZrWO3GOPtXwq7zBkSLmtJLn88nJbY8eW20oy4P5ri2397nfFprqOlpZyW0ceWW4rSf7lX4pN/azP8GJbSXL22eW27ruv3FZXsHRpua1rrim3lSSnTfo/xbb26fdEsa0keemlclv/8z/ltrqCkn9NNL03LjeWZN79rxXbuummYlNJkoULy21dW+5TtS5jzpxyW9/5TrmtJOnevdzW9tuX20qSf/3Xclur+S/UdcfzzxebWrzxR4ttJcn06eW2jn/83HJjSXLWWeW2Nt98tQ5zBQ8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMq1NE3TfNgnAQAAAMCacwUPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOX+P5Ot9aKTNLcaAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAE2xJREFUeJzt3X2wl3WB9/HPQUBUwCMFPvDgcXFNlLVuYRVRRx1TIwwfNkTJ8WFViAZhanRT0+hBycHcWwNDmSw0uQ0wx9UgE81aNZbNe2STRRlM7U5B1BAUEUs59x+OZzviAxJ8OV98vWb4g9/v+p3Pdc5wQN9z/a7T0Nzc3BwAAAAAqtVua58AAAAAAH8bgQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcA4H0ceeSROfLII1t+//TTT6ehoSHTp0/faucEAPBOAg8AsMWtX78+06dPz7Bhw9K7d+/stNNO6d+/fy6//PKsW7duq55bQ0PDu/7abbfdNvpjzJ07N9/4xje23Em+iyVLluTLX/5yBg8enE6dOqWhoSFPP/30ex5/55135sADD0ynTp3Sp0+fTJgwIW+88Ua5EwYAtqj2W/sEAIBt39q1a3P22Wdn0KBB+eIXv5gePXpk/vz5mTBhQu6777788pe/TENDw1Y7v2OOOSZnnHFGq8d22GGHJMk999zzga+fO3durrvuuqKRZ/78+fne976X/fbbL/369cvChQvf89if//znOfHEE3PkkUdm8uTJefTRR3P55Zfn+eefz9SpU4udMwCw5Qg8AMAW17Fjxzz00EMZPHhwy2PnnXdempqaWiLPpz/96a12fvvss09OP/30d32uY8eOhc/mLc3NzVm3bl1LaHqnYcOGZdWqVenSpUu++93vvm/gueCCC3LAAQfknnvuSfv2b/3nX9euXTNx4sSMHz8+++6775b4FACAgrxFCwC2Ic8++2zOOeec7LHHHtl+++2z1157ZcyYMfnzn//ccsyTTz6Z4cOHp1u3btlxxx0zaNCgzJkzp9XH+dWvfpWGhobMmjUrV1xxRXr16pVOnTrl6KOPzhNPPNFy3NixY9O5c+esXbt2g3M57bTTsttuu+XNN99Mx44dW8Wdt5100klJkscee2xzfQk2u3feg+edzjrrrFx33XVJWr/d623r16/PNddck/333z+dOnXKrrvumtGjR+ell15q9XGamppy/PHH5xe/+EUGDhyYHXbYITfccMN77nbr1i1dunT5wPNfvHhxFi9enFGjRrXEnST50pe+lObm5tx2220f+DEAgLbPFTwAsI1YtmxZDjrooKxatSqjRo3Kvvvum2effTa33XZb1q5dm44dO2bFihUZPHhw1q5dm3HjxuVjH/tYbrrppgwbNiy33XZbS3B525VXXpl27drlggsuyOrVqzNp0qR84QtfyIIFC5IkI0aMyHXXXZc5c+Zk+PDhLa9bu3Zt7rrrrpx11lnZbrvt3vOcn3vuuSTJxz/+8S3wFdl469aty4svvtjqsS5dumT77bf/wNeOHj06y5Yty7x58/LjH//4XZ+fPn16zj777IwbNy5PPfVUpkyZkkceeSQPPfRQOnTo0HLskiVLctppp2X06NE577zz8olPfOJv/tweeeSRJMnAgQNbPb7HHnukV69eLc8DAHUTeABgG3HxxRfnueeey4IFC1r9z/y3vvWtNDc3J3kr2KxYsSIPPPBADjvssCRvvVXqgAMOyFe+8pWccMIJadfufy7wXbduXRYuXNjyNqVddtkl48ePz6JFi9K/f/8cdthh6dmzZ2bOnNkq8MyZMyevvvpqRowY8b7nPGnSpHTt2jVDhgzZbF+HTXHjjTfmxhtvbPXYj370o5x11lkf+NpDDjkk++yzT+bNm7fB27wefPDB/OAHP8iMGTMycuTIlsePOuqofOYzn8ns2bNbPf7EE0/k7rvvznHHHfe3fUJ/Zfny5UmS3XfffYPndt999yxbtmyzbQEAW4+3aAHANmD9+vW544478rnPfW6DKzWStLxlaO7cuTnooINa4k6SdO7cOaNGjcrTTz+dxYsXt3rd2Wef3eoeNIcffniSt97m9fbHHT58eObOnZs1a9a0HDdz5sz07Nmz1c47TZw4Mffee2+uvPLKNDY2fvhPejM64YQTMm/evFa/NkdkmT17dnbeeeccc8wxefHFF1t+DRgwIJ07d87999/f6vi99tprs8adJHnttdeS5F2vRurUqVPL8wBA3VzBAwDbgBdeeCEvv/xy+vfv/77H/eEPf8jBBx+8weP9+vVref6vP0afPn1aHbfLLrskSav7x4wYMSLXXHNN7rzzzowcOTJr1qzJ3LlzM3r06Pf8yVgzZ87MpZdemnPOOSdjxoz5wM9v5cqVre4j9GF069btA2+U3KtXry1yk+elS5dm9erV6dGjx7s+//zzz7f6/V577bXZz+HtmzS//vrrGzz3fjdxBgDqIvAAAO/pve6f8/ZbvpJk0KBBaWpqyqxZszJy5Mjcddddee21197z7Vnz5s3LGWeckaFDh+b666/fqPM4+eST8+tf//rDfwJJ7r///ve9SfKWtH79+vTo0SMzZsx41+e7d+/e6vdbIra8/das5cuXp3fv3q2eW758eQ466KDNvgkAlCfwAMA2oHv37unatWsWLVr0vsftueeeWbJkyQaPP/744y3Pb4pTTjkl1157bV5++eXMnDkzTU1NGTRo0AbHLViwICeddFIGDhyYWbNmtfqpTu/n6quv3uCnTm2sT37yk5v0ug/jva5U6tu3b+69994ceuihW+1KmU996lNJkocffrhVzFm2bFmeeeaZjBo1aqucFwCweQk8ALANaNeuXU488cTccsstefjhhze4D09zc3MaGhry2c9+Ntdcc03mz5+fQw45JEny6quvZtq0aWlqasp+++23SfsjRozIpEmTctNNN+Xuu+/O+PHjNzjmsccey9ChQ9PU1JSf/exnHyp4DBgwYJPOq5SddtopSbJq1apW9xM65ZRT8v3vfz/f/va3M3HixFaveeONN7JmzZotfv+h/fffP/vuu2+mTZuW0aNHt1yVNXXq1DQ0NOTzn//8Ft0HAMoQeABgGzFx4sTcc889OeKIIzJq1Kj069cvy5cvz+zZs/Pggw+msbExF110UW699dYMGTIk48aNS7du3XLTTTflqaeeyk9/+tNWP0HrwzjwwAOz995752tf+1pef/31Dd6e9corr+S4447LSy+9lAsvvDBz5sxp9Xzfvn1bglON3g5Q48aNy3HHHZftttsup556ao444oiMHj063/nOd7Jw4cIce+yx6dChQ5YuXZrZs2fn2muv3eTAsnr16kyePDlJ8tBDDyVJpkyZksbGxjQ2Nmbs2LEtx1511VUZNmxYjj322Jx66qlZtGhRpkyZknPPPbfl/ksAQN0EHgDYRvTs2TMLFizIZZddlhkzZuTll19Oz549M2TIkOy4445Jkl133TW/+c1v8tWvfjWTJ0/OunXrcsABB+Suu+7K0KFD/6b9ESNG5Iorrsjee++dAw88sNVzf/rTn/LHP/4xSXLRRRdt8Nozzzyz6sBz8skn5/zzz89PfvKT3HLLLWlubs6pp56aJLn++uszYMCA3HDDDbnkkkvSvn37NDU15fTTT8+hhx66yZsvvfRSLrvsslaPXX311UneeqvdXwee448/Prfffnu++c1v5vzzz0/37t1zySWX5Otf//om7wMAbUtD81/fJREAAACA6mzaddgAAAAAtBkCDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAq136jj/zLX7bgabT2f3/XodhWkpx8crmtoUPLbSXJ9/9harmxMWPKbbUVzz5bbOrGu3sW20qSc88ttzVwYLmtJPntvz5Qbuzww8tttQWvvlps6tEndyq2lST/0PjHcmNPPFFuK0kmTy63dfvt5bbagoaGclvTppXbSpIVK8ptHX10ua0kv+9xSLGtvn2LTbUZq1eX29puu3JbSbJ0abmt/9VhUbmxJOndu9zWzjuX22oLfv/7YlM/XVj2L51/OvHNYltLnij7Df+735XbGj58445zBQ8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMo1NDc3N2/UkVddtYVP5X987MoLi20lyT//c7mthx8ut5UkN99cbqt373JbbcXq1eW2+vQpt5Ukqx9eWm5s0aJyW0kyfXq5rX/7t3JbbcHf/V25raeeKreVJBdcUGzqD2PL/ZubJHvu+EK5se7dy221BbNnF5u65fXhxbaS5PRXphbbmv3xMcW2kmTx4nJbEyaU22orVqwot7VqVbmtJPnEnQX//m5sLLeVJNOmldv67W/LbbUBy5eX21qzptxWkvz9gz8qN1b6e+K//7vc1qWXbtRhruABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcu03+sj//M8teBqt9epVbCpJctWVbxbbunbKdsW2kqT3D79ZbmzChHJbbcTO/+/RYlur/7Xc92CS5HeN5bbGji23lSSdO5fd+yjp27fc1owZ5baSvNL/kGJbez63tNhWkix47u+LbR3cvdhU23DzzcWmJiweXmwrSc5fOabYVsEvY5Jk5cqyex81uy66r9zWpZcW20qS9OlTbmtp2X8r8o//WHbvI2T39i+UGxt/ZrmtJOnUqdzWUUeV20ry68PL/f1yxEYe5woeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVa2hubm7eqCNXr97Cp/JXGhvLbSXJypXltqZMKbeVJIsXl9u69dZyW23EX/5SbqvDmSPLjSXJiBHFph7b54RiW0nS776C34djx5bbagOGDCm39eST5baS5Oaby20d/OXB5caS5JJLym0df3y5rTbghRfKbbVvX24rKfvHZuqkV8qNJcl//Ee5rWOOKbfVVpT8xrjjjnJbSTJrVrmtf/mXcltJXhlU7s9qly7FptqGBQvKbXXtWm4rSdauLTb1v/99QLGtJBk+vNxWr14bd5wreAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKhc+40+sn//LXga73D77eW2kqRz53JbjY3ltpKkR4+yex8xHcaNKbY1//z/U2wrSe6+u9zWt04st5Ukzd99vezgR8gtt5TbWrmy3FaSPP54wbGLLy44lvxX7+OLbX2y2FLb0H3siHJjhb8ppv7wh8W2Hnumd7GtJHmu/THFto4qttSGPPNMsamGUecV23pLub0HJhSbest/lZs67LByW23B5fMOLrZ12WXFppIkAweW22pX+PKVN94ot3XhhRt3nCt4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUrqG5ubl5a58EAAAAAJvOFTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlfv/jvThnlH2290AAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEoVJREFUeJzt3Xuw13WB//HX4eYNETDB7WgdxgtiLP1+Qop4n1LEC6aFR4kM1hVihmC7bVa6aio5bO7ghdLKTUacPECzTchZA1NTiZjNX0w/NiUdxVrxiqACkSXn94fD+XXEC5K8PW98PGbOH3y/n+95fb4Mjmee8/l+TkNbW1tbAAAAAKhWl3f7BAAAAAD42wg8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AABv4vjjj8/xxx/f/udVq1aloaEhN99887t2TgAAryXwAAA73ObNm3PzzTdn9OjR2X///bPHHntk8ODBueKKK7Jp06Z39dwaGhpe92vffffd5u/R2tqaSy+9dMed5OtYuXJlPv/5z2fEiBHZdddd09DQkFWrVr3usS0tLRk3blwOOuigNDQ0dAhWAMDOodu7fQIAwM5v48aNmTBhQoYPH57Pfvaz6devX5YuXZpLLrkkP/vZz3LXXXeloaHhXTu/E088Meedd16Hx3bbbbckyaJFi97y9a2trZk1a1bRyLN06dJce+21OfTQQzNo0KAsX778DY/9zne+kwceeCAf+chHsmbNmmLnCACUI/AAADtcjx49smTJkowYMaL9sQsuuCBNTU3tkedjH/vYu3Z+Bx98cMaNG/e6z/Xo0aPw2byqra0tmzZtag9NrzV69OisW7cue+65Z771rW+9aeC55ZZb0tjYmC5dumTw4ME76IwBgHeTj2gBwE7kiSeeyPnnn5/3v//92WWXXTJgwIBMnjw5L7/8cvsxjz76aMaMGZO+fftm9913z/Dhw7Nw4cIO3+eee+5JQ0ND5s6dmyuvvDL77bdfdt1113z0ox/NI4880n7clClT0rNnz2zcuHGrczn33HOz77775pVXXkmPHj06xJ0tzjzzzCTJgw8++E79FbzjXnsPntcaP358Zs2alaTjx7222Lx5c2bOnJkPfehD2XXXXdO/f/9MmjQpa9eu7fB9mpqactppp+WnP/1phg0blt122y033njjG+727ds3e+655za9h/333z9duvixDwB2Zq7gAYCdxOrVq3P44Ydn3bp1mThxYg455JA88cQTmT9/fjZu3JgePXrk6aefzogRI7Jx48ZMnTo1e++9d2bPnp3Ro0dn/vz57cFli6uuuipdunTJl770pbzwwguZMWNGPvWpT2XZsmVJkubm5syaNSsLFy7MmDFj2l+3cePGLFiwIOPHj0/Xrl3f8JyfeuqpJMn73ve+HfA3su02bdqU5557rsNje+65Z3bZZZe3fO2kSZOyevXqLF68OLfccsvrPn/zzTdnwoQJmTp1ah577LFcf/31+fWvf50lS5ake/fu7ceuXLky5557biZNmpQLLrggAwcO/NvfHADwniDwAMBO4qtf/WqeeuqpLFu2LMOGDWt//Bvf+Eba2tqSvBpsnn766dx33305+uijk7z6UakhQ4bkC1/4Qs4444wOV3ps2rQpy5cvb/+YUp8+fTJt2rSsWLEigwcPztFHH53Gxsa0tLR0CDwLFy7Mhg0b0tzc/KbnPGPGjPTq1SujRo16x/4etsdNN92Um266qcNjP/jBDzJ+/Pi3fO2RRx6Zgw8+OIsXL97qY173339/vv/97+fWW2/N2LFj2x8/4YQTcvLJJ2fevHkdHn/kkUdyxx13ZOTIkX/bGwIA3nNcqwsAO4HNmzfnxz/+cU4//fQOcWeLLR8Zam1tzeGHH94ed5KkZ8+emThxYlatWpXf/va3HV43YcKEDvegOeaYY5K8+jGvLd93zJgxaW1tzfr169uPa2lpSWNjY4ed15o+fXruvPPOXHXVVendu/fbf9PvoDPOOCOLFy/u8PVORJZ58+Zlr732yoknnpjnnnuu/Wvo0KHp2bNn7r777g7HDxgwQNwBALaLK3gAYCfw7LPP5sUXX3zLG+g+/vjjOeKII7Z6fNCgQe3P//X3+MAHPtDhuD59+iRJh/vHNDc3Z+bMmfnJT36SsWPHZv369Wltbc2kSZPe8DdjtbS05KKLLsr555+fyZMnv+X7e/755zvcR+jt6Nu371veKHm//fbbITd5fvjhh/PCCy+kX79+r/v8M8880+HPAwYMeMfPAQB4bxB4AIA39Eb3z9nyka8kGT58eJqamjJ37tyMHTs2CxYsyB//+Mc3/HjW4sWLc9555+XUU0/NDTfcsE3ncdZZZ+XnP//5238DSe6+++43vUnyjrR58+b069cvt9566+s+v88++3T48xv9xiwAgLci8ADATmCfffZJr169smLFijc97oMf/GBWrly51eMPPfRQ+/Pb4+yzz84111yTF198MS0tLWlqasrw4cO3Om7ZsmU588wzM2zYsMydOzfdum3bjyJXX331Vr91alt9+MMf3q7XvR1vdKXSAQcckDvvvDNHHXWUeAMA7FACDwDsBLp06ZKPf/zjmTNnTn71q19tdR+etra2NDQ05JRTTsnMmTOzdOnSHHnkkUmSDRs25Lvf/W6amppy6KGHbtd+c3NzZsyYkdmzZ+eOO+7ItGnTtjrmwQcfzKmnnpqmpqbcfvvtbyt4DB06dLvOq5Q99tgjSbJu3boO9xM6++yz8+1vfzuXX355pk+f3uE1f/nLX7J+/fp3/f5DAMDOQeABgJ3E9OnTs2jRohx33HGZOHFiBg0alCeffDLz5s3L/fffn969e+fCCy/MD3/4w4waNSpTp05N3759M3v27Dz22GP50Y9+1OE3aL0dhx12WA488MB8/etfz5/+9KetPp710ksvZeTIkVm7dm2+/OUvZ+HChR2eP+CAA9qDU422BKipU6dm5MiR6dq1a84555wcd9xxmTRpUr75zW9m+fLlOemkk9K9e/c8/PDDmTdvXq655pp88pOf3K7NF154Idddd12SZMmSJUmS66+/Pr17907v3r0zZcqU9mPvvffe3HvvvUlevV/Thg0bcsUVVyRJjj322Bx77LHb/d4BgM5B4AGAnURjY2OWLVuWiy++OLfeemtefPHFNDY2ZtSoUdl9992TJP37988vfvGLfOUrX8l1112XTZs2ZciQIVmwYEFOPfXUv2m/ubk5V155ZQ488MAcdthhHZ5bs2ZN/vCHPyRJLrzwwq1e+5nPfKbqwHPWWWflc5/7XG677bbMmTMnbW1tOeecc5IkN9xwQ4YOHZobb7wxX/va19KtW7c0NTVl3LhxOeqoo7Z7c+3atbn44os7PHb11VcnefWjdn8deO66665cdtllHY7d8tpLLrlE4AGAnUBD21/fJREAAACA6mzfddgAAAAAdBoCDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAq121bDzzllB15Gh1Nm1ZuK0lGnte/3NjJJ5fbSpJrry23tdde5bY6ie99r9zWuHHltpJkt98sK7a1dPMRxbaS5Mh1/1lubNSocludwIoV5bYGDiy3lSTr15fb6vPf95cbS5LW1nJb06eX2+oMnnyy2NS0q/6u2FaSPPtsua299y63lSTXXfhEubHGxnJbncXjjxebemW/DxbbSpKuj6wstvXA+rL/Ixza6+FyYwcdVG6rE1izptzWo4+W20qSQw4ptzVjRrmtJLn8X/5cbqx79206zBU8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAq121bD2wdO2dHnkdH/T5UbitJ+vbdObeSrN28V7GtPsWWOo8LNt9Ybuz508ptJbl80RHFtl5+udhUkuTbq0YV27ql3FSnMLjl4nJjRx9dbivJ/7x/ZLGtX75U9r09sHu5vYuKLXUSvXoVm7pm2C3FtpIkjz9ebOp/xhf+l/P88+W2GhvLbXUW991XbKrrS63FtpLk/r+fXGzrnnuKTSVJeo45qNjWwGJLncPe/2dxsa1djjyx2FaSrFlTbut3vyu3lSTX39i92NaUKdt2nCt4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqFxDW1tb27YceNxxO/pU/r+hQ8ttJcm/ffrXxbZafve/i20lSfP/WllubODAcludxNq15bb6nHJkubEk+eUvy21NnlxuK0kuv7zc1t57l9vqDG66qdxW//7ltpLk9NPLbR1ySLmtJPnHfyy39cUvltvqBC67rNzWbbeV20qSSy8tt9W88QflxpJk1apyWyX/kXQSr7xSbqvrnT8tN5Ykc+aU25oypdxWkgd7HVFsa9CgYlOdw4oV5bZK/hycJGPHltsaMqTcVpL/WD6g2NaZZ27bca7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQuW7beuDP/+2BHXkeHfx5yNBiW0mSe54rNvXoo8WmkiTLmgYW2zqi2FLn0edXi8uNNTSU20qSc88tt/Vf/1VuK0l+85tyWyecUG6rE7ilx/nFtj593EvFtpIkt91WbOq6Z5qLbSXJ5zb9a9G995L588ttPfRQua0kWb264NhB+xQcS/JcuZ8N34tWrSq3dcDvf19uLEnmzCm31dRUbitJ09feiz/tl/HngYPLjc1pKbeVpPujK8uNlfzvL8mZ/foVXJu0TUe5ggcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKddvmI1ev3oGn0VH3YcOKbSVJ/v3fi0398z8Xm0pS9K3liCPKbXUWLc+fWGzr+3uU20qS3TeU2xr92XJbSdJvfbmt08tNdQqLFpXb+vTozeXGktzdr7nY1jMrik296l/+qfDge8f//cg/lBs7rX+5rSTf6/nNYltXrzyt2FaSfPHv1hXde68ZMaLc1u23X1BuLMnv55fb+8Qpfyy2lSStreW2PvGJcludQY8e5bZOOqncVpIcc8zAcmMNF5fbSnLRKX8ourctXMEDAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByDW1tbW3v9kkAAAAAsP1cwQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQuf8HnxOQ336yKAwAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAEy9JREFUeJzt3XmQleWB9uG7AREFTIuCCyY20XHl04xYBhG3qFFcQI0K7lspmlJMUia4lppERBOjRrE0o6W4jGnBihNCDxGjZuIypPIlOGVhKCwhybgrAkHS+in9/ZGyZ1pE0NgP/eB1VfFHn/Oevt9zrC7wV+e83dDW1tYWAAAAAKrVbU2fAAAAAAD/GIEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAOAj7LPPPtlnn33av16wYEEaGhpy5513rrFzAgD4IIEHAOh0y5cvz5133pmRI0fm85//fHr37p3Bgwfn+9//flpbW9fouTU0NHzon0033XS1v0dLS0suv/zyzjvJDzF37tx885vfzLBhw9KrV680NDRkwYIFKxz3xhtv5Ac/+EH22muv9O/fP42NjRk6dGiam5uLni8A0Ll6rOkTAADWfsuWLcupp56aoUOH5qyzzsqAAQPy1FNP5bLLLsuvfvWrPPLII2loaFhj53fAAQfkpJNO6nDbeuutlyR56KGHVvn4lpaWTJo0qWjkeeqpp/LjH/84O+ywQ7bffvvMnj17pcddfPHFOfjgg3PJJZekR48eeeCBBzJmzJjMmTMnV1xxRbFzBgA6j8ADAHS6nj175oknnsiwYcPabzvjjDPS1NTUHnn233//NXZ+22yzTU444YQPva9nz56Fz+bv2tra0tra2h6aPmjkyJFZtGhR+vbtmx/+8IcrDTw77rhj5s2bly233LL9tq9//evZf//9c/XVV+c73/lOevfu3RlPAQAoyEe0AGAt8sILL+T000/P5ptvnnXXXTeDBg3K2WefnXfeeaf9mOeffz5HH310+vXrl/XXXz9Dhw7N9OnTO3yfxx57LA0NDbn//vtz5ZVXZosttkivXr2y33775bnnnms/7pxzzkmfPn2ybNmyFc7l2GOPzaabbpr33nsvPXv27BB33nfEEUckSZ599tlP6yX41H3wGjwfdMopp2TSpElJOn7c633Lly/P9ddfnx133DG9evXKJptskrFjx+bNN9/s8H2amppy6KGH5pe//GV23XXXrLfeern11ltXutuvX7/07dt3lec/aNCgDnHn/fM8/PDD8/bbb+f5559f5fcAALo+7+ABgLXEiy++mN122y2LFi3KmWeeme222y4vvPBCpk6dmmXLlqVnz5555ZVXMmzYsCxbtizjxo3LRhttlMmTJ2fkyJGZOnVqe3B538SJE9OtW7ecf/75Wbx4ca655pocf/zxmTVrVpJk9OjRmTRpUqZPn56jjz66/XHLli3LtGnTcsopp6R79+4rPeeXX345SbLxxht3wiuy+lpbW/P66693uK1v375Zd911V/nYsWPH5sUXX8zMmTNz9913f+j9d955Z0499dSMGzcu8+fPz0033ZQ//OEPeeKJJ7LOOuu0Hzt37twce+yxGTt2bM4444xsu+22//iTW4mu8toDAJ8OgQcA1hIXXnhhXn755cyaNSu77rpr++3f/e5309bWluTvweaVV17Jb37zmwwfPjzJ3z8qtdNOO+Vb3/pWRo0alW7d/ucNvq2trZk9e3b7x5Q23HDDnHfeeXnmmWcyePDgDB8+PAMHDkxzc3OHwDN9+vS89dZbGT169Eee8zXXXJMNNtggI0aM+NReh0/i9ttvz+23397htjvuuCOnnHLKKh+7++67Z5tttsnMmTNX+JjX448/nttuuy333ntvjjvuuPbb99133xx00EGZMmVKh9ufe+65zJgxIwceeOA/9oRWYeHChbntttuy5557ZrPNNuvULQCgDB/RAoC1wPLly/Pggw/msMMO6xB33vf+R4ZaWlqy2267tcedJOnTp0/OPPPMLFiwIHPmzOnwuFNPPbXDNWj23HPPJGn/WE9DQ0OOPvrotLS0ZOnSpe3HNTc3Z+DAgR12PmjChAl5+OGHM3HixDQ2Nn78J/0pGjVqVGbOnNnhz6cRWaZMmZLPfe5zOeCAA/L666+3/xkyZEj69OmTRx99tMPxgwYN6vS4s3z58hx//PFZtGhRbrzxxk7dAgDK8Q4eAFgLvPbaa1myZEkGDx78kcf96U9/ype//OUVbt9+++3b7//f3+MLX/hCh+M23HDDJOlw/ZjRo0fn+uuvz89//vMcd9xxWbp0aVpaWjJ27NiV/mas5ubmXHLJJTn99NNz9tlnr/L5LVy4sMN1hD6Ofv36rfJCyVtssUWnXOR53rx5Wbx4cQYMGPCh97/66qsdvh40aNCnfg4fdO6552bGjBm56667svPOO3f6HgBQhsADAKzUyq6f8/5HvpJk6NChaWpqyv3335/jjjsu06ZNy9/+9reVfjxr5syZOemkk3LIIYfklltuWa3zOPLII/PrX//64z+BJI8++uhHXiS5My1fvjwDBgzIvffe+6H39+/fv8PXK/uNWZ+WK664IjfffHMmTpyYE088sVO3AICyBB4AWAv0798/G2ywQZ555pmPPG7LLbfM3LlzV7j9j3/8Y/v9n8QxxxyTG264IUuWLElzc3OampoydOjQFY6bNWtWjjjiiOy66665//7706PH6v1T5Nprr13ht06trhLvUlnZO5W22mqrPPzww9ljjz06Pd6syqRJk3L55ZfnG9/4RsaPH79GzwUA+PQJPACwFujWrVsOP/zw3HPPPfnd7363wnV42tra0tDQkIMPPjjXX399nnrqqey+++5Jkrfeeis/+clP0tTUlB122OET7Y8ePTrXXHNNJk+enBkzZuS8885b4Zhnn302hxxySJqamvKLX/ziYwWPIUOGfKLzKqV3795JkkWLFnW4ntAxxxyTm2++Od/73vcyYcKEDo959913s3Tp0iLXH2pubs64ceNy/PHH50c/+lGn7wEA5Qk8ALCWmDBhQh566KHsvffeOfPMM7P99tvnpZdeypQpU/L444+nsbExF1xwQe67776MGDEi48aNS79+/TJ58uTMnz8/DzzwQIffoPVx7LLLLtl6661z8cUX5+23317h41l//etfc+CBB+bNN9/Mt7/97UyfPr3D/VtttVV7cKrR+wFq3LhxOfDAA9O9e/eMGTMme++9d8aOHZurrroqs2fPzle/+tWss846mTdvXqZMmZIbbrghRx111CfaXLx4cftFkp944okkyU033ZTGxsY0NjbmnHPOSZL89re/zUknnZSNNtoo++233wofFxs2bFi++MUvftKnDgB0EQIPAKwlBg4cmFmzZuXSSy/NvffemyVLlmTgwIEZMWJE1l9//STJJptskieffDLjx4/PjTfemNbW1uy0006ZNm1aDjnkkH9of/To0bnyyiuz9dZbZ5dddulw3xtvvJG//OUvSZILLrhghceefPLJVQeeI488Mueee25++tOf5p577klbW1vGjBmTJLnlllsyZMiQ3HrrrbnooovSo0ePNDU15YQTTsgee+zxiTfffPPNXHrppR1uu/baa5P8/aN27weeOXPm5J133slrr72W0047bYXvc8cddwg8ALAWaGj731dJBAAAAKA6n+x92AAAAAB0GQIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACrXY3UPvOyyzjyNjq6YskO5sSQ/u3JOsa0vfanYVJKksbHc1oYbltvqKu6+u9zWwoXltkrba6+ye/+86NFyY/vuW26rC3jvvXJb559fbitJRo4st/XnP5fbSpIxY8ptrbtuua0u4d/+rdjUtG6jim0lyWHbzC039thj5baS5Mkny21Nnlxuq6t4+ulyW62t5baSZOONi0395sWtim0lyZ7DCv4l3717ua2u4KWXik09/epmxbaSsj+CU6eW20qS7bYrt3X66at3nHfwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAACoXI/VPfCKzW/tzPPo4Loz5hTbSpLZD5bb+tKXym0lyX/8R7mtUaPKbXUVhx9ebuuRR8ptJcluu5XbKvk6Jsmsh3YpO/gZ0v3H1xXbum7RfxXbSpL8fnC5rfPPL7eVJC9PLLc1fny5ra7g8ceLTa1/UOG/iJuaik39YuDYYltJcuhtpxXd+6x54Lmd1/QpdJpnZpTbamkpt5Ukw4Z1L7Z1Xbl/TnQJc5dsVmxr581fK7aVJNP+s3+xrWeeKTaVJOmx2jWlHO/gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHI9VvfAVw4f25nn0cGcS4pNJUkWLiy3NWjAW+XGkhz13d7FtkaNKjbVZfSdcGGxrVFDhxbbSpJ8tdwP4qzSz23AXeW23n673FZX0KtXua2ddiq3lSQTJpTbamkpt5UkdxX8mfiMuW+XHxTbOrbx/xbbSpL5Lw4ptnXo3n8ttpUkry3qW2yrf/9iU13G1/52T7mx+fPLbSX52l7Di21d9uC3im0lSd7eveDYzQW31rxt/3NyubGvfKXcVpLD/nRTua3F/1psK0nSWPJ/gMev1lHewQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHI9VvfATR5r7szz6ODkk0cX20qS4Xs2FNua/2pbsa0kOeusonOfPb16ldvq2bPcVpK88065raOOKreVJOedV3bvM6S539nFtv77v4tNJUm+/udvFttar8f/K7aVJDnooLJ7nyHHLv2XYlvrDT+j2FaSLFhQbmvfkX3LjSV57LFyW21l/2nYNXzta+W27rmn3FaSXHRRua3TTiu3lSSPPlp277Nk//2LTb236cBiW0nSfdtty43dd1+5rSRpbS27txq8gwcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKNbS1tbWtzoH//u+dfSr/Y8R3/k+5sSRZurTc1gYblNtKkq98pdzWddeV2+oiTjyx3NZdd5XbSpJuBfPvyJHltpLkoIPKbZ19drmtruC998pttbSU20qSw/ZaXG7s978vt5Vk3hb7Ftv6p38qNtU1zJtXbGrsD8u+uLc2ji+21bzL1cW2kmT07AvLjV11VbmtLuLqgv85Fywot5Ukr7xSbutnPyu3lZR9LbfcstxWV/D00+W2Jk4st5Uk775bbmvq1HJbSXL33eW2Tjhh9Y7zDh4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVraGtra1vTJwEAAADAJ+cdPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACV+/84kct6NuFDaQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAE3hJREFUeJzt3X+w13WB7/HXQUQQUKRECq3DYCqKugsMIZLKphGJkiSCZobjCuNewrHRSctf15IcVnf0Kq64WjCpCWhbImhCoom6uCbcWa7Iav4Y81dqggGBo5z7h5dzPYJGKG/OGx+PGf443+/nfF+fg5458OT7/XwbmpqamgIAAABAtdps6xMAAAAA4KMReAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAPsQRRxyRI444ovnjZ599Ng0NDZk2bdo2OycAgPcTeACArW79+vWZNm1ajj322Oy1117p2LFj+vTpkx/96EdZu3btNj23hoaGTf7q3r37Zj/G3Llzc/HFF2+9k9yE5cuX56yzzsqgQYPSvn37NDQ05Nlnn93ksWeddVb69u2brl27Zuedd07v3r1z8cUXZ9WqVUXPGQDYehqampqatvVJAADbt1WrVqVz584ZOHBghg8fnm7duuXhhx/O9OnTc9hhh+Xee+9NQ0PDNjm3hoaGHHXUUTnllFNa3N6hQ4d84xvfyFtvvZUkadeuXZJ3n8HTs2fP/PSnP83YsWOTJBMmTMiUKVNS8o9V06ZNy2mnnZb9998/bdu2zZIlS/LMM8+ksbFxo2MHDx6cfv36Ze+990779u2zePHi/OQnP0n//v3z29/+Nm3a+Dc/AKhd2219AgDA9q9du3Z58MEHM2jQoObbTj/99DQ2Nuaiiy7Kb37zmxx55JHb7Pz22WefnHzyyZu8b0PYKa2pqSlr165Nhw4dNnn/sccemxUrVqRz5865/PLLs2TJkg98rIULF250W69evXL22WfnkUceycCBAz+u0wYAthH/XAMA25EXXnghp512Wj772c9mp512Ss+ePXPGGWc0PwslSZ5++umMGjWq+eU6AwcOzJw5c1o8zn333ZeGhobMnDkzl156afbcc8+0b98+X/7yl/PUU081HzdhwoR06tQpa9as2ehcTjzxxHTv3j3vvPNO2rVr1yLubHDcccclSZYtW/Zx/RZ87N5/DZ73Gzt2bKZMmZKk5cu9Nli/fn2uvPLKHHDAAWnfvn322GOPjB8/Pm+88UaLx2lsbMzw4cPz61//Ov3790+HDh0yderUD9zt2rVrOnfuvMVf14Zn+qxYsWKLHwMAaD08gwcAthMvvvhiBgwYkBUrVmTcuHHZb7/98sILL+S2227LmjVr0q5du7zyyisZNGhQ1qxZk4kTJ+ZTn/pUpk+fnmOPPTa33XZbc3DZ4LLLLkubNm1y9tlnZ+XKlZk8eXK++c1vZtGiRUmS0aNHZ8qUKZkzZ05GjRrV/Hlr1qzJ7NmzM3bs2Oywww4feM4vv/xykuTTn/70Vvgd2Xxr167Na6+91uK2zp07Z6eddvqrnzt+/Pi8+OKLmTdvXn72s59t8v5p06bl1FNPzcSJE/PMM8/kmmuuyeLFi/Pggw9mxx13bD52+fLlOfHEEzN+/Picfvrp2XfffT/6F/f/vP3221mxYkXeeuutLF26NOeff346d+6cAQMGfGwbAMC2I/AAwHbivPPOy8svv5xFixalf//+zbdfcsklzdeGueyyy/LKK6/kgQceyODBg5O8+1Kpgw46KN/97nczYsSIFtdjWbt2bZYsWdL8MqXddtstZ555ZpYuXZo+ffpk8ODB6dGjR2bMmNEi8MyZMyerV6/O6NGjP/ScJ0+enF122SXDhg372H4ftsSNN96YG2+8scVt773Gzoc55JBDss8++2TevHkbvcxr4cKFueGGG3LzzTfnpJNOar59yJAh+epXv5pZs2a1uP2pp57K3XffnaFDh360L2gTHn300RxyyCHNH++7776544470rVr1499CwAoT+ABgO3A+vXr88tf/jLHHHNMi7izwYaXDM2dOzcDBgxojjtJ0qlTp4wbNy7nnXdeHn/88fTp06f5vlNPPbXFNWi+9KUvJXn3ZV59+vRJQ0NDRo0alalTp2bVqlXp1KlTkmTGjBnp0aNHi533mzRpUubPn59rr702Xbp0+Uhf/0c1YsSITJgwocVtBxxwwEd+3FmzZmXXXXfNUUcd1eIZQv369UunTp2yYMGCFoGnZ8+eWyXuJMn++++fefPmZfXq1XnooYcyf/5876IFANsRgQcAtgOvvvpq3nzzzRZxZlOee+65fPGLX9zo9t69ezff/97H+NznPtfiuN122y1JWlw/ZvTo0bnyyitzxx135KSTTsqqVasyd+7cjB8//gPfGWvGjBk5//zzc9ppp+WMM874q1/fn/70pxbXEfpbdO3a9a9eKHnPPffcKhd5fvLJJ7Ny5cp069Ztk/f/8Y9/bPFxz549P/Zz2GCXXXZp/hpHjBiRW265JSNGjMhjjz2Wgw8+eKvtAgBlCDwAwAf6oOvnvPftwAcOHJjGxsbMnDkzJ510UmbPnp2//OUvH/jyrHnz5uWUU07J0Ucfneuuu26zzmPkyJG5//77//YvIMmCBQs+9CLJW9P69evTrVu33HzzzZu8f/fdd2/x8Qe9Y9bWMHLkyHzrW9/KrbfeKvAAwHZA4AGA7cDuu++eXXbZJUuXLv3Q4z7/+c9n+fLlG93+xBNPNN+/JU444YRcddVVefPNNzNjxow0NjZu8q23Fy1alOOOOy79+/fPzJkz07bt5v1R5IorrtjoXac2V4l48UHPVOrVq1fmz5+fQw89tGi82Rzr1q3L+vXrs3Llym19KgDAx0DgAYDtQJs2bfL1r389N910Ux599NGNrsPT1NSUhoaGfO1rX8uVV16Zhx9+uPmCu6tXr87111+fxsbG7L///lu0P3r06EyePDnTp0/P3XffnTPPPHOjY5YtW5ajjz46jY2NufPOO/+m4NGvX78tOq9SOnbsmOTdtxx/7/WETjjhhFx77bX54Q9/mEmTJrX4nLfffjurVq3a6tcfWrFiRTp27Nji3bqS5IYbbkiSTV6zCQCoj8ADANuJSZMm5Z577snhhx+ecePGpXfv3nnppZcya9asLFy4MF26dMm5556bn//85xk2bFgmTpyYrl27Zvr06XnmmWdy++23t3gHrb9F3759s/fee+cHP/hB1q1bt9HLs/785z9n6NCheeONN3LOOedkzpw5Le7v1atXi3d4qs2GADVx4sQMHTo0O+ywQ8aMGZPDDz8848ePz49//OMsWbIkX/nKV7LjjjvmySefzKxZs3LVVVfl+OOP36LNlStX5uqrr06SPPjgg0mSa665Jl26dEmXLl2aLxp93333ZeLEiTn++OPzhS98IW+99VYeeOCB/OIXv0j//v03eucvAKBOAg8AbCd69OiRRYsW5YILLsjNN9+cN998Mz169MiwYcOy8847J0n22GOPPPTQQ/ne976Xq6++OmvXrs1BBx2U2bNn5+ijj/5I+6NHj86ll16avffeO3379m1x3+uvv57nn38+SXLuuedu9Lnf/va3qw48I0eOzHe+853ceuutuemmm9LU1JQxY8YkSa677rr069cvU6dOzfe///20bds2jY2NOfnkk3PooYdu8eYbb7yRCy64oMVtV1xxRZJ3X2q3IfAceOCBGTJkSH71q1/lpZdeSlNTU3r16pULL7ww55xzzl+9ADUAUIeGpvdeJREAAACA6mzZ87ABAAAAaDUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUru1mH7n77lvxNN5n0qRyW0mybFm5rd12K7eVJHfdVW7roYfKbbUSf/hDua3XXy+3lSTdupXb+szcG8uNJcmYMeW2OnYst9UaLF5cbOqf5/99sa0kWbeu3NaaNeW2kuTgg8ttjR5dbqtVePjhclv33FNuK0kuvLDY1IEHNRTbSpL/+l8Lyo0NGVJuq7VYvbrY1E3/Xvbn8Mn/57xyY9deW24rSa6/vtzWJ+yHRcm/U9x+e7mtJDnziP9dbuyWW8ptJck//EO5raFDN+swz+ABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFC5hqampqbNOnLduq18Ku/xL/9SbitJ7ruv3Fabsk1t6T/fVWyrT59iU63G739fbuu//7vcVpLMnFlu66abym0lyZFHltu6q9y3YOtw3nnltv7xH8ttJVn6l17FtvosKfxN8fzz5bZK/j/SGtx/f7GpZd0OL7aVJL3X/K7cWP/+5baS5NFHy23161duq7VYsKDc1sCB5baSfPcHHYptzZhRbCpJ8uKL5bY282+o241Vq8ptTZtWbitJ5s0rt3XHHeW2kqR793JbL720ecd5Bg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVa7u5B37/f+60Nc+jhUm99yy2lSQPX/zrYlsDBxabSpJcNa7c1r/9W7mt1qLXmv8qtzW4sdhWkuy1V+diW+efX2wqSfLaa2X3PlH+7u/KbV1+ebmtJH0ee6zc2COPlNtKkgkTyu59kjzxRLGp3t27F9tKkgwfXm6rsbHcVpKU/H7v16/cVmvx9tvltlatKreVZMqUDsW2xo4tNpUkGTOm7N4nSafVrxTbmvA/uhXbSpJZsxqKbZX+nvjpJc8XXNtrs47yDB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVraGpqatqsI2fP3sqn8v+9MuCYYltJ0r17ua0hQ8ptJcm9/76y3Niuu5bbai369i23tXhxua0k6d273NY//VO5rSR5/fVyWxddVG6rNRg5stzWf/xHua0k2WGHclt33VVuK8ldz/cptjVsWLGpVuHVV8ttPf10ua0kmTq13NZZZ5XbSpJ77y23deaZ5bZajf/8z3JbJf9jJsnjj5fb6tq13FaS3H13ua1ly8pttQbPPVduq1u3cltJMnlyua0nnii3lSSHHVZu64wzNuswz+ABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcm03+8iBA7fiabS08LfFppIkTcOPKbb1h3+dXWwrSbJiRbmtXXctt9Va/O535bZuu63cVpI7O4wquldS5wPLbR1ebqpVeOVff1Fs6557ik0lSW64odzWYTPKbSXJDy9+p+DaDgW3tr3ly8ttDf7M78uNJXnk73sV2xo+vNhUkuSSS8rufeKsW1dua9GicltJ8uyz5bb23bfcVpJ3li4rtvXJ+kmRLHj688W29mtXbCpJ8plBg8qN7bdfua0kd3YcXWxrc38MegYPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKNTQ1NTVt65MAAAAAYMt5Bg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5f4vnFHjbpX5gE0AAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAExtJREFUeJzt3Xuw1nWh7/HPQuSiIEiCjmgsxFTQcFJUVAzdqYQWpDtEya0wKuRsg2Mnb4Wnxgs5jO6Nom213OGoJRfdGkIi3pokYnLvyONobE1Rx2saYIiYyTp/eFjtJV6WCl/Xl16vGf7geX7P8/k9jDj27vf8VkNTU1NTAAAAAKhWu0/6BAAAAAD4eAQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAID3ceihh+bQQw9t/v3y5cvT0NCQGTNmfGLnBADwTgIPALDJrVu3LjNmzMiIESOy8847Z+utt85ee+2Viy66KGvXrv1Ez62hoeFdf+2www6tfo/58+fne9/73qY7yXexbNmynHnmmTnooIPSqVOnNDQ0ZPny5R/4uj/84Q/Nxz/44IOb/kQBgCLaf9InAABs/tasWZNx48Zl8ODB+frXv55evXpl8eLF+e53v5t77rkn9957bxoaGj6x8zviiCNy0kkntXisc+fOSZK77rrrA18/f/78XHXVVUUjz+LFi3PFFVdkwIAB6d+/f5YuXdqq15155plp37593njjjU17ggBAUQIPALDJdejQIYsWLcpBBx3U/Nhpp52WxsbG5shz+OGHf2Lnt9tuu+XEE0981+c6dOhQ+Gze1tTUlLVr1zaHpncaMWJEVq5cma5du+bSSy9tVeBZsGBBFixYkLPPPjsXXXTRRj5jAOCT5CtaALAZefbZZ3PKKadkxx13TMeOHdO3b9+cfvrp+ctf/tJ8zBNPPJFRo0alR48e2WqrrTJ48ODMmzevxfvcf//9aWhoyKxZs3LxxRdnp512SqdOnfKFL3whjz/+ePNxZ5xxRrp06ZI1a9ZscC4nnHBCdthhh7z11lvp0KFDi7iz3jHHHJMkefTRRzfWH8FG98578LzT2LFjc9VVVyVp+XWv9datW5dp06Zlzz33TKdOnbL99ttnwoQJWbFiRYv3aWxszJe+9KUsWLAggwYNSufOnXPNNde8526PHj3StWvXVn+ON998M5MmTcqkSZPSr1+/Vr8OAKiDK3gAYDPx3HPPZf/998/KlSszfvz47LHHHnn22WczZ86crFmzJh06dMiLL76Ygw46KGvWrMnEiRPzqU99Ktdff31GjBiROXPmNAeX9S655JK0a9cu3/rWt7Jq1apMnTo1X/va17JkyZIkyejRo3PVVVdl3rx5GTVqVPPr1qxZk7lz52bs2LHZYost3vOcX3jhhSTJdttttwn+RFpv7dq1efnll1s81rVr13Ts2PEDXzthwoQ899xzWbhwYW644YZ3fX7GjBkZN25cJk6cmCeffDJXXnllfvvb32bRokXZcsstm49dtmxZTjjhhEyYMCGnnXZadt9994//4f6/adOmZcWKFZk8eXJuvfXWjfa+AEDbIPAAwGbivPPOywsvvJAlS5Zk0KBBzY9fcMEFaWpqSvJ2sHnxxRfzy1/+MkOGDEny9lelBg4cmG9+85sZOXJk2rX72wW+a9euzdKlS5u/prTttttm0qRJefjhh7PXXntlyJAh6d27d2bOnNki8MybNy+vvfZaRo8e/b7nPHXq1GyzzTYZPnz4Rvtz+Ciuu+66XHfddS0e+/GPf5yxY8d+4GsPPPDA7Lbbblm4cOEGX/N64IEH8qMf/Sg33XRTxowZ0/z4YYcdli9+8YuZPXt2i8cff/zx3HnnnRk2bNjH+0Dv8MILL+TCCy/MpZdemm222WajvjcA0Db4ihYAbAbWrVuX2267LV/+8pdbxJ311n9laP78+dl///2b406SdOnSJePHj8/y5cvzyCOPtHjduHHjWtyD5pBDDkny9te81r/vqFGjMn/+/Kxevbr5uJkzZ6Z3794tdt5pypQpufvuu3PJJZeke/fuH/5Db0QjR47MwoULW/zaGJFl9uzZ6datW4444oi8/PLLzb/23XffdOnSJffdd1+L4/v27bvR406SnHPOOdlll11y6qmnbvT3BgDaBlfwAMBm4I9//GNeffXV7LXXXu973FNPPZUDDjhgg8f79+/f/Pz/fI9Pf/rTLY7bdtttk6TF/WNGjx6dadOm5Wc/+1nGjBmT1atXZ/78+ZkwYcJ7/mSsmTNnZvLkyTnllFNy+umnf+Dn+9Of/tTiPkIfRo8ePT7wRsk77bTTJrnJ82OPPZZVq1alV69e7/r8Sy+91OL3ffv23ejn8Otf/zo33HBD7rnnnhZXZwEAmxeBBwB4T+91/5z1X/lKksGDB6exsTGzZs3KmDFjMnfu3Lz++uvv+fWshQsX5qSTTsrRRx+dq6++ulXnceyxx+YXv/jFh/8ASe677773vUnyprRu3br06tUrN91007s+37Nnzxa/f6+fmPVxnH322TnkkEPSt2/fLF++PEma7zf0/PPP5+mnn94g5AEA9RF4AGAz0LNnz2yzzTZ5+OGH3/e4Pn36ZNmyZRs8/vvf/775+Y/iuOOOy+WXX55XX301M2fOTGNjYwYPHrzBcUuWLMkxxxyTQYMGZdasWWnfvnX/KXLZZZdt8FOnWmvvvff+SK/7MN7rSqV+/frl7rvvzsEHH7xJ4k1rPP3003nqqafe9eqgESNGpFu3blm5cmX5EwMANiqBBwA2A+3atctXvvKV3HjjjXnwwQc3uA9PU1NTGhoactRRR2XatGlZvHhxDjzwwCTJa6+9lmuvvTaNjY0ZMGDAR9ofPXp0pk6dmuuvvz533nlnJk2atMExjz76aI4++ug0Njbmjjvu+FDBY9999/1I51XK1ltvnSRZuXJli/sJHXfccfnBD36QCy+8MFOmTGnxmr/+9a9ZvXr1Jr//0LXXXrvBj7G/9957M3369Fx66aXZY489Nuk+AFCGwAMAm4kpU6bkrrvuytChQzN+/Pj0798/zz//fGbPnp0HHngg3bt3z7nnnpuf/vSnGT58eCZOnJgePXrk+uuvz5NPPplbbrnlI9+jZZ999smuu+6a73znO3njjTc2+HrWn//85wwbNiwrVqzIWWedlXnz5rV4vl+/fs3BqUbrA9TEiRMzbNiwbLHFFjn++OMzdOjQTJgwId///vezdOnSHHnkkdlyyy3z2GOPZfbs2bn88svz1a9+9SNtrlq1KtOnT0+SLFq0KEly5ZVXpnv37unevXvOOOOMJMmRRx65wWvXX7EzdOjQd70pNwBQH4EHADYTvXv3zpIlS3L++efnpptuyquvvprevXtn+PDh2WqrrZIk22+/fX71q1/lnHPOyfTp07N27doMHDgwc+fOzdFHH/2x9kePHp2LL744u+66a/bZZ58Wz73yyit55plnkiTnnnvuBq89+eSTqw48xx57bL7xjW/k5ptvzo033pimpqYcf/zxSZKrr746++67b6655pp8+9vfTvv27dPY2JgTTzwxBx988EfeXLFiRc4///wWj1122WVJ3v6q3frAAwD8fWho+p93SQQAAACgOn5WJgAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVK59q4/cb79NeBotNTz4m2JbSfLf/11u6zNDti83luT7/+vFYlvnnVdsqs0o+Znnzy+3lSS/e6ih3NiMGeW2kvzT3ScX27rhhmJTbcPPf15u69Zby20lOav7D4ttDRxYbCpJ8k+ff6rcWJ8+5bbagr33Lrd15ZXltpLsfuohxbZuvrnYVJKkXcH/C7TkPyJtxWc/W27rggvKbSXJMT8ZVW5s8OByW0lu3/V/F9saObLYVJtw1lnltiZPLreVJN26F/zfFGeeWW4ryeV9/qXY1qRJrTvOFTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACrXvrUHrrjrN5vyPFqYu6jYVJLkMyP6lxu77bZyW0nO2/+tgmtbFNxqG5YsKbf1u3tfKTeWJF89tNjU7d1PLraVJF26FJ37+3L//cWm7hj5w2JbSdJnebmtz3++3FYSfyk2pYceKjZ1+k8OKbaVJPPnl9vqd8WkcmNJnvnW5UX3/t4sX15u65il3y03liRz5hSb+o8xs4ttJa4M2JR69Ci31e3UUeXGkmSnnYpNXbfnvxTbSpJeWxWdaxV/TwEAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKhcQ1NTU1NrDvzXf93Up/I3Z/5kv3JjSTJrVrGp8/+9b7GtJFm5stzW9OnlttqKzp3LbU2dWm4rSYYMKbc1fny5rST5zfgflhs77bRyW23BK68Um2rY7lPFtpLkv/6r3Nbn/s+Xy40lyeGHl9uaNKncVltwyy3ltnbcsdxWkgwYUGxq9Rbdim0lSZeBu5Qbe+KJclttxO23l9saObFPubEkTcufKra13XbFppIkc+aU2zrssHJbbcJ//me5rVGjym0lueeH5f4dN3lysakkyeJZz5Qb23nnVh3mCh4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVraGpqamrNgT17bupT+ZtHHim3lSQ9r76w3NicOeW2kiy59nfFtg44oNhUm/EP/1Bu6949v1FuLMnMIdOLbY3e5TfFtpIkAweW2+rYsdxWGzB6dLmt444rt5UkPXqU2xo0qNxWkjzwQLmt4cPLbbUJ99xTbqtLl3JbSfLmm+W2Tjml3FaSBVcsK7Y1bFixqbbj5z8vt1X478V58w8ptvXP/1xsKkmy05Jbyo394z+W22oDXn+93Fbn664sN5bkjsYzim316VNsKknS2Fhuq2vX1h3nCh4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAq19DU1NTUmgPHjdvUp/I3xx9fbitJhk0ZWmxr8SW/KLaVJO3bl9vab79yW23Gk0+W23rppXJbSdKpU7Gp1f32LraVJF3eWlVurFu3clttwWOPFZt6sv1nim0lSd/V/7fY1sxHPltsK0l2263c1uc+V26rTfi3fys2teL404ttJcm2Y0cW23r+6tuLbSXJsceW21q8uNxWW/H66+W2Hnqo3FaSdO9ebmv3R/6j3FiSHHVUua2OHctttQFz55bbGjy43FaS9OzxVrmxpUvLbSXJgAHltjp3btVhruABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFC5hqampqZP+iQAAAAA+OhcwQMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQuf8HE/y4oQ4X0f8AAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABHgAAADJCAYAAABYK4WAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAE1BJREFUeJzt3X2w1nWB9/HPQUXkSaRE7sA8rA4qIjlCiogrrhKRhuKICJHJuIDOImYPo6ZO3aWopI7mw0rlChNqgM4mCKviA24Sy067scZopqM2JmkGAgqRCuf+w1vqCCo+8OV82ddrxj/Odf2u8/ldZxwG3/6u32loampqCgAAAADVarW9TwAAAACAj0bgAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQB4D4MGDcqgQYM2ff3cc8+loaEh06ZN227nBADwTgIPALDNbdy4MdOmTcuwYcOy9957p127dundu3cuvfTSrF+/frueW0NDwxb/6dq161Z/j/nz5+c73/nOtjvJLXjyySdz3nnnZcCAAWnTpk0aGhry3HPPbfHYxsbGLb7Hs846q+g5AwDbzs7b+wQAgB3funXrMnbs2PTv3z9nnXVWunTpksWLF+fb3/52HnzwwTz00ENpaGjYbuc3ePDgnH766c0e22233ZIk999///u+fv78+bnxxhuLRp7FixfnBz/4QXr16pUDDzwwS5cufc/jDznkkHz9619v9ljPnj234RkCACUJPADANte6dessWrQoAwYM2PTYuHHj0tjYuCnyHHfccdvt/Hr27JkxY8Zs8bnWrVsXPpu3NDU1Zf369ZtC0zsNGzYsq1atSocOHXLVVVe9b+Dp1q3bu75HAKB+PqIFADuQF154IWeeeWY+9alPZdddd02PHj1y9tln5/XXX990zDPPPJMRI0akc+fOadu2bfr375958+Y1+z4LFy5MQ0NDZs2alcsuuyzdu3dPmzZtcuyxx+bpp5/edNzEiRPTvn37rFu3brNzGTVqVLp27ZoNGzakdevWzeLO24YPH54keeKJJz6uH8HH7p334HmnM844IzfeeGOS5h/3etvGjRtz7bXX5qCDDkqbNm2y1157ZcKECXnllVeafZ/GxsaccMIJue+++9KvX7/stttumTp16rvudu7cOR06dPhA7+X111/P2rVrP9BrAIA6uIIHAHYQy5cvz2GHHZZVq1Zl/PjxOeCAA/LCCy/kzjvvzLp169K6deu89NJLGTBgQNatW5dJkyblE5/4RKZPn55hw4blzjvv3BRc3nbFFVekVatW+cY3vpHVq1dnypQp+dKXvpQlS5YkSUaOHJkbb7wx8+bNy4gRIza9bt26dZk7d27OOOOM7LTTTu96zi+++GKS5JOf/OQ2+IlsvfXr1+dPf/pTs8c6dOiQXXfd9X1fO2HChCxfvjwLFizIT37yky0+P23atIwdOzaTJk3Ks88+mxtuuCG/+tWvsmjRouyyyy6bjn3yySczatSoTJgwIePGjcv+++//0d/c//fQQw+lbdu22bBhQ/bZZ5+cd955Offccz+27w8AbF8CDwDsIC688MK8+OKLWbJkSfr167fp8e9+97tpampK8laweemll/Lzn/88AwcOTPLWR6X69OmTr33taznxxBPTqtVfL/Bdv359li5duuljSnvssUfOPffcLFu2LL17987AgQPTrVu3zJw5s1ngmTdvXtauXZuRI0e+5zlPmTIlHTt2zNChQz+2n8OHccstt+SWW25p9titt96aM844431fe8QRR6Rnz55ZsGDBZh+BevTRR/PjH/84t912W0aPHr3p8WOOOSaf//znM3v27GaPP/3007n33nszZMiQj/aG3qFPnz4ZOHBg9t9//6xYsSLTpk3LV7/61SxfvjxXXnnlx7oFAGwfAg8A7AA2btyYn/3sZ/niF7/YLO687e2PDM2fPz+HHXbYpriTJO3bt8/48eNz4YUX5vHHH0/v3r03PTd27Nhm96A56qijkrz1Ma/evXunoaEhI0aMyNSpU/Paa6+lffv2SZKZM2emW7duzXbeafLkyXnggQdy0003pVOnTh/p/X9UJ554YiZOnNjssYMOOugjf9/Zs2dn9913z+DBg5tdIdS3b9+0b98+Dz/8cLPA06NHj4897iTJnDlzmn09duzYDB06NNdcc03OOeecdO/e/WPfBADKEngAYAfw8ssvZ82aNc3izJb87ne/y+GHH77Z4wceeOCm5//2e3z6059udtwee+yRJM3uHzNy5Mhce+21mTNnTkaPHp3XXnst8+fPz4QJE971N2PNnDkzF198cc4888ycffbZ7/v+Vq5c2ew+Qh9E586d3/dGyd27d98mN3l+6qmnsnr16nTp0mWLz//xj39s9nWPHj0+9nPYkoaGhpx33nm57777snDhQjdfBoAdgMADALyrd7t/ztsf+UqS/v37p7GxMbNmzcro0aMzd+7c/PnPf37Xj2ctWLAgp59+eo4//vjcfPPNW3UeJ598ch555JEP/gaSPPzww+95k+RtaePGjenSpUtuu+22LT6/5557Nvv63X5j1raw9957J3krngEA9RN4AGAHsOeee6Zjx45ZtmzZex63zz775Mknn9zs8d/85jebnv8wTj311Fx33XVZs2ZNZs6cmcbGxvTv33+z45YsWZLhw4enX79+mTVrVnbeeev+KnL11Vdv9lunttZnPvOZD/W6D+LdrlTad99988ADD+TII48sGm+2xjPPPJNk88gEANRJ4AGAHUCrVq1y0kknZcaMGfnlL3+52X14mpqa0tDQkC984Qu59tprs3jx4hxxxBFJkrVr1+aHP/xhGhsb06tXrw+1P3LkyEyZMiXTp0/Pvffeu8XfzvTEE0/k+OOPT2NjY+65554PFDz69u37oc6rlHbt2iVJVq1a1ex+QqeeempuuummfO9738vkyZObvebNN9/Ma6+9ts3vP7Ry5crsvvvuza7GeuONN3LFFVekdevWOeaYY7bpPgBQhsADADuIyZMn5/7778/RRx+d8ePH58ADD8wf/vCHzJ49O48++mg6deqUCy64IHfccUeGDh2aSZMmpXPnzpk+fXqeffbZ3HXXXc1+g9YHceihh2a//fbLRRddlL/85S+bfTzr1VdfzZAhQ/LKK6/km9/8ZubNm9fs+X333XdTcKrR2wFq0qRJGTJkSHbaaaecdtppOfroozNhwoRcfvnlWbp0aT73uc9ll112yVNPPZXZs2fnuuuuyymnnPKhNlevXp3rr78+SbJo0aIkyQ033JBOnTqlU6dOm24aPWfOnFx66aU55ZRT0qNHj6xcuTK33357li1blsmTJ6dr164fw08AANjeBB4A2EF069YtS5YsySWXXJLbbrsta9asSbdu3TJ06NC0bds2SbLXXnvlF7/4Rc4///xcf/31Wb9+ffr06ZO5c+fm+OOP/0j7I0eOzGWXXZb99tsvhx56aLPnVqxYkeeffz5JcsEFF2z22q985StVB56TTz4555xzTn76059mxowZaWpqymmnnZYkufnmm9O3b99MnTo13/rWt7LzzjunsbExY8aMyZFHHvmhN1955ZVccsklzR67+uqrk7z1Ubu3A8/BBx+cXr16ZcaMGXn55ZfTunXrHHLIIZk1a1azX20PANStoelv75IIAAAAQHU+3HXYAAAAALQYAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKrfzVh/5yCPb8DTeYdCgcltJ0q9fua3Jk8ttJdnwD4OLbe20U7GpluPRR4tN/ardwGJbSXLRReW2nn++3FaS/PqxpnJjDQ3ltlqAFSvKbV18cbmtJPnnq9YW27rlp+2KbSXJmZf2KDf27LPltlqCceOKTd064EfFtpJkzJhyW7t8ZXS5sSR59dVyW3PnlttqKRYvLrf1n/9ZbivJ5evOLbb1298Wm0qS3Nr3hnJjEyeW22oJmgr+3XTNmnJbSUadtXuxrX/8x2JTSZJj37yv3NiQIVt1mCt4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUbuetPnLp0m13Fu80aFC5rSQ56aRyW1ddVW4rycJWg4ttHXtssakW4+4VA4tt/eyWYlNJksHl/tXJNdeU20qSg/s0FNv69a+LTbUIn1j6YLGtAw4o+4fObp9sV2yrU6diU0mSMyeNLzv4v8jlf/ejYlsXtrmj2FaS5KY/ltsaN67cVpJ07Fh273+Zh9cfUWzrmJ6rim0lyb1XlNtqVfh/1Y9aP7HY1h3lplqGBx4oNrXhHwr+JT/JP/1Tua2jjiq3lSSPPTak2NbBW3mcK3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAAConMADAAAAUDmBBwAAAKByAg8AAABA5QQeAAAAgMoJPAAAAACVE3gAAAAAKifwAAAAAFRO4AEAAACoXENTU1PTVh35ox9t41P5G336lNtKsqzd4cW2eg/+P8W2kiQ33VRua/jwclstxBtvlNt6/PFyW0nymV/PKLbV8OUxxbaSZNiwclt3311uq0UYNarc1qBB5baSfPPpCcW2vn/FhmJbSZI33yy3teuu5bZagIcfLrd1zG+nlhtLkrPOKrdV8s+WJBk5stzWiSeW22ohfv/7clvdb/m/5caS3NP328W2vv/9YlNJkn//93JbW/lfqDuOK68stzVzZrmtJDn//GJTn72q4J/dSXr3Lrd1661bd5wreAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVK6hqampaWsOXLJkW5/KXx2+8t/KjSXJwoXltg49tNxWktx+e7mtu+8ut9VSvPBCua1nnim3lSR33FFu66ijym0lyQknlNvq0KHcVgtw+OHltpacfGW5sSQbvnF+sa2ddm4otpUk6dix3Nbq1eW2WoK5c4tNTbjni8W2kmRql0vKja1YUW4rSRYsKLf11FPltlqKu+4qt/Xgg+W2kmTt2mJTB//39GJbSdKq4KUB//M/5bZagjfeKLe1y5iR5caSsv8N8y//Um4rSdq3L7fVo8dWHeYKHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDKCTwAAAAAlRN4AAAAACrX0NTU1LRVRz744DY+lb/63X7HFttKkjZtis4Vdf/95ba+/OVyWy3GkiXFphZvPLzYVpIc8fvZ5cYmTiy3leTnd75UbOuoo4pNtQzPP19s6icL9y62lSRz5pTb+vu/L7eVJOd0/9dyY8OHl9tqAWbOLLd13HHltpLkoYfKbY14+vJyY0keGXBhsa2jjy421WL813+V2+r73F3lxpLk9dfLbXXtWm4rSdq3L7f12c+W22oBXn213FaH/1hQbixJHnus3Nbpp5fbSpKLLy63NXXqVh3mCh4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJUTeAAAAAAqJ/AAAAAAVE7gAQAAAKicwAMAAABQOYEHAAAAoHICDwAAAEDlBB4AAACAygk8AAAAAJVraGpqatreJwEAAADAh+cKHgAAAIDKCTwAAAAAlRN4AAAAACon8AAAAABUTuABAAAAqJzAAwAAAFA5gQcAAACgcgIPAAAAQOUEHgAAAIDK/T8EEsRsOBM6UgAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["visualize_conv_filters(model)"]},{"cell_type":"markdown","metadata":{"id":"solMQOAluKp_"},"source":["##### Visualization of the feature map output it produces for an MNIST digit. In filter visualization:\n","\n","blue are values above 0\n","\n","white are values equal to 0\n","\n","red are values bigger than 0"]},{"cell_type":"code","execution_count":51,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":608},"id":"X6WevNsMuKp_","executionInfo":{"status":"ok","timestamp":1763145654922,"user_tz":480,"elapsed":833,"user":{"displayName":"Rasul Kairgeldin","userId":"08252840589446120769"}},"outputId":"dc3a040d-e174-45bc-b3e9-fe09dcae341b"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABI8AAAJPCAYAAAD1zfSMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVupJREFUeJzt3Xe4nVWVOP5103sBEgjpAUxIkBJaRghFcSyAgDLqdwBBFMYGiFLUoQrDgIVhZICBURFBBQeBARVQpA0DgpHehISEGiCFkEJ63t8f/ohc7lmbm0vuPfcmn8/z5Hlkr7PP3ufkXe/7nuXJWQ1VVVUBAAAAADV0qvcGAAAAAGi/FI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACk1pni0WmnnRYNDQ0tmvuTn/wkGhoaYsaMGWt3U28xY8aMaGhoiJ/85CettgYAAADA2lb34tFjjz0WBx98cAwdOjS6d+8em266aRx00EHx2GOP1XtrdXH77bdHQ0NDXH311fXeCgAAAEB9i0fXXHNNTJw4Mf7whz/EZz/72bjwwgvjc5/7XNx2220xceLEuPbaa5v9XCeddFIsXry4Rfs45JBDYvHixTFy5MgWzQcAAABYV3Wp18LTpk2LQw45JMaMGRN33nlnDBo0aHXsmGOOicmTJ8chhxwSDz/8cIwZMyZ9nkWLFkXv3r2jS5cu0aVLy15O586do3Pnzi2aCwAAALAuq9s3j7773e/GG2+8EZdcckmjwlFExEYbbRQXX3xxLFq0KL7zne+sHn/zd40ef/zx+Md//McYOHBg7Lrrro1ib7V48eI4+uijY6ONNoq+ffvGxz72sXjxxRejoaEhTjvttNWPq/WbR6NGjYp99tkn7rrrrthpp52iR48eMWbMmPjpT3/aaI25c+fGcccdF+9973ujT58+0a9fv/jIRz4SDz300Fp6p/722p566qk4+OCDo3///jFo0KA4+eSTo6qqeP7552O//faLfv36xSabbBLf//73G81ftmxZnHLKKbH99ttH//79o3fv3jF58uS47bbbmqw1Z86cOOSQQ6Jfv34xYMCAOPTQQ+Ohhx6q+XtNTz75ZBx44IGxwQYbRI8ePWKHHXaI66+/fq29bgAAAKD+6lY8uuGGG2LUqFExefLkmvHddtstRo0aFb/5zW+axP7hH/4h3njjjTjrrLPiiCOOSNc47LDD4vzzz4+PfvSjcc4550TPnj1j7733bvYep06dGgceeGB88IMfjO9///sxcODAOOywwxr9HtMzzzwT1113Xeyzzz5x7rnnxvHHHx+PPPJI7L777vHSSy81e63m+NSnPhWrVq2Ks88+O3beeec488wz47zzzosPfvCDMXTo0DjnnHNi8803j+OOOy7uvPPO1fPmz58fP/zhD2OPPfaIc845J0477bSYNWtWfOhDH4oHH3xw9eNWrVoV++67b/ziF7+IQw89NP7lX/4lZs6cGYceemiTvTz22GMxadKkeOKJJ+Ib3/hGfP/734/evXvH/vvvv0b/3BAAAABo3+ryz9Zef/31eOmll2K//fYrPm7rrbeO66+/PhYsWBB9+/ZdPb7NNtvEz3/+8+Lc+++/P375y1/GV7/61fi3f/u3iIj40pe+FJ/97Geb/a2gv/zlL3HnnXeuLnB98pOfjOHDh8ell14a3/ve9yIi4r3vfW889dRT0anT3+pwhxxySIwbNy5+9KMfxcknn9ystZpjp512iosvvjgiIo488sgYNWpUfP3rX49//dd/jRNPPDEiIv7f//t/semmm8aPf/zj2G233SIiYuDAgTFjxozo1q3b6uc64ogjYty4cXH++efHj370o4iIuO666+Kee+6J8847L4455piIiPjiF78YH/zgB5vs5ZhjjokRI0bEn/70p+jevXtE/PX93XXXXePEE0+MAw44YK29bgAAAKB+6vLNowULFkRENCoI1fJmfP78+Y3Gv/CFL7zjGjfddFNE/LWg8VZHHXVUs/c5fvz4Rt+MGjRoUIwdOzaeeeaZ1WPdu3dfXThauXJlzJkzJ/r06RNjx46N+++/v9lrNcfnP//51f+7c+fOscMOO0RVVfG5z31u9fiAAQOa7LFz586rC0erVq2KuXPnxooVK2KHHXZotMebbropunbt2ujbXJ06dYovf/nLjfYxd+7cuPXWW+OTn/xkLFiwIGbPnh2zZ8+OOXPmxIc+9KF4+umn48UXX1yrrx0AAACoj7p88+jNotCbRaRMVmQaPXr0O67x7LPPRqdOnZo8dvPNN2/2PkeMGNFkbODAgfHaa6+t/u9Vq1bFv//7v8eFF14Y06dPj5UrV66Obbjhhs1eqyX76d+/f/To0SM22mijJuNz5sxpNHbZZZfF97///XjyySdj+fLlq8ff+v48++yzMWTIkOjVq1ejuW9/z6ZOnRpVVcXJJ5+cfrPq1VdfjaFDhzb/xQEAAADtUl2KR/37948hQ4bEww8/XHzcww8/HEOHDo1+/fo1Gu/Zs2drbm+1rANbVVWr//dZZ50VJ598chx++OFxxhlnxAYbbBCdOnWKr371q7Fq1apW309z9njFFVfEYYcdFvvvv38cf/zxMXjw4OjcuXP867/+a0ybNm2N9/Hm6zruuOPiQx/6UM3HrEmRDgAAAGi/6lI8iojYZ5994r/+67/irrvuWt0x7a3+93//N2bMmBH/9E//1KLnHzlyZKxatSqmT58eW2yxxerxqVOntnjPtVx99dWx5557rv7doDfNmzevyTeC6uXqq6+OMWPGxDXXXNOoI92pp57a6HEjR46M2267Ld54441G3z56+3s2ZsyYiIjo2rVr7LXXXq24cwAAAKDe6tZt7fjjj4+ePXvGP/3TPzX5J1Zz586NL3zhC9GrV684/vjjW/T8b34j5sILL2w0fv7557dsw4nOnTs3+pZPRMR///d/t6vf/Hnz20lv3ee9994b99xzT6PHfehDH4rly5fHf/3Xf60eW7VqVVxwwQWNHjd48ODYY4894uKLL46ZM2c2WW/WrFlrc/sAAABAHdXtm0dbbLFFXHbZZXHQQQfFe9/73vjc5z4Xo0ePjhkzZsSPfvSjmD17dvziF7+IzTbbrEXPv/3228cnPvGJOO+882LOnDkxadKkuOOOO+Kpp56KiGj0DZx3Y5999olvf/vb8dnPfjbe9773xSOPPBI/+9nPVn87pz3YZ5994pprrokDDjgg9t5775g+fXr853/+Z4wfPz4WLly4+nH7779/7LTTTvH1r389pk6dGuPGjYvrr78+5s6dGxGN37MLLrggdt1113jve98bRxxxRIwZMyZeeeWVuOeee+KFF15odkc7AAAAoH2rW/EoIuIf/uEfYty4cfGv//qvqwtGG264Yey5557xrW99K7baaqt39fw//elPY5NNNolf/OIXce2118Zee+0VV111VYwdOzZ69OixVl7Dt771rVi0aFH8/Oc/j6uuuiomTpwYv/nNb+Ib3/jGWnn+teGwww6Ll19+OS6++OK4+eabY/z48XHFFVfEf//3f8ftt9+++nGdO3eO3/zmN3HMMcfEZZddFp06dYoDDjggTj311Nhll10avWfjx4+PKVOmxOmnnx4/+clPYs6cOTF48ODYbrvt4pRTTqnDqwQAAABaQ0P19n9ztY578MEHY7vttosrrrgiDjrooHpvp0O47rrr4oADDoi77rordtlll3pvBwAAAGhDdfvNo7awePHiJmPnnXdedOrUKXbbbbc67Kj9e/t7tnLlyjj//POjX79+MXHixDrtCgAAAKiXuv6ztdb2ne98J/785z/HnnvuGV26dIkbb7wxbrzxxjjyyCNj+PDh9d5eu3TUUUfF4sWL4+/+7u9i6dKlcc0118Tdd98dZ511VvTs2bPe2wMAAADa2Dr9z9Z+//vfx+mnnx6PP/54LFy4MEaMGBGHHHJI/PM//3N06bJO181a7Oc//3l8//vfj6lTp8aSJUti8803jy9+8Yvxla98pd5bAwAAAOpgnS4eAQAAAPDurNO/eQQAAADAu6N4BAAAAEBK8QgAAACAVLN/NbqhoaE19wHvqD3+PJe8oN7aW17ICepNTkBj7S0nIuQF9dfe8kJOUG/NyQnfPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkutR7A2vqwAMPrDl+xBFH1Bx/6aWXao4vWbKkydjPfvazmo99+eWXa45PnTq15ji0NXkBjckJaExOQFPyAhqTE5T45hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBqqKqqatYDGxpaey/N8swzz9QcHzVqVKutuWDBgprjjz32WKut2ZpeeOGFmuPf+c53moxNmTKltbfTbM08VNuUvGhKXrSt9pYXcqIpOdG25ERtcuLdkxNrj7xoSl60rfaWF3KiKTnRtpqTE755BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApLrUewNr6ogjjqg5vvXWW9ccf+KJJ2qOb7nllk3GJk6cWPOxe+yxR83xSZMm1Rx//vnnm4wNHz685mPX1IoVK5qMzZo1q+ZjhwwZskbP/dxzzzUZa0+/AE9OXsgLGpMTcoLG5IScoCl5IS9oTE7IiRLfPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAqYaqqqpmPbChobX30m4NHDiw5vi2225bc/zPf/5zk7Edd9xxrexlyZIlTcaeeuqpmo/NfsBsgw02qDn+5S9/ucnYRRddtAa7a13NPFTblLxoSl60rfaWF3KiKTnRtuRE+yEn2of2lhMR8qIWedG22lteyImm5ETbak5O+OYRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQ0m1tHfCJT3yi5vgvf/nLmuOPPvpozfE999yzydjcuXNbvrG1rL11RYiQF+2ZvKgPOdF+yYn6kBPtl5yoH3nRfsmL+pAT7Zec+BvfPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFK6rXUwgwcPbjL2yCOPNPuxEREHHnhgzfFf/epXLd9YG2hvXREi5EV7IS/aDznRPsiJ9kNOtA9yon2RF+2DvGg/5ET7ICfKfPMIAAAAgJTiEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABIdan3BlgzX/7yl5uMDRo0qOZjX3vttZrjf/nLX9bqnqDe5AU0JiegMTkBTckLaExOlPnmEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABINVRVVTXrgQ0Nrb0X3mKXXXapOX7rrbc2GevatWvNx+6xxx41x++8884W76uemnmotil50bbkRVPtLS/kRNuSE03JifWbnGiqveVEhLxoa/KiqfaWF3KibcmJppqTE755BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApLrUewPU9tGPfrTmeK1fe//DH/5Q87H33HPPWt0T1Ju8gMbkBDQmJ6ApeQGNyYmW8c0jAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpdtanfXs2bPm+Ic//OGa48uWLWsyduqpp9Z87PLly1u+MagjeQGNyQloTE5AU/ICGpMTa5dvHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnd1urs+OOPrzm+3Xbb1Ry/6aabmozdfffda3VPUG/yAhqTE9CYnICm5AU0JifWLt88AgAAACCleAQAAABASvEIAAAAgJTiEQAAAACphqqqqmY9sKGhtfeyTtt7771rjl933XU1xxctWlRz/MMf/nCTsT/+8Y8t3ldH0sxDtU3Ji3dHXrx77S0v5MS7IyfePTmxbpET7157y4kIefFuyYt3r73lhZx4d+TEu9ecnPDNIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAINWl3htYF2244YZNxn7wgx/UfGznzp1rjv/2t7+tOb6+/No76x55AY3JCWhMTkBT8gIakxP145tHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABAqqGqqqpZD2xoaO29dDjZr7fX+pX27bffvuZjp02bVnP8wx/+8Bo9fn3QzEO1TcmLpuRF22pveSEnmpITbUtOtH9yom21t5yIkBe1yIu21d7yQk40JSfaVnNywjePAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAVJd6b6Aj22yzzWqOZ7/2XsvXvva1muPr8y+907HJC2hMTkBjcgKakhfQmJxof3zzCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACk/GB2M4wcObLm+O9+97tmP8fxxx9fc/zXv/51i/YE9SYvoDE5AY3JCWhKXkBjcqLj8M0jAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpdtaMxx55JE1x0eMGNHs57jjjjtqjldV1aI9Qb3JC2hMTkBjcgKakhfQmJzoOHzzCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASOm29ha77rprzfGjjjqqjXcC7Ye8gMbkBDQmJ6ApeQGNyYmOzzePAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlG5rbzF58uSa43369Fmj55k2bVqTsYULF7ZoT1Bv8gIakxPQmJyApuQFNCYnOj7fPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKT+Y/S489NBDNcc/8IEPNBmbO3dua28H2gV5AY3JCWhMTkBT8gIakxPtj28eAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAqYaqqqpmPbChobX3AkXNPFTblLyg3tpbXsgJ6k1OQGPtLSci5AX1197yQk5Qb83JCd88AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUs3utgYAAADA+sc3jwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleFQwY8aMaGhoiJ/85Cerx0477bRoaGio36agjuQENCUvoDE5AU3JC2hMTnQ863Xx6Cc/+Uk0NDTU/PONb3yj2c9z1llnxXXXXdd6G01cf/31MXHixOjRo0eMGDEiTj311FixYkWb74N1R0fOiauuuioOPvjg2GKLLaKhoSH22GOPNl2fdVdHzYs5c+bEd7/73dhtt91i0KBBMWDAgJg0aVJcddVVbbYH1k0dNSciIo499tiYOHFibLDBBtGrV6/Ycsst47TTTouFCxe26T5Y93TkvHiradOmRY8ePaKhoSGmTJlSt33Q8XXknBg1alTNfX/hC19o0320N13qvYH24Nvf/naMHj260dhWW20VI0eOjMWLF0fXrl2L888666w48MADY//992/FXTZ24403xv777x977LFHnH/++fHII4/EmWeeGa+++mpcdNFFbbYP1k0dMScuuuii+POf/xw77rhjzJkzp83WZf3R0fLinnvuiX/+53+Oj370o3HSSSdFly5d4le/+lV8+tOfjscffzxOP/30NtkH666OlhMREX/6059i8uTJ8dnPfjZ69OgRDzzwQJx99tlxyy23xJ133hmdOq3X/78qa0FHzIu3OvbYY6NLly6xdOnSuqzPuqej5sS2224bX//61xuNvec972nTPbQ3ikcR8ZGPfCR22GGHmrEePXq08W7+asmSJdGtW7f0Jua4446LrbfeOn73u99Fly5//Wvs169fnHXWWXHMMcfEuHHj2nK7rGM6Yk5cfvnlMXTo0OjUqVNstdVWbbw71gcdLS8mTJgQTz/9dIwcOXL12Je+9KXYa6+94pxzzokTTjghevfu3ZbbZR3T0XIiIuKuu+5qMrbZZpvFcccdF/fdd19MmjSptbfIOq4j5sWbbr755rj55pvjhBNOiDPPPLONdse6rqPmxNChQ+Pggw9uw121f/7vlYJa/w7z7RoaGmLRokVx2WWXrf4622GHHbY6/uKLL8bhhx8eG2+8cXTv3j0mTJgQP/7xjxs9x+233x4NDQ1x5ZVXxkknnRRDhw6NXr16xfz582uu+fjjj8fjjz8eRx555OrCUcRfPxRUVRVXX331u3rdkGmvORERMXz4cP+PMXXRXvNi9OjRjQpHb+5j//33j6VLl8YzzzzT4tcMJe01JzKjRo2KiIh58+at0TxYE+09L5YvXx7HHHNMHHPMMbHZZpu9m5cKzdLecyIiYtmyZbFo0aKWvsR1jm8eRcTrr78es2fPbjS20UYbNWvu5ZdfHp///Odjp512iiOPPDIiYvUJ95VXXolJkyZFQ0NDfOUrX4lBgwbFjTfeGJ/73Odi/vz58dWvfrXRc51xxhnRrVu3OO6442Lp0qXRrVu3mms+8MADERFNKribbrppDBs2bHUcWqqj5QS0hXUlL15++eU12jtkOmpOrFixIubNmxfLli2LRx99NE466aTo27dv7LTTTs185ZDrqHlx3nnnxWuvvRYnnXRSXHPNNc18tfDOOmpO3HrrrdGrV69YuXJljBw5Mo499tg45phjmvmq11HVeuzSSy+tIqLmn6qqqunTp1cRUV166aWr55x66qnV29+23r17V4ceemiT5//c5z5XDRkypJo9e3aj8U9/+tNV//79qzfeeKOqqqq67bbbqoioxowZs3qs5Lvf/W4VEdVzzz3XJLbjjjtWkyZNesfngFo6ak683YQJE6rdd999jedBLetKXlRVVc2ZM6caPHhwNXny5BbNh6rq+Dlxzz33NNrz2LFjq9tuu63Z86GWjpwXM2fOrPr27VtdfPHFjV7Ln/70p+a+fGiiI+fEvvvuW51zzjnVddddV/3oRz+qJk+eXEVEdcIJJ6zBO7Du8c2jiLjgggvW+o9fVVUVv/rVr+KTn/xkVFXVqNr6oQ99KK688sq4//77Y5dddlk9fuihh0bPnj3f8bkXL14cERHdu3dvEuvRo8caf10b3q6j5QS0hY6eF6tWrYqDDjoo5s2bF+eff/5a2T/rt46aE+PHj4/f//73sWjRorj77rvjlltu0W2NtaYj5sWJJ54YY8aMic9//vNrdd8Q0TFz4vrrr2/035/97GfjIx/5SJx77rlx1FFHxbBhw9bOC+lgFI8iYqeddkp/xKulZs2aFfPmzYtLLrkkLrnkkpqPefXVVxv999t/hT7z5kFfqwvCkiVLfNjmXetoOQFtoaPnxVFHHRU33XRT/PSnP41tttmmRc8Bb9VRc6Jfv36x1157RUTEfvvtFz//+c9jv/32i/vvv19u8K51tLz44x//GJdffnn84Q9/8NuRtIqOlhO1NDQ0xLHHHhs333xz3H777evtD2krHrWSVatWRUTEwQcfHIceemjNx2y99daN/ru5RZ8hQ4ZERMTMmTNj+PDhjWIzZ870b/Zpl1ozJ6Cjaqu8OP300+PCCy+Ms88+Ow455JA13yi0kXpcKz7+8Y/HIYccEldeeaXiEe1Sa+bFCSecEJMnT47Ro0fHjBkzIiJWf4tj5syZ8dxzz8WIESNauHNoHfW4Vrz5uXvu3Lnv6nk6MsWjtaChoaHJ2KBBg6Jv376xcuXK1f/v1tqy7bbbRkTElClTGhWKXnrppXjhhRdW/5gY1Etb5wR0BPXKiwsuuCBOO+20+OpXvxonnnhiq6wBLdFerhVLly6NVatWxeuvv94m60FJW+fFc889F88++2zNb2V87GMfi/79++tESF21l2vFm11qBw0a1CbrtUe+m7gW9O7du8lJtXPnzvGJT3wifvWrX8Wjjz7aZM6sWbNavN6ECRNi3Lhxcckll8TKlStXj1900UXR0NAQBx54YIufG9aGts4J6AjqkRdXXXVVHH300XHQQQfFueee+66eC9a2ts6JefPmxfLly5uM//CHP4yIpl1soR7aOi8uueSSuPbaaxv9OeqooyIi4nvf+1787Gc/a/Fzw9rQ1jkxd+7cRp+xIyKWL18eZ599dnTr1i323HPPFj93R+ebR2vB9ttvH7fcckuce+65semmm8bo0aNj5513jrPPPjtuu+222HnnneOII46I8ePHx9y5c+P++++PW2655V195e273/1ufOxjH4u///u/j09/+tPx6KOPxn/8x3/E5z//+dhyyy3X4quDNVePnLjzzjvjzjvvjIi/XjAWLVoUZ555ZkRE7LbbbrHbbrutldcGLdXWeXHffffFZz7zmdhwww3jAx/4QJMPAO973/tizJgxa+OlQYu0dU7cfvvtcfTRR8eBBx4YW2yxRSxbtiz+93//N6655prYYYcd1tvfsKB9aeu8+Pu///smY29+UN99990VVam7ts6J66+/Ps4888w48MADY/To0TF37tz4+c9/Ho8++micddZZsckmm6zlV9hxKB6tBeeee24ceeSRcdJJJ8XixYvj0EMPjZ133jk23njjuO++++Lb3/52XHPNNXHhhRfGhhtuGBMmTIhzzjnnXa25zz77xDXXXBOnn356HHXUUTFo0KD41re+FaeccspaelXQcvXIiVtvvTVOP/30RmMnn3xyRESceuqpikfUXVvnxeOPPx7Lli2LWbNmxeGHH94kfumllyoeUVdtnRPvfe97Y88994z/+Z//iZkzZ0ZVVbHZZpvFKaecEscff3x069ZtLb46aJl63ENBe1aPa8X48ePjiiuuiFmzZkW3bt1i2223jV/+8pfxD//wD2vxlXU8DVVVVfXeBAAAAADtk988AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABIdWn2I3/961bcRjNcdlldl5/+nf+u6/qjj/xgXdePiIjPfKa+6x9ySH3Xr+G11+q7/v3313f9D4yfWdf1//HrQ+q6fkT9D8uPfKS+6zcxfXpdl7/qvtF1XX/VqrouH5Mm1Xf9iIgrrqjv+iefXN/13+6b36zv+vW+dH/84/Vd/+/+rr7rR0QsWVLf9X/+8/quX1O9b6DqfaLafPP6rv/UU/VdPyLiH/+xvusPGlTf9d+m3ikx8Jb6ftaN556r7/o77FDf9SPi1Ft3r+v6p5/+zo/xzSMAAAAAUopHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUopHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABASvEIAAAAgFSX5j5w+oR9WnMf72j00f3ruv4JJ9R1+fjvr32tvhuIiGuXfKSu6x9Q19VrG/jry+u6/gd+/eu6rh+HHVbX5U88cUhd14+IGDWq3jtoX17oOrqu639qn0V1Xf+Lx/Wu6/qnnFLX5SMi4nvfq/cO2pepU+u7/pZdnq7r+meeuUVd1z/rrLouHxERU6bUewft0E031Xf9o4+u7/rHHlvf9SdMqO/6EXHXXwbVdf1d67t8EwP7LK/vBi65pL7rH354fdfv16++60fERhvVewfvzDePAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSXZr7wJ/8pBV30Qyn79+nruv36FHX5WPsVz9S3w1ExEsv1Xf9BQvqu35NZ55Z3/Wfeqq+63/pS3VdfptzD63r+hER8eMf13kDneu8fmMzZ9Z3/Qce6F3X9Q87rK7Lxw471Hf9iIg99qj3DtqXq6+u7/r7Ltmiruv/+td1Xb5d5MT999d3/e23r+/6Nc2YUd/1Gxrqu/5NN9V3/dNPr+/6EREP1XsD7cxnPlPf9W+5pb7rd6rzd1rq/Jnmr7ar9wbekW8eAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASHVp7gOfeaY1t/HOjrhwu7qu36NHXZdvFxYurPcO2qG9967v+l/6Un3XHzasvuuPGFHf9SMiLrqovut/5Sv1Xf9tdrz+5Ppu4P3vr+/681fUdfmdv3VwXdePiIi7Plrf9S+9tL7rv8348fVd/9e/ru/63/lOfdfv2bO+60dE3Hdffdfffvv6rl/TVlvVd/399qvv+gfX91z9pyf71nX9iIiuXeu9g3Zm9uz6rn/SSfVd/8UX67v+xz5W3/UjYsV59d7BO/PNIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAVENVVVWzHnnppa28lbJ/+uNn67r+xV96qK7r7370NnVdPyJijz3qu/7pp9d3/Zp+8Yu6Lv/Q+P9X1/UHDKjr8nHddfVdPyLimG3vqO8Gdt+9vuu/3Wuv1Xf9b3yjvuv36FHf9X/wg/quHxExeHB913/llfqu/3Y33ljX5d97wkfquv4999R1+ehz3RX13UBExIUX1nf9u++u7/o11Pu4ePDB+q6/1171XX+LTtPqu4GIiLlz67v+jjvWd/23q/e16+c/r+/6o0bVd/1NNqnv+hFx47y/q+v6H2nG7YJvHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBqqqqrqvQkAAAAA2iffPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4lENhx12WIwaNaoua5922mnR0NBQl7UhIyegKXkBjckJaEpeQGNyouPqkMWjCy+8MBoaGmLnnXdu8XO89NJLcdppp8WDDz649jbWTG+88Uacdtppcfvtt7f52u/k+uuvj4kTJ0aPHj1ixIgRceqpp8aKFSvqvS3egZxoHVdddVUcfPDBscUWW0RDQ0Psscce9d4Sa0BerH1z5syJ7373u7HbbrvFoEGDYsCAATFp0qS46qqr6r01mkFOtI5jjz02Jk6cGBtssEH06tUrttxyyzjttNNi4cKF9d4azSAvWt+0adOiR48e0dDQEFOmTKn3dngHcqJ1jBo1KhoaGpr8+cIXvlDvrTVf1QG9733vq0aNGlVFRPX000+36Dn+9Kc/VRFRXXrppU1iy5Ytq5YsWfIud5mbNWtWFRHVqaee2iS2fPnyavHixa22dslvf/vbqqGhodpzzz2rSy65pDrqqKOqTp06VV/4whfqsh+aT060jt13373q06dPteeee1YDBw6sdt9997rsg5aRF2vfDTfcUHXt2rXab7/9qvPOO6/6j//4j2rPPfesIqI65ZRT2nw/rBk50Tp22WWX6uijj65+8IMfVJdcckn1xS9+serevXu1yy67VCtXrqzLnmg+edH69t1336p3795VRFR/+tOf6r0d3oGcaB0jR46stt122+ryyy9v9Ofee++ty35aosN982j69Olx9913x7nnnhuDBg2Kn/3sZ2t9ja5du0b37t3X+vM2R5cuXaJHjx51Wfu4446LrbfeOn73u9/FEUccET/4wQ/im9/8Zlx88cXx5JNP1mVPvDM50Xouv/zyeP311+PWW2+NTTfdtC57oGXkReuYMGFCPP3003HdddfFMcccE1/+8pfjD3/4Q7z//e+Pc845JxYtWtTme6J55ETrueuuu+Lf//3f46ijjoojjjgiLrzwwviXf/mX+L//+7+477776rInmkdetL6bb745br755jj22GPrug+aR060rqFDh8bBBx/c6M9OO+1Ut/2ssXpXr9bUGWecUQ0cOLBaunRp9cUvfrHaYostaj7utddeq7761a9WI0eOrLp161YNHTq0OuSQQ6pZs2ZVt912WxURTf68WRk99NBDq5EjR1ZV9dfK6MCBA6vDDjusyRqvv/561b179+rrX/96VVVVtXTp0urkk0+uJk6cWPXr16/q1atXteuuu1a33nrr6jnTp0+vufabldFTTz21evtfy/Lly6tvf/vb1ZgxY6pu3bpVI0eOrL75zW82qdiOHDmy2nvvvav//d//rXbccceqe/fu1ejRo6vLLrvsHd/Xxx57rIqI6oILLmg0/uKLL1YRUZ1xxhnv+BzUh5xonZx4uwkTJvjmUQciL9omL970gx/8oIqI6uGHH27xc9C65ETb5sTVV19dRUR14403tvg5aH3yonXzYtmyZdXYsWOr448/vrr00kt986gDkBOtlxNvzl+6dGm1cOHCZs1pbzpc8WjcuHHV5z73uaqqqurOO++sIqK67777Gj1mwYIF1VZbbVV17ty5OuKII6qLLrqoOuOMM6odd9yxeuCBB6qXX365+va3v11FRHXkkUeu/srYtGnTqqpqfEBXVVUdfvjh1YABA6qlS5c2Wueyyy5rdBKcNWtWNWTIkOprX/taddFFF1Xf+c53qrFjx1Zdu3atHnjggaqqqmrhwoXVRRddVEVEdcABB6xe+6GHHqqqqvYBfeihh1YRUR144IHVBRdcUH3mM5+pIqLaf//9Gz1u5MiR1dixY6uNN964+ta3vlX9x3/8RzVx4sSqoaGhevTRR4vv6xVXXFFFRM2vzQ0bNqz6+Mc/XpxP/ciJ1smJt1M86ljkRdvkxZu+9a1vVRFRvfTSSy2aT+uTE62bE8uXL69mzZpVvfjii9XNN99cjRs3rurbt281Z86cZs2nPuRF6+bFd77znWrw4MHV66+/rnjUQciJ1suJkSNHVj179qw6d+5cRUQ1cuTI6rzzznvHee1JhyoeTZkypYqI6ve//31VVVW1atWqatiwYdUxxxzT6HGnnHJKFRHVNddc0+Q5Vq1aVVVV+d9hvv2Avvnmm6uIqG644YZGj/voRz9ajRkzZvV/r1ixoslB/9prr1Ubb7xxdfjhh68eK/07zLcf0A8++GAVEdXnP//5Ro877rjjqohoVGkdOXJkFRHVnXfeuXrs1VdfbVSxzXz3u9+tIqJ67rnnmsR23HHHatKkScX51Iec+Ju1nRNvp3jUcciLv2ntvKiqqpozZ041ePDgavLkyWs8l7YhJ/6mtXLinnvuafT/co8dO7a67bbbmjWX+pAXf9MaeTFz5syqb9++1cUXX1xVVaV41AHIib9pjZzYd999q3POOae67rrrqh/96EfV5MmTq4ioTjjhhHec2150qN88+tnPfhYbb7xx7LnnnhER0dDQEJ/61KfiyiuvjJUrV65+3K9+9avYZptt4oADDmjyHC1pzff+978/Ntpoo0bdZF577bX4/e9/H5/61KdWj3Xu3Dm6desWERGrVq2KuXPnxooVK2KHHXaI+++/f43XjYj47W9/GxERX/va1xqNf/3rX4+IiN/85jeNxsePHx+TJ09e/d+DBg2KsWPHxjPPPFNcZ/HixRERNf/9aY8ePVbHaV/kxN+s7Zyg45IXf9PaebFq1ao46KCDYt68eXH++ee3ZOu0ATnxN62VE+PHj4/f//73cd1118UJJ5wQvXv31m2tnZMXf9MaeXHiiSfGmDFj4vOf/3yL9krbkxN/0xo5cf3118cJJ5wQ++23Xxx++OFxxx13xIc+9KE499xz44UXXmjR/ttahykerVy5Mq688srYc889Y/r06TF16tSYOnVq7LzzzvHKK6/EH/7wh9WPnTZtWmy11VZrbe0uXbrEJz7xifif//mfWLp0aUREXHPNNbF8+fJGB3RExGWXXRZbb7119OjRIzbccMMYNGhQ/OY3v4nXX3+9RWs/++yz0alTp9h8880bjW+yySYxYMCAePbZZxuNjxgxoslzDBw4MF577bXiOj179oyIWP363mrJkiWr47QfcqJ1c4KOSV60bV4cddRRcdNNN8UPf/jD2GabbdZ847Q6OdE2OdGvX7/Ya6+9Yr/99otzzjknvv71r8d+++0XDz30UIv2T+uSF62bF3/84x/j8ssvj3/7t3+LTp06zMfN9ZqcaPvPFQ0NDXHsscfGihUr4vbbb1/j+fXQYbL51ltvjZkzZ8aVV14ZW2yxxeo/n/zkJyMiWuWX4N/q05/+dCxYsCBuvPHGiIj45S9/GePGjWt0s3zFFVfEYYcdFptttln86Ec/iptuuil+//vfx/vf//5YtWrVu1q/uVXczp071xyvqqo4b8iQIRERMXPmzCaxmTNn6jTVDsmJ1s0JOiZ50XZ5cfrpp8eFF14YZ599dhxyyCHNnkfbkhP1uVZ8/OMfj4iIK6+8skXzaV3yonXz4oQTTojJkyfH6NGjY8aMGTFjxoyYPXt2RPz1c8Vzzz23Zhum1cmJ+lwrhg8fHhERc+fObdH8ttal3htorp/97GcxePDguOCCC5rErrnmmrj22mvjP//zP6Nnz56x2WabxaOPPlp8vjX9St1uu+0WQ4YMiauuuip23XXXuPXWW+Of//mfGz3m6quvjjFjxsQ111zT6PlPPfXUFq89cuTIWLVqVTz99NOx5ZZbrh5/5ZVXYt68eTFy5Mg1eh2ZbbfdNiIipkyZ0qhd4EsvvRQvvPBCHHnkkWtlHdYeOdG6OUHHJC/aJi8uuOCCOO200+KrX/1qnHjiiWv1uVm75ER9rhVLly6NVatWtfj/Dad1yYvWzYvnnnsunn322Rg9enST2Mc+9rHo379/zJs3b62sxdohJ+pzrXjzn7sNGjSoVddZWzrEN48WL14c11xzTeyzzz5x4IEHNvnzla98JRYsWBDXX399RER84hOfiIceeiiuvfbaJs/1ZlWwd+/eERHNPnF16tQpDjzwwLjhhhvi8ssvjxUrVjT5Gt2blci3Vh7vvffeuOeeexo9rlevXs1e+6Mf/WhERJx33nmNxs8999yIiNh7772btf93MmHChBg3blxccskljf5N60UXXRQNDQ1x4IEHrpV1WDvkROvnBB2PvGibvLjqqqvi6KOPjoMOOmj189M+yYnWz4l58+bF8uXLm4z/8Ic/jIiIHXbYYa2sw9ojL1o/Ly655JK49tprG/056qijIiLie9/7Xqt/i4U1IydaPyfmzp3b6DN2RMTy5cvj7LPPjm7duq3+nal2r61/obslrrzyyioiquuuu65mfOXKldWgQYOqfffdt6qqv7YPHD9+/Or2gf/5n/9ZnXXWWdWkSZOqBx98sKqqqlq2bFk1YMCAauzYsdUPf/jD6he/+EX1zDPPVFXV9Bfg33TXXXdVEVH17du3eu9739sk/uMf/7iKiOpjH/tYdfHFF1ff+MY3qgEDBlQTJkxo8nzjx4+vNtlkk+qCCy6ofvGLX1SPPPJIVVXl9oGf/OQnqwsuuGD1f9dqH7j33ns32dfuu+/erC5RN9xwQ9XQ0FC9//3vry655JLq6KOPrjp16lQdccQR7ziXtiUn2iYn7rjjjuqMM86ozjjjjGrw4MHVqFGjVv/3HXfc8Y7zaVvyovXz4t577626detWDRo0qPrxj3+8ugXu29vw0j7IidbPiWuvvbYaPnx4deyxx1YXXnhhdd5551Wf+MQnqoaGhmqHHXZo0hmI+pMXbXMP9Xa6rbVfcqL1c+LSSy+tNttss+rEE09c/X5ttdVWVURUZ511VnFue9Ihikf77rtv1aNHj2rRokXpYw477LCqa9eu1ezZs6uq+mvr4K985SvV0KFDq27dulXDhg2rDj300NXxqqqq//mf/6nGjx9fdenSpVErweyAXrVqVTV8+PAqIqozzzyzZvyss86qRo4cWXXv3r3abrvtql//+tc1n+/uu++utt9++6pbt26NWgnWOqCXL19enX766dXo0aOrrl27VsOHD6+++c1vVkuWLGn0uLVxkr/22murbbfdturevXs1bNiw6qSTTqqWLVvWrLm0HTnRNjnx5tq1/tRq/0l9yYvWz4s3b/6zP7Va8lI/cqL1c2Lq1KnVZz7zmWrMmDFVz549qx49elQTJkyoTj311GrhwoXFudSHvGi7zxVvpXjUfsmJ1s+JKVOmVPvuu+/q96tPnz7VrrvuWv3yl78szmtvGqrKr8YCAAAAUFuH+M0jAAAAAOpD8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQ6tLcB957772tuQ94RzvvvHO9t9DENttsU+8tsJ576KGH6r2FRj7zmc/Uewus537605/WewuNzJ49u95bYD230UYb1XsLTQwZMqTeW2A9N3PmzHpvoZGtttqq3ltgPffoo4++42N88wgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAAKkurfnky5cvT2MLFixIY8uWLVvjtTp1yutg/fv3X+N5PXr0SOesXLkyjTU0NNQcr6oqncP6pUuXPO1WrVqVxhYuXLjG80rP169fvzSWHcddu3ZN56xYsSKNZUr7Y/3Rq1evNDZ48OA0Vjq3Z89Zui7Nmzcvjc2fP7/meOlaVloru464VhAR0b179zTWp0+fNJaduyMiFi9eXHP89ddfb/7G3iI755f2XpLdj8kJ3tS5c+c0Vro/KR1DS5YsqTm+aNGidE7p3J4dx926dUvnlPaeveZSrrP+KH0mLd1jlz7nZrGePXu2aB/ZtSLLvdKcCNeEevPNIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEAq7xm+FsydOzeNPfnkk2ms1B7z5Zdfrjleag1bai244YYb1hwvtYDu3bt3Gsv20ZYtNUtrld6Lvn371hwvtZYvtR4ttYhcn1u0l9osl96X0jGZtcgcNGhQ8zf2FlkOltpqvvHGG2ksa2u7bNmyNdtYKym1BM1alpbOOaWcWbp0aRpbX/Ni8ODBaWy77bZLY6NGjUpj2bFf+rspHd+vvfZazfFSm/OFCxemsezYb8tjoNRaN3u9ERGvvPLKGs8pvRelttfra0veUhvllrQdj4iYPn16zfHFixe3aK3s+l+6xpWuY9n9Sdb6vDWU8q90b5q9h6X7sV69eqWx0rz19ToRUX5fStfx0nvWuXPnmuMbbbRROqd0HcnO7aV7pNJ9QZaDbXluLK1Vet+za0z2nkeUP6eU7rva8jzRnpSOq5LS+5zdP5Xu1UrXrJbkxLx589JYdp1ry3Nj6VxUOr6znChdu0ux0v1Ta1k/Mw0AAACAZlE8AgAAACCleAQAAABASvEIAAAAgJTiEQAAAAApxSMAAAAAUnmvybWg1GbvhRdeSGMzZsxIY6+++uoar1Vqp9e7d++a46WWg6X2qll7vlJLxFK75FLrydLrymyyySZpbPPNN685vummm6ZzNthggzQ2cODA5m9sPVJq4VhqPT5gwIA0lv3d7bTTTumcrl27prGXXnqp5vjzzz+fzpkzZ04ay9p0l9rTlvKiJS0yS+1kS+ePrBV76f3L2pJGlNuZz58/P42ty0rHwezZs9NYqXV23759a46XWs2WzmdDhw6tOb7FFlukc0rn/ew4LbVEXtvtu0trzZw5M409+OCDNcenTZuWzsnOKRERs2bNSmOlvF2Xld6T7JwUUb5/euSRR9Z4TnaPFJHnS2lO6b6gT58+a/x8a7s9e+meq5QvWcvpbt26pXNGjBiRxkr3Xeuz7F4iotzOOms9HhGx1VZb1Rwv3Y+VPiNk16VXXnklnfPyyy+nsSzfS8d+6VhtyWeOUl6UYtlaixcvTueU7p9oqqX30UOGDEljG220Uc3xCRMmpHNK98TZPkr3cAsWLEhj2fFTei9Kx2lJlkul+7HSvV/2PpU+Q5Xun0r3asuXL09j74ZvHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAAKlW7bbWpUv+9KWuNqWOCVk3jlJHnlLXkuyX2UvdTEodPLKuTaXODKVfQy916si6e5S6OY0fPz6NZZ2eWtrtprT30i/Rr+tKx1apo1qpS1vWWWrkyJHpnI033jiNTZw4seZ4qftBSZbTpWOr1HGj9F5k54jS3kvdCp566qma46W8fe6559LYvffem8bW125rpU4zTz/9dBqbO3duGsu6eJQ6N5W6jwwfPrzmeCln+/Xrl8ayeaXrZqlbSClfNtxww5rjw4YNS+eUuuFksZZ2ySl1aVlfu62V7jNKXVlK557s/uTFF19M55Tux7p3715zvKUdb7JzanZ9iyjvr9RpKOv6Vjo/lPae3Y+VrsGl96m0j/79+6exdV3pulv6+yl1r9t2221rjmdd2CLK56Vsj6XOUtnxE5F3mGtpJ6VSJ7bsvr10ji7J9l465zzzzDNprHSvUMqndVnp77N0r1z6O83uXbJz/jvJOpNlXd0i8vuWiPK5PVM6P5Teiyw3S+9tqbN5dv4udbOeMmVKGit9tinVA94N3zwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApPKewGtBqRV41vY4otzKPGtjXGoRXGoJmbW8zVraRpTbbWZ7L7WTLbVmLrXr/ctf/rLGc0qtCrO2g6WWpKXnK7XN7NmzZxpb15Vasv7xj39MY6X3LGs1/8ADD6RzBg0atMaxESNGpHNKLctLa2VK7UdL70U2r7S/0jG+wQYb1BwvtekstdV86KGH0tj6av78+Wls6tSpaax0bs/O06UWr6Vzca9evWqOl1rXZu1pI/LWsKVzauncXsqJ8ePH1xzfZptt0jmlnMhaw7aklXlE+fpNU6Vra+nvIGuL/J73vCedk7XajsiP71IL8dLfdanlcKZ03JfO0dm80r3arFmz0lj2ukrnlM022yyNld6LrNXz+qD0fg4cODCNZdfxiPzcXsqz0jGe5UXpHmTTTTdNY9k1q3Q96NatWxpryf13S84DERG9e/euOf7qq6+mc26//fY0Vvp8WPr7Wl+V7qNL57qsxftTTz2VzindM2R5WzqXle6tsucrzSkpHcPZuTi7h4sov64hQ4bUHC9dr55++uk0VjonthbfPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACkWrW/24YbbpjGspaxEeVWyn369Kk53rdv33ROqX1j1s651E629HxZ68xS29VSu79Sa9g//OEPNceztu0RET169EhjY8eOrTm+ySabpHNK7QhLa63PSsfW7Nmz01ipBXP2d37nnXemc0ptXrO/u8GDB6dzsna3EREbb7xxzfFSe8xS+8ns+UpK55xSe8/ddtut5niWLxHlfF+8eHEaW1+VjsXSdaQkaw1fWqvUTj77eyu1MC7lbHadK7W7LT3f6NGj01iWzy+88EI6Z86cOWksa/Hb0utBqe116TWvy0ptlEvnq9K9UNaiu/Qel47vrA10S89x2WsuvRdruyX5E088kcZK7ZKzY3/kyJHpnNK5aH097t9J6T6jFCud2x9//PGa488991zzN/YW2bmudC0rnTuzY7x0jJTOt6Xjbv78+TXHs9btEREjRoxIY6NGjao53rt373TOlClT0hhNlVq8l+6jS/caL7744hqNR5Sv49k1q1+/fumc0t6zWCknSp+1S+9Fdi80fPjwdM6WW26Zxlry2bhUdyhdo1uLqxMAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBq1W5rpV8vL/1yf6kDU9YxodRJofSL7VkXg6yrW0TeYSQi73RS+qX0UqzUfSt7nzbddNN0zqBBg9Y4Vnq+UneLklK3h3VdqQPM0KFD01jpuMtk3QQjysdd1i1s3rx56ZxSnj344IM1x0udEUrvU6lrycCBA2uOlzoATZgwIY1NnDix5nipq+FDDz2UxubOnZvG1lelziulzhSl81nW1bDUzbPULSTLpVIela6BWT6X9jBgwIA0tsMOO6SxcePG1Rz/y1/+ks6ZOnVqGsv+vkrvRUmpY1ZLznvrglJODBs2LI2VciI7tkrdzEqdI7OcyDo2RZTzLzt+Svd3pZwoya5lf/7zn9d4TkR+3dlggw3WeE6EbrUtUeo6VDo3vfLKKzXHW9LtKSL/uyt1liqdA7P77NK5saX35i+//HLN8VKn3VJH5uxzyquvvprOKcVK56r1VanDZumzVun+JLtPLZ2/S8+X5UvpM0pJ9nyl11uqLbz++utpLLv+lI77lnRCLH02eP7559NYPTo4++YRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIJX3mlwLSi39Sq1XW6LUGrbUnq9z5841x0tt9kqtALP2mKU2oc8++2wau/nmm9PYc889V3N8iy22SOeU/k66du1aczx7jyLK7UpLa63PSu9nqZVrS/Tv3z+NtaSFZ2lOKWey9qql46dPnz5prNTGOouVWqDvsssuaWyzzTarOX7fffelc5588sk0ptVsUy1tiVzSs2fPNZ5Tan2cnc9Kx33pmMvWKrXo3nzzzdPYxIkT01jWfrnU2rp03cyuZ6W8LJ33SmuV/k7WZdn1+J1ipfNmS5Te/+z4bml76Gyt0h5K18zSfeZvf/vbmuOl1tEbbrhhGsvuuzbaaKN0TinW0lbr67rSsbBs2bIWxda27JrQ0nNgdg0sXXtK181SW/Ls/uTDH/5wOmfjjTdOY1m+z5gxI52TfbaJaNu/x46idD0oKeVS6Tydacm9UOkepLS/LF9K157S9WDBggVpbMCAATXHS+fvTTfdNI3Nmzev5vjUqVPTOS+99FIaa8n79G755hEAAAAAKcUjAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAg1bIeyB3M2m5HWDJ//vya46XWmH/+85/T2NNPP53G+vbtW3O81Oq51NJx8ODBNcdLLWNLbRGz1ta0D6W2mt26dVura2XPVzq2+vfvn8ZK8+bMmVNzfPz48emcHXfcMY1lrWEffPDBdE7WipP2rSXtkku6d+++xnNK7V/HjBmTxkr5nLWAnTZtWjqndK3I1sra8UaUr0ulazT1VcqJtX2dyJSOndJxP3PmzDT2xBNP1ByfPXt2OqeUm8OGDas5PmrUqHTOoEGD0lhLzh20D9l9cel+uSS7Bykd+6WW9tnnlIj8Pul973tfOmf48OFpLLv2PPLII+mcUg629D2k9bXk/qml1/5s3tKlS9M5r732WhorHVfvec97ao5PnDgxnVO6Vjz00EM1xx9++OF0Tiln68E3jwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABASvEIAAAAgNR60W2tLWW/AJ91gIrIuxFElDvejBw5sub4xhtvnM4ZOnRoGss6WHXu3DmdU+roAO+kpZ0BlyxZksayLjVbbrllOqfU9ea2226rOf7kk0+mc+QF7yTrlFPqMtizZ880Vjoen3rqqZrjpTwqdSLN8qWUzyW6rRGRd+sp3YMsXLgwjU2ZMiWNZR1vSl13St0Os/uxUre1AQMGpLFS5yKIKB+rixcvTmOl427SpEk1x7fffvsWrZV1VSt1ki5dlyAiv2d444030jml43TTTTdNY9tuu23N8QkTJqRzSh0D77///prjpe63pVyvx7XCN48AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAqS713sC6JmsxOX369HROqbXgJptsksay1oIbbrjhGs+JyNtAl9oAarFMc3Tr1q3meOn4WblyZRqbNWtWGsvaZ26++ebpnJdffjmN3XXXXTXHX3nllXROqa1m1qKd9Uvfvn1rjpfO+cuWLUtjpWvMzJkza45n5/yIiB49eqSxTNeuXdd4DrwpOx47d+6cznnxxRfTWNYmPCLitddeqzk+dOjQdM6wYcPSWJa3G220UTonuy7CW3XpUvuj2tKlS9M5K1asSGPDhw9PY9ttt13N8QEDBqRzHn300TT25z//ueZ46Z6rdP8EEfnxXfo8Xfosu+WWW6axrbbaquZ46fz9+OOPp7GHHnqo5viiRYvSOe2NTzEAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAVO3+jxQtX748jb3wwgs1x5955pl0Tqnd3+DBg9NY1uq51FKze/fuaSxrj1l6vaVW66xfSi3oW9L2e/78+WmsdByPHTu25viQIUPSObfccksae/7559NYpvResP7IWo9HRIwePbrmeKmN8owZM9LYq6++msayfMlaQEdE9OnTJ421pMW4awUR5XN3li/z5s1L59x///1p7OGHH05j2TVpzJgx6ZyRI0eucax0P+Y6wZs6d+6cxrIW44sXL07nlM7R48aNS2ObbbZZzfE5c+akcx544IE09vTTT9ccX7p0aTrHtYKIiJUrV6axN954o+Z46bgqfQbYZptt0th73vOemuOzZs1K55SuS9OnT685Xjrus3NAvbhyAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFJ5n971XKll3ty5c9NY1hr2pZdeSueUWrmWYl27dq05PnDgwHROqTVs9ppXrVqVzmH9UmoXWWrtnR2rvXv3TufMnj07jW277bZrHGtpq9kFCxakMSi1WC61ht1iiy1qjme5EhHx8ssvp7HSdalXr141x0t7L+nSpfatgxbLRJTvM3r27JnGli1bVnN82rRp6Zw//vGPaeyVV15JY8OGDas5PmLEiHTO0KFD09igQYNqjme5wvqndP9UypklS5as0XhExPjx49PYTjvtlMb69etXc/zxxx9P5zzyyCNp7LXXXqs57lpBRPk4WLx48RrHsnudiIjtt98+jU2cODGNZZ9TSjnx2GOPpbEsb1t6P1YPvnkEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFKKRwAAAACktIFIlDosZR3VIiKeeuqpmuPz589P50yYMCGNlTrvZJ3YevTokc4pdXtYvnx5GoOIcqeckr59+9YcLx1zWTeqiIhddtkljQ0fPrzm+A033JDOef7559PYypUra46XuqOw7snOnYMHD07njB07No1l3ZlKXTr+8pe/pLGSFStW1BwvdTvs1q1bGss6pOigQ0RE//79WzRv1qxZNcd/97vfpXNK+VKSdVXbdNNN0zmlWKnbKESU7+ezc3RExLx582qOl465yZMnp7EddtghjWVdrEqdpWbMmJHGSq8LSh0DS7HsfmzcuHHpnB133DGNbbXVVmks6/xcqgW8+OKLaWxd+OzQ8V8BAAAAAK1G8QgAAACAlOIRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEh1qfcG6i1rw/3cc8+lcx599NE0NmfOnJrjpXbOWRvziIiNNtoojWWtnkvtQLPXGxGxatWqNMb6JWslWTpWu3fvnsY6d+68RutEtLyt5vTp02uO33///emcBQsWpLF1oa0m7152DA8ZMiSdM2zYsDSWXWOmTJmSznnllVfSWNa6NiKiZ8+eazynpdcR1h9ZTpSOjzfeeCON3XvvvTXHb7nllnRO6V6tdJ3YdNNN12g8onw/lr0XrH+y8+ry5cvTOaV7kOzeao899kjnfPjDH05j2WeHiIi77rqr5vgjjzySznn99dfTWFVVaYz1R3ZNWLhwYTpn8eLFaWzo0KE1xydOnJjO2W233dJY6fz9xBNP1Bwv1QKWLFnSorU6Cp+KAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEBK8QgAAACAlOIRAAAAAKku9d5AWyi1oJ87d27N8VJbyldffTWNbbDBBjXHSy1jN9544zQ2ePDgNDZgwICa46XWmFos86ZSm+4ePXrUHF+6dGk6p3///mksa0O73XbbpXNKsVILz9tuu63m+AsvvJDOKeVFp05q7OuLLl3yS+Lw4cNrjo8cOTKdU2phPGXKlJrj999/fzqndC3r3bt3GstaPWfj77QW649SW+HsHqR0nSi1N77hhhtqjj///PPpnH79+qWx0aNHr3FsyJAh6Zw+ffqkMdYvpfunrl271hxftGhROqfUsnzrrbeuOf6Rj3wknbPtttumsaeffjqNZdefZ599Np2zYsWKNMb6o/TZM2tdX7pWlO5pJkyYUHN80qRJ6ZyhQ4emsdJ16b777qs5PnPmzHTOuv65Yd1+dQAAAAC8K4pHAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACC1XnRbK3Vmeuqpp2qOT5s2LZ1T6siT/Zp7qWvaiBEj0lhpXtbRofR6ddDhTaVOSz179qw5Xup+MGfOnDSWdeUZN25cOqe01h133JHGHnzwwZrjb7zxRjpnXe+MQPO0pHPToEGD0jmlzml/+ctfao6XjsXStadXr15prFu3bmv8fDpzElG+TmRdlkpdBu+555409thjj63ROhHlrpzvec970tioUaNqjm+44YbpnFLnOdYvpfP08uXLa45nXWcjyl3+PvCBD9Qc32mnndI5s2fPTmOlHMzun+bPn5/OKXXZYv2xbNmyNJZ9Ls1yJSJiyy23TGM77rhjzfFSl8FSp/Q//vGPaeyJJ56oOV56vev6tcInJgAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEAq79PbwZTa/b344otp7OGHH645PnPmzHTO8OHD09imm25ac7xv377pnFKs1K48axNYamvL+qXUTrZHjx5pLGvtXToe582bl8a22mqrmuMjRoxI55Ry8P/+7//S2Ny5c9MYlFqPDxs2bI1jpXatb7zxRhrLrlmlVuFZXkZEdOmSX86zXF+1alU6h/VH165d01jpmFu0aFHN8azdd0T53P3CCy/UHM/uqyIiRo4cmcY233zzNLbxxhvXHO/Vq1c6h/VL6f6poaEhjWXn/VIuTZo0KY3ttttua/x8d911Vxq755570liWgytXrkznsP4oHQeLFy9OY0uXLq053qdPn3TOTjvtlMb23HPPmuMbbLBBOmfKlCktimWfbUrnh3Xd+vvKAQAAAHhHikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAIKV4BAAAAEAq7+3bwZRaBE6dOjWNzZgxo+Z4qe34kCFD0ljWjrDU0q8UW7JkSRrLWj1XVZXOYf2SteiOiOjZs2caGzBgwBqvte2226axyZMn1xwvtWC+9dZb09irr76axrJWoutzW03+ptQadvDgwWksO35eeeWVdM7ChQvTWHbsl875Xbqs3Uv2qlWr1urz0TF17tw5jS1btiyNZefhu+++O53zxBNPNH9j/79+/fqlsVJr5lI+9+/fv+a46wTNUfrMkeXM2LFj0zm77bZbGttqq61qjpfugx577LE0Nn369DSWfYbxuYKI/HNnRPl+Jzt+Ro0alc7Zeeed09h2221Xczz7TB8RMW3atDQ2Z86cNJZpaGhY4znrCldJAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQGrt9v2to/nz56ex559/Po1lbQcHDhyYzunbt28ay9qEb7TRRumc0t5LSu11IaLc2rtXr15pLGvhXWrtvddee6WxbbbZpub4ggUL0jml1plZnkVotUxZKSdKx3fWAvbJJ59M57SkJXLPnj3TOd26dUtjpVbKpdcFK1asSGPZcRoR8eCDD9Ycv+OOO9I5Tz31VBobMmRIzfHhw4enc3r37p3G+vXrl8ZK5wGIKOfF4sWL09iGG25Yczy7D4qImDhxYhobNGhQzfGXX345nfP666+nsdLeS9cRKF0PFi5cmMayz9QTJkxI5+y8885prGvXrjXHs/u0iIiZM2emsVKuNzQ0pLH1lU9ZAAAAAKQUjwAAAABIKR4BAAAAkFI8AgAAACCleAQAAABAap1pN1HqEDB48OA1fr5SJ7MxY8aksawTW//+/dd4DxF+5Z13Z9myZWms1LEs60QzdOjQdE6PHj3SWNbd44knnkjnvPjii2ms1BkBSubNm5fGSl2iXnjhhZrjpWP4jTfeSGMjRoxYo/F30r179xbNg1KXnFI3wfvuu6/meKkjT9ZRLSK/Vxs1alQ6Z9iwYWms1LkQ3smSJUvSWKlj2QYbbFBzfIcddkjn7Lbbbmks6wr90ksvpXNeffXVNOb+iZYqdW4tfabIumIOGDCgRft4+umna46XOtxm93ARcmJN+eYRAAAAACnFIwAAAABSikcAAAAApBSPAAAAAEgpHgEAAACQUjwCAAAAINVQlXrcAwAAALBe880jAAAAAFKKRwAAAACkFI8AAAAASCkeAQAAAJBSPAIAAAAgpXgEAAAAQErxCAAAAICU4hEAAAAAKcUjAAAAAFL/H4jvqU+ztQArAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["# Pick a sample MNIST image from test set\n","sample_img, sample_label = validation_data[0] # first test image\n","input_img = sample_img.unsqueeze(0).to(device) # add batch dimension\n","\n","# Get conv1 weights and forward pass\n","model.eval()\n","with torch.no_grad():\n"," conv1_output = model.conv1(input_img) # shape: [1,6,H,W]\n","\n","num_filters = conv1_output.shape[1]\n","\n","# Plot\n","fig, axes = plt.subplots(3, num_filters, figsize=(num_filters*2, 6))\n","\n","for i in range(num_filters):\n"," # Original image (top row)\n"," axes[0, i].imshow(sample_img[0].cpu().numpy(), cmap='gray')\n"," axes[0, i].axis('off')\n"," if i == 0:\n"," axes[0, i].set_title(f\"Original Image\")\n","\n"," # Conv1 filter weights (middle row)\n"," filter_w = model.conv1.weight.data[i, 0].cpu().numpy() # [5,5]\n"," vmax = np.abs(filter_w).max() # symmetric range\n"," vmin = -vmax\n"," axes[1, i].imshow(filter_w, cmap='bwr', vmin=vmin, vmax=vmax)\n"," axes[1, i].axis('off')\n"," axes[1, i].set_title(f\"Filter {i}\")\n","\n"," # Feature map (bottom row)\n"," feature_map = conv1_output[0, i].cpu().numpy()\n"," axes[2, i].imshow(feature_map, cmap='gray')\n"," axes[2, i].axis('off')\n"," axes[2, i].set_title(f\"Activation {i}\")\n","\n","plt.tight_layout()\n","plt.show()\n"]}],"metadata":{"language_info":{"name":"python"},"colab":{"provenance":[],"gpuType":"T4"},"kernelspec":{"name":"python3","display_name":"Python 3"},"accelerator":"GPU"},"nbformat":4,"nbformat_minor":0}