
Model Compression As Constrained Optimization,
with Application to Neural Nets

Miguel Á. Carreira-Perpiñán mcarreira-perpinan@ucmerced.edu

EECS, University of California, Merced

Yerlan Idelbayev yidelbayev@ucmerced.edu

EECS, University of California, Merced

Abstract

Compressing neural nets is an active research problem, given the large size of state-of-
the-art nets for tasks such as object recognition, and the computational limits imposed by
mobile devices. Firstly, we give a general formulation of model compression as constrained
optimization. This makes the problem of model compression well defined and amenable to
the use of modern numerical optimization methods. Our formulation includes many types
of compression: quantization, low-rank decomposition, pruning, lossless compression and
others. Then, we give a general algorithm to optimize this nonconvex problem based on a
penalty function (quadratic penalty or augmented Lagrangian) and alternating optimization.
This results in a “learning-compression” algorithm, which alternates a learning step of the
uncompressed model, independent of the compression type, with a compression step of
the model parameters, independent of the learning task. This algorithm is guaranteed to
find the best compressed model for the task under standard assumptions. It is simple to
implement in existing deep learning toolboxes and efficient, with a runtime comparable to
that of training a reference model in the first place.

1 Motivation

Neural nets have achieved spectacular practical successes in hard problems in computer vision, speech and
language in recent years. However, these neural nets are very large (upwards of many millions of weights),
which makes it difficult to deploy them in mobile phones or other devices with limited computation, memory,
bandwidth or battery life. This motivates the need for compressing a neural net while minimally hurting its
performance.

Neural nets are overparameterized in practice, so even simple compression approaches achieve remarkably
high compression—such as quantizing the net or pruning small weights and then retraining the resulting
net. Many algorithms have been proposed since the 1980s for neural net compression which consider a
specific type of compression (such as pruning or binarization) and usually combine some type of rounding or
truncation operation with the backpropagation algorithm (e.g. [4–8, 10, 11]). Although these works achieve
significant compression, they apply only to the particular type of compression they were designed for, and
often have no guarantees of converging to an optimally compressed net (or of converging at all).

What distinguishes our approach? Firstly, we provide a generic formulation for the problem of optimally
compressing a model, independent of the compression type. This puts the problem of compression in a
sound mathematical footing, amenable to modern optimization techniques. Then, we give a generic training
algorithm to find the compressed model with lowest loss. All this algorithm requires is the usual SGD
training of the original model; and access to a black-box compression routine for the desired compression
type (k-means for quantization, SVD for low-rank, etc.). The combination of these two elements in our
learning-compression algorithm gives rise to a convergent algorithm with guarantees of finding the optimal
model (under some standard assumptions).

This brings several practical advantages: a simple algorithm that can be easily integrated in a deep learning
toolbox; general applicability, in being able to handle most compression techniques in a common framework;
and performance, in achieving more compression for the same target loss than other, approximate algorithms.
Our algorithm also opens the door for more sophisticated uses of compression along memory, time, energy
and other dimensions constrained by the hardware.

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).



Next, we summarize our general approach and mention its application to quantization and pruning. For
further details see papers [1–3].

2 A constrained optimization formulation of model compression

Assume we have previously trained a model with weights w = argminw L(w). This is our reference model,
which represents the best loss we can achieve without compression. We define compression as finding a
low-dimensional parameterization ∆(Θ) of w in terms of Q < P parameters Θ. We seek a Θ such that its
corresponding model has (locally) optimal loss. We denote this“optimal compressed” and write it as Θ∗ and
w

∗ ≡∆(Θ∗) (see fig. 1 right). We define model compression as a constrained optimization problem:

minw,Θ L(w) s.t. w = ∆(Θ). (1)

Compression and decompression are usually seen as algorithms, but here we regard them as mathe-
matical mappings in parameter space. The decompression mapping ∆: Θ ∈ R

Q → w ∈ R
P

maps a low-dimensional parameterization to uncompressed model weights. The compression mapping
Π(w) = argminΘ ‖w −∆(Θ)‖

2 behaves as its “inverse” and appears in the C step of our learning-
compression algorithm. The C (compression) step is itself carried out by an algorithm: SVD for low-rank
compression, k-means for quantization, etc. The feasible set C = {w ∈ R

P : w = ∆(Θ) for Θ ∈ R
Q}

contains all high-dimensional models w that can be obtained by decompressing some low-dimensional model
Θ. In our framework, compression is equivalent to orthogonal projection on the feasible set.

Our framework includes well-known types of compression (and combinations thereof), such as:

• Low-rank compression defines ∆(U,V) = UV
T , where we write the weights in matrix form with

W of m× n, U of m× r and V of n× r, and with r < min(m,n). The compression mapping is
given by the singular value decomposition (SVD) of W.

• Quantization uses a discrete mapping ∆ given by assigning each weight to one of K codebook
values. The compression mapping is given by k-means (or by a form of rounding if we use a fixed
codebook, such as {−1,+1} or {−1, 0,+1}).

• Pruning defines w = ∆(θ) = θ where w is real and θ is constrained to have few nonzero values,
e.g. by using a sparsifying norm such as ‖θ‖

0
≤ κ or ‖θ‖

1
≤ κ. The compression mapping involves

some kind of thresholding.

3 A “Learning-Compression” (LC) algorithm

Problem (1) is nonconvex for two reasons. First, the original problem of training the reference model (i.e.,
minimizing L(w)) is already nonconvex for many models, such as deep nets. This makes the objective
function of (1) nonconvex. Second, the decompression mapping ∆(Θ) typically adds and extra level of
nonconvexity, often caused by an underlying combinatorial problem (e.g. the choice of best subset of weights
to prune, or the choice of assignments of weight-to-codebook-entries in quantization). This makes the feasible
set of (1) nonconvex.

Although this constrained problem can be solved with a number of nonconvex optimization algorithms, it
is key to profit from parameter separability, which we achieve with penalty methods (quadratic penalty or
augmented Lagrangian) and alternating optimization. For simplicity, here we give the quadratic penalty
version. This minimizes the following function steps while slowly driving the penalty parameter µ→∞:

Q(w,Θ;µ) = L(w) + µ
2
‖w −∆(Θ)‖

2
. (2)

We minimize Q over w and Θ using alternating optimization. This results in an algorithm that alternates two
generic steps:

• L (learning) step: minw L(w) + µ
2
‖w−∆(Θ)‖2. This is a regular training of the uncompressed

model but with a quadratic regularization term. This step is independent of the compression type.

• C (compression) step: minΘ ‖w−∆(Θ)‖2 ⇔ Θ = Π(w). This means finding the best (lossy)
compression of w (the current uncompressed model) in the ℓ2 sense (orthogonal projection on the
feasible set), and corresponds to our definition of the compression mapping Π. This step is indepen-
dent of the loss, training set and task.

2



w

(reference)

w
∗ (optimal

compressed)

∆(ΘDC)
(direct

compression)

w-space

feasible models C
(decompressible

by ∆)

input training data and model with parameters w
w← w = argminw L(w) reference model

Θ← Θ
DC = Π(w) = argmin

Θ
‖w −∆(Θ)‖2 compress ref.

for µ = µ0 < µ1 < · · · <∞
w ← argmin

w
L(w) + µ

2
‖w −∆(Θ)‖2 L step: learn

Θ← Π(w) = argminΘ ‖w−∆(Θ)‖
2

C step: compress

if ‖w −∆(Θ)‖ is small enough then exit the loop
return w, Θ

Figure 1: Left: illustration of the idea of model compression by constrained optimization. Right: pseudocode
for the LC algorithm (quadratic-penalty version).

Fig. 1 (right) gives the LC algorithm pseudocode for the quadratic penalty. The LC algorithm defines a con-
tinuous path (w(µ),Θ(µ)) which, under some mild assumptions, converges to a stationary point (typically
a minimizer) of the constrained problem (see theorem 3.1). The beginning of this path, for µ → 0+, corre-
sponds to training the reference model and then compressing it disregarding the loss (direct compression), a
simple but suboptimal approach that is popular in practice.

Convergence results for the LC algorithm The following theorem (proven in [1]) shows convergence to
a stationary point of the constrained problem (1), for the quadratic-penalty version of the algorithm. Assume
the loss L(w) and the decompression mapping ∆(Θ) are continuously differentiable wrt their arguments,
and that the loss is lower bounded.

Theorem 3.1. Consider the constrained problem (1) and its quadratic-penalty function Q(w,Θ;µ) of (2).
Given a positive increasing sequence (µk) → ∞, a nonnegative sequence (τk) → 0, and a starting

point (w0,Θ0), suppose the QP method finds an approximate minimizer (wk,Θk) of Q(wk,Θk;µk)

that satisfies ‖∇w,Θ Q(wk,Θk;µk)‖ ≤ τk for k = 1, 2, . . . Then, limk→∞

(

(wk,Θk)
)

= (w∗,Θ∗),
which is a KKT point for the problem (1), and its Lagrange multiplier vector has elements λ

∗

i =
limk→∞

(

− µk (w
k
i −∆(Θk

i ))
)

, i = 1, . . . , P .

This theorem applies to a number of common losses used in machine learning, and to various compression
techniques, such as low-rank factorization, which are continuously differentiable. It does not apply to some
popular compression forms, specifically quantization and pruning, which give rise to NP-complete problems.
While we cannot expect the LC algorithm to find the global optimum of these problems, we can expect
reasonably good results in that it will converge to a feasible point (hence, a validly compressed model) with
likely low loss.

Optimizing the L step The L step always takes the same form regardless of the type of compression (the
information from the latter is contained in the numerical values of ∆(Θ), which are constant in the L step).
For neural nets, the L step can be solved by stochastic gradient descent in the same way that the reference net
was trained, except that we should clip the step sizes so they never exceed 1

µ
, in order to prevent oscillations

as µ→∞ (see [1]).

Optimizing the C step The C step does not depend on the loss or training data, but it does depend on
the type of compression. Its solution must be worked out for each case by solving for the compression
mapping Π(w) = argminΘ ‖w −∆(Θ)‖

2. Typically, the solution is given by a well-known compression
algorithm—this is an intentional consequence of our design of the LC algorithm. Hence, the C step can be
solved by calling a compression routine corresponding to the desired compression type (which minimizes the
decompression error in the least-squares sense). For example, for low-rank compression of a weight matrix
we run the SVD and truncate all but the largest r singular values; for quantization with an adaptive codebook
we run k-means with a codebook of K weights; for pruning, we prune all but the top-k weights (where k
depends on the sparsifying norm used); we give details elsewhere [2, 3]. If new compression techniques are
discovered, we may be able to incorporate them in the LC algorithm by solving the C step they define.

3



2 4 8 16 32 64
0

5

10

15

20

30.5 15.6 10.5 7.9 6.3 5.3

DC

iDC

LC

LeNet300

LeNet5
te

st
er

ro
r
E

te
st

(%
)

←−−−− codebook size K −−−−→

10 20 30

2

2.5

3

3.5

4

4.5

proportion of surviving weights P%

ℓ0-constraint
ℓ1-constraint
ℓ0-penalty
ℓ1-penalty
magnit.prun.

R

Figure 2: Error-compression curves for LeNet neural nets using quantization (left) and pruning (right).

The runtime of the C step is typically negligible compared to that of the L step (which involves the actual
training set, usually much larger than the number of parameters). The overall runtime of the LC algorithm
will be dominated by the L steps, as if we were training an uncompressed model for a longer time.

4 Experiments

Figure 2 shows compression results (as a tradeoff curve of error vs compression level) for a well-known
benchmark, the LeNet neural nets [9]. We can use a single bit per weight (for quantization) or remove nearly
99% of the weights (for pruning) with no error degradation over the reference. See Carreira-Perpiñán and
Idelbayev [2, 3] for more results and larger nets.

References
[1] M. Á. Carreira-Perpiñán. Model compression as constrained optimization, with application to neural nets. Part I:

General framework. arXiv:1707.01209 [cs.LG], July 5 2017.

[2] M. Á. Carreira-Perpiñán and Y. Idelbayev. Model compression as constrained optimization, with application to
neural nets. Part II: Quantization. arXiv:1707.04319 [cs.LG], July 13 2017.

[3] M. Á. Carreira-Perpiñán and Y. Idelbayev. Model compression as constrained optimization, with application to
neural nets. Part III: Pruning. arXiv, Sept. 2017.

[4] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural networks with binary weights
during propagations. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems (NIPS), volume 28, pages 3105–3113. MIT Press, Cambridge, MA, 2015.

[5] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within convolutional
networks for efficient evaluation. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems (NIPS), volume 27, pages 1269–1277. MIT Press,
Cambridge, MA, 2014.

[6] E. Fiesler, A. Choudry, and H. J. Caulfield. Weight discretization paradigm for optical neural networks. In Proc.
SPIE 1281: Optical Interconnections and Networks, pages 164–173, The Hague, Netherlands, Aug. 1 1990.

[7] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using vector quantization.
In Proc. of the 3rd Int. Conf. Learning Representations (ICLR 2015), San Diego, CA, May 7–9 2015.

[8] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems (NIPS), volume 28, pages 1135–1143. MIT Press, Cambridge, MA, 2015.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc.
IEEE, 86(11):2278–2324, Nov. 1998.

[10] S. J. Nowlan and G. E. Hinton. Simplifying neural networks by soft weight-sharing. Neural Computation, 4(4):
473–493, July 1992.

[11] R. Reed. Pruning algorithms—a survey. IEEE Trans. Neural Networks, 4(5):740–747, Sept. 1993.

4


	Motivation
	A constrained optimization formulation of model compression
	A ``Learning-Compression'' (LC) algorithm
	Experiments

