Solving Recurrence Relations using Machine Learning, with Application to Cost Analysis

Maximiliano Klemen1, Miguel Ángel Carreira-Perpiñán2 and Pedro Lopez-Garcia1,3

1IMDEA Software Institute, Spain
2University of California, Merced, USA
3Spanish Council for Scientific Research (CSIC)

10th Workshop on Horn Clauses for Verification and Synthesis (HCVS)
April 23, 2023, Paris, France (co-located with ETAPS)
Motivating application: automatic static cost analysis/verification of Horn-clause programs → e.g., the CiaoPP system.
 + Allows analysis of other languages/IRs via transformation into Horn Clauses.
 + (Ciao) Prolog → direct translation,
 + but also C, Java (source/bytecode), ISA, LLVM IR, ...

Resources: non-func. numerical properties about the execution of a program.
 • Examples: resolution steps, execution time, energy consumption, # of calls to a predicate, # of network accesses, # of transactions, ...

Goal of static analysis:
estimating the resource usage of the execution of a program without running it with concrete data, as function of input data sizes and possibly other parameters.

Typical size metrics → actual value of a number, the length of a list, the number of constant and function symbols of a term, etc.

Resource analysis is very useful:
 • Automatic program optimization.
 • Verification of resource-related specifications.
 • Detection of performance bugs, help guiding software design, ...
 Example: developing energy-efficient software.
These techniques strongly depend on solving (or safely approximating) recurrence relations → bottleneck.

Using Computer Algebra Systems (CAS) or specialized solvers poses several difficulties and limitations for some recurrences:

- Contain complex expressions or recursive structures.
- Don’t have the form required by such solvers
 → e.g., an input data size variable does not decrease, but increases.

As a result, ad-hoc techniques need to be developed for such cases.
Our Proposal: Guess and Check Approach

- **Guess**: machine-learning sparse regression techniques.
- **Check**: Combination of an SMT-solver and a CAS.

Novel, general method for solving arbitrary, constrained recurrence relations:
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, \ X1 \ \text{is} \ \ X - 1, \ p(X1, Y1), \ p(Y1, Y2), \ Y \ \text{is} \ Y2 + 1.
\end{align*}
\]
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP first infers size relations for the different arguments of predicates.
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \textbf{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \textbf{ is } Y2 + 1.
\end{align*}
\]

CiaoPP first infers size relations for the different arguments of predicates.
Assume a calling mode where first argument is input and second one output.
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, \text{ X1 is X - 1, } p(X1, Y1), \text{ p(Y1, Y2), } \text{ Y is Y2 + 1.}
\end{align*}
\]

CiaoPP first infers size relations for the different arguments of predicates.
Assume a calling mode where first argument is input and second one output.
It will try to infer the size of the output argument as a function of the size of
the input argument: \(S_p(x) \).
Consider following Horn-clause program, in Prolog syntax:

```
p(X, 0) :- X = 0.
p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

CiaoPP first infers size relations for the different arguments of predicates. Assume a calling mode where first argument is input and second one output. It will try to infer the size of the output argument as a function of the size of the input argument: \(S_p(x) \).

Using \(x = \text{size}(X) = X \) (actual value of \(X \)), size relations are set up:

\[
\begin{align*}
S_p(x) &= 0 \quad \text{if } x = 0 \\
S_p(x) &= S_p(S_p(x - 1)) + 1 \quad \text{if } x > 0
\end{align*}
\]
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP first infers size relations for the different arguments of predicates. Assume a calling mode where first argument is input and second one output. It will try to infer the size of the output argument as a function of the size of the input argument: \(S_p(x) \).

Using \(x = size(X) = X \) (actual value of \(X \)), size relations are set up:

\[
\begin{align*}
S_p(x) &= 0 \quad \text{if } x = 0 \\
S_p(x) &= S_p(S_p(x - 1)) + 1 \quad \text{if } x > 0
\end{align*}
\]

CiaoPP’s modular solver fails to find a closed-form function for it.
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, \ X1 \text{ is } X - 1, \ p(X1, Y1), \ p(Y1, Y2), \ Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP first infers size relations for the different arguments of predicates. Assume a calling mode where first argument is input and second one output. It will try to infer the size of the output argument as a function of the size of the input argument: \(S_p(x) \).

Using \(x = \text{size}(X) = X \) (actual value of \(X \)), size relations are set up:

\[
\begin{align*}
S_p(x) &= 0 \quad \text{if } x = 0 \\
S_p(x) &= S_p(S_p(x - 1)) + 1 \quad \text{if } x > 0
\end{align*}
\]

CiaoPP’s modular solver fails to find a closed-form function for it. It is a nested recurrence that cannot be solved by most state-of-the-art solvers.
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP first infers size relations for the different arguments of predicates.

Assume a calling mode where first argument is input and second one output.

It will try to infer the size of the output argument as a function of the size of the input argument: \(S_p(x) \).

Using \(x = size(X) = X \) (actual value of \(X \)), size relations are set up:

\[
\begin{align*}
S_p(x) & = 0 \quad \text{if } x = 0 \\
S_p(x) & = S_p(S_p(x - 1)) + 1 \quad \text{if } x > 0
\end{align*}
\]

CiaoPP’s modular solver fails to find a closed-form function for it.

It is a nested recurrence that cannot be solved by most state-of-the-art solvers.

Our proposed approach obtains \(S_p(x) = x \) (exact solution).
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & \leftarrow X = 0. \\
p(X, Y) & \leftarrow X > 0, \ X1 \ is \ X - 1, \ p(X1, Y1), \ p(Y1, Y2), \ Y \ is \ Y2 + 1.
\end{align*}
\]
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, \text{ } X1 \text{ } \text{is} \text{ } X - 1, \text{ } p(X1, Y1), \text{ } p(Y1, Y2), \text{ } Y \text{ } \text{is} \text{ } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)

\[
\rightarrow \text{(in the example, number of resolution steps, and}
\]

without our approach CiaoPP would infer \(S_p(x) = \infty \) and \(C_p(x) = \infty \).

Not being able to solve a “simple” recurrence can cause arbitrarily large losses of precision in size/cost analysis.
The Context: Static Cost Analysis (CiaoPP)

Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)

\[
\begin{align*}
C_p(x) &= 1 \text{ if } x = 0 \\
C_p(x) &= C_p(x-1) + C_p(S_p(x-1)) + 1 \text{ if } x > 0
\end{align*}
\]

Plug the closed form \(S_p(x) = x \) inferred by our approach, CiaoPP obtains

\[C_p(x) = 2x + 1 \]

Without our approach CiaoPP would infer \(S_p(x) = \infty \) and \(C_p(x) = \infty \).

Not being able to solve a "simple" recurrence can cause arbitrarily large losses of precision in size/cost analysis.
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)

\[\rightarrow \text{(in the example, number of resolution steps, and assuming the builtins >/2 and is/2 have zero cost)} \]

It sets up the following recurrence:

\[
\begin{align*}
C_p(x) &= 1 & \text{if } x = 0 \\
C_p(x) &= C_p(x - 1) + C_p(S_p(x - 1)) + 1 & \text{if } x > 0
\end{align*}
\]
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
\text{p}(X, 0) & : - X = 0. \\
\text{p}(X, Y) & : - X > 0, \ X1 \text{ is } X - 1, \ \text{p}(X1, Y1), \ \text{p}(Y1, Y2), \ Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \text{p}/2, denoted \(C_p(X) \)

\[C_p(x) = \begin{cases} 1 & \text{if } x = 0 \\ C_p(x - 1) + C_p(S_p(x - 1)) + 1 & \text{if } x > 0 \end{cases} \]

Plugin the closed form \(S_p(x) = x \) inferred by our approach,
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : \quad X = 0. \\
p(X, Y) & : \quad X > 0, \ X1 \text{ is } X - 1, \ p(X1, Y1), \ p(Y1, Y2), \ Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)

\[
\begin{align*}
&C_p(x) = 1 \quad \text{if } x = 0 \\
&C_p(x) = C_p(x - 1) + C_p(S_p(x - 1)) + 1 \quad \text{if } x > 0
\end{align*}
\]

It sets up the following recurrence:

Plugin the closed form \(S_p(x) = x \) inferred by our approach,
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)

\[
\rightarrow \text{ (in the example, number of resolution steps, and assuming the builtins } >/2 \text{ and } is/2 \text{ have zero cost)}
\]

It sets up the following recurrence:

\[
\begin{align*}
C_p(x) &= 1 \quad \text{if } x = 0 \\
C_p(x) &= C_p(x - 1) + C_p(x - 1) + 1 \quad \text{if } x > 0
\end{align*}
\]

Plugin the closed form \(s_p(x) = x \) inferred by our approach,
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
\text{p}(X, 0) & : - X = 0. \\
\text{p}(X, Y) & : - X > 0, X1 \text{ is } X - 1, \text{ p}(X1, Y1), \text{ p}(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(\text{p}/2 \), denoted \(\mathcal{C}_p(x) \)

\(\rightarrow \) (in the example, number of resolution steps, and assuming the builtins \(>/2 \) and \(\text{is}/2 \) have zero cost)

It sets up the following recurrence:

\[
\begin{align*}
\mathcal{C}_p(x) &= 1 \quad \text{if } x = 0 \\
\mathcal{C}_p(x) &= 2 \mathcal{C}_p(x - 1) + 1 \quad \text{if } x > 0
\end{align*}
\]

Plugin the closed form \(\mathcal{S}_p(x) = x \) inferred by our approach,
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \):

\[C_p(x) = \begin{cases}
1 & \text{if } x = 0 \\
2 C_p(x - 1) + 1 & \text{if } x > 0
\end{cases}\]

It sets up the following recurrence:

\[
\begin{align*}
C_p(x) &= 1 \quad \text{if } x = 0 \\
C_p(x) &= 2 C_p(x - 1) + 1 \quad \text{if } x > 0
\end{align*}
\]

Plugin the closed form \(S_p(x) = x \) inferred by our approach, CiaoPP obtains \(C_p(x) = 2^{x+1} - 1 \).
Consider following Horn-clause program, in Prolog syntax:

```prolog
p(X, 0) :- X = 0.
p(X, Y) :- X > 0, X1 is X - 1, p(X1, Y1), p(Y1, Y2), Y is Y2 + 1.
```

CiaoPP uses the size relations to infer the computational cost of a call to \(p/2 \), denoted \(C_p(x) \)

\[C_p(x) = \begin{cases}
1 & \text{if } x = 0 \\
2 C_p(x - 1) + 1 & \text{if } x > 0
\end{cases} \]

It sets up the following recurrence:

- Plug the closed form \(S_p(x) = x \) inferred by our approach,
 CiaoPP obtains \(C_p(x) = 2^{x+1} - 1 \).
- Without our approach CiaoPP would infer \(S_p(x) = \infty \) and \(C_p(x) = \infty \).
Consider following Horn-clause program, in Prolog syntax:

\[
\begin{align*}
p(X, 0) & : - X = 0. \\
p(X, Y) & : - X > 0, X1 \text{ is } X - 1, p(X1, Y1), p(Y1, Y2), Y \text{ is } Y2 + 1.
\end{align*}
\]

CiaoPP uses the size relations to infer the computational cost of a call to \(p \/ 2 \), denoted \(C_p(x) \)

\[
\begin{align*}
C_p(x) & = 1 \quad \text{if } x = 0 \\
C_p(x) & = 2 C_p(x - 1) + 1 \quad \text{if } x > 0
\end{align*}
\]

It sets up the following recurrence:

Plugin the closed form \(S_p(x) = x \) inferred by our approach, CiaoPP obtains \(C_p(x) = 2^{x+1} - 1 \).

Without our approach CiaoPP would infer \(S_p(x) = \infty \) and \(C_p(x) = \infty \).

Not being able to solve a “simple” recurrence can cause arbitrarily large losses of precision in size/cost analysis.
Guess: First Stage of our Recurrence Solving Method

- Given the previous recurrence, with \(s_p(x) \equiv f(x) \):
 \[
 f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 f(f(x - 1)) + 1 & \text{if } x > 0
 \end{cases}
 \]
- We use sparse linear regression to “guess” a candidate solution \(\hat{f}(\bar{x}) \) for it.
- We use a set of “base functions” \(T \), e.g.:
 \[T = \{ \lambda x.x, \lambda x.x^2, \lambda x.x^3, \lambda x.\lceil\log_2(x)\rceil, \lambda x.2^x, \lambda x.x \cdot \lceil\log_2(x)\rceil \}\]
 - Currently, \(T \) is fixed \(\rightarrow \) base functions that are representative of the common complexity orders.
 - We'll comment later about plans to obtain it.
- Model obtained: linear combination of terms \(t_i \) in \(T \):
 \[
 \hat{f}(\bar{x}) = \beta_0 + \beta_1 t_1(\bar{x}) + \beta_2 t_2(\bar{x}) + \cdots + \beta_n t_n(\bar{x})
 \]
 - \(\beta_i \)'s: coefficients (real numbers) estimated by regression
 - Goal: only a few coefficients are nonzero.
1. Generate a training set S.
 - Randomly generate input values to the recurrence $\rightarrow X_{\text{train}} = \{ \bar{x}_1, \ldots, \bar{x}_k \}$.
 - For each input value $\bar{x} \in X_{\text{train}}$, generate a training case s:

 $$s = \langle b, c_1, \ldots, c_n \rangle$$

 c_i: result (a scalar) of evaluating the base function $t_i \in T$ for input value \bar{x}
 $\rightarrow c_i = \llbracket t_i \rrbracket_{\bar{x}}$ for $1 \leq i \leq n$

 b (dependent value): result (a scalar) of evaluating the recurrence for \bar{x}
 $\rightarrow b = f(\bar{x})$

 - Example: if $\bar{x} = \langle 5 \rangle$, then

 $$s = \langle f(5), \llbracket x \rrbracket_5, \llbracket x^2 \rrbracket_5, \llbracket x^3 \rrbracket_5, \llbracket \lceil \log_2(x) \rceil \rrbracket_5, \ldots \rangle$$
 $$= \langle 5, 5, 25, 125, 3, \ldots \rangle$$
2. Perform sparse linear regression using S:
 - Result: (column) vector $\tilde{\beta}$ of coefficients and an independent coefficient β_0.
 - Lasso regularization on the coefficients β_i.
 - ℓ_1: penalty to encourage coefficients whose associated base functions have a small correlation with the dependent value to be exactly zero.
 - The level of penalization is controlled by a hyperparameter $\lambda \geq 0$.
 \rightarrow found via cross-validation on a separate validation set (generated similarly as the training set X_{train}).

3. Obtain a measure R^2 of the accuracy of the estimation:
 \rightarrow Using a test set X_{test} of input values to the recurrence (generated similarly to X_{train}).

4. Round to zero the coefficient less than a given threshold ϵ.
 \rightarrow to discard the corresponding base functions.
 \rightarrow We call it the “ϵ-rounding”: $rm_\epsilon(\tilde{\beta}^T)$

5. The resulting closed-form is
 \[
 \hat{f}(\bar{x}) = rm_\epsilon(\tilde{\beta}^T) \cdot E(T, \bar{x}) + \beta_0
 \]
 \rightarrow $E(T, \bar{x})$: vector of the terms in T with the arguments bound to \bar{x}.
 - Both the Lasso regularization and the zero ϵ-rounding discard many terms from T in the final closed-form function.
6. Perform standard linear regression (without Lasso regularization)
 - on the same training set \(S \), but
 - different \(T \): removing from \(T \) the base functions corresponding to the coefficients \(\beta_i \) made zero previously (by Lasso and \(\epsilon \)-rounding).
 - In our example, we obtain (with \(\epsilon = 0.001 \)):
 \[
 \hat{f}(x) = 1.0 \times \text{ and } R^2 = 1
 \]
 - Since \(R^2 = 1 \), then \(\hat{f}(x) = x \) is a candidate closed-form solution
 → exact prediction of the recurrence for the test set.
 - If it was \(R^2 < 1 \), then \(\hat{f}(x) \) would be an approximation.
 → Still, can be useful in some applications (e.g., granularity control in parallel/distributed computing).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

- Example: the recurrence
 \[
 f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 f(f(x - 1)) + 1 & \text{if } x > 0
 \end{cases}
 \]

 is encoded as a first order logic formula
 \[
 \forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
 \]

- References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[
 \forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
 \]

- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

- We use an SMT-solver to check satisfiability.

- It is unsatisfiable \(\rightarrow \hat{f}(x) = x \) is an exact solution for \(f(x) \).

- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

Example: the recurrence
\[
\begin{align*}
f(x) &= 0 \quad \text{if } x = 0 \\
f(x) &= f(f(x - 1)) + 1 \quad \text{if } x > 0
\end{align*}
\]
is encoded as a first order logic formula
\[
\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
\]
References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
\[
\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
\]
If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

We use an SMT-solver to check satisfiability.

It is unsatisfiable \(\rightarrow \hat{f}(x) = x \) is an exact solution for \(f(x) \).

Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Verify whether the guessed candidate function is actually a solution for the recurrence.

Example: the recurrence

\[
\begin{align*}
f(x) &= 0 & \text{if } x = 0 \\
f(x) &= f(f(x - 1)) + 1 & \text{if } x > 0
\end{align*}
\]

is encoded as a first order logic formula

\[
\forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
\]

References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).

\[
\forall x ((x = 0 \implies x = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
\]

If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

We use an SMT-solver to check satisfiability.

It is unsatisfiable \(\implies \hat{f}(x) = x \) is an exact solution for \(f(x) \).

Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

- Example: the recurrence
 \[f(x) = 0 \quad \text{if } x = 0 \]
 \[f(x) = f(f(x - 1)) + 1 \quad \text{if } x > 0 \]

 is encoded as a first order logic formula
 \[\forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1)) \]

- References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[\forall x ((x = 0 \implies x = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1)) \]

- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

- We use an SMT-solver to check satisfiability.

- It is unsatisfiable \(\rightarrow \hat{f}(x) = x \) is an exact solution for \(f(x) \).

- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence
 \[f(x) = \begin{cases} 0 & \text{if } x = 0 \\ f(x) = f(f(x - 1)) + 1 & \text{if } x > 0 \end{cases} \]
is encoded as a first order logic formula
 \[\forall x \left((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1) \right) \]
- References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[\forall x \left((x = 0 \implies x = 0) \land (x > 0 \implies x = f(f(x - 1)) + 1) \right) \]
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable \(\implies \hat{f}(x) = x \) is an exact solution for \(f(x) \).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Verify whether the guessed candidate function is actually a solution for the recurrence.

Example: the recurrence

\[f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 f(f(x - 1)) + 1 & \text{if } x > 0
\end{cases} \]

is encoded as a first order logic formula

\[\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1)) \]

References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).

\[\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = f(f(x - 1)) + 1)) \]

If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

We use an SMT-solver to check satisfiability.

It is unsatisfiable \(\rightarrow \hat{f}(x) = x \) is an exact solution for \(f(x) \).

Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

Example: the recurrence
\[f(x) = \begin{cases} 0 & \text{if } x = 0 \\ f(x) = f(f(x - 1)) + 1 & \text{if } x > 0 \end{cases} \]

is encoded as a first order logic formula
\[\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1)) \]

References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
\[\forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = f(x - 1) + 1)) \]

If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

We use an SMT-solver to check satisfiability.

It is unsatisfiable \(\rightarrow \hat{f}(x) = x \) is an exact solution for \(f(x) \).

Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

Example: the recurrence

\[
\begin{align*}
 f(x) &= 0 & \text{if } x = 0 \\
 f(x) &= f(f(x - 1)) + 1 & \text{if } x > 0
\end{align*}
\]

is encoded as a first order logic formula

\[
\forall x \left((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1) \right)
\]

- References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).

\[
\forall x \left((x = 0 \implies x = 0) \land (x > 0 \implies x = f(x - 1) + 1) \right)
\]

- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

- We use an SMT-solver to check satisfiability.

- It is unsatisfiable \(\rightarrow \hat{f}(x) = x \) is an exact solution for \(f(x) \).

- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

Example: the recurrence
\[
\begin{align*}
f(x) &= 0 & \text{if } x &= 0 \\
f(x) &= f(f(x - 1)) + 1 & \text{if } x &> 0
\end{align*}
\]
is encoded as a first order logic formula
\[
\forall x \left((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1) \right)
\]
References to the target \(f(x)\) are replaced by the candidate \(\hat{f}(x) = x\).
\[
\forall x \left((x = 0 \implies x = 0) \land (x > 0 \implies x = x - 1 + 1) \right)
\]
If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

We use an SMT-solver to check satisfiability.

It is unsatisfiable \(\rightarrow \hat{f}(x) = x\) is an exact solution for \(f(x)\).

Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x\) if \(x \geq 0\).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

- Example: the recurrence
 \[
 \begin{align*}
 f(x) &= 0 & \text{if } x = 0 \\
 f(x) &= f(f(x - 1)) + 1 & \text{if } x > 0
 \end{align*}
 \]
 is encoded as a first order logic formula
 \[
 \forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
 \]
- References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[
 \forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = x))
 \]
- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

- We use an SMT-solver to check satisfiability.

- It is unsatisfiable \(\implies \hat{f}(x) = x \) is an exact solution for \(f(x) \).

- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

- Example: the recurrence
 \[
 f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 f(f(x - 1)) + 1 & \text{if } x > 0
 \end{cases}
 \]
 is encoded as a first order logic formula
 \[
 \forall x ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
 \]
 References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[
 \forall x ((x = 0 \implies x = 0) \land (x > 0 \implies x = x))
 \]
 If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

- We use an SMT-solver to check satisfiability.
- It is unsatisfiable \(\implies \hat{f}(x) = x \) is an exact solution for \(f(x) \).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.

- Example: the recurrence
 \[f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 f(x) = f(f(x - 1)) + 1 & \text{if } x > 0
 \end{cases} \]

 is encoded as a first order logic formula
 \[\forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1)) \]

- References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[\neg \forall x \ ((x = 0 \implies x = 0) \land (x > 0 \implies x = x)) \]

- If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.

- We use an SMT-solver to check satisfiability.

- It is unsatisfiable \(\implies \hat{f}(x) = x \) is an exact solution for \(f(x) \).

- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Check: Second Stage of our Recurrence Solving Method

- Verify whether the guessed candidate function is actually a solution for the recurrence.
- Example: the recurrence
 \[
 f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 f(f(x - 1)) + 1 & \text{if } x > 0
 \end{cases}
 \]
 is encoded as a first order logic formula
 \[
 \forall x \ ((x = 0 \implies f(x) = 0) \land (x > 0 \implies f(x) = f(f(x - 1)) + 1))
 \]
 References to the target \(f(x) \) are replaced by the candidate \(\hat{f}(x) = x \).
 \[
 \exists x \neg \left((x = 0 \implies x = 0) \land (x > 0 \implies x = x) \right)
 \]
 If the negation of such formula is unsatisfiable, then the candidate function is an exact solution.
- We use an SMT-solver to check satisfiability.
- It is unsatisfiable \(\implies \hat{f}(x) = x \) is an exact solution for \(f(x) \).
- Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also included in the encoding. E.g., \(\hat{f}(x) = x \) if \(x \geq 0 \).
Implemented a prototype and evaluated it with recurrences that are generated by CiaoPP’s cost analysis

- our approach can find exact, verified, closed-form solutions, in a reasonable time for recurrences that cannot be solved by CiaoPP.
- Potentially, arbitrarily large gains in static cost analysis accuracy.

Our approach solves recurrences that current state-of-the-art CASs cannot (e.g., Wolfram Mathematica, Sympy).

Our prototype always returns a closed form and either:

- indicates if such closed form is an exact solution of the recurrence (i.e., if it has been formally verified), or
- otherwise, gives the accuracy of the estimation (*score*) obtained in the guess (ML) phase.
Experimental Results: Times (seconds)

<table>
<thead>
<tr>
<th>Bench</th>
<th>Recurrence</th>
<th>CF</th>
<th>CFNew</th>
<th>T (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge-sz</td>
<td>(f(x, y) = \begin{cases} \max(f(x - 1, y), f(x, y - 1)) + 1 & \text{if } x > 0 \land y > 0 \ x & \text{if } x > 0 \land y \leq 0 \ y & \text{if } x \leq 0 \land y > 0 \end{cases})</td>
<td></td>
<td>(x + y)</td>
<td>0.92</td>
</tr>
<tr>
<td>merge</td>
<td>(f(x, y) = \begin{cases} \max(f(x - 1, y), f(x, y - 1)) + 1 & \text{if } x > 0 \land y > 0 \ 0 & \text{otherwise} \end{cases})</td>
<td></td>
<td>(\max(0, x + y - 1))</td>
<td>0.71</td>
</tr>
<tr>
<td>nested</td>
<td>(f(x) = \begin{cases} f(f(x - 1)) + 1 & \text{if } x > 0 \ 0 & \text{otherwise} \end{cases})</td>
<td></td>
<td>(x)</td>
<td>0.13</td>
</tr>
<tr>
<td>open-zip</td>
<td>(f(x, y) = \begin{cases} f(x - 1, y - 1) + 1 & \text{if } x > 0 \land y > 0 \ f(x, y - 1) + 1 & \text{if } x \leq 0 \land y > 0 \ f(x - 1, y) + 1 & \text{if } y \leq 0 \land x > 0 \ 0 & \text{otherwise} \end{cases})</td>
<td></td>
<td>(\max(x, y))</td>
<td>0.12</td>
</tr>
<tr>
<td>div</td>
<td>(f(x, y) = \begin{cases} f(x - y, y) + 1 & \text{if } x \geq y \ 0 & \text{otherwise} \end{cases})</td>
<td></td>
<td>(\lceil \frac{x}{y} \rceil)</td>
<td>0.13</td>
</tr>
<tr>
<td>div-ceil</td>
<td>(f(x, y) = \begin{cases} f(x - y, y) + 1 & \text{if } x \geq y \ 1 & \text{if } x < y \land x > 0 \ 0 & \text{otherwise} \end{cases})</td>
<td></td>
<td>(\lceil \frac{x}{y} \rceil)</td>
<td>0.12</td>
</tr>
<tr>
<td>s-max</td>
<td>(f(x, y) = \begin{cases} \max(y, f(x - 1, y)) + 1 & \text{if } x > 0 \ y & \text{otherwise} \end{cases})</td>
<td>(x + y)</td>
<td>(x + y)</td>
<td>0.12</td>
</tr>
<tr>
<td>s-max-1</td>
<td>(f(x, y) = \begin{cases} \max(y, f(x - 1, y + 1)) + 1 & \text{if } x > 0 \ y & \text{otherwise} \end{cases})</td>
<td></td>
<td>(2x + y)</td>
<td>0.14</td>
</tr>
<tr>
<td>sum-osc</td>
<td>(f(x, y) = \begin{cases} f(x - 1, y) + 1 & \text{if } x > 0 \land y > 0 \ f(x + 1, y - 1) + y & \text{if } x \leq 0 \land y > 0 \ 1 & \text{otherwise} \end{cases})</td>
<td></td>
<td>(x + \frac{x^2}{2} + \frac{3y}{2})</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Conclusions

- Novel approach for solving or approximating arbitrary, constrained recurrence relations.
 - *guess* a candidate closed-form solution
 → sparse linear regression via Lasso regularization and cross-validation.
 - *check* that such candidate is actually a solution
 → SMT-solver and CAS combination.

- However, the guess stage doesn’t guarantee that an exact solution can be found (for the training set).

- Even if an exact solution is found, it is not always possible to verify it in the check stage.

- Nevertheless, approximated solutions can be useful in some applications (e.g., granularity control in parallel/distributed computing)
 → Our approach always produces an accuracy measure

- The experimental results with our prototype are quite promising.
Future Work

- Fully integrate our novel solver into the CiaoPP system, combining it with its current set of back-end solvers
 → more extensive experimentation
- Refine and improve our algorithms in several directions.
 - Automatically infer the set T of base functions by using different heuristics.
 - Perform an automatic analysis of the recurrence we are solving, to extract some features that allow selection of the terms that most likely are part of the solution.
 - For example, if the recurrence has a nested, double recursion, then we can select a quadratic term, etc.
 - Also, machine learning techniques may be applied to learn a good set of base functions from some features of the programs.
Thank you for your attention!