Understanding and Manipulating Neural Net features Using Sparse Oblique Classification Trees

Suryabhan Singh Hada
Miguel Á. Carreira-Perpiñán Arman Zharmagambetov
{shada,mcarreira-perpinan, azharmagambetov}@ucmerced.edu

Electrical Engineering and Computer Science,
University of California, Merced
http://eecs.ucmerced.edu

July 20, 2021
Deep neural nets have become the preferred model in a number of practical problems, such as computer vision, language processing, games, self-driving cars, and other engineering applications.

The way neural nets are defined and optimized, and the sheer size and complexity of state-of-the-art deep nets, makes them very hard to understand in explanatory terms.

Much work has focused on understanding what part of the input pattern (an image, say) is responsible for a particular class being predicted, and how the input may be manipulated to predict a different class.

We focus instead on understanding what internal features computed by the neural net are responsible for a particular class.
Consider a trained deep net classifier:

\[y = f(x) \]

We can write \(f \) as: \(f(x) = g(F(x)) \), where

- \(F \) represents the features-extraction part (\(z = F(x) \in \mathbb{R}^F \)).
- \(g \) represents the classifier part (\(y = g(z) \)).

The last layer of \(F \) is interesting, as it is associated with the features extracted by \(F \) that goes into \(g \).

We want to understand the relationship between neurons in the last layer of \(F \) and the classes.
Out of thousands of neurons, there is a small subset of neurons associated with a given class.

We explore this by introducing a new feature level adversarial attack via masking specific set of neurons.

These attacks include to make net to predict or not predict a given class.
Our approach

- We study the relationship between neurons at the last layer of \(F \) and the classes using sparse oblique trees.

Overall approach:

- Train a sparse oblique tree \(y = T(z) \) on the training set \(\{(F(x_n), y_n)\}_{n=1}^{N} \subset \mathbb{R}^F \times \{1, \ldots, K\} \). Choose the sparsity hyperparameter \(\lambda \in [0, \infty) \) such that, \(T \) mimics \(g \) very good and is as sparse as possible.
- Inspect the tree \(T \) to create masks.
Objective is to control the behavior of network prediction by manipulating deep net features \((z = F(x) \in \mathbb{R}^F)\), without modifying the \(F\) and \(g\).

Original net: \(y = f(x) = g(F(x))\).

Original features: \(z = F(x)\).

Masked net: \(\overline{y} = \overline{f}(x) = g(\mu(F(x)))\)

Masked features: \(\overline{z} = \mu(F(x)) = \mu(z)\).

\[\overline{z} = \mu(z) = \mu^\times \odot z + \mu^+.\]

\[\mu = \{\mu^\times, \mu^+\}\]

where, \(\mu^\times \in \{0, 1\}^F\) is the \textit{multiplicative mask}.

\(\mu^+ \geq 0\) is the \textit{additive mask}.
All to class k.

Let $k \in \{1, \ldots, K\}$. Classify all instances x as class k.

All class k_1 to class k_2

Let $k_1 \neq k_2 \in \{1, \ldots, K\}$. For any instance originally classified as k_1, classify it as k_2. For any other instance, do not alter its classification.

None to class k

Let $k \in \{1, \ldots, K\}$. For any instance originally classified as k, classify it as any other class. For any other instance, do not alter its classification.
We use VGG16 network, trained over a subset of 16 classes from ImageNet.

- Training error: 0.2%
- Test error: 6.79%
- $\mathbf{z} \in \mathbb{R}^{8192}$

We use the tree with $\lambda = 1$.

- Training error: 0%
- Test error: 7.9%
- # nodes: 39
- features used: 1366 out of 8192 (only 17%)
T with $\lambda = 1$

83% neurons masked
Mask on a single image

Original

![Image of a person and a dog with a car in the background]

![Graph showing softmax values for different objects: Siberian husky, School bus, Sports car]
Mask on a single image

Original

Mask in feature space

ALL TO CLASS "SIBERIAN HUSKY" mask is applied
Mask on a single image

Original

Mask in feature space

Manual mask in image space

All to class "Siberian husky" mask is applied
Mask on a single image

Original

Mask in feature space

Manual mask in image space

Mask in image space obtained by features

All to class "Siberian husky" mask is applied
Mask on a single image

Original

Mask in feature space

Manual mask in image space

Mask in image space obtained by features

Mask in feature space
Mask results on the test set

.................... ALL TO CLASS k

$k = 0$ $k = 1$ $k = 2$ $k = 3$ $k = 4$ $k = 5$ $k = 6$ $k = 7$

$k = 8$ $k = 9$ $k = A$ $k = B$ $k = C$ $k = D$ $k = E$ $k = F$
Mask results on the test set

\[\text{\ldots ALL CLASS } k_1 \text{ TO CLASS } k_2 \text{ \ldots} \]

- \(8 \to E \)
- \(E \to 8 \)
- \(A \to B \)
- \(B \to A \)
- \(9 \to C \)
- \(C \to 9 \)

\[\text{\ldots NONE TO CLASS } k \text{ \ldots} \]

- \(k = 0 \)
- \(k = 1 \)
- \(k = 2 \)
- \(k = 3 \)
- \(k = 4 \)
- \(k = 5 \)
- \(k = 6 \)
- \(k = 7 \)

- \(k = 8 \)
- \(k = 9 \)
- \(k = A \)
- \(k = B \)
- \(k = C \)
- \(k = D \)
- \(k = E \)
- \(k = F \)
Training error: 1.79%
Test error: 9.56%

nodes: 31
features used: 408 out of 8192 (only 5%)
Thank You!