
A Simple, Effective Way to Improve Neural Net Classification:
Ensembling Unit Activations with a Sparse Oblique Decision Tree

Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán

Dept. Computer Science & Engineering, UC Merced

Poster
Number:

1142

1 Overview and Motivation
• Deep learning has become highly successful in many applications involving complex

inputs such as images, audio or text. They compute features that capture important

properties of the input and these features can be invariant to certain transformations

(translation, rotation, etc.).

• As a result, we have now a proliferation of deep net architectures of ever increasing

complexity, containing millions of parameters.

• At the same time, the cost of training such models (computing time, memory size, en-

ergy consumption and human expertise) has escalated dramatically. This also leads

to diminishing returns: large increases in size within a family quickly translate into tiny

reductions in error.

• A different, proven way to construct accurate classifiers is via ensemble learning and we

propose a new simple ensembling mechanism that is specially designed for neural nets.

2 Proposed Idea
Assume we have a dataset of input instances and their labels (in K classes); and several deep nets trained,

somehow, on that dataset. Then we first construct an ensemble feature vector by picking a subset of

features (output of intermediate layers) from each net and concatenating them; and then we train a sparse
oblique tree classifier with TAO on a dataset where the inputs are the ensemble feature vectors and the

output is their ground-truth label. This procedure is generic and admits multiple variations: we may have

just one deep net and ensemble features from its internal layers (called within net in our experiments); or

multiple nets of different types and pick features from a different layer in each (we call this across nets).

input training set {(xn, yn)}
N
n=1; initial tree T(·; Θ) of depth ∆

and with parameters Θ = {θi}, where θi each node parameters

N0, . . . ,N∆← nodes at depth 0, . . . ,∆, respectively

repeat
for d = 0 to ∆

parfor i ∈ Nd

if i is a leaf then
θi ← train a classifier on the training point that reach leaf i

else
compute the “best” child for each training points that reach node i

and set it as a pseudolabel (call this modified training set Ri)

θi ← train a linear binary classifier on Ri

until stop

return T

Why TAO trees? they produce trees and

forests with high accuracy; they are very

fast (at training and inference); and they do

feature selection (useful when input dimen-

sion is high).

We provide generic pseudocode for the

TAO algorithm in the left figure. TAO

repeatedly alternates between optimizing

over a subset of nodes and fixing the re-

maining ones. The optimization itself is

done by training a binary classifier in the

decision nodes and a K class classifier

(const, linear, etc.) in the leaves.

3 Experiments
• Within net : below figures show our results of ensembling the last i layers (excluding softmax

layer) of the same neural net on CIFAR-10. So, “−i :−1” contains the concatenated features from

the last i layers. We clearly observe that, as we add intermediate features to the penultimate-

layer features, the test error decreases very little then increases slightly (likely because the tree

is overfitting). This is a negative result, but it suggests that the features in the penultimate layer

are sufficient for optimal classification, and that the features in previous layers are correlated or

redundant with them.
ResNet56 VGG16

6

6.5

7

7.5

8

neural net

feature ensemble

cumulative layers

-1 -2:-1 -3:-1 -4:-1

te
s
t
e

rr
o

r

6

6.5

7

7.5

8

neural net

feature ensemble

cumulative layers

-1 -2:-1 -3:-1 -4:-1 -5:-1

• Across nets : below figure shows our results of ensembling penultimate layers (before the

softmax output) of different nets on CIFAR-10: v1, v2, v3 stand for VGG11 / 13 / 16; and r1, r2, r3

for ResNet20 / 56 / 110, respectively. We clearly see that any combination improves over all its

members. The improvement is remarkable in that we achieve large gains with few members (2 to

4) in the ensemble: the relative improvement over the best member net is between 5% and 15%.

This holds when combining nets of different size, architecture, or both. The more members (of

different type), the lower the error.

←−− VGG −−→ ←− ResNet −→

 7% 7% 11% 12% 10% 6% 13% 15% 5% 8% 11% 12% 15%

5

5.5

6

6.5

7

7.5

8

8.5

te
s
t
e

rr
o

r

v1 v2 v3 r1 r2 r3v1v2 v2v3
v1v3 v1v2v3 r1r2 r2r3r1r3 r1r2r3 v2r2 v3r3

v3r2r3

v2v3r3
v1v2r2r3

Work supported by NSF award IIS–2007147

