Motivation and summary

- A counterfactual explanation seeks the minimal change to a given feature vector that will change a classifier’s decision in a prescribed way.

- Consider following example:
 - Loan application is denied by bank (classifier).
 - Applicant asks: “what should I change to get it approved”?
 - Bank replies: “If annual income had been $45,000 instead of $30,000, the loan would have been approved”.

- Counterfactual explanation is important to interpret a black-box decision for a given instance.

- Mathematically, it has the same formulation as classifier inversion and adversarial examples: given a source instance \mathbf{x}, target class y and a classifier T, find the closest instance \mathbf{x} to \mathbf{x} such that x is classified as y ($T(\mathbf{x}) = y$).

- Given an input instance $\mathbf{x} \in \mathbb{R}^D$, classifier T, and target class y, the problem can be formulated as:

$$\min_{\mathbf{x} \in \mathbb{R}^D} E(\mathbf{x}, \mathbf{x}) \quad \text{s.t.} \quad T(\mathbf{x}) = y, \quad c(\mathbf{x}) = 0, \quad d(\mathbf{x}) \geq 0$$

(1)

where $E(\mathbf{x}, \mathbf{x})$ is a cost of changing features of \mathbf{x}, and $c(\mathbf{x})$ and $d(\mathbf{x})$ are problem-dependent equality and inequality constraints.

- Here, we consider as classifier T a decision tree.

- With decision tree T is not differentiable, this makes problem nondifferentiable and non-convex, and gradient-based methods are not applicable. However, this problem can be solved exactly and efficiently.

Counterfactual explanations in decision trees

- Problem (1) is equivalent to:

$$\min_{\mathbf{x} \in \mathbb{R}^D} E(\mathbf{x}, \mathbf{x}) \quad \text{s.t.} \quad y_i = y, \quad h_i(\mathbf{x}) \geq 0, \quad c(\mathbf{x}) = 0, \quad d(\mathbf{x}) \geq 0.$$

(2)

where $h(\cdot)$ is the set of linear constraints that forms the region of leaf i, which is a polytope.

- Solving problem (1) is equivalent to solving it within each leaf’s region and then picking the leaf with the best solution.

- Proposed approach can handle several useful distance functions and linear constraints (equality and inequality); and is applicable to both continuous and categorical variables.

- It can generate multiple different counterfactual explanations based on user need, rather than just giving the globally optimal one.

- Fast enough for interactive use: solving for counterfactual problem takes few milliseconds in all experiments.

- See experiment section in the paper with datasets of different dimensions and types of variables.

Axis-aligned trees

In each leaf region, the problem (2) can be solved for each variable x_d independently, by minimizing $E_d(x_d, \mathbf{x}_d)$ subject to the constraints on x_d. For each variable x_d the optimal value can be calculated as $\text{median}(\mathbf{x}_d, l_d, u_d)$, where l_d and u_d are the lower and upper bound on x_d respectively.

Oblique trees

In each leaf region, the problem (2) becomes an LP or QP, which can be solved very effectively.