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ABSTRACT
Science applications are producing an ever-increasing volume of
multi-dimensional data that are mainly processed with distributed
array databases. These raw arrays are “cooked” into derived data
products using complex pipelines that are time-consuming. As a
result, derived data products are released infrequently and become
stale soon thereafter. In this paper, we introduce materialized array
views as a database construct for scientific data products. We model
the “cooking” process as incremental view maintenance with batch
updates and give a three-stage heuristic that finds effective update
plans. Moreover, the heuristic repartitions the array and the view
continuously based on a window of past updates as a side-effect
of view maintenance without overhead. We design an analytical
cost model for integrating materialized array views in queries. A
thorough experimental evaluation confirms that the proposed tech-
niques are able to incrementally maintain a real astronomical data
product in a production environment.

1. INTRODUCTION
Scientific applications – from astronomy to high-energy physics

and genomics – collect and process massive amounts of data at an
unprecedented scale. For example, projects in astronomy such as
the Sloan Digital Sky Survey1 (SDSS) and the Palomar Transient
Factory2 (iPTF) record observations of stars and galaxies at nightly
rates varying between 60 and 500 GB. The Large Synoptic Survey
Telescope3 (LSST) is projected to increase these volumes by two
orders of magnitude—to 20 TB. A common feature of the datasets
produced by these astronomy projects is that data are represented
as multi-dimensional arrays rather than unordered sets—the case
in the relational data model. Due to the inefficacy of traditional
relational databases to handle ordered array data [9, 16], a series
of specialized array processing systems [6, 4, 9, 55, 10, 11] have
emerged. These array processing systems implement natively a dis-
tributed multi-dimensional array data model in which arrays are

1http://www.sdss.org/dr13/
2http://www.ptf.caltech.edu/iptf/
3http://dm.lsst.org
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chunked across a distributed shared-nothing cluster and processed
concurrently.

According to [49], queries on arrays fall in two categories. The
first category consists of relational-style operations that can be ex-
ecuted efficiently by any traditional database. They include fil-
tering, sub-sampling, join, and group-by aggregates. The second
category – containing array-specific operations such as smoothing,
regridding, clustering, and cross-matching which are implemented
as User-Defined Functions (UDF) in specialized array processing
systems [6, 9, 11] – applies a multi-dimensional shape to each cell
of the array, grouping the cell with other neighboring cells. Sub-
sequently, an entire range of statistical functions can be applied to
the resulting groups to derive domain-specific properties. To better
illustrate the array-specific operations, we provide a real example
from astronomy.

Galaxy group catalogs. One of the ultimate challenges in as-
tronomy is to understand how galaxies form and evolve into the
large-scale distribution of matter throughout the universe. The state-
of-the-art method to study galaxy evolution is based on galaxy
group catalogs [53] which are derived data products from gen-
eral astronomical catalogs, e.g., SDSS [3] and iPTF [21]. Since
their computation is time-consuming and they are heavily used in
subsequent analysis – such as galaxy correlation [51], Gamma-ray
bursts [32], and M-dwarf flares [26] – galaxy group catalogs are al-
ways materialized. However, they are built statically and rarely
updated. For example, a galaxy group catalog is built only for
new SDSS data releases [53]. This is extremely problematic for
the iPTF and LSST projects which acquire data continuously since
the galaxy group catalog becomes outdated soon after construction.
Thus, the problem we tackle in this paper is how to maintain these
derived catalogs incrementally under updates to the base catalog.

An astronomical catalog contains objects extracted from images
of the sky taken by a telescope—a collection of detections. A detec-
tion is characterized by three dimensions – equatorial coordinates
ra, dec and time – and tens to a few hundred attributes such as
brightness and magnitude. Consequently, a catalog is typically rep-
resented as a sparse 3-D array
catalog<bright,mag,. . .>[ra,dec,time]

in which a cell corresponds to a detection—identified by the in-
dex on each dimension. For example, in the iPTF catalog, an array
cell corresponds to 1 arcsecond on ra and dec, and 1 minute on
time. These values are enforced by the resolution and the expo-
sure time of the telescope. The catalog array can be stored phys-
ically at a lower granularity by partitioning the dimension ranges
into chunks and grouping detections. A galaxy group catalog con-
tains a series of statistics for every detection in the astronomical cat-
alog. The statistics are computed from detections that are nearby in
space and/or time. This computation can be decomposed into two



steps—identify nearby or similar detections and statistics evalua-
tion. Nearby detections are computed as a similarity self-join query
over the entire catalog. Statistics such as the number of nearby de-
tections and the density are computed for each individual detection,
i.e., group-by aggregation over the similarity self-join result. While
a galaxy group catalog is also modeled as a 3-D array
galaxy_catalog<cnt,density,. . .>[ra,dec,time]

the statistics evolve over time as new detections are added to the
astronomical catalog. Thus, galaxy_catalog corresponds to a
materialized view. Although catalog and galaxy_catalog
have the same dimensionality in the example, this is not a require-
ment in general. Moreover, the base array(s) and the materialized
view are not required to have identical chunking and partitioning.

Problem statement. In this paper, we introduce the concept of
materialized array views defined over complex shape-based sim-
ilarity join aggregate queries. Since shape-based array similarity
join is a generalization of array equi-join and distance-based sim-
ilarity join [56], materialized array views cover an extensive class
of array algebra operations [38]. According to the literature [9,
16, 20, 44], these are the most prevalent operations in scientific
applications. With regard to SQL, array views include the class
of join views with standard aggregates [37]. We tackle incremen-
tal array view maintenance under batch updates to the base arrays.
Batch updates are the only form of updates in many real applica-
tions, e.g., astronomy, and are essential for amortizing the cost of
network communication and synchronization in a distributed de-
ployment [41]—the case for array databases.

Challenges. There are two primary challenges posed by incre-
mental array view maintenance under batch updates. The first chal-
lenge is identifying the cells in the base array(s) that are involved
in the maintenance computation and the cells that require update in
the array view. This is a problem because of the complex query in
the view definition which involves a shape-based similarity join—
enumerating all the cells in the shape array corresponding to an
update can be expensive for large shapes and sparse arrays. The
second challenge is due to the distributed nature of array databases.
Given the current distribution of the array(s) and the view, the chal-
lenge is to find the optimal strategy – data transfer and computation
balancing – to integrate the updates into the view. Direct applica-
tion of distributed relational view maintenance algorithms – defined
over equi-join queries and horizontally partitioned views [37] – to
arrays suffers from excessive communication and load imbalance
due to the static array partitioning strategies and the skewed distri-
bution of the updates in scientific applications.

Approach. Since the granularity of I/O and computation in ar-
ray databases is the chunk – a group of adjacent cells [44] – the first
challenge requires only the identification of the chunks involved in
view maintenance. This can be done efficiently as a preprocessing
step over the metadata. Our approach for the second challenge is to
model distributed array view maintenance as an optimization for-
mulation that computes the optimal plan to update the view based
on the chunks identified in preprocessing. Moreover, the optimiza-
tion continuously repartitions the array and the view based on a
window of past batch updates. In the long run, repartitioning im-
proves view maintenance time by grouping relevant portions of the
array and the view and by distributing join computation across the
cluster. Meanwhile, repartitioning does not incur additional time
because it takes advantage of the communication required in view
maintenance. Since the optimization cannot be solved efficiently,
we decompose the formulation into three separate stages – differen-
tial view computation, view chunk reassignment, and array chunk
reassignment – that we solve independently.

Contributions. The technical contributions we make in this pa-
per can be summarized as follows:

• We define formally array views (Section 3). As far as we know,
the concept of views has not yet been adapted to array databases.

• We model incremental array view maintenance as an optimiza-
tion formulation that integrates view updating and continuous
array repartitioning based on a historical workload of batch up-
dates (Section 4.2). To the best of our knowledge, this is the
first solution that considers adaptive array reorganization in the
context of incremental view maintenance.

• We design a three-stage heuristic that solves the incremental ar-
ray view maintenance effectively (Section 4.3-4.5). This is nec-
essary because the original optimization and each of the three
stages are NP-hard problems.

• We introduce an analytical cost model for answering similar-
ity join queries over arrays with materialized views (Section 5).
This model identifies the best alternative between a complete
similarity join and a differential query on the view.

• We perform an extensive set of experiments on real datasets and
batch updates (Section 6). The results confirm the effectiveness
of the heuristics and the quality of the maintenance plan for an
individual update. The continuous array reorganization further
reduces the view maintenance time by as much as a factor of 2
over a sequence of real updates.

2. PRELIMINARIES
In this section, we introduce multi-dimensional arrays, similar-

ity join over arrays, and relational incremental view maintenance.
These concepts are the foundation for defining views over arrays
and formalizing incremental array view maintenance.

2.1 Multi-Dimensional Arrays
A multi-dimensional array [49, 44, 20] is defined by a set of

dimensions D = {D1, D2, . . . , Dd} and a set of attributes A =
{A1, A2, . . . , Am}. Each dimension Di is a finite ordered set. We
assume that Di, i ∈ [1, d] is represented by the continuous range
of integer values [1, N ]. Each combination of dimension values, or
indices, [i1, i2, . . . , id], defines a cell. Cells have the same scalar
type, given by the set of attributes A. Dimensions and attributes
define the schema of the array. Based on these concepts, an array
can be thought of as a function defined over dimensions and taking
value attribute tuples:

Array : [D1, D2, . . . , Dd] 7−→ 〈A1, A2, . . . , Am〉

A 2-D array A<r:int,s:int>[i=1,6,2;j=1,8,2]with di-
mensions i and j and two attributes r and s of integer type is de-
picted in the upper part of Figure 1 (a). This is the notation to define
arrays in SciDB’s AQL language [38, 35]. The range of i is [1, 6],
while the range of j is [1, 8]. The numbers in each non-empty cell
are the values of r and s, e.g., A[i = 1, j = 2] 7→ 〈r = 2, s = 5〉.

Chunking. Array databases apply chunking for storing, pro-
cessing, and communicating arrays. A chunk groups adjacent array
cells into a single access and processing unit. While many strate-
gies have been proposed in the literature – see [44] for a survey
– regular chunking is the most popular in practice, e.g., SciDB.
Chunks have the same dimensionality as the input array, are aligned
with the dimensions, and have the same shape. The cells inside a
chunk are sorted one dimension at a time, where dimensions are
ordered according to the array schema. Array A in Figure 1 is
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Figure 1: (a) AQL notation for array A<r:int,s:int>[i=1,6,2;j=1,8,2] and materialized array view V defined as the array sim-
ilarity self-join query CREATE ARRAY VIEW V AS SELECT COUNT(*) FROM A A1 SIMILARITY JOIN A A2 ON (A1.i =
A2.i) AND (A1.j = A2.j) WITH SHAPE L1(1) GROUP BY A1.i,A1.j. (b) View maintenance under insertions at indices [1,5], [2,1],
[2,3], [4,2], [4,4], [5,4], and [5,6] into array A.

partitioned into 12 2 × 2 regular chunks grouping 2 indices on
each dimension—the reason for 2 in the notation [i = 1, 6, 2; j =
1, 8, 2]. Only 6 of these chunks contain data—colored and num-
bered in Figure 1 (a).

Shared-nothing architecture. We assume a distributed array
database having a shared-nothing architecture over a cluster of N
servers or nodes, each hosting one instance of the query processing
engine and having its local attached storage. The chunks of each ar-
ray are stored across several servers in order to support parallel pro-
cessing. All servers participate in query execution and share access
to a centralized system catalog that maintains information about ac-
tive servers, array schemas, and chunk distribution. A coordinator
stores the system catalog and manages the nodes and their access
to the catalog. The coordinator is the single query input point into
the system. For example, in Figure 1 (a) there are 3 servers in the
database. The chunks of array A are distributed round-robin in row-
major order over the 3 servers. The color of the chunk corresponds
to the color of the assigned server.

2.2 Array Similarity Join
Array similarity join is introduced in [56] as a generalization of

array equi-joins [20] and the APPLY operator proposed in [39].
Formally, given two multi-dimensional arrays α and β

α : Dα = [Dα
1 , . . . , D

α
d ] 7−→ Aα = 〈Aα1 , . . . , Aαm〉

β : Dβ =
[
Dβ

1 , . . . , D
β
d

]
7−→ Aβ =

〈
Aβ1 , . . . , A

β
m

〉
,

their similarity join over a mapping functionM : Dα 7−→ Dβ , the
shape σ : Dβ 7−→<> – an array with the dimensionality of β and
without any attributes – and a value function f : Aα∪Aβ 7−→ Aτ
is an array τ = α ./Mσ,f β having as dimensions the union of
dimensions in α and β. FunctionM maps a cell Υ ∈ α to a cell
Ψ ∈ β, while function f is defined over the set of attributes in

the two input arrays. For each cell Υ ∈ α, array τ contains those
non-empty cells in β that are in shape σ centered on Ψ, i.e., σ [Ψ].
The dimension of the τ cell is given by the concatenation of the
Υ and σ [Ψ] dimensions, while the value is computed by function
f (Υ, σ [Ψ]). This can be written in AQL as:

SELECT f INTO τ
FROM α SIMILARITY JOIN β ON M WITH SHAPE σ

Array similarity join can encode any join conditions on dimensions
and it can express the most common similarity distances, e.g., Lp

norms, Earth Mover’s Distance (EMD), and Hamming [56]. For
example, the similarity self-join of array A in Figure 1 (a) with
identity mappingM and value f , and shape L1(1) – the cross in
the figure – is a 4-D array with 8 non-empty cells. There is a cell
for each non-empty cell in A, e.g., τ [i = 1, j = 2, i′ = 1, j′ =
2] 7→ 〈r = 2, s = 5, r′ = 2, s′ = 5〉. The two additional cells are
generated by the only adjacent cells [1, 2] and [1, 3]. They are τ [i =
1, j = 2, i′ = 1, j′ = 3] 7→ 〈r = 2, s = 5, r′ = 6, s′ = 3〉 and
τ [i = 1, j = 3, i′ = 1, j′ = 2] 7→ 〈r = 6, s = 3, r′ = 2, s′ = 5〉.

2.3 Materialized Views
Materialized views are used by traditional database systems to

answer queries faster. Data cubes [22] are a classical example of
materialized views that aggregate data across all the possible com-
binations of a set of dimensions. Maintaining the content of a ma-
terialized view up to date in the presence of changes to the base
tables is known as view maintenance. Complete recomputation is
the simplest maintenance strategy, however, it is expensive for up-
dates that reference only a small number of tuples in the view. In
such cases, incremental maintenance that applies deltas only to the
modified tuples is usually more efficient for large base tables.

Formally, let (Q,M(D)) denote a materialized view [41], where
Q is the definition query andM(D) is the materialized query result



for an input dataset D. When the input changes from D to (D +
∆D), incremental view maintenance evaluates a delta query ∆Q
that updates M(D) accordingly:

M(D + ∆D) = M(D) + ∆Q(D,∆D)

In general, computing ∆Q and updating M(D) accordingly is
faster than re-evaluating Q from scratch. ∆Q has to be derived
for each view and can have one delta query for each base table in
the dataset D. These delta queries are grouped into an associated
view maintenance trigger. The frequency at which the trigger is ex-
ecuted – or, alternatively, the size of ∆D – has a serious impact on
the view maintenance time [41].

3. ARRAY VIEWS
A relational view is defined over any query [12]. Since the re-

sult of a query is a relation, the view can be used in queries as
any other relation. Following the same principle, an array view is
defined by a query over arrays. However, not all the queries on
arrays produce an array as the result [38, 35]. This is problematic
because it hinders composability—a fundamental property of rela-
tional algebra. Thus, in order to support composition, the queries
on which an array view is defined have to be limited to those that
output arrays. Nonetheless, the class of such queries has to be gen-
eral. Array similarity join is known to be a generalization of array
equi-join and distance-based similarity join [56]. Moreover, it is
composable. Thus, we define an array view over multiple arrays
starting from their shape-based similarity join followed by a series
of unary array operators, e.g., sub-sampling, projection, group-by
aggregate, etc.

DEFINITION 1. Given n multi-dimensional arrays α1, . . . , αn
and k unary array operators ⊕1, . . . ,⊕k that produce array out-
put, we define an array view
V 7→⊕1

(
· · · ⊕k

(
α1 ./

M1
σ1,f1

α2 ./
M2
σ2,f2

. . . ./
Mn−1

σn−1,fn−1
αn
)
. . .
)

as the result of applying the sequence of k operators to the chain of
similarity joins among the n input arrays.

EXAMPLE 1. Consider array view V defined by the AQL query

CREATE ARRAY VIEW V AS
SELECT COUNT(*) AS cnt
FROM A A1 SIMILARITY JOIN A A2

ON (A1.i = A2.i) AND (A1.j = A2.j)
WITH SHAPE L1(1)

GROUP BY A1.i, A1.j

depicted in Figure 1 (a). V consists of a single similarity self-
join on A based on L1(1) similarity shape, i.e., a 5-cell cross cen-
tered on each cell, and identity mapping and value function. The
resulting 4-D array is then projected on a single pair of dimen-
sions (i,j) passed as arguments to the GROUP BY clause. The
value of a cell in V is given by the number of non-empty neigh-
bor cells of the corresponding cell in A. Thus, the single unary
operator in V definition is a group-by aggregate. Following the
similarity join example, there are only two cells with value 2—
V [i = 1, j = 2] 7→ 〈cnt = 2〉, V [i = 1, j = 3] 7→ 〈cnt = 2〉.

To put this example in perspective, A corresponds to a simplified
astronomical catalog without the time dimension, while V is the
equivalent of a galaxy group catalog derived from A. Dimension-
ality reduction is necessary only for presentation purposes.

Materialized array views. We consider materialized array views
that are evaluated eagerly at view definition and have their result
stored as an array V . While the schema of V is well-defined by

the query, its chunking can be either specified explicitly or it can be
inferred from the chunking of the input arrays αi [56]. Maintain-
ing view V under modifications to the base arrays αi becomes the
primary challenge in this case.

EXAMPLE 2. Figure 1 (b) depicts arrayA and materialized ar-
ray view V after 7 new cells are added to A—they are hatched in
the figure. The new cells result in the creation of two new chunks
– 7 and 8 – in A and V , respectively, assigned to nodes accord-
ing to the chunking strategy corresponding to each array. Since no
chunking is specified in the view definition, the chunking of V is
inherited from A. However, the assignment of V chunks to nodes
is done by considering V as an independent array. The number
of cells in view V that are impacted by the insertions to A – also
hatched – is 11. These cells cover all the chunks in the view, thus,
the entire view has to be updated. This is due to the shape in the
similarity join—a cell in A can impact as many as 5 cells in V .

Incremental array view maintenance is a complex problem that
spans several axes:

• Batch updates. We consider batches of updates to the base ar-
ray(s) because this is the standard use case in scientific appli-
cations, e.g., the iPTF pipeline ingests a series of images rather
than one. Moreover, view maintenance is executed as part of
a processing pipeline, not concurrently with queries. For rela-
tional views, batch updates are mostly meant to reduce the per-
transaction overhead while deferring view maintenance [14, 33,
25, 30]. In the case of array views, we go one step further and
share the delta computation across the batch. This is beneficial
because similarity join increases the degree of sharing—unlike
relational equi-join.

• Update granularity. Array databases access and process data at
chunk granularity [9, 11]. Thus, cell updates degenerate into
chunk-level operations. Metadata is also kept at chunk granular-
ity. As a result, we group update operations, i.e., diffs [30], into
chunks and perform view maintenance over chunks. This is dif-
ferent from relational view maintenance which operates at tuple
granularity since no ordering is enforced. Chunk-level mainte-
nance is suboptimal when the number of updated cells inside
a chunk is small. However, updates are clustered by the ac-
quisition process in many scientific applications [19]—including
iPTF. Batching also helps. Performing maintenance at cell gran-
ularity has the potential to prune unnecessary joins between chunk
pairs. This requires more detailed metadata, e.g., positional in-
formation on non-empty cells inside the chunk, and more time-
consuming join pair identification. While this may be acceptable
for relational equi-join, the cost is magnified for arbitrary shape-
based array similarity join.

• Aggregates. We consider the standard SQL aggregate functions,
e.g., SUM, COUNT, AVG, that can be maintained incrementally.
These functions are also commutative and associative, thus the
order in which updates are applied to the view is not important.

• Distributed processing. Distributed maintenance in data ware-
housing typically assumes that the base tables and the view are
stored non-partitioned on a single server, albeit each of them on
different servers [47, 48, 36]. When the base tables and the view
are partitioned [5, 37], all the partitions require maintenance in
the worst case. This can be alleviated by building indexes on
each server. We consider distributed array views defined over
distributed base arrays where updates are handled by a coordina-
tor. Determining the communication among partitions involved



Variable Description Parameter Description
xikj transfer chunk i from node k to node j U set of historical batch updates
zpqk chunks p and q are joined at node k Wl weight of update batch Ul
yij chunk i is assigned to node j Sq node storing chunk q at beginning of current updates
x′ijk transfer chunk i from node j to k given y Bq size of chunk q in bytes
z′pqk chunks p and q are joined at node k given y Tntwk time to transfer a unit chunk between two nodes

Tcpu time to compute the join between two unit chunks
λ importance ratio between current and historical batches

Table 1: Binary variables and parameters in the MIP formulation.

in the maintenance becomes an important optimization param-
eter in this case because the number of potential join pairs for
each chunk is magnified by the similarity join in the definition.

• Recursive maintenance. If the array view is defined over more
than two arrays, updates to a single array require n−1 similarity
joins with base arrays. This can be very expensive. A restricted
form of recursive view maintenance [2, 41] can be applied to
array views by materializing the result of each pair of join chains
obtained by splitting the n−1 joins in the view definition. While
these auxiliary views reduce maintenance time, they also require
maintenance, i.e., recursive maintenance.

4. ARRAY VIEW MAINTENANCE
In this section, we present the first incremental array view main-

tenance algorithm for a distributed array database. We begin with a
high-level description of the view maintenance architecture. Then,
we provide an optimization formulation for the problem and derive
efficient algorithms from it.

High-level approach. Given input arrays α and β and a ma-
terialized array view V = α ./Mσ,f β defined as the similarity
join between α and β, the goal is to maintain V efficiently un-
der updates ∆α and ∆β to the base arrays. We consider only
two arrays in order to focus on the fundamental similarity join
problem—the extension to multiple arrays is recursive. α, β, and
V , respectively, are chunked over the database servers, while each
of ∆α and ∆β consists of a set of chunks located initially at the
coordinator. The assignment of chunks to nodes for all the ar-
rays in the database is stored in the catalog metadata—also man-
aged by the coordinator. The updates ∆α and ∆β, respectively,
come in batches at regular time intervals, i.e., cyclic batch up-
dates. In an algebraic notation [23, 34, 12], the maintenance of
V , i.e., computing V + ∆V , requires computing the differential
view ∆V =

(
α ./Mσ,f ∆β

)
∪
(
∆α ./Mσ,f β

)
∪
(
∆α ./Mσ,f ∆β

)
followed by merging into V . ∆V is the similarity join between
the updates and the base arrays and the updates themselves, respec-
tively. V + ∆V is computed according to the view definition.

4.1 Baseline View Maintenance
The baseline array view maintenance algorithm is based on the

parallel relational view maintenance process proposed in [37]. Since
the original process in [37] works only for single tuple updates, we
extend it to batch updates. The algorithm works as follows. The
new chunks ∆α and ∆β – as well as new chunks in view V –
are first assigned to nodes using the chunking strategy for each ar-
ray. In order to compute the differential view ∆V , the coordinator
identifies – from the catalog metadata – all the chunks in β that join
with a chunk in ∆α and sends the new chunk to the nodes that store
these β chunks. If no β chunk joins with ∆α – ∆α is an irrelevant
update [8] – no computation is required. The same process is ap-
plied to ∆β and α. Since the join ∆α ./Mσ,f ∆β is included twice,

we exclude ∆α from α when we compute α ./Mσ,f ∆β. The merg-
ing V + ∆V is realized by sending the chunks in the differential
view to the nodes that store the corresponding view chunks. This
is done asynchronously as the ∆V chunks are received. The coor-
dinator provides the location of the view chunks and the number of
∆V chunks to all the nodes participating in the computation.

We exemplify how the baseline algorithm works based on the
updates in Figure 1. The new chunks 7 and 8 are assigned to node
X and Y in array A, while the corresponding view chunks are as-
signed to node Y and Z, respectively. We consider the differen-
tial view for chunk 7. Since chunk 7 joins with chunks 2, 4, and
8, it is also sent to node Y . Joins 7 ./ 2 and 7 ./ 8 are com-
puted on Y , while 7 ./ 4 on X , respectively. The view merging
V + ∆V requires communication between the following pairs of
nodes: Y −→ X for view chunk 2, X −→ Y for view chunk 4,
and Y −→ Z for view chunk 8, respectively.

This example illustrates one problem of the baseline algorithm—
excessive communication. To update view chunk 2 on X , node X
first sends chunk 7 to node Y to compute the join 7 ./ 2 only to
have the result returned to node X . If chunk 2 is sent from Y to
X , the view can be updated locally, without additional communica-
tion. The second problem is excessive computation at a node, i.e.,
load imbalance. This happens for chunk 4 which is joined with all
its neighbors locally at nodeX . The main cause for these problems
is the static assignment of chunks to nodes which is completely in-
dependent from the updates. In the first case, the chunks are too
spread over the nodes in the cluster, while in the second case, the
chunks are clustered at a single node. These problems are mag-
nified in scientific data processing by the chunking strategies [19]
and the fact that updates are concentrated on a limited area of the
base arrays, e.g., the iPTF telescope points to a relatively small
area of the sky during each night. For hash-based chunking, each
join computation is likely to require communication because adja-
cent chunks are assigned to different nodes. For space-partitioning
strategies – space-filling curves, quadtree, k-d tree – most of the
joins are concentrated on a single node, thus the load is imbalanced.

4.2 Optimal View Maintenance
We address the limitations of the baseline algorithm – excessive

communication and load imbalance – by modeling the array view
maintenance problem as a mixed-integer program (MIP) that iden-
tifies the optimal plan to compute the differential view ∆V and
the merging V + ∆V and determines the optimal reassignment to
nodes for both the array and the view chunks—new and existing.
The optimal view update plan reduces the excessive communica-
tion/computation, while the reassignment guarantees that we do
not get stuck with an unfavorable static chunking strategy. Even
more, the incoming chunks are not first assigned to a node based
on a pre-determined chunking strategy. The reason for consider-
ing these two seemingly disjoint objectives together is to piggy-
back on the chunk replication incurred by view maintenance when
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C1 :

N∑
j=1

yij = 1 ∀i C2 : 2zpqk ≤ xpSpk + xqSqk ∀(p, q, k), (p, q) ∈ U0 C3 :

N∑
k=1

zpqk = 1 ∀(p, q) ∈ U0

C4 : 2z′pqk ≤ x′pSpk +

N∑
j=1

x′qjk · yqj ∀(p, q, k), (p, q) ∈ U C5 :

N∑
k=1

z′pqk = 1 ∀(p, q) ∈ U

(2)

computing the reassignment. Otherwise, the benefit of the reas-
signment may be overlooked by the required communication and
chunk replication. Moreover, the reassignment takes into account
a window of past batch updates, rather than only the current batch.
This is necessary in order to avoid frequent unstable reassignments.
The main difference to the baseline algorithm is that we consider
view maintenance and reassignment together, rather than first as-
signing chunks to nodes based on a pre-determined chunking and
then solving the maintenance under that assignment.

MIP variables & parameters. The MIP variables and param-
eters are displayed in Table 1 included in the Appendix. There
are two families of variables. x encodes the chunk communica-
tion between two nodes, while z determines the node where the
join between two chunks is evaluated. Essentially, x corresponds
to communication and z corresponds to computation. The y vari-
ables encode the chunk to node reassignment after the current batch
update. While the chunk to node assignment at the beginning of the
update is fixed, y corresponds to the optimal reassignment that is
derived from the past batches of updatesU . x′ and z′ have the same
meaning as x and z, however, they are based on the reassignment
y, not the constant input assignment sq at the current batch update
time. Moreover, x and z correspond to the communication/com-
putation for the current batch, while x′ and z′ are defined over the
window of historical batch updates U .

The constant parameters in the MIP formulation – also shown in
Table 1 – include the historical batch of updates U and their weight
W , the chunk to node assignment Sq when the current update batch
is processed, the size of the chunk Bq , the time to transfer chunks
between nodes Tntwk and to join two chunks Tcpu, and the weighted
sum ratio λ. A batch of updates Ul is a set of triples (p, q, v) where
chunks p and q from base arrays (α ∪ ∆α) and (β ∪ ∆β) have
to be joined and the result has to be merged into chunk v in view
V . For each update batch, Ul is computed by the coordinator from
the catalog metadata. A fixed-size window of past batch updates
is collected, where U0 corresponds to the current batch and Ul is
for the lth previous batch. A weight Wl is assigned to each batch
Ul. While the values of Wl can follow any distribution, we use
exponential decay in our implementation. The older a batch is,
the smaller its corresponding weight W . Sq is the current node
assignment of chunk q. It is always fixed for existing chunks and
set to the coordinator for the new chunks. Bq is the size of chunk q
and Bpq is the total size of chunks p and q. The values of Tntwk and
Tcpu are determined based on an empirical calibration process. λ is
an importance weight between 0 and 1 that discriminates between
the current and past batches of updates.

We illustrate how the variables and the parameters are instanti-
ated based on the updates in Figure 1. The original assignments

of chunks 4 and 7 when the batch is considered are SA4 = X ,
SV4 = Y , and SA7 = sV7 = Coordinator, respectively. The
triples in U0 for chunk 4 are {(∆A4, A1, V1), (∆A4,∆A1, V1),
(∆A4, A4, V4), (∆A4,∆A7, V7)}.

Analytical cost model. The MIP formalization of the optimal
view maintenance problem is given in Eq. (1) – the objective func-
tion – and Eq. (2)—the constraints. The cost model is the weighted
λ summation of two terms corresponding to the view maintenance
for the current update batch and the chunk reassignment based on
the historical updates. The difference between the terms is that
view maintenance considers only the triples in U0, while the re-
assignment considers all the triples across the historical batches in
U . Each of the terms is the maximum between the communication
and the computation executed across all the nodes in the cluster.
We consider the maximum between these two because we over-
lap communication and computation in our implementation setting.
The communication involves two terms as well. The first term is
for co-locating on the same node chunks that have to be joined for
computing the differential view ∆V , while the second term is for
merging the result into the view chunk V + ∆V . By minimizing
the maximum across nodes, load-balancing is achieved since none
of the nodes is allowed to perform excessive communication and/or
computation.

The cost model introduced in this paper differs significantly from
the cost model for array similarity join in [56]. The cost for ar-
ray similarity join considers only the current join and no historical
queries. More importantly, we include the CPU cost and exclude
the disk I/O cost—the reverse holds in the case of array similarity
join. The reason for this is the much smaller number of referenced
chunks in a batch of updates. While in array similarity join all the
chunks have to be considered, only the chunk triples in U0 are re-
quired for view maintenance. In practice, we observe that these
chunks fit in memory and no further disk access is required beyond
the initial loading. As a result, the CPU time becomes the dominant
factor in computation at a node.

The most relevant constraints are given in Eq. (2). C1 enforces
that a chunk is stored at a single node and new chunks are assigned
to a node. This is the standard in array databases which do not
consider replication. C2 forces chunk co-locating at node k where
the join between chunks p and q is performed. C3 andC5 guarantee
that all the join triples are computed. C4 is the equivalent of C2 for
the historical updates. However, the chunk assignment is no longer
constant. It has to be inferred from variable y.

Challenges. Solving directly the MIP formulation with an in-
teger programming solver poses severe challenges for several rea-
sons. First, both the objective and the constraints contain quadratic
terms that correlate the chunk assignment with the join computa-



tion, e.g., zpqkyvj . While quadratic solvers exist, they are not as ad-
vanced as linear solvers such as CPLEX4. Linearizing the quadratic
terms by introducing new variables and constraints is the standard
solution to solve this type of optimizations. However, in our case,
this results in the creation of variables and constraints with 5 in-
dices, e.g., pqkvj. This number is huge even for a small number of
triples in U . Second, the max functions in the objective increase
the difficulty of convergence for barrier search branch & bound
methods. While max can be also linearized, this adds even more
constraints. In order to verify the practicality of directly solving the
MIP formulation, we experimented with the linear reduction for a
single batch of 1000 updates that generate less than 4000 triples—
average batch update in iPTF. CPLEX cannot find any solution be-
yond a feasible starting point in an hour on a massive 56-thread
server.

Solution. We decompose the complete view maintenance for-
mulation into three separate stages that solve the optimization for
a subset of the variables. The variables set at a stage are used as
input for the subsequent stages. The three stages are differential
view computation, view chunk reassignment, and array chunk reas-
signment. The differential view computation determines the nodes
where each pair of chunks (p, q) is joined and the chunk communi-
cation plan for each node. This corresponds to solving the first line
in the objective Eq. (1) for variables z and x with the constraints
C2 and C3. The chunk assignment y is fixed as S at this stage. In
view chunk reassignment, the node where to store each view chunk
is determined based on the join computation plan. We solve the
same objective as in the first stage with constraint C1 for variables
yvj corresponding to the view chunks by taking the values of z and
x as input. Given the join computation plan and the view chunk re-
assignment, in array chunk reassignment, the base array chunks are
relocated to nodes such that the view maintenance cost across the
historical batch updates is minimized. This corresponds to solving
the complete optimization formulation for variables yaj , x′, and z′

with constraints C1, C4, and C5. Notice that only the y variables
for base array chunks are considered. We discuss the three stages
of the proposed solution in the following sections.

Algorithm 1 Differential View Computation

Input: triples U0 = {(p, q, v)}; chunk location S and size B
Output: xikj ; zpqk
1. ntwk[1..N ], cpu[1..N ]← 0; T [q]← {Sq}, ∀q
2. for each (p, q, ∗) ∈ U0 in random order do
3. opt←∞; dest← ∅
4. for j ← 1 to N do
5. ntwk′[1..N ], cpu′[1..N ]← 0
6. if j 6∈ T [q] then ntwk′[Sq]← ntwk′[Sq] +BqTntwk

7. cpu′[j]← cpu′[j] +BpqTcpu

8. opt_now← maxk{ntwk[k]+ ntwk′[k], cpu[k]+ cpu′[k]}
9. if opt > opt_now then opt← opt_now; dest← j

10. end for
11. T [p]← T [p] ∪ {dest}; T [q]← T [q] ∪ {dest}
12. update ntwk and cpu
13. xp,Sp,dest ← 1; zp,q,dest ← 1
14. end for

4.3 Differential View Computation
The first stage aims to find the optimal join plan for comput-

ing the differential view ∆V =
(
α ./Mσ,f ∆β

)
∪
(
∆α ./Mσ,f β

)
∪

4http://www-01.ibm.com/software/commerce/optimization/
cplexoptimizer/

(
∆α ./Mσ,f ∆β

)
given the current chunk assignment of the base

arrays. ∆ chunks are initially stored at the coordinator. However,
the coordinator does not participate in the join computation. Al-
though ∆V is the union of three array similarity join queries, it
can be evaluated as a single array similarity join query across the
union of the chunk join pairs in these three queries. While a solu-
tion to array similarity join is proposed in [56], it is not feasible in
this context because it restricts the evaluation of a join between two
chunks to the node storing the chunk in the base array—∆ chunks
cannot be joined at the coordinator. Our approach is to consider
all the nodes as candidates for performing the join for all the chunk
pairs. However, this is an NP-hard problem—the reduction is given
in Appendix A.1. We propose an efficient randomized local search
heuristic for computing the differential view join plan depicted in
Algorithm 1. At high-level, the algorithm iterates randomly over
the chunk join pairs (p, q) in the input triples U0 corresponding
to the current batch update and chooses the node to perform the
join such that the objective function in the MIP formulation is min-
imized. The input of the algorithm is represented by the triples
U0 and the current array chunk assignment S. Line (1) initializes
the components of the objective function and the nodes where each
chunk q is stored—initially set to Sq . The remaining part is the
main loop of the algorithm which iterates over the chunk join pairs,
while the inner loop at lines (4)-(10) iterates over the nodes. The
cost of evaluating the join is computed for each node j and the node
that provides the minimum cost for the max objective function is
selected in line (9). Line (11) updates the chunk replication loca-
tion, while line (13) sets the output variables x and z. xp,Sp,dest

set to 1 means that chunk p is sent from its original location to the
selected node for performing the join. zp,q,dest set to 1 signals that
chunk pair (p, q) is joined on the selected node. Line (12) updates
the objective function based on the selected node. We show how
the algorithm works for the array in Figure 1 in Appendix B.1.

The algorithm gives priority to nodes that already store the in-
volved chunks because they do not require additional communica-
tion. However, if these nodes are doing more work than other nodes
not having the chunk, sending the chunk somewhere else becomes
the preferred choice. This guarantees that none of the nodes are
the bottleneck because of the chunk assignment strategy—a funda-
mental limitation of the baseline algorithm. The complexity of the
algorithm is O(|U0|N logN) since the maxk on line (8) can be
computed in logarithmic time with a binary heap. In the case of
a large cluster with thousands of nodes N , solutions to accelerate
this algorithm include the parallel processing of the inner loop over
the nodes and node partitioning strategies. We plan to investigate
these directions in future work.

4.4 View Chunk Reassignment
The second stage identifies the optimal node to compute the

merging V + ∆V for all the chunks in the view. The location
where the differential view ∆V is evaluated in the first stage is
taken as a pre-condition instead of blindly sending ∆V to the node
that contains the corresponding view chunk—the case in the base-
line algorithm. This corresponds to determining the variables yvj
given values for x and z and entails the reassignment of the view
chunks. We show that this problem is NP-hard in Appendix A.2.
We design an efficient randomized heuristic that follows the same
ideas from Algorithm 1. This heuristic – depicted in Algorithm 2 –
iterates randomly over all the view chunks v that appear among the
triples U0 and selects the optimal node where to reassign v from all
the nodes in the cluster. The cost in the MIP formulation is used
to discriminate between nodes. The iteration over the triples U0 is
split into two sections because all the updates to a view chunk v



have to be considered together when computing the cost. Beyond
this slight difference, the details of the view chunk reassignment al-
gorithm follow from Algorithm 1 and we do not repeat them here.
We provide an example showing how the algorithm works in Ap-
pendix B.2.

Algorithm 2 View Chunk Reassignment

Input: triples U0 = {(p, q, v)}; chunk location S and size B;
xikj ; zpqk

Output: yvj
1. initialize ntwk[1..N ], cpu[1..N ] from xikj , zpqk
2. for each (∗, ∗, v) ∈ U0 in random order do
3. opt←∞; dest← ∅
4. for j′ ← 1 to N do
5. ntwk′[1..N ], cpu′[1..N ]← 0
6. for each (p, q, v) ∈ U0 do
7. j ← arg maxj∈{1,..,N} zpqj
8. if j 6= j′ then ntwk′[j]← ntwk′[j] +BpqTntwk

9. cpu′[j′]← cpu′[j′] +BpqTcpu

10. end for
11. opt_now← maxk{ntwk[k]+ntwk′[k], cpu[k]+cpu′[k]}
12. if opt > opt_now then opt← opt_now; dest← j′

13. end for
14. update ntwk and cpu
15. yv,dest ← 1
16. end for

If we consider a view chunk v in isolation, the reassignment is bi-
ased towards the nodes that compute more differential view chunks
relevant to v. However, since there is interaction between view
chunks, the reassignment avoids the nodes that are communication
or computation bottlenecks. The complexity of the algorithm fol-
lows from that of Algorithm 1.

4.5 Array Chunk Reassignment
The idea in array chunk reassignment is to reuse the replication

required to evaluate the differential view in order to reorganize the
array chunks. Replication is induced through variables xikj which
send a chunk i from its origin k to several nodes j. Since chunk i is
replicated across all the nodes j, there is no communication over-
head in performing the array chunk reassignment. Only the stor-
age across nodes is redistributed. The goal of the reassignment is
to reduce the communication cost of merging the differential view
V + ∆V for future batches of updates. This is accomplished by
co-locating the array chunks in the differential view with the cor-
responding view chunk. Since the location of the differential view
computation zpqk and the assignment of the view chunks yvj are
known at this stage, only the variables yaj for the array chunks
have to be determined. One solution to compute yaj considers only
the current update batch. However, this has the potential to gener-
ate highly-unstable reassignments that are overreacting to changes
in the update workload.

Our solution is to consider a window of past update batches
when computing yaj . Thus, rather than considering only the triples
U0, we also include in the optimization the triples Ul for the past
updates. For Ul to provide any useful information, though, we
have to know their associated variables x and z for the reassign-
ment configuration—these are variables x′ and z′. While comput-
ing these variables looks similar to computing x and z in the first
stage, it is actually more difficult because the assignment of the ar-
ray chunks Sa is unknown—these are the variables yaj we have to
compute in this stage. Notice, though, that the values of variables
x′ and z′ do not have to be explicitly determined because we do

not have to reevaluate the past update batches. What matters is the
benefit a given assignment brings to past updates. We quantify this
benefit with a frequency-based score associated to every chunk pair
(q, v) – q is an array chunk, v is a view chunk – that appears across
the triplesUl. The more frequent a pair (q, v) is, the higher its score
can be. The history is taken into account by biasing towards recent
updates based on the weight Wl associated with the batch. The
score takes into consideration only the communication cost in the
objective function. It ignores the computation cost. This can lead
to skewed reassignments in which certain nodes have to perform
almost all the computation. We handle these cases by limiting the
number of pairs that are assigned to each node. With score refor-
mulation and CPU limitation, array chunk reassignment is NP-hard
(Appendix A.3).

Algorithm 3 Array Chunk Reassignment

Input: sets of triplesUl = {(p, q, v)} and associated weightsWl;
chunk location S and size B; xikj ; zpqk; yvj

Output: yaj
1. initialize cpu_thr[1..N ]; done← ∅
2. score[a, v]← 0, ∀(a, ∗, v), (∗, a, v) ∈ Ul, ∀l
3. for each (a, ∗, v), (∗, a, v) ∈ Ul do
4. score[a, v]← score[a, v] +WlBa
5. for each (a, v) in descending order of score[a, v] do
6. if a 6∈ done then
7. j ← arg maxk∈{1,..,N} yvk
8. if (xaSaj = 1) and (cpu_thr[j] ≥ Ba) then
9. cpu_thr[j]← cpu_thr[j]−Ba

10. yaj ← 1; done← done ∪ {a}
11. end if
12. end if
13. end for
14. yaSa ← 1, ∀a 6∈ done

We design a greedy algorithm for chunk reassignment (Algo-
rithm 3). The algorithm iterates over the chunk pairs (a, v) in de-
creasing order of their score and assigns array chunk a to the node
where v is assigned, as long as the computation threshold cpu_thr
is not exceeded—lines (5)-(13). This guarantees that a is grouped
together with the view chunk it is most correlated with. The chunks
that cannot be assigned – due to the CPU limitation at a node – stay
at their previous location Sa (line (14)). cpu_thr is initialized as the
average join cost per node across all the triples inUl. It is important
to notice that the assignment of ∆ chunks is also handled by this
algorithm. However, if a ∆ chunk cannot be assigned to any node
due to tight CPU limitations, we assign it to the node containing
the v chunk with the highest score. The example in Appendix B.3
illustrates how the algorithm works.

5. QUERY INTEGRATION
In this section, we present a succinct discussion on how to in-

tegrate array views in shape-based similarity join queries. This is
orthogonal to using views in relational databases [24, 18]. We fo-
cus on the difficult case when the shape of the query is different
from the shape used in the view definition. Differences in the ag-
gregate function are treated similar to relational views [13]. Given
a query and a view, our goal is to optimally answer the query using
the view. We show that this can be derived from the MIP formu-
lation for view maintenance (Section 4.2). However, it may not be
more efficient than evaluating the query from scratch. Thus, we
devise a cost model that allows us to choose the best alternative.
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Figure 2: View, query, and corresponding ∆ shapes.

∆ shape. Consider the shape arrays in Figure 2. An array view is
defined over shape view. The query to evaluate is an array similarity
join over the shape query. We define ∆ shape as the positional
symmetric set difference between view and query, i.e., ∆ = (view\
query) ∪ (query \ view). In Figure 2, the ∆ shape contains the 6
cells—2 for (view \ query) and 4 for (query \ view).

Differential query evaluation. In order to evaluate the query
using the view, the result of the similarity join with the ∆ shape
has to be merged with the view. This process can be mapped into
the view maintenance problem by generating the update triples in
U0 for all the chunks in the base array with shape ∆. However, the
merging with the view creates the result array rather than updating
the view. This reduction allows us to apply the MIP optimization
framework and the derived algorithms for differential view com-
putation in Section 4.3. The alternative to answer the query is to
compute the similarity join with shape query over the base arrays.

Analytical cost model. We present an analytical cost model that
allows us to identify the better solution for a given view and query.
In both cases, the model is a subset of the MIP formulation for view
maintenance in Eq. (1). The cost for each alternative is depicted in
Eq. (3). The only difference is the additional term corresponding to
the interaction with the view. The common parts correspond to the
shape-based similarity join. From the two costs, it appears that it is
always better to compute the join from scratch since the cost of the
view solution contains an additional term. We remind the reader
that the input to these costs is different. The triples in the view
cost are generated from the ∆ shape, while the chunk join pairs in
similarity join are extracted from the query shape. The main factor
that determines the relationship between the costs is the relative
ratio between the size of ∆ and query. Intuitively, if the ratio is
larger than 1, the full similarity join is more efficient. By solving
the two optimization formulations and finding their minimum cost,
we can decide which alternative to pursue. Nonetheless, the cost
model may not reflect the reality accurately—as with any query
optimizer.

6. EXPERIMENTAL EVALUATION
The objective of the experimental evaluation is to investigate the

performance of the proposed heuristics on incrementally maintain-
ing the PTF “association table” under the nightly batch updates to
the base catalog. The “association table” is a derived data product
that clusters raw candidates that are within a specified distance of
each other over a given time horizon, i.e., FoF clustering. We use

the real data and batch updates from the PTF pipeline. The Linked-
GeoData dataset is used to confirm the generality of the incremental
array view maintenance framework. Specifically, the experiments
are targeted to answer the following questions:

• Does the proposed differential view computation improve upon
the baseline algorithm for a single update batch?

• Does the chunk and view reassignment improve the view main-
tenance time across a series of update batches? How sensitive is
the reassignment to correlations between batches?

• What is the execution time of the incremental array view main-
tenance heuristic (Appendix C)? How is the time split between
differential view maintenance and chunk reassignment?

• When is querying with an array view better than complete simi-
larity join computation?

• How sensitive is the proposed method to batch size and chunk
spread in the updates? (Appendix C)

6.1 Setup
Implementation. We implement incremental view maintenance

as a layer on top of the array similarity join operator proposed
in [56]. Similarity join is implemented as a C++11 distributed
multi-thread prototype that uses an enhanced storage manager de-
rived from ArrayStore [49]. The catalog is stored at the coordinator
and replicated to all the nodes in the cluster at runtime. The incre-
mental view maintenance heuristic is executed at the coordinator
and the resulting plans containing information on chunk transfer
and reassignment, and chunk join pair evaluation are distributed to
the nodes. The similarity join operator runs as a server on each
node in the cluster. It manages a pool of worker threads equal to
the number of CPU cores in each node. A worker thread is invoked
with a pair of chunks that have to be joined and the node where to
send the result for view merging. Requests are made to the local
and remote array storage managers to retrieve the chunks to join.
This happens concurrently across all the workers. View merging is
also executed by worker threads from the pool. Whenever a join
result is received, a worker is assigned to merge it to the view. The
code contains special functions to harness detailed profiling data.

System. We execute the experiments on a 9-node cluster. The
coordinator runs on one node while the other 8 nodes are workers.
Each node has 2 AMD Opteron 6128 series 8-core processors (64
bit) – 16 cores – 28 GB of memory, and 4 TB of HDD storage.
The number of worker threads is set to 16—the number of cores.
Ubuntu 14.04.5 SMP 64-bit with Linux kernel 3.13.0-43 is the op-
erating system. The nodes are mounted inside the same rack and
are inter-connected through a Gigabit Ethernet switch. The mea-
sured network bandwidth on a link is 125 MB/second. Since the
disk bandwidth is in the same range, there is not a significant dif-
ference between the network and disk I/O.

Methodology. We include in the evaluation three methods—
baseline, differential, and reassign. Baseline (Section 4.1) is the
parallel relational view maintenance procedure adapted to array
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Figure 3: View maintenance time on all the datasets and all the update batch configurations.

data. Differential corresponds to the first stage of the proposed
heuristic in which only the join plan is optimized (Section 4.3).
Reassign is the complete heuristic that adds view and array chunk
reassignment to differential (Section 4.5). By separating the heuris-
tic into differential and reassign, we can study the impact of reas-
signment separately. We measure wall-clock time.

Data. We use the same two real datasets as in [56] for exper-
iments. The PTF catalog consists of 1 billion time-stamped ob-
jects represented in the equatorial coordinate system (ra, dec). The
range of the time coordinate spans over 153,064 distinct values,
while for ra and dec we use ranges of 100,000 and 50,000, respec-
tively. In array format, this corresponds to:
PTF[time=1,153064;ra=1,100000;dec=1,50000]

which is a sparse array with density less than 10−6. Objects are
not uniformly distributed over this array. They are heavily skewed
around the physical location of the acquiring telescope—latitude
corresponds to dec. After experimenting with several chunk sizes,
we found that (112, 100, 50) provides the best results. The size of
the PTF catalog is 343 GB.

LinkedGeoData5 stores geo-spatial data used in OpenStreetMap.
We use the “Place” dataset which contains location information on
roughly 3 million 2-D (long, lat) points-of-interest (POI). Since this
is a too small dataset, we synthetically generate a larger dataset
by adding 9 synthetic points with coordinates derived from each
original point using a Gaussian distribution with µ = 0 and σ = 10
miles [46]. In array format, this corresponds to:
GEO[long=1,100000;lat=1,50000]

5http://linkedgeodata.org

having chunk size of (100, 50). Even with this replication, the size
of GEO is still less than 1 GB.

PTF-5 PTF-25 GEO

(a)

L∞(1) L∞(1)←L1(1) L∞(1)←L∞(2)

(b)

Figure 4: (a) Query shapes. (b) ∆ shapes.

Views. We create three materialized array views – two on the
PTF dataset and one on LinkedGeoData – that count the number of
similar neighbors for each cell in the base arrays. The shapes in the
similarity join from the view definition are depicted in Figure 4a.
PTF-5 defines similarity as the L1-norm of size 1 on the (ra, dec)
dimensions across the previous 200 days. This corresponds to clus-
tering objects within 10 arcseconds of each other. In PTF-25, sim-
ilarity is defined as the L∞-norm of size 2 on (ra, dec) which cor-
responds to 400 arcminutes. All the objects that appear in the cata-
log within this distance are considered similar—independent of the
time. The size of the PTF-5 and PTF-25 views is identical – 32 GB
– since they have the same schema. PTF-5 is a real “association
table” used in the production PTF pipeline to follow-up interesting
transient candidates. Given the massive similarity shape, PTF-25 is
used to test the scalability of the proposed solution. The GEO view
clusters POIs that are within 1 mile of each other. The correspond-
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Figure 5: Average optimization time per update batch: (a) PTF-5, (b) PTF-25, and (c) GEO.

ing shape array is the L∞-norm equal to 1. Since the GEO dataset
is small, the corresponding materialized view is only 720 MB.

Batch updates. We extract 10 update batches from the original
datasets using four methods—real, random, correlated, and peri-
odic. Real takes the latest time-stamped batches from PTF. For
random, the batches are randomly sampled out of the entire dataset.
We do this only for GEO data which is not time-stamped and syn-
thetically generated. Correlated batches are generated by repeating
one of the real/random batches 10 times. Periodic batches are cre-
ated by repeating the first 3 real/random batches while alternating
their order, e.g., 1, 2, 3, 3, 2, 1, 1, 2, 3, 3. This order preserves cor-
relation only for some of the batches and allows us to better evalu-
ate the impact of chunk reassignment. We extract batches from the
PTF based on the time of the observation. This is exactly the pro-
cedure updates are applied in the production pipeline. The number
of chunks we select in a batch varies between 600 and 2000 which
corresponds to a two-week period of updates. A typical nightly
update has less than 100 chunks—too small for a meaningful eval-
uation. Since GEO does not include a time dimension, extracting
meaningful batches is more complicated. We select 1% of the en-
tire dataset in a batch.

6.2 View Maintenance Per Update Batch
The results for view maintenance time are depicted in Figure 3

for each individual batch—they do not include the optimization
time. Reassignment considers windows of 5 previous queries hav-
ing weights with exponential decay and impacts subsequent queries.

PTF-5. The maintenance time for real updates exhibits large
variations among batches. This is mostly due to the difference
in batch size—in some nights the PTF telescope takes more im-
ages than in others. The proposed heuristics always outperform
the baseline algorithm. The difference varies across batches and
is larger for large update batches—by as much as a factor of 4
for batch 2, 6, and 8. Reassign improves upon differential in all
batches except 1—when it cannot even be applied. In the case
of correlated batches, as expected, baseline and differential have
the same maintenance time across all the batches. While reassign
starts at the same level with differential, it continuously improves
until it reaches the best partitioning for the given batch of updates.
This happens at batch 4 where the gaps to the baseline and differ-
ential are 5X and around 4X , respectively. For periodic batches,
the maintenance time for the same batch in the sequence – (1,6,7),
(2,5,8), and (3,4,9,10) – is similar for baseline and differential. The
behavior of reassign is interesting when the same batch appears
consecutively, e.g., (3,4), (6,7), and (9,10). In all these cases, the
second batch is processed slightly faster than the first, thus, reas-

signment has an effect, however, it is much smaller than for corre-
lated batches.

PTF-25. The maintenance time for view PTF-25 exhibits higher
variance – especially for baseline – even though we use the same
update batches as for PTF-5. This is due to the much larger join
shape in the view definition. The difference between reassign and
baseline is larger – 6X for batch 6 – because the number of up-
date triples is larger and this increases the optimization space. In
the case of batch 8 which is very different from the previous ones,
baseline and differential take a significant hit. Reassign benefits
from view and array chunk colocation and processes the join pairs
faster.

GEO. While similar trends to PTF are observed for GEO, the in-
teresting fact is that there are quite a few batches in the random set-
ting where differential outperforms reassign. This is normal when
future updates are unpredictable and there is no relationship be-
tween batches. However, this effect is also magnified by the small
update times specific to the GEO dataset. The impact of reassign is
clear, though, in the periodic workload for batches 3 and 4 which
contain the same set of chunks. While for batch 3 reassign is slower
than differential, at batch 4 the situation is reversed. Reassign con-
siders previous updates and generates a more efficient partitioning.
As a result, the maintenance time is halved.

6.3 Optimization Time
The time to compute the view maintenance plan – and reparti-

tioning for reassign – is depicted in Figure 5. We present the aver-
age optimization time across the 10 update batches. The measure-
ment for baseline corresponds to generating the triples (p, q, v) in
which chunk p is joined with chunk q and the result is merged into
view chunk v. These triples have to be computed for all the meth-
ods. Differential adds the execution time of Algorithm 1, while
reassign adds the times for Algorithm 2 and Algorithm 3 on top of
that. There is a clear trend across all the datasets. Differential in-
curs a minimal overhead over baseline, while reassign takes at most
double the time of baseline. In absolute terms, the optimization
time per batch is at most 3.5 seconds which, we believe, is an ac-
ceptable value considering the significant reduction in maintenance
time it brings—as much as 200 seconds or more (for PTF-25).

6.4 Query Integration
We evaluate answering similarity join queries with materialized

views on several shapes over the PTF dataset. The baseline is com-
puting the query from scratch. The results are depicted in Figure 6.
On the x-axis, the arrow points from the available view to the query,
e.g., L∞(1) ← L1(1) means that we answer query with shape
L∞(1) using a view defined with shape L1(1). We observe that in



some cases the view is better, while in other cases it is not. It all
depends on the relative size of ∆ shape compared to the size of the
query shape. We depict these shapes for queries L∞(1) ← L1(1)
and L∞(1) ← L∞(2) in Figure 4b. Since the ratio for the first
query is 4/9, it is more efficient to use the view. The ratio for the
second query is 16/9 and the complete similarity join outperforms
the view. The analytical cost model we introduce in Section 5 is
able to identify the optimal solution.
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Figure 6: Differential query vs. similarity join on PTF.

6.5 Discussion
The experimental results show that the proposed heuristic pro-

vides considerable improvement over the baseline algorithm both
for a single update batch as well as for a sequence of batches. The
maintenance plan generated by the heuristic always outperforms
the baseline—by as much as a factor of 3. The repartitioning in-
creases this factor to almost 5X for periodic updates. The time
taken by the heuristic is a small fraction of the view maintenance
time, more so when compared to the reduction it generates. To put
these results in perspective, the proposed solution is able to incre-
mentally maintain the production PTF “association table” under a
batch of updates for a month in less than 15 minutes. Currently,
update batches are produced every 45 minutes.

7. RELATED WORK
Array databases. While many array databases have been pro-

posed over the years, none of them supports views. In the follow-
ing, we focus only on how these systems handle the computation
of derived array products. We point the interested reader to [44]
for a comprehensive discussion on array database systems in gen-
eral. RasDaMan [6] is a general middleware for array processing
with chunks stored as BLOBs in a back-end relational database.
RAM [4] and SRAM [15] provide support for array processing on
top of the MonetDB [27] columnar database. They do not provide
native support for arrays since arrays are represented as relations
and array operations are mapped over relational algebra operators.
While these systems do not explicitly include array views, it is con-
ceivable that the support for relational views in the back-end sys-
tems can be reused. RIOT [54] is a prototype system for linear alge-
bra operations over large vectors and matrices mapped into a stan-
dard relational database representation. Linear algebra operations
are rewritten into SQL views and evaluated lazily—these are not
materialized views. SciDB [9] is the most advanced shared-nothing
parallel database system designed specifically for dense array pro-
cessing. It supports multi-dimensional nested arrays with cells con-
taining records, which in turn can contain multi-dimensional ar-
rays. Although SciDB supports a large set of array operations, it
lacks support for views. SciHadoop [10] implements array process-
ing on top of the popular Hadoop Map-Reduce framework which
lacks view support. ArrayStore [49] and TrajStore [17] are storage
managers optimized for multi-dimensional arrays and trajectories,

respectively. They do not provide a query execution strategy to
implement it nor views.

Array joins. Positional array equi-joins are introduced in the
first releases of SciDB [9]. They are evaluated in the context of
different chunking strategies in [49], where structural join is intro-
duced. A complete formalization of array equi-joins and the shuffle
join algorithm are given in [20], while a graph formulation is intro-
duced in [7]. Array similarity join is introduced in [56] as a gen-
eralization of array equi-joins and distance-based similarity join.
While it bears similarities to shuffle join in allocating join units to
nodes based on an optimization process, array similarity join en-
compasses a larger variety of join predicates and is composable.

Incremental view maintenance. Materialized views are a clas-
sical concept in databases, with several surveys [23, 24] written
on the topic—the most recent by Chirkova and Yang [12]. Based
on the discussion in Section 3, array view maintenance falls in the
category of deferred maintenance [57, 14, 33, 30] with batch up-
dates [43, 25, 41]; theta- and other complex joins [34, 28]; stan-
dard SQL aggregates [52, 42]; parallel/distributed processing [45,
37, 5, 1, 47, 48, 36, 41]; and recursive handling of many joins [2,
41]. The emphasis of query integration is on how to use the view
in query optimization [18, 40, 13]—not data integration [24]. We
focus the following discussion on parallel incremental view main-
tenance – introduced in relational databases by [37] – because it
considers a similar setting to ours—both the tables and the view
are partitioned across servers. The objective of [37] is to maintain
materialized views partitioned on a different key than the join keys
in the view definition. Communication is minimized by building
indexes on the join attributes at each node. Since arrays are parti-
tioned on dimensions, these techniques are not applicable. [5] pro-
poses an incremental view maintenance method that replicates the
updates to all the nodes that contain relevant data. This is similar to
the baseline algorithm we improve upon. [1] introduces material-
ized views in Hadoop and designs replication methods for efficient
maintenance. [30] employs key-foreign key constraints to identify
diffs and avoid join with the base tables. These works consider only
equi-joins—a subclass of array similarity join. In the distributed
setting considered by [47, 48, 36], the base tables and the view are
not partitioned across servers. The goal is to find the optimal join
ordering in which to apply the updates. Batch updates – chunks
in our case – are shown to be more efficient in a distributed envi-
ronment by [41]. In the context of array databases, incremental
array repartitioning [19] comes the closest to incremental mate-
rialized view maintenance. However, the focus is exclusively on
repartitioning, not on view maintenance. In [28], algorithms for
maintaining k-nn results and spatial joins on continuously moving
points are proposed.

8. CONCLUSIONS
In this paper, we introduce materialized array views as a database

construct for derived data products in science. We model incre-
mental array view maintenance with batch updates as an MIP opti-
mization and give a three-stage heuristic that finds effective update
plans. Moreover, the heuristic repartitions the array and the view
continuously based on a window of past updates as a side-effect
of view maintenance. We also design an analytical cost model for
integrating materialized array views in queries. Experimental re-
sults confirm the effectiveness of the heuristics and the quality of
the maintenance plan both for a batch as well as for a sequence of
update batches. Concretely, the proposed solution is able to incre-
mentally maintain the production iPTF “association table” under a
batch of updates for a month in less time than update batches are
currently generated.
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APPENDIX
A. NP-HARD PROOFS

We provide reductions from known NP-hard problems to our
formulations. Formal complete equivalence proofs are immediate
once a reduction is established.

A.1 Differential View Computation

DEFINITION 2. Given update triples U0 = {(p, q, ∗)} consist-
ing of array chunks p, q having size Bp, Bq and being located
on server Sp and Sq , respectively, the differential view computa-
tion has to determine how to replicate these chunks such that there
exists a server j that contains both p and q, ∀(p, q) ∈ U0, and

guarantees that ntwk[j] ≤ K, ∀j ∈ {1..N}, where K is an arbi-
trary constant. Replicating a chunk q incurs a cost of Bq to server
Sq—same for p.

This simplified decision problem ignores the CPU cost in the opti-
mization by setting Tcpu = 0. Moreover, it is polynomially equiv-
alent to the min over max objective by setting max to K.

DEFINITION 3. Given a bipartite graph G with the vertex par-
titions L and R, the constrained bipartite vertex cover (CBVC)
problem has to determine whether there exists a vertex cover con-
taining at mostKL vertices from L andKR vertices fromR, where
KL and KR are arbitrary constants. CBVC is NP-hard [29].

REDUCTION 1. For each vertex l ∈ L, create a chunk l located
on server 1 (Sl = 1). Bl – the size of chunk l – is 1/KL. For each
vertex r ∈ R, create a chunk r located on server 2 (Sr = 2). For
each edge (l, r), create an update triple (l, r, ∗) in U0. Br – the
size of chunk r – is 1/KR. Constant K is set as 1. If there exists
a solution for differential view computation, a solution for CBVC
exists—and vice-versa.

A.2 View Chunk Reassignment

DEFINITION 4. Given update triples U0 = {(p, q, v)} consist-
ing of array chunks p and q already joined at server k (zpqk = 1),
and view chunk v located originally at server Sv , view chunk reas-
signment has to determine the server S′v such that the largest view
merge time across the N servers is minimized. Triples (∗, ∗, v)
have to be moved to the same server for merging.

DEFINITION 5. Given a machine with n processors andm jobs,
job i taking Ji time to be processed, in multiprocessor scheduling
we have to distribute them jobs to the multiprocessors such that the
latest processing time across multiprocessors is minimized. Multi-
processor scheduling is NP-hard [50].

REDUCTION 2. For each job, create a differential view with
size Ji corresponding to the join between array chunk p and q. Set
the number of servers to n. This multiprocessor scheduling corre-
sponds to a simplified view chunk reassignment that does not even
consider the correlations imposed by the update triples in U0—all
the triples are independent.

A.3 Array Chunk Reassignment

DEFINITION 6. Given N servers and a list of quadruples L =
{p, q, v, s} meaning that if array chunks p and q are both on server
v generates a score s, in array chunk reassignment we have to max-
imize the overall score across quadruples by assigning p and q to
servers. The total size of the chunks assigned to a server j can be
at most cpu_thrj .

DEFINITION 7. Consider a knapsack with capacity W and n
items. Each item has size wi and value vi. We are also given a list
of triples Q = (i, j, k). If item i and item j are both packed in the
knapsack, we get an additional value k. In the quadratic knapsack
problem, we have to pack the items such that the overall value is
maximized. This is an NP-hard problem [31].

REDUCTION 3. Set the number of servers N as 2, i.e., we have
two servers, 0 and 1. Server 1 corresponds to packing an item,
while server 0 to not packing it. For each item i, create an array
chunk i with size wi. Create an additional dummy array chunk 0
with size 0. For each triple in Q, create a quadruple (i, j, 1, k)
in L. For each item i, create a quadruple (i, 0, 1, vi) in L. Set
cpu_thr1 as W .



B. ALGORITHM EXAMPLES
In order to illustrate how the proposed heuristic view mainte-

nance procedure works, we provide examples for each stage based
on the input in Figure 1.

B.1 Differential View Computation
The set of update triples U0 is given by the insertions in Fig-

ure 1 (b). In this example, we consider the following 4 triples
(∆A4, A1, ∗), (∆A2, A1, ∗), (∆A2,∆A3, ∗), and (∆A7, A2, ∗)
resulted after the random ordering. The size of a chunkBp is given
by the number of non-empty cells, while its location Sp is as in
Figure 1. Tntwk is set to 4 and Tcpu to 1, respectively. The state
of the algorithm when the 4th triple (∆A7, A2, ∗) is processed is
shown on the top part of Figure 7. For example, server X stores
chunks A1 and A4; a replica of chunk ∆A2; does not transfer any
chunk, thus ntwk = 0; and processes two joins, ∆A4 ./ A1 and
∆A2 ./ A1, thus cpu = 4. The algorithm considers the cost of
assigning the join ∆A7 ./ A2 to each of the servers and selects the
one having minimum value for opt_now—computed as the maxi-
mum between the network and cpu costs across the servers. If the
join is assigned to server Y , ∆A7 has to be transferred from X to
Y for a network cost of Tntwk × B∆A7 = 4 × 1 = 4 (incurred by
X) and a cpu cost Tcpu × (B∆A7 + BA2) = 1 × (1 + 1) = 2 on
Y . These costs are combined with the existing cost at X and Y
to generate a maximum of 4 for opt_now. Since this value is the
minimum across the three servers – opt_now = 8 on X and Z –
∆A7 ./ A2 is assigned to Y .
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Figure 7: Example for Algorithm 1.

B.2 View Chunk Reassignment
The output of differential view computation – which is the input

to view chunk reassignment – is depicted in the top two tables of
Table 2. It consists of the network and cpu costs for each server
and the assignment of joins to servers. In this example, we include
only the joins relevant to V1—the first view chunk considered. As
the tables show, both the communication and computation are bal-
anced across the servers. The algorithm tries to assign V1 to each
of the servers and selects the one incurring the minimum cost—
computed as in Algorithm 1. The table at the bottom of Table 2
depicts the cost opt_now corresponding to each server. In the op-
timal assignment, V1 is moved to server Y together with joins J1

and J2—computed on X . The reason for this assignment is the
availability of computation resources on Y . This is not the case for
X . While Z has network resources, it does not contain any of the
join results required by V1.

server ntwk cpu
X 32 36
Y 36 30
Z 30 35

join result server
J1 : ∆A1 ./ A1 X
J2 : ∆A4 ./ A1 X
J3 : ∆A2 ./ A1 Y

V1 → transfers ntwk′ cpu′ opt_now
X J3 Y = 4 X = 6 42
Y J1, J2 X = 8 Y = 6 40
Z J1, J2, J3 X = 8, Y = 4 Z = 6 41

Table 2: Example for Algorithm 2.

B.3 Array Chunk Reassignment
The input to Algorithm 3 is represented by historical update

triples rather than the current update batch. Each of the (array
chunk, view chunk) pair appearing in the triples is assigned a score
based on their frequency. These are depicted in the left table of Fig-
ure 8. The other inputs to the algorithm are the size and location of
the array chunks as computed by Algorithm 1 (bottom-right table
in Figure 8) and the assignment of the view chunks computed by
Algorithm 2 (top-right table in Figure 8). The (array chunk, view
chunk) pairs are considered in descending order of their score and
the array chunk is assigned to one of the replicas that also con-
tains the view chunk capped by its cpu processing quota cpu_thr.
Chunk A2 in pair (A2, V1) is assigned to Y because it contains V1

and has sufficient capacity. A1 in (A1, V1) is ignored because it
is not replicated on Y and later assigned to X when considered in
(A1, V2). A3 is finally assigned to Z which cannot be assigned any
other chunks further because it is at capacity—cpu_thr = 0.

score

A
2
, V

1
8

A
1
, V

1
6

A
1
, V

2
4

A
2
, V

3
4

A
3
, V

3
2

... ...

server views cpu_thr

X V
2
, V

6
4

Y V
1
, V

4
, V

7
3

Z V
3
, V

5
, V

8
1

A
1

A
2

A
3

...

size 1 1 1 ...

replica X, Z Y, Z Z, Y

Figure 8: Example for Algorithm 3.

C. ADDITIONAL EXPERIMENTS

C.1 Overall View Maintenance Time
The overall time incurred by optimization and view maintenance

across the entire batch of updates is depicted in Figure 9. As ex-
pected, the benefit of repartitioning is maximized for correlated
batches. In this case, reassign is faster than baseline by more than
3X on PTF-25. Reassign always outperforms differential, even in
the case of GEO random batches and with the optimization time in-
cluded. The optimization overhead is marginal in the overall main-
tenance time compared to the reduction it brings. In the worst case
– PTF-5 with real batches – reassign incurs an overhead of 6 sec-
onds in optimization, while achieving a reduction of 300 seconds
in overall maintenance time—100 seconds over differential.
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Figure 9: Overall execution time (optimization + view maintenance): (a) PTF-5, (b) PTF-25, and (c) GEO.
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Figure 10: Sensitivity analysis on PTF-25 with real updates: (a) increasing batch size, (b) number of batches, (c) update spread.

C.2 Sensitivity to Batch Size
The sensitivity experiments depicted in Figure 10 are executed

over the PTF-25 view because this has the most complicated shape
in the definition. The larger maintenance time permits a clearer
investigation of the scalability of the proposed algorithms. Fig-
ure 10a depicts the maintenance time for update batches consisting
of increasing number of chunks. The real update PTF workload
is partitioned into batches with exponentially increasing number of
chunks—50, 100, 200, 400, 800, and 1600. The batches are fed
into the view maintenance algorithms in this order. As expected,
larger batches incur a linear increase in maintenance time. When
the number of chunks in a batch is below 200, the difference be-
tween the three algorithms is minimal because the number of up-
date triples is small. However, as the size of the batch increases –
and the number of update triples – the gap between reassign and
the other algorithms increases—it is 200 seconds for a batch with
1600 chunks. While the optimization time also increases linearly
with the batch size, it represents an insignificant fraction of the
maintenance time – less than 1% – with an absolute value below 3
seconds for 1600 chunks.

C.3 Sensitivity to Number of Batches
Figure 10b depicts the sensitivity of the view maintenance al-

gorithms as a function of the number of batches for a fixed up-

date workload. In this case, the real PTF workload is divided into
batches with the same number of chunks. The goal is to identify the
optimal batch size. For a single batch, reassign and differential are
identical and superior to baseline due to reduced communication
and better load balancing. Reassign exhibits the smallest variance
with the number of batches—if one batch is excluded. All the algo-
rithms achieve the smallest maintenance time for 10 batches which
is in the middle of the considered range. Baseline and differential
suffer a significant increase if the number of batches grows beyond
this point. This clearly shows that many small batches are not opti-
mal because of the overhead they incur. However, reassign is able
to use a larger number of batches to find a better chunk assignment
that compensates for the increased overhead.

C.4 Sensitivity to Update Spread
Figure 10c depicts maintenance time as a function of the spread

of updates over the range of (ra, dec) with a fixed number of batches
(10) and sampled chunks per batch (500) that overlap with the
range. Spread value 10 corresponds to a rectangle of 10 chunks
on ra and dec—100 chunks overall. 20 doubles the range of 10
on both dimensions while guaranteeing inclusion—similar for 80.
The larger the spread, the least concentrated the updates are. Thus,
less sharing is possible which results in longer maintenance time.
However, the increase for reassign is smaller in absolute value –
900 compared to more than 1000 – than for the alternatives.


