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An experimental and theoretical study of sonic horizons emerging from the dam-break problem in a Bose-
Einstein condensate confined in an anisotropic harmonic trap is presented. Measurements, analysis, and numerics
reveal the formation of a sonic horizon that undergoes acceleration due to harmonic confinement. The superfluid is
characterized using a robust measurement technique to determine Riemann invariants. Experimental observations
agree with an analytical solution of the Gross-Pitaevskii equation and computations. The collision and annihilation
between two sonic horizons at long times is predicted.

The concept of an acoustic or sonic horizon (SH) and of a
sonic black hole was first proposed in Ref. [1]. This spawned
an emerging area of exploration of analogues of singular
gravitational phenomena, cf. [2–9]. SHs have recently been ob-
served in both classical and quantum systems, including water
waves [10–12], Bose-Einstein condensates (BECs) [13–18],
and nonlinear optics [19–22]. To date, experimentally re-
ported SHs consist of a single, isolated horizon, either static or
moving at constant velocity relative to the laboratory frame. By
contrast, an accelerating SH would serve as a closer analogue
of an accelerating black hole, whose thermodynamics differ
markedly from those of a static black hole [23]. Moreover, the
possibility of interactions between two or more SHs, such as
their collision and annihilation, arises naturally, cf. [24], but
has not yet been explored.

In this Letter, we observe an accelerating SH in a BEC and
propose a framework for studying the interaction of multiple
SHs. To generate these horizons, we experimentally realize the
classical dry-bed dam-break setup, in which a large barrier sep-
arates high density and vacuum regions. Dam-break problems
have been studied extensively in both classical and quantum
systems, where they give rise to rich nonlinear dynamics such
as expansion waves, shocks, and turbulence [25–30], and their
analytical tractability have motivated applications in nonlinear
optics [31–34], magnetohydrodynamics [35–38], magneto-gas-
dynamics [39], and BECs [40–42]. In our setup, we employ a
harmonically trapped channel-geometry BEC, where a repul-
sive optical barrier initially separates the BEC from an adjacent
vacuum region. The barrier is removed instantaneously, trig-
gering an expansion wave, also known as a rarefaction wave
(RW), flowing into the vacuum. Analogous to bathymetry in
shallow-water waves, the harmonic confinement of the trap
provides an inhomogeneous background landscape that proves
critical for the acceleration of ensuing SHs.

To detect and study SH dynamics, we base our approach on
Riemann invariants (RIs), which are central to the analysis of
hyperbolic conservation laws [43–45]. RIs are combinations of
hydrodynamic variables that, in the absence of external forcing,

are constant along characteristic space-time curves. If all but
one of the RIs are constant, the system admits what is known
as a simple wave [44]. Simple waves arise with piecewise
constant initial data (Riemann data), where exact analytical
solutions are known. However, real-world systems depart from
such idealized conditions due to inhomogeneous initial data,
external forces, dissipation, and other physical mechanisms.
These deviations disrupt the simple-wave picture and give rise
to more complex dynamics. Nevertheless, the RIs and their
associated characteristic velocities can be used to identify the
location of SHs. RIs thus provide a natural framework for
characterizing SHs.

The evolution of the BEC is modeled by the three-
dimensional (3D) Gross-Pitaevskii equation (GPE) with a
harmonic potential [46]. Due to strong radial confinement
by the trap, a reduced one-dimensional (1D) model captures
the essential features of the flow. In the absence of quantum
pressure, this 1D model is analogous to the shallow-water
equations with bathymetry, for which simple waves do not
exist. Remarkably, we find exact analytical solutions of the
shallow-water equations with parabolic bathymetry that also
solve the 1D GPE with a harmonic potential. This solution
generalizes RWs in the presence of harmonic confinement and
helps provide an analytical characterization of the flow.

Determining the RIs experimentally requires measurement
of the local density and flow velocity of the BEC. To this
end, we devise a barrier-pulse procedure that simultaneously
measures the local flow velocity and speed of sound, from
which the RIs are inferred directly. The observed RI values are
in agreement with 1D analytical solutions and computations of
the 3D GPE. For short times, a single SH exists. As the system
evolves, the interaction with the harmonic potential induces
an acceleration of the SH. At later times, our theory predicts
that two additional SHs form and persist simultaneously with
the first one. Moreover, we predict that two SHs collide and
annihilate under properly timed conditions. This could provide
a future avenue for studying analogues of accelerating and
interacting black and white holes.
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FIG. 1. Evolution of a rarefaction flow. a) A repulsive optical barrier
or dam (represented by the red dashed oval) is slowly swept 523(1) µm
from the right to the center of the BEC in 2 s. b) The dam is removed
at 𝑡 = 0 and atoms are allowed to flow into the 𝑥 > 0 region of the trap,
e.g. for c) 𝑡 = 20 ms, d) 𝑡 = 40 ms, and e) 𝑡 = 60 ms. f) Integrated
cross sections of the density are provided for panels b)-e), where the
canonical parabolic profile appears at short times. Data has been
averaged over five experimental runs of the same parameters.

To provide context for the discussion of the superfluid dam
break, we begin with a brief discussion of the experimental
setup. See End Matter for more details. A BEC composed
of 87Rb atoms is held in a cigar-shaped optical dipole trap
with tight confinement in the 𝑦 and 𝑧 directions. To create
an effective dam, a blue-detuned laser propagating in the
𝑧-direction is employed that can be shifted along the 𝑥-axis.
The potential produced by this laser in the 𝑦-direction extends
well beyond the tight radial confinement of the cloud, so that
the atoms do not tunnel through the barrier when traveling at
the speeds considered in this study.

To generate a controlled rarefaction flow, we use this dam
potential to create a dry-bed dam-break scenario. This proce-
dure is depicted in the experimental images of Fig. 1a–e. After
an adiabatic sweep of the potential from the outside (Fig. 1a),
the BEC is in a Thomas-Fermi (TF) ground state, occupying
the left half (𝑥 < 0) of the harmonic trap (Fig. 1b). When the
dam potential is suddenly removed, the BEC rarefies into the
previously unoccupied region (𝑥 > 0), as shown in Fig. 1c–e.
The observed density profiles are highlighted in Fig. 1f. The rar-
efaction flow in our experimental setting extends over hundreds
of microns, providing ample space for the propagation and
investigation of hydrodynamic features.

We characterize the rarefaction flow in our system by deter-
mining the RIs. To facilitate this analysis, we model the flow
using an effective 1D GPE [47],
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𝜕𝑡
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where ℏ is the reduced Planck constant, 𝑚 is the atomic
mass of 87Rb, and 𝑔1d is the effective 1D interatomic
coupling constant. This reduction is valid when the trans-
verse confinement is significantly stronger than the axial
confinement, and the system can be treated as effectively 1D.
In this model, 𝑔1d = 𝑘B × 0.0276 nK µm (see End Matter),
and 𝜓 is normalized such that

∫
|𝜓 |2 d𝑥 = N is the total

number of atoms in the BEC.
The 1D GPE (1) can be reformulated in terms of

hydrodynamic variables using the Madelung transformation,
𝜓(𝑥, 𝑡) =

√
𝑛𝑒𝑖𝑚𝜙/ℏ, where 𝑛(𝑥, 𝑡) = |𝜓 |2 denotes the local

atom density and 𝜙(𝑥, 𝑡) is the velocity potential, so the flow
velocity in the 𝑥 direction is 𝑢(𝑥, 𝑡) = 𝜕𝜙/𝜕𝑥. Substituting this
transformation into Eq. (1) yields the system
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Equation (2a) describes local mass conservation while Eq. (2b)
describes momentum balance, which includes hydrodynamic
pressure (∝ 𝑔1d), quantum pressure (∝ ℏ2), and the harmonic
trap (∝ 𝜔2

𝑥). Since our system is in the TF regime, the quantum
pressure is negligible compared to the hydrodynamic pressure
(see End Matter). Ignoring this term for the moment allows the
system to be diagonalized in terms of the RI variables,

𝑟± =
𝑢

2
± 𝑐𝑠 , 𝑐𝑠 =

√︂
𝑔1d𝑛

𝑚
, (3)

where 𝑐𝑠 is the local speed of sound. We refer to 𝑟+ as the
fast RI and 𝑟− as the slow RI because their corresponding
characteristic speeds, 𝑣± = 𝑢 ± 𝑐𝑠, satisfy 𝑣+ > 𝑣− , making 𝑟+
associated with faster wave propagation. The diagonalization
results in the following system for 𝑟±,

𝜕𝑟±
𝜕𝑡

+ 𝑣±
𝜕𝑟±
𝜕𝑥

= −1
2
𝜔2

𝑥𝑥, 𝑣± =
1
2
(3𝑟± + 𝑟∓). (4)

In the absence of the trap (𝜔𝑥 = 0), this diagonal system
admits the self-similar solution

𝑟+ (𝑥, 𝑡) = 𝑠0, 𝑟− (𝑥, 𝑡) = − 𝑠0
3

+ 2𝑥
3𝑡

, (5)

which describes the expanding region of a slow, simple RW.
Here, 𝑠0 =

√︁
𝜇/𝑔1d is the local speed of sound at the initial peak

density, where 𝜇 is the chemical potential of the TF ground state.
This solution is classified as simple because the fast RI, 𝑟+, is
constant while the slow RI exhibits self-similar dependence on
𝑥/𝑡 within the expansion region. The solution (5) is defined
within the rarefaction region −𝑠0𝑡 < 𝑥 < 2𝑠0𝑡. The right edge
is a vacuum point, where the density vanishes.

A SH occurs when either 𝑣+ = 0 or 𝑣− = 0. The simple-
wave solution (5) possesses a single stationary SH at 𝑥 = 0
corresponding to 𝑣− = 0. When a harmonic potential is present,
we show by finding an exact analytical solution that inside the
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rarefaction region multiple SHs can coexist and interact. We
present an exact solution of Eq. (4),

𝑟+ (𝑥, 𝑡) =
𝑠0 cos

(︁ 𝜔𝑥 𝑡

4
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4
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4
)︁ , (6a)
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−𝑠0 sin
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4
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(︁ 3𝜔𝑥 𝑡

4
)︁
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(︁ 3𝜔𝑥 𝑡

4
)︁ . (6b)

In the vanishing potential limit (𝜔𝑥 → 0), solution (6) reduces
to the simple RW solution (5), indicating that at short times 𝑟+
remains approximately conserved while 𝑟− displays a nearly
self-similar profile in 𝑥/𝑡. At longer times, this solution
possesses a temporal singularity at 𝑡 = 𝑇har

3 , where 𝑇har =
2𝜋
𝜔𝑥

is the harmonic trap period. The presence of this singularity
corresponds physically to the occurrence of steep gradients in
the hydrodynamic variables. On a related note, this solution
may also have relevance for shallow-water waves propagating
over a parabolic bathymetry, which have recently been studied
analytically [48, 49].

The expressions for the local speed of sound and the flow
velocity can be obtained using Eq. (6) as 𝑐𝑠 = 1

2 (𝑟+ − 𝑟−) and
𝑢 = 𝑟+ + 𝑟− , respectively, yielding
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𝜔𝑥

2
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2

)︂ (︁
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, (7a)
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2𝑠0 + 𝜔𝑥𝑥 cos
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2
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2
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1 + 2 cos(𝜔𝑥𝑡)
, (7b)

where the vacuum point 𝑥𝑟 (𝑡) = 2𝑠0
𝜔𝑥

sin(𝜔𝑥𝑡) defines the right
edge of the rarefaction flow. Importantly, the quantum pressure
evaluated for this solution vanishes and thus Eq. (7) satisfies
the full 1D hydrodynamic system (2) and, consequently, the
1D GPE (1) with a harmonic potential.

Direct simulations of the 1D GPE show that, at short times,
the BEC dynamics are described well by solution (7) within
the rarefaction region 𝑥𝑙 (𝑡) < 𝑥 < 𝑥𝑟 (𝑡). The left edge of this
region is given by (see End Matter)

𝑥𝑙 (𝑡) = −
√

2𝑠0
𝜔𝑥

sin
(︃
𝜔𝑥𝑡√

2

)︃
. (8)

Near the vacuum point, numerical simulations show that the
density profile smoothly connects to the vacuum region, consis-
tent with the quadratic density dependence 𝑐2

𝑠 ∝ (𝑥𝑟 (𝑡) − 𝑥)2.
Consequently, Eq. (7) accurately captures the dynamics near the
vacuum point up until the singularity time. As time progresses,
however, substantial deviations from the analytical solution
emerge, particularly at locations away from the vacuum point.

To accurately capture the BEC dynamics away from the
vacuum point, we construct a matched solution within the
rarefaction region. We assume that the true speed of sound
and flow velocity are well-approximated by spatially quadratic
profiles with time-dependent coefficients

𝑐𝑠,match (𝑥, 𝑡) = 𝑐0 (𝑡) + 𝑐1 (𝑡) 𝑥 + 𝑐2 (𝑡) 𝑥2, (9a)
𝑢match (𝑥, 𝑡) = 𝑢0 (𝑡) + 𝑢1 (𝑡) 𝑥 + 𝑢2 (𝑡) 𝑥2. (9b)

FIG. 2. Barrier pulse procedure. a) A rarefaction flow imaged at
𝑡 = 40 ms prior to pulsing. b) The barrier is introduced around
𝑥𝑐 = 21 µm, pulsed for 0.5 ms, and imaged. c) Excitations are imaged
5 ms after the pulsing. d) Integrated cross sections of the density
from panels (a)-(c) with arbitrary units. All images taken in a 5 ms
time-of-flight. Images are averaged over 10 experimental runs with
the same parameters.

The coefficients 𝑐 𝑗 (𝑡) and 𝑢 𝑗 (𝑡) for 𝑗 ∈ {0, 1, 2} are determined
by requiring that the matched profiles (i) connect smoothly with
solution (7) at 𝑥 = 𝑥𝑟 (𝑡), and (ii) remain continuous with the
initial stationary TF profile at 𝑥 = 𝑥𝑙 (𝑡) (coefficients provided
in End Matter). Using this matched solution, the RIs and SHs
inside the rarefaction region are discussed in the context of the
experimental results below.

The central role played by the RIs motivates the development
of an experimental method to robustly measure these quantities.
Here, we describe such a method using a barrier-pulse proce-
dure. For this, first a rarefaction flow is generated, as described
in Fig. 1. We then pulse the barrier potential on for 0.5 ms
at a new position 𝑥𝑐. This generates two sharp, high-density
excitations on either side of the barrier. Relative to the rarefac-
tion flow, these excitations travel outwards at approximately the
speed of sound [40, 50–52]. This experimental procedure is
demonstrated in Fig. 2. To determine the RIs, we first charac-
terize the local flow velocity and speed of sound in the system
by measuring the positions of the two high-density excitations
at 0 and 5 ms after the barrier pulse. Finding the change in
position of the excitations over a known change in time allows
us to experimentally extract the fast- and slow-characteristic
velocities 𝑣± of the high-density peaks. The local background
flow velocity is then obtained by averaging these velocities,
𝑢loc = 1

2 (𝑣+ + 𝑣−), while the local speed of sound is found
by subtracting the local flow velocity from the right-moving
velocity, 𝑐𝑠,loc = 𝑣+ − 𝑢loc = 1

2 (𝑣+ − 𝑣−). From these local
hydrodynamic variables, the two measured RIs are computed
using Eq. (3). By repeating this procedure for various positions
𝑥𝑐 and rarefaction times 𝑡, we experimentally determine the
spatio-temporal dependence of the RIs.

Figure 3 presents experimental and theoretical values of
𝑟± at five rarefaction times (𝑡 ≤ 60 ms) and at various spa-
tial locations. To facilitate a direct comparison of datasets
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FIG. 3. Experimentally measured slow (𝑟−) and fast (𝑟+) RIs along
the channel, plotted against the similarity variable 𝑥/𝑡 at different
rarefaction flow times for 𝑡 ≤ 60 ms (data points with error bars,
see legend). Error bars of the measurement represent the standard
deviation of the mean at each probed location. The 3D GPE numerical
simulations (solid curves, upper panel) and matched solutions from
Eq. (9) (solid curves, lower panel) are shown for comparison. The
shaded region indicates where the matched solution is valid.

at different times, the values are plotted against 𝑥𝑐/𝑡 for various
pulse locations 𝑥𝑐. When scaled this way, Fig. 3 shows that, ini-
tially, within the rarefaction region (𝑥 > 0), the experimental val-
ues align closely with the universal simple slow RW solution (5).
In particular, the fast RI is constant, 𝑟+ = 𝑠0 ≈ 3.67 µm/ms,
while the slow RI, 𝑟− , has a 2/3 slope (black dashed lines).
This demonstrates the initial self-similarity. However, the
slopes of 𝑟± decrease over time due to the harmonic confine-
ment in a manner consistent with the exact solution (6). We
note that the match between experimental data and theory is not
as good for 𝑟− than 𝑟+, especially for 𝑥 < 0, as any imprecision
in the measurement compounds when calculating 𝑟− while they
cancel for 𝑟+.

We now leverage the data obtained from these experiments,
simulations of the 3D GPE (see End Matter for details) to de-
scribe the dynamics of SHs that arise in harmonically confined
rarefaction flows, as shown in Fig. 4. A first SH emanates from
the origin (red solid curve). Here, excitations are unable to move
through the SH, realizing an acoustic white hole [5, 53, 54]. As
the rarefaction flow evolves, the SH accelerates away from 𝑥 = 0
in the positive direction, as shown in the lower inset of Fig. 4.

Figure 4 also shows that one slow SH (green curve) and
one fast SH (blue curve) emerge from the vacuum point at
around the turnaround time, 𝑡 ≈ 108 ms, when the edge of the
flow momentarily comes to rest and reverses direction. This
is somewhat greater than the turnaround time predicted by the

FIG. 4. Evolution of the condensate density and sonic horizons.
Background (see color bar) is the integrated cross-sectional density
⟨𝑛⟩ from the 3D GPE simulations. Solid curves track three SHs: two
“slow” horizons (red and green, where 𝑢loc = 𝑐𝑠,loc) with their collision
marked by a star, and one “fast” horizon (blue, where 𝑢loc = −𝑐𝑠,loc).
Dotted black curves are predictions for the rarefaction edges from
Eqs. (7)-(8). Experimental data for the SH (squares) and right edge
of the rarefaction (triangles) are overlaid. The horizontal dashed
line indicates the 1D turnaround time, 1

4𝑇har. Insets magnify the
vacuum point (𝑥𝑟 (𝑡)) and SH locations (𝑥SH (𝑡)) for 𝑡 ≤ 60 ms, with
error bars showing the standard deviation of the mean from multiple
experimental runs.

analytical solution (6), i.e., 1
4𝑇har ≈ 102 ms. We attribute this

difference to transverse BEC dynamics that the 1D GPE does
not capture. The two slow horizons (red and green curves)
collide and annihilate at 𝑡 ≈ 117 ms (marked by a star). To the
best of our knowledge, this is the first prediction of annihilation
of sonic horizons. An experimental verification for these
dynamics presents an intriguing outlook for future work.

In summary, we presented a robust experimental method
for determining the RIs in a BEC and implemented it in a
dry-bed dam-break of a BEC confined in a harmonic trap.
This method can be applied to other cold-atom experiments
to determine local densities, velocities, and RIs. We derived
an exact analytical solution of the 1D evolution of the BEC in
the presence of a harmonic trap, which agrees well with the
experiments and numerical simulations of the 3D GPE. Our
experimental and theoretical results demonstrate the formation
and subsequent acceleration of a SH. Our theory predicts the
emergence of two additional SHs, and the collision and annihi-
lation of two SHs. The analytical solution of the 1D GPE (and
shallow-water equations) with harmonic confinement could
inform other studies in classical and quantum systems, such as
dam-break reflections [55, 56] and interface singularities [49].

Accelerating black holes have recently attracted much at-



5

tention due to their thermodynamics [23, 57, 58] and the
possibility of observing them [59]. This work introduces a
line of questions for future studies, such as the thermodynamics
of accelerating sonic analogues of black and white holes, and
the long-time dynamics of SHs in non-uniform background
landscapes.
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END MATTER

Experimental procedure

The general setup of our experiment consists of a
BEC of 1.1 × 106 87Rb atoms condensed into the in the
|𝐹, 𝑚𝐹⟩ = |1,−1⟩ state (see Fig. 5). The BEC is confined
in an optical dipole trap generated by a 1064 nm laser beam
propagating horizontally along the 𝑥-axis. This beam is tightly
focused to a 20 µm waist, producing harmonic confinement in
the vicinity of the focus characterized by harmonic trap fre-
quencies of {𝜔𝑥 , 𝜔𝑦, 𝜔𝑧} = 2𝜋 × {2.45, 243, 251} Hz. Here,
𝑦 denotes the imaging direction and 𝑧 is aligned with gravity.
The atom numbers and potential result in a chemical potential
of 𝑘B × 104 nK in the trap.

FIG. 5. General experimental setup. An elongated BEC (blue) trapped
in an optical dipole trap (yellow). A repulsive barrier (red) can move
along the 𝑥-axis, along the BEC.

To manipulate the BEC, we employ a repulsive laser beam
generated by a 660 nm laser, directed along the 𝑧-axis, as shown
in Fig. 5. This beam has a width of 54.5 µm along the 𝑦-axis,
significantly larger than the BEC width of approximately 5 µm,
effectively forming a uniform light sheet at the location of
the atoms. The beam intensity is set such that the resulting
repulsive potential exceeds the BEC’s chemical potential by a
factor of four. The beam is translated along the 𝑥-axis with the
help of a galvanometer.

Individual procedures for the presented experiments are
described in the main text. For example, to create a reproducible
rarefaction flow, we move the barrier from the right outside
of the BEC to the center of the BEC at 𝑣𝑑 = 0.261(1) µm/ms,
well below the speed of sound in the BEC. The potential is then
turned off for a fixed amount of time, allowing the system to
rarefy into the empty section of the dipole trap. All imaging is
performed after 5 ms time-of-flight, during which all optical
potentials are switched off and the BEC is freely expanding.

Theoretical model and Computational methods

The propagation of the BEC is modeled by the 3D GPE,

𝑖ℏ
𝜕Ψ

𝜕𝑡
= − ℏ2

2𝑚
∇2Ψ +𝑉 (x)Ψ + 𝑔3d |Ψ|2Ψ, (10)

where 𝑚 is the atomic mass of 87Rb, 𝑉 (x) is an external poten-
tial, 𝑔3d =

4𝜋ℏ2𝑎𝑠
𝑚

is the interatomic coupling coefficient deter-
mined by the scattering length 𝑎𝑠 = 100.4 𝑎0, where 𝑎0 is the

Bohr radius. The wavefunction Ψ(x, 𝑡) is normalized such that∫
|Ψ|2 𝑑x = N is the total number of atoms. For 𝑡 > 0, the only

potential is harmonic with 𝑉 (x) = 1
2𝑚(𝜔2

𝑥𝑥
2 + 𝜔2

𝑦𝑦
2 + 𝜔2

𝑧𝑧
2).

The initial wavefunction Ψ(x, 0) is the ground state obtained
with the harmonic trap and the dam potential

𝑉d (x) = 𝑈𝑑𝐻 (−𝑥) exp
(︂
− 2𝑥2

𝑠2
𝑥

− 2𝑦2

𝑠2
𝑦

)︂
+𝑈𝑑𝐻 (𝑥), (11)

where 𝐻 (𝑥) is the Heaviside step function and the peak height
of this potential is 𝑈𝑑 = 𝑘B × 408 nK, such that the atoms do
not tunnel through the barrier.

The computational domain is a rectangular box with lengths
{𝐿𝑥 , 𝐿𝑦, 𝐿𝑧} = {900, 5, 5} µm, which is discretized with
{𝑁𝑥 , 𝑁𝑦, 𝑁𝑧} = {213, 25, 25} grid points. The ground state
is computed using a Newton-conjugate-gradient method [60],
initialized with a chemical potential of 𝜇 = 𝑘B × 140.65 nK,
which reproduces the number of atoms in the experiment.

Time evolution is performed using a second-order
pseudo-spectral split-step scheme [61] with a time step of
Δ𝑡 = 0.005 ms. The ground state serves as the initial condition
and the local density and velocity are recovered via

𝑛 = |Ψ|2, u =
𝑖ℏ

2𝑚𝑛
(Ψ∇Ψ∗ − Ψ∗∇Ψ) . (12)

The RIs are recovered from (see, e.g. Eq. (3))

𝑟± =
⟨u · x̂⟩

2
±
√︂

𝑔1d⟨𝑛⟩
𝑚

, (13)

where u · x̂ is the component of the flow velocity along the
axis of the BEC and the notation ⟨·⟩ =

∫
· d𝑦 d𝑧 denotes an

integrated cross-section.

Negligible quantum pressure

The dimensional 3D GPE Eq. (10) can be recast in nondi-
mensional form using the rescaled coordinates

𝑡′ = 𝜔𝑧𝑡, x′ =
x
ℓ
, Ψ′ =

ℓ3/2
√
N

Ψ, ℓ =

(︃
4𝜋ℏ2𝑎𝑠N
𝑚2𝜔2

𝑧

)︃1/5
.

(14)
This yields the nondimensional GPE

𝑖𝜀
𝜕Ψ

𝜕𝑡
= −𝜀2

2
∇2Ψ+ 1

2
(︁
𝛼𝑥𝑥

2 +𝛼𝑦𝑦
2 +𝛼𝑧𝑧

2)︁Ψ+ |Ψ|2Ψ, (15)

where the primes have been dropped. Here, 𝛼 𝑗 = (𝜔 𝑗/𝜔𝑧)2

for 𝑗 ∈ {𝑥, 𝑦, 𝑧} quantify relative strengths of the harmonic
confinement in each direction. The dimensionless parameter

𝜀 =

(︃
ℏ

𝑚𝜔𝑧 (4𝜋𝑎𝑠N)2

)︃1/5
(16)

quantifies the strength of quantum pressure. The wavefunc-
tion is normalized such that

∫
|Ψ|2 𝑑x = 1. For param-

eters from experiment, we find 𝜀2 = 9.15 × 10−5 ≪ 1,
𝛼𝑥 = 9.52 × 10−5 ≪ 1, 𝛼𝑦 = 0.94 ≈ 1 and 𝛼𝑧 = 1.
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Rewriting Eq. (15) in hydrodynamic form via the Madelung
transformation Ψ =

√
𝑛𝑒𝑖Φ, where u = ∇Φ, gives
𝜕𝑛

𝜕𝑡
+ ∇ · (𝑛u) = 0,

𝜕 (𝑛u)
𝜕𝑡

+ ∇ · (𝑛u ⊗ u + 𝑝quantum) = −∇𝑝hydro − 𝑛∇𝑉,
(17)

where the hydrodynamic and quantum pressures are given by

𝑝hydro =
1
2
𝑛2, 𝑝quantum = −𝜀2

4
𝑛(∇ ⊗ ∇) log 𝑛. (18)

This shows the quantum pressure, proportional to 𝜀2, away
from sharp density transitions, is negligible compared to the
hydrodynamic pressure, justifying its omission in the analysis.

Interatomic coupling coefficient

Neglecting quantum pressure, the interatomic coupling co-
efficient 𝑔1d can be obtained from the (dimensional 1D) TF
density profile

|𝜓TF | =

√︄
𝜇 −𝑉h (𝑥) −𝑉d (𝑥)

𝑔1d
, (19)

which is valid in the TF region ΩTF := { 𝑥 ∈ R
|︁|︁ 𝜇 > 𝑉h (𝑥) +

𝑉d (𝑥) }. Here, 𝑉h (𝑥) = 1
2𝑚𝜔2

𝑥𝑥
2 is the 1D harmonic potential,

and the 1D dam potential is modeled as (see Eq. (11))

𝑉d (𝑥) = 𝑈𝑑𝐻 (−𝑥) exp
(︂
− 2𝑥2

𝑠2
𝑥

)︂
+𝑈𝑑𝐻 (𝑥). (20)

The normalization condition for 𝜓TF is
∫
|𝜓TF (𝑥) |2 d𝑥 = N .

Substituting (19) into this condition gives

𝑔1d =
1
N

∫
ΩTF

(︂
𝜇 −𝑉h (𝑥) −𝑉d (𝑥)

)︂
d𝑥. (21)

For the present dam potential, ΩTF is well approximated
by the interval (−𝑅TF,− 𝑠𝑥√

2
), with the upper limit valid when

𝑚𝜔2
𝑥𝑠

2
𝑥/𝑈𝑑 ≪ 1 and 𝜇 ≪ 𝑈𝑑 . The lower limit is the TF radius,

𝑅TF =

√︄
2𝜇
𝑚𝜔2

𝑥

. (22)

Evaluating Eq. (21) under the assumption 𝑠𝑥 ≪ 𝑅TF gives
the analytic approximation

𝑔1d =
1
N

(︃
2
3
𝜇𝑅TF −

√︂
𝜋

8
𝑈𝑑 𝑠𝑥 erfc(1)

)︃
, (23)

where erfc(𝑥) = 1 − erf (𝑥). For the experimental parameters,
Eq. (23) gives 𝑔1d = 𝑘B × 0.0286 nK µm. The exact value of
𝑔1d, obtained by numerically evaluating Eq. (21) over the exact
TF region, is 𝑘B × 0.0276 nK µm. This shows that Eq. (23)
provides a reasonably accurate estimate.

We remark here that Eq. (23) decomposes the interatomic
coupling constant into two contributions: the first (∝ 𝑅TF)
corresponds to an ideal infinitely sharp barrier, while the
second (∝ 𝑠𝑥) accounts for the finite width of the Gaussian
barrier.

Derivation of Equation (8)

On the left rarefaction boundary we have zero local velocity
𝑢(𝑥𝑙 , 𝑡) = 0 and TF density 𝜌(𝑥𝑙 , 𝑡) = 𝑠2

0 −
1
2 𝜔

2
𝑥 𝑥

2
𝑙
, so that

𝑟± (𝑥𝑙 , 𝑡) = ±
√︃
𝑠2

0 −
1
2 𝜔

2
𝑥 𝑥

2
𝑙
, (24)

and hence 𝑟+ = −𝑟− .
The characteristic speeds from Eq. (4) are

𝑣± =
1
2
(3 𝑟± + 𝑟∓), (25)

which, under 𝑟− = −𝑟+, reduce to 𝑣+ = 𝑟+, 𝑣− = −𝑟+. The
left-moving solution is given by the slow branch 𝑣− .

Setting 𝑣− =
d𝑥𝑙
d𝑡 yields the initial value problem

d𝑥𝑙
d𝑡

= −
√︃
𝑠2

0 −
1
2 𝜔

2
𝑥 𝑥

2
𝑙
, 𝑥𝑙 (0) = 0. (26)

whose solution is Eq. (8).

Matched solution

Suppressing explicit time dependence for clarity, the coeffi-
cients appearing in Eq. (9) are given by:

𝑐0 = −(𝛼 − 𝑐2𝑥𝑟 )𝑥𝑟 , 𝑢0 = 𝑣𝑟 − (𝛽 − 𝑢2𝑥𝑟 )𝑥𝑟 ,
𝑐1 = 𝛼 − 2𝑐2𝑥𝑟 , 𝑢1 = 𝛽 − 2𝑢2𝑥𝑟 ,

𝑐2 =
𝛼

𝑥𝑟 − 𝑥𝑙
+ 𝐶𝑙

(𝑥𝑟 − 𝑥𝑙)2 , 𝑢2 =
𝛽

𝑥𝑟 − 𝑥𝑙
− 𝑣𝑟

(𝑥𝑟 − 𝑥𝑙)2 ,

(27)
with

𝑣𝑟 (𝑡) = 2𝑠0 cos(𝜔𝑥𝑡), 𝐶𝑙 (𝑡) =
√︂

𝑔1d
𝑚

|𝜓TF (𝑥𝑙 (𝑡)) |. (28)

Here, |𝜓TF (𝑥) | is the TF density profile given by Eq. (19), and
𝑥𝑙 (𝑡) is the left edge defined in Eq. (8). The time-dependent
coefficients 𝛼(𝑡) and 𝛽(𝑡) are given by

𝛼(𝑡) = −𝜔𝑥

2
csc

(︂3𝜔𝑥𝑡

2

)︂
, 𝛽(𝑡) = 𝜔𝑥 cot

(︂3𝜔𝑥𝑡

2

)︂
. (29)

The matched solution agrees well with the 1D and 3D compu-
tations up to roughly 100 ms. For longer times, the matched
solution, being quadratic in space, does not accurately capture
the dynamics, due to the formation of large gradients in the
hydrodynamics quantities.
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