
Numerical Linear Algebra with Applications

RESEARCH ARTICLE

Inverse Eigenvalue Difference Problems for Quantum Dots
Boaz Ilan1 | Roummel Marcia1 | Michael Scheibner2 | Kyle Wright1

1Department Applied Mathematics, University of California, Merced, California, USA | 2Department of Physics, University of California, Merced, California,
USA

Correspondence: Kyle Wright (kwright11@ucmerced.edu)

Received: 4 October 2024 | Revised: 6 March 2025 | Accepted: 14 April 2025

Funding: This work was supported by the NSF, Grant/Award Numbers: DGE2125510; DMS1840265

Keywords: characteristic polynomial | least-squares | optimization | quantum sensing

ABSTRACT
A system of three tunnel-coupled quantum dots is considered in the presence of an applied electric field. Given the measurements
of differences between ground state energy levels as the electric field is varied, we seek to recover the quantum Hamiltonian matrix
that describes this system. We formulate this as an inverse Eigenvalue difference problem and develop algebraic and computational
methods along with a warm starting strategy to solve it. The results demonstrate the efficacy of these approaches in the presence
of measurement noise.

1 | Introduction

Inverse eigenvalue difference problems (IEPs) arise in many
branches of science and engineering [1–4]. Broadly speaking,
IEPs involve reconstructing a matrix from its eigenvalues. The
breadth of IEPs has been expanding with scientific and techno-
logical progress. In this vein, this study describes an IEP that
arises in the emerging field of quantum sensing, which facilitates
high-resolution sensing of gravitation, acoustic waves, and elec-
tromagnetic fields [5–14]. We study a system of coupled quan-
tum dots (QDs). The eigenstates of coupled quantum dot systems,
such as self-assembled epitaxial quantum dots, can be experi-
mentally measured primarily through optical techniques. These
methods rely on the interaction of light with the quantum dot
system, providing direct access to energy levels and transitions
between them. Among the most widely used techniques are emis-
sion spectroscopy, including photoluminescence (PL) and pho-
toluminescence excitation (PLE), as well as laser spectroscopy
methods such as differential transmission, reflection, and absorp-
tion measurements [12, 13, 15–20].

In laser spectroscopy, a tunable laser excites electrons from
the valence band to the conduction band of the quantum
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dots, creating holes in the valence band. The optical
response—measured as variations in transmitted, reflected,
or absorbed laser intensity—maps the allowed transitions
between quantum dot eigenstates as a function of photon energy.
In PL and PLE, the system is excited, and the emitted photons are
detected as electrons recombine with holes. PL typically involves
non-resonant or quasi-resonant excitation, where the electron
first relaxes to lower-energy conduction band states via phonon
interactions before recombining with a hole, emitting a pho-
ton. Because phonon-mediated relaxation is non-deterministic,
PL spectra provide insight into a range of accessible states. In
PLE, instead of measuring all emitted photons, the intensity
of a specific emission line is monitored as a function of excita-
tion wavelength, offering spectral information similar to laser
spectroscopy.

If the quantum dots are integrated into tunable electric field envi-
ronments, such as Schottky-type or p-i-n diode structures, their
optical spectra can be measured as a function of applied elec-
tric field. This allows experimental observation of energy shifts
due to potential variations and the quantum-confined Stark effect
[12, 14, 21]. In coupled quantum dot systems, applying an electric
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field enables control over eigenstate alignment, facilitating elec-
tron or hole tunneling between neighboring dots [17, 22]. These
tunneling processes manifest in optical spectra as avoided cross-
ings, revealing the underlying structure of electron or hole energy
levels. By systematically analyzing these crossings, one can recon-
struct the energy landscape of the system [23].

The energy levels of the QDs are represented by a quantum
Hamiltonian matrix. The matrix elements depend on intrinsic
physical properties, such as polarizabilities, spin-orbit coupling,
and quantum tunneling, which, in turn, can reveal useful data
about the system, such as the distances between the QDs. How-
ever, measuring this data directly is challenging. Thus, the objec-
tive is to determine the matrix elements from spectral measure-
ments, forming an IEP.

There are many categorizations of IEPs. The primary IEP catego-
rizations of interest to us are structured [24], parameterized [25],
and partially described [26, 27]. Structured IEPs impose some
structure on the recovered matrix. This could include requiring
the matrix to be symmetric, tridiagonal, orthogonal, or nonnega-
tive. In this case, structure is imposed by requiring the matrix to
be symmetric, tunnel coupling is negligible between two quan-
tum dots due to sufficient distance between quantum dots, and
the structural dependence on electric field is assumed to be
known. In this work, we define Parameterized IEPs as an IEP
involving one or more elements of the matrix to be functions of
a known, tunable parameter. In our case, this appears from the
diagonal elements being function of an applied electric field. Par-
tially described IEPs occur when the full spectral information
of the matrix is unknown. Using eigenvalue differences instead
of eigenvalues classifies this problem as a partially described
IEP. The IEP studied in this paper is an overlap of these three
categorizations.

Mathematically, our IEP differs from those that have been studied
in two significant ways.

1. The matrix depends on a “tunable” (known) parameter.
Specifically, the diagonal elements are quadratic polynomi-
als of an applied electric field [28, 29]. As this field is varied
between measurements, so does the matrix. Thus, this is a
one-parameter family of matrices. In our terminology, the
parameter (electric field) is known—its values are selected
during measurements, whereas the polynomials’ coeffi-
cients are unknown.

2. The eigenvalue differences are measured for a set of electric
field values, but the eigenvalues themselves are unknown.
The physical reason for this is that, as the QDs transition
between energy states, they emit photons whose frequencies
are proportional to energy differences. These photons are
measured using photoluminescence techniques. We refer to
this as an Inverse Eigenvalue Difference Problem (IEDP).

To the best of our knowledge, IEPs of this kind have not received
attention. We develop a combination of analytical and computa-
tional methods to solve this IEDP. A common strategy for solv-
ing IEPs numerically is constructing a system of equations sat-
isfied by the Hamiltonian and implementing a Newton method
[30–32]. We build upon this framework and previous work

solving IEDPs for 2 × 2 matrices [29], exploring two formulations
converting an IEP to an IEDP and a warmstarting approach to
help ensure the initial iterate is sufficiently close for a Newton
method to converge.

2 | Problem Description

We consider a system of three QDs, whose ground-state quantum
Hamiltonian is, in general, described by a 3 × 3 real symmetric
matrix [28] of the form

𝐺(𝐹 ) =
⎡⎢⎢⎢⎣
𝑔1(𝐹 ) 𝑦0 𝑦1

𝑦0 𝑔2(𝐹 ) 𝑦2

𝑦1 𝑦2 𝑔3(𝐹 )

⎤⎥⎥⎥⎦ . (1)

Here, the diagonal elements correspond to the self-energies
of each QD, whereas, the off-diagonal elements correspond to
tunnel-coupling energies between the QDs. We further assume
that the diagonal elements depend quadratically on the applied
electric field, 𝐹 ∈ ℝ, as

𝑔𝑖(𝐹 ) = 𝛼𝑖 + 𝛽𝑖𝐹 + 𝛾𝑖𝐹
2, 𝑖 = 1, 2, 3 , (2)

where the coefficients {𝛼𝑖, 𝛽𝑖, 𝛾𝑖} are real. Equation (2) mod-
els the quadratic Stark shift [33]. The coefficients 𝛼𝑖 are the
eigenenergies absent an electric field. The coefficients 𝛽𝑖 are
the electric dipole moments, which are proportional to the dis-
tances between the QDs. The coefficients 𝛾𝑖 correspond to the
polarizabilities of the ground-state electronic and hole wavefunc-
tions. The off-diagonal elements correspond to hole tunneling
strengths. The (implied) assumption that the off-diagonal ele-
ments are independent of 𝐹 is a good approximation for weak
electric fields and for weak tunnel-coupling between the QDs.

In this work, we consider a specific physical system. In particular,
we assume that 𝑦1 = 𝑦0, which roughly corresponds to a system
where the three QDs are similar and equally spaced on a straight
line. In addition, we assume that 𝑦2 = 0, which means that the
QDs are far apart. Therefore, we have the Hamiltonian matrix

𝐺(𝐹 ) =
⎡⎢⎢⎢⎣
‘𝑔1(𝐹 ) 𝑦0 𝑦0

𝑦0 𝑔2(𝐹 ) 0
𝑦0 0 𝑔3(𝐹 )

⎤⎥⎥⎥⎦ . (3)

Since 𝐺(𝐹 ) is symmetric, its eigenvalues are real. We denote its
eigenvalues by {𝜉1(𝐹 ), 𝜉2(𝐹 ), 𝜉3(𝐹 )}. The physical measurements
can be used to determine the differences between the eigenvalues
of 𝐺(𝐹 ). The eigenvalue differences are denoted by

𝐷2,1(𝐹 ) ≡ 𝜉2(𝐹 ) − 𝜉1(𝐹 ), (4)

𝐷3,1(𝐹 ) ≡ 𝜉3(𝐹 ) − 𝜉1(𝐹 ), (5)

𝐷3,2(𝐹 ) ≡ 𝜉3(𝐹 ) − 𝜉2(𝐹 ). (6)

Note that𝐷3,2(𝐹 ) = 𝐷3,1(𝐹 ) −𝐷2,1(𝐹 ). The measured data is pro-
vided over a set of 𝑛 values of 𝐹 ∈ ℝ, denoted by {𝐹𝑘}𝑛𝑘=1. Hence,
we consider the measured dataset to be

𝑀 =
{
𝐹𝑘,𝐷2,1(𝐹𝑘), 𝐷3,1(𝐹𝑘)

}
𝑛
𝑘=1 (7)
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Our objective is to recover𝐺(𝐹 )using the dataset𝑀 . In Appendix
A we prove that, without loss of generality, one can set 𝑔1(𝐹 ) = 0.
This has the effect of eliminating an arbitrary shift in the diagonal
elements and in the eigenvalues of 𝐺(𝐹 ) that would satisfy the
dataset 𝑀 . For this reason, henceforth we consider

𝐺(𝐹 ) =
⎡⎢⎢⎢⎣

0 𝑦0 𝑦0

𝑦0 𝑔2(𝐹 ) 0
𝑦0 0 𝑔3(𝐹 )

⎤⎥⎥⎥⎦ . (8)

We denote the vector of unknown coefficients as (for convenience
we also refer to 𝑦0 as a coefficient)

p = [𝑦0, 𝛼2, 𝛽2, 𝛾2, 𝛼3, 𝛽3, 𝛾3] ∈ ℝ7 (9)

and denote the “ground truth” coefficients by p∗, which corre-
sponds to 𝐺(𝐹 ) that generates the dataset 𝑀 . We also use the
more compact notation

p = [𝑦0,p𝑔2
,p𝑔3

] ∈ ℝ7 (10)

where p𝑔𝑖
= [𝛼𝑖, 𝛽𝑖, 𝛾𝑖] ∈ ℝ3 for 𝑖 = 2, 3. To summarize, we seek to

solve the following:

Inverse Eigenvalue Difference Problem (IEDP)

Given the eigenvalue difference dataset 𝑀 in (7), find coeffi-
cients p, such that 𝐺(𝐹 ) in (8) generates 𝑀 .

For ease of presentation, we shall assume that the off-diagonal
elements are positive, i.e., 𝑦0 > 0, which corresponds to
positive tunnel coupling. However, our methods still work
if 𝑦0 ≤ 0.

Importantly, in the presence of noisy data, a solution of this IEDP
is understood as a solution of a related optimization problem
(see Section 4.2). Though this IEDP does not have a unique solu-
tion, the diversity of the spectral data for the different values of
𝐹𝑘 reduces the non-uniqueness. In particular, in Appendix B we
prove the following:

Proposition 1. The IEDP with 𝑛 ≥ 5 values of 𝐹 has at most
four solutions. In particular, if p∗ = [𝑦∗0,p

∗
𝑔2
,p∗

𝑔3
] is a solution, then

there are four solutions, which are

[𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
], [𝑦∗0 ,p

∗
𝑔3
.p∗

𝑔2
], [𝑦∗0 ,−p∗

𝑔2
,−p∗

𝑔3
], and [𝑦∗0 ,−p∗

𝑔3
. − p∗

𝑔2
] (11)

These solutions are different unless 𝑔2(𝐹 ) = 𝑔3(𝐹 ), i.e., the diagonal
elements are the same.

The four solutions in (11) correspond to the invariance of the
eigenvalues to the swapping of the diagonal elements 𝑔2 and 𝑔3
and the nonuniqueness of eigenvalues resulting in eigenvalue dif-
ferences. In this sense, we refer to “uniqueness” up to these four
types of solutions.

3 | Previous Approach

In previous work, we developed an approach for solving the
eigenvalue difference problem for a 2 × 2 𝐺(𝐹 ) matrix [29]. In

this section, we discuss this previous method, how it scales in
higher dimensions, and our decision to formulate an alternative
approach.

Consider the leading 2 × 2 matrix 𝐺2(𝐹 ) of 𝐺(𝐹 ) given by

𝐺2(𝐹 ) =

[
0 𝑦

𝑦 𝛼 + 𝛽𝐹

]
, (12)

where the coefficient of the quadratic term is 0. The eigenvalues
of 𝐺2(𝐹 ) are given explicitly by

𝜉1(𝐹 ) = 1
2
(𝛼 + 𝛽𝐹 ) − 1

2
√
(𝛼 + 𝛽𝐹 )2 + 4𝑦2 and

𝜉2(𝐹 ) = 1
2
(𝛼 + 𝛽𝐹 ) + 1

2
√
(𝛼 + 𝛽𝐹 )2 + 4𝑦2 (13)

It follows from (4) and (13) that

[𝐷2,1(𝐹 )]2 = 𝛽2𝐹 2 + 2𝛼𝛽𝐹 + 𝛼2 + 4𝑦2 (14)

Assuming that the set {𝐷2,1(𝐹 )} is known for (at least) three val-
ues of 𝐹 , we can recover 𝛽, 𝛼, and 𝑦 by solving the least-squares
problem

min
𝜅0 ,𝜅1 ,𝜅2

𝑛∑
𝑘=1

{
[𝐷2,1(𝐹𝑘)]2 − (𝜅2𝐹

2
𝑘
+ 𝜅1𝐹𝑘 + 𝜅0)

} 2 (15)

and letting

𝛽 = ±
√
𝜅2, 𝛼 =

𝜅1

2𝛽
, and 𝑦 = 1

2

√
𝜅0 − 𝛼2 (16)

In our approach, we solve the normal equations associated with
(15) to obtain 𝜅0, 𝜅1, and 𝜅2.

The left- and right-hand sides of (14) are expressions of the dis-
criminant of the characteristic polynomial of 𝐺2(𝐹 ). In general,
for any square matrix 𝐺, the left-hand side of (14) can be gen-
eralized as the product of the squared-differences between the
eigenvalues, i.e.,

𝑑(𝐺) =
∏
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)2 (17)

which is called the discriminant. It is well-known that the dis-
criminant can be expressed in terms of the matrix elements as
follows. Let 𝐺 be an 𝑚 × 𝑚 matrix, 𝑝𝐺(𝜆) its characteristic poly-
nomial, and 𝑝′

𝐺
(𝜆) its derivative with respect to 𝜆. Let 𝑆 be the

(2𝑚 − 1) × (2𝑚 − 1) Sylvester matrix [34] associated with 𝑝𝐺(𝜆)
and 𝑝′

𝐺
(𝜆). The determinant of 𝑆 is the resultant of 𝑝𝐺(𝜆) and

𝑝′
𝐺
(𝜆), which can be shown to be the same as the discriminant

[34, 35], i.e., (14) generalizes as

𝑑(𝐺) = det
(
𝑆
(
𝑝𝐺(𝜆), 𝑝′𝐺(𝜆)

))
.

It is possible to calculate det(𝑆) using symbolic algebra algo-
rithms and use this to generalize the above approach to any
square matrix. However, this approach scales poorly as the size
of 𝐺(𝐹 ) increases. In particular, for an 𝑚 × 𝑚 matrix 𝐺(𝐹 ), det(𝑆)
(and thus 𝑑(𝐺)) is a homogeneous polynomial in the elements
of 𝐺(𝐹 ) of degree 𝑚(𝑚 − 1) [34, 35]. Assuming the diagonal
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elements of𝐺(𝐹 ) are degree-𝑟 polynomials in𝐹 , the discriminant
is a polynomial in 𝐹 of degree

deg[𝑑(𝐺(𝐹 ))] = 𝑚(𝑚 − 1)𝑟 (18)

with coefficients {𝜅𝑖}
1+𝑚(𝑚−1)𝑟
𝑖=1 that generalize the right-hand

side of (14). Therefore, it would require at least 1 + 𝑚(𝑚 − 1)𝑟
equations to have unique 𝜅’s, which implies that this approach
requires at least 1 + 𝑚(𝑚 − 1)𝑟 data points of 𝐹 . Once the 𝜅 coef-
ficients have been found, the coefficients in 𝐺(𝐹 ) (that gener-
alize 𝑦, 𝛼, 𝛽 above) can be found by solving a set of polynomial
equations of degree 𝑚(𝑚 − 1). While this could work, we propose
an alternative approach that is lower-degree in the coefficients of
𝐺(𝐹 ) and requires significantly fewer data points of 𝐹 .

4 | Proposed Approach

In this section, we outline our proposed approach to recover the
vector of coefficients p in𝐺(𝐹 ). To do this, we algebraically derive
a vector function whose root corresponds to the solution p∗, and
formulate an optimization problem using this vector function.
Due to the importance of initial iterates when solving optimiza-
tion problems for related IEPs [36], we also propose an approach
for generating sufficiently good initial iterates.

For clarity of presentation, we suppress the dependence of the
eigenvalues 𝜉𝑖(𝐹 ), the quadratic diagonal functions 𝑔𝑖(𝐹 ), and the
eigenvalue differences 𝐷𝑖,𝑗(𝐹 ) on 𝐹 in this section.

4.1 | Algebraic Formulation

The eigenvalues of𝐺(𝐹 ) are roots of the characteristic polynomial

det(𝐺(𝐹 ) − 𝜉𝐼) = 𝜁0(p) + 𝜁1(p)𝜉 + 𝜁2(p)𝜉2 − 𝜉3 (19)

where the coefficients are given by

𝜁0(p) = −(𝑔2 + 𝑔3)𝑦2
0, 𝜁1(p) = −(𝑔2𝑔3 − 2𝑦2

0), and 𝜁2(p) = 𝑔2 + 𝑔3
(20)

Since the eigenvalues of𝐺(𝐹 ) are known to be roots of the charac-
teristic polynomial, the characteristic polynomial is also given by

det (𝐺(𝐹 ) − 𝜉𝐼) = (𝜉1 − 𝜉)(𝜉2 − 𝜉)(𝜉3 − 𝜉) (21)

Comparing the coefficients in (19) with those in (21) leads to the
following system of equations:

ℱ̃ 0(p, 𝜉1, 𝜉2, 𝜉3) = 𝜁0(p) − 𝜉1𝜉2𝜉3 = 0 (22a)

ℱ̃ 1(p, 𝜉1, 𝜉2, 𝜉3) = 𝜁1(p) + (𝜉1𝜉2 + 𝜉1𝜉3 + 𝜉2𝜉3) = 0 (22b)

ℱ̃ 2(p, 𝜉1, 𝜉2, 𝜉3) = 𝜁2(p) − (𝜉1 + 𝜉2 + 𝜉3) = 0 (22c)

whose solution is p∗. We can eliminate 𝜉2 and 𝜉3 from these func-
tions using the eigenvalue differences 𝐷2,1 and 𝐷3,1 from (4) and
(5), respectively, yielding the following system of equations:

ℱ0(p, 𝜉1) = − (𝑔2 + 𝑔3)𝑦2
0 − 𝜉1(𝜉1 +𝐷2,1)(𝜉1 +𝐷3,1) = 0 ,

(23)

ℱ1(p, 𝜉1) = 𝑔2𝑔3 − 2𝑦2
0 − 𝜉1(𝜉1 +𝐷2,1) − 𝜉1(𝜉1 +𝐷3,1)

− (𝜉1 +𝐷2,1)(𝜉1 +𝐷3,1) = 0 , (24)

ℱ2(p, 𝜉1) = 𝑔2 + 𝑔3 − 𝜉1 − (𝜉1 +𝐷2,1) − (𝜉1 +𝐷3,1) = 0 ,

(25)

which contains the seven unknown coefficients in p. We note
that, at this point, 𝜉1 is also unknown since our data consist only
of the eigenvalue differences 𝐷2,1 and 𝐷3,1 at each 𝐹𝑘.

Formulation I: We can eliminate 𝜉1 in (23) and (24) by first
defining the function

𝜓(p𝑔2
,p𝑔3

) = 1
3
(𝑔2 + 𝑔3 −𝐷2,1 −𝐷3,1). (26)

Note that at the true coefficients p∗
𝑔2

and p∗
𝑔3

, we have that
𝜓(p∗

𝑔2
,p∗

𝑔3
) = 𝜉1 from (25). Then, substituting 𝜓 in (23) and (24)

gives the system of equations

ℱ (𝐼)
0 (p) = − (𝑔2 + 𝑔3)𝑦2

0 − 𝜓(𝜓 +𝐷2,1)(𝜓 +𝐷3,1) = 0 (27a)

ℱ (𝐼)
1 (p) = 𝑔2𝑔3 − 2𝑦2

0 − 𝜓(𝜓 +𝐷2,1) − 𝜓(𝜓 +𝐷3,1)

− (𝜓 +𝐷2,1)(𝜓 +𝐷3,1) = 0 (27b)

According to Proposition 1, 𝑛 = 5 values of 𝐹 are sufficient to
guarantee a unique solution. By choosing 𝑛 = 5 values of 𝐹 , we
get 10 equations from (27) in the 7 unknowns.

Formulation II: In this formulation, we eliminate the coefficient
𝑦0. We define a new function

𝜙(p𝑔2
,p𝑔3

;𝐹 ) = 1
2
(
𝑔2𝑔3 −𝐷2,1𝐷3,1

)
+ 1

6
(
(𝐷2,1 +𝐷3,1)2 − (𝑔2 + 𝑔3)2

)
,

(28)

where we explicitly show the dependence of 𝜙 on 𝐹 . The moti-
vation for this definition is as follows: By substituting (26) into
(27b), at the true coefficients p∗

𝑔2
and p∗

𝑔3
, it follows that

𝜙(p∗
𝑔2
,p∗

𝑔3
;𝐹 ) = 𝑦2

0 (29)

for all 𝐹 . We substitute 𝜙 in (27a) to obtain a new equation,

ℱ (𝐼𝐼)
0 (p𝑔2

,p𝑔3
) = − (𝑔2 + 𝑔3)𝜙 − 𝜓(𝜓 +𝐷2,1)(𝜓 +𝐷3,1) = 0

(30a)

This equation contains the six unknown coefficients in p𝑔2
and

p𝑔3
. Hence, a system of equations obtained from 30a with 𝑛 = 6

values of𝐹 will have the same number of equations as unknowns.
However, this means it would require one more 𝐹 value than in
Formulation I. To address this, we propose additional equations
of the form

ℱ (𝐼𝐼)
1 (p𝑔2

,p𝑔3
;𝐹𝑘) = 𝜙(p𝑔2

,p𝑔3
;𝐹𝑘) − 𝜙(p𝑔2

,p𝑔3
;𝐹1) = 0 (30b)

which holds at p∗
𝑔2

and p∗
𝑔3

for all 𝐹 by (29). Using 𝑛 = 5 values
of 𝐹 , the system of equations (30a) and (30b) will consist of 9
equations for 6 unknowns. This requires the same number of 𝐹
values as in Formulation I, namely 𝑛 = 5. Finally, the coefficient
𝑦0 can be obtained from (28) using p∗

𝑔2
and p∗

𝑔3
without requiring

additional data.
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FIGURE 1 | “Asymptotic” relationships between the diagonal elements of 𝐺 and its eigenvalues. (a) Case I: interval of 𝐹 away from intersection
regions, (b) Case II: the diagonal elements 𝑔1, 𝑔2 and 𝑔3 intersect near 𝐹 = 12.

4.2 | Optimization Problem

To recap, Formulation I (27) and Formulation II (30) consist of
a system of nonlinear equations for the unknown coefficients, p.
Given the dataset 𝑀 = {𝐹𝑘,𝐷2,1(𝐹𝑘), 𝐷3,1(𝐹𝑘)}𝑛𝑘=1, we propose to
solve an 𝓁2 minimization problem for the coefficients p. In par-
ticular, we aim to solve

minimize
p

𝐿(p;𝑀) ≡
𝑛∑

𝑘=1

{
[ℱ (𝑖)

0 (p, 𝐹𝑘,𝐷2,1(𝐹𝑘), 𝐷3,1(𝐹𝑘))]2

+[ℱ (𝑖)
1 (p, 𝐹𝑘,𝐷2,1(𝐹𝑘), 𝐷3,1(𝐹𝑘))]2

}
(31)

where 𝑖 ∈ {𝐼, 𝐼𝐼}, corresponding to the two different algebraic
formulations in Section 4.1. We denote the “true” solution, i.e.,
the coefficients that generate the dataset 𝑀 , by p∗, and the com-
puted solution of the optimization problem by p̃.

In our numerical experiments, we use a trust-region approach
[37], which solves a sequence of constrained subproblems that
use quadratic approximations of the objective function. We
implemented this approach using the “trust-exact” method in
Python’s scipy.optimize.minimize package. Similar results were
also obtained using line-search methods.

Regardless of the chosen optimization method, good initial iter-
ates are required for convergence to a solution [36]. In what fol-
lows we discuss our approach for finding good initial iterates.

4.3 | Warmstarting

Here, we propose approaches for obtaining good initial iterates
for the coefficients p given the dataset 𝑀 . We recall that the diag-
onal elements of𝐺 are quadratically dependent on 𝐹 . To describe
the main ideas, we consider the following two cases:

Case I: The values of 𝐹 are far from regions where the diago-
nal elements intersect.

Case II: The values of 𝐹 are near regions where the diagonal
elements intersect.

We illustrate these two cases in Figure 1a (Case I) and Figure 1b
(Case II).

In Case I, 𝐺(𝐹 ) is diagonally dominant and its eigenval-
ues are well-approximated by the diagonal elements, that
is {𝜉1(𝐹 ), 𝜉2(𝐹 ), 𝜉3(𝐹 )} are well-approximated by {𝑔1(𝐹 ) =
0, 𝑔2(𝐹 ), 𝑔3(𝐹 )}, for some ordering of the latter. This is illustrated
in Figure 1a, where 𝜉1(𝐹 ) ≈ 0, 𝜉2(𝐹 ) ≈ 𝑔3(𝐹 ), and 𝜉3(𝐹 ) ≈ 𝑔2(𝐹 ).
Therefore, 𝐷2,1(𝐹 ) ≈ 𝑔3(𝐹 ) and 𝐷3,1(𝐹 ) ≈ 𝑔2(𝐹 ). With this in
mind, we can compute an initial iterate p(0)

𝑔2
for the coefficients

of 𝑔2(𝐹 ) by choosing any 𝑛 = 3 values of 𝐹 , say 𝐹1, 𝐹2, and 𝐹3,
and solving

𝛼
(0)
2 + 𝛽

(0)
2 𝐹1 + 𝛾

(0)
2 𝐹 2

1 = 𝐷3,1(𝐹1) (32a)

𝛼
(0)
2 + 𝛽

(0)
2 𝐹2 + 𝛾

(0)
2 𝐹 2

2 = 𝐷3,1(𝐹2) (32b)

𝛼
(0)
2 + 𝛽

(0)
2 𝐹3 + 𝛾

(0)
2 𝐹 2

3 = 𝐷3,1(𝐹3) (32c)

A similar strategy is used to obtain initial iterates for the coeffi-
cients p𝑔3

of 𝑔3(𝐹 ) using the same values of 𝐹 .

In Case II, this strategy needs to be modified. While the eigen-
values can still be approximated by the diagonal elements, the
pairings between the 𝜉𝑖(𝐹 )’s and 𝑔𝑗(𝐹 )’s can vary as a function
of 𝐹 . This is illustrated in Figure 1b, where 𝑔2(𝐹1) ≈ 𝜉3(𝐹1) and
𝑔2(𝐹2) ≈ 𝜉3(𝐹2). However, 𝑔2(𝐹5) ≈ 𝜉2(𝐹5) (not 𝜉3(𝐹5)). Further-
more, note that, as in Case I, 𝜉1(𝐹1) and 𝜉1(𝐹2) are approximately
zero. However, unlike in Case I, 𝜉3(𝐹5) ≈ 0. Therefore, to compute
an initial iterate p(0)

𝑔2
, we solve

𝛼
(0)
2 + 𝛽

(0)
2 𝐹1 + 𝛾

(0)
2 𝐹 2

1 = 𝐷3,1(𝐹1) (33a)

𝛼
(0)
2 + 𝛽

(0)
2 𝐹2 + 𝛾

(0)
2 𝐹 2

2 = 𝐷3,1(𝐹2) (33b)

𝛼
(0)
2 + 𝛽

(0)
2 𝐹5 + 𝛾

(0)
2 𝐹 2

5 = 𝐷2,1(𝐹5) −𝐷3,1(𝐹5) (33c)
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A similar strategy is used to obtain initial iterates for p𝑔3
, using the

same values of 𝐹 and its corresponding “asymptotic” pairings.

Note that if we were to investigate a region further to the right of
Figure 1b, we would again be “far” from the regions where the
diagonal elements intersect, in which case Case I would again
be applicable. However, it would differ from Figure 1a in that
𝜉1(𝐹 ) ≈ 𝑔3(𝐹 ), 𝜉2(𝐹 ) ≈ 𝑔2(𝐹 ), and 𝜉3(𝐹 ) ≈ 0.

To describe this approach in general, we write the system of
equations to simultaneously solve for p𝑔2

and p𝑔3
as

V𝑔p𝑔 = b𝑔 (34)

where

V𝑔 =

[
𝑉 0
0 𝑉

]
, p𝑔 =

[
p𝑔2

p𝑔3

]
, and b𝑔 =

[
b𝑔2

b𝑔3

]
(35)

with 𝑉 = 𝑉 (𝐹𝑖1
, 𝐹𝑖2

, 𝐹𝑖3
) a 3 × 3 Vandermonde matrix with

𝑖1, 𝑖2, 𝑖3 ∈ {1, . . . , 𝑛} and the elements of b𝑔2
and b𝑔3

correspond
to specific “asymptotic” pairing combinations.

In the case where the asymptotics pairings are unknown, we
could solve (34) for all possible pairings between the eigenvalue
and diagonal elements, and use the corresponding solutions as
initial iterates to solve (31). However, doing so would require solv-
ing the optimization problem many times, each corresponding
to a different initialization. To address this more efficiently, we
reduce this to a single minimization problem by defining a metric
that determines the “best” initial iterate, while using of all 𝑛 avail-
able values of 𝐹 (in our numerical experiments, 𝑛 = 5). Let b𝑔[𝑗]
be as in (35), which here corresponds to the 𝑗th pairing between
the diagonal elements and eigenvalues. The initial iterate candi-
date p(0)

𝑔
[𝑗] corresponding to b𝑔[𝑗] is given by the solution to the

following least squares problem:

p(0)
𝑔
[𝑗] = arg min

p𝑔∈ℝ6
𝑟(p𝑔)

.
= ||V𝑔p𝑔 − b𝑔[𝑗]||22 (36)

where V𝑔 is defined similarly as in (35) but with 𝑉 =
𝑉 (𝐹1, 𝐹2, . . . , 𝐹𝑛) ∈ ℝ𝑛×3. This optimization problem is solved
exactly using normal equations. We then compare the squared
residuals for all the possible pairings, letting 𝑗∗ be the index with
the smallest squared residual:

𝑗∗ = arg min
𝑗

𝑟

(
p(0)
𝑔
[𝑗]

)
(37)

We choose as our initial iterate p(0)
𝑔

= p(0)
𝑔
[𝑗∗]. In other words, we

choose the initial iterate that is obtained by the pairing that min-
imizes the two-norm of the residual of (34).

Using these initial iterates, p(0)
𝑔2

and p(0)
𝑔3

, an initial iterate for 𝑦0 is
obtained from (29). Specifically,

𝑦
(0)
0 =

[
𝜙

(
p(0)
𝑔2
,p(0)

𝑔3
;𝐹𝑘

)]1∕2
,

for any 𝐹𝑘, where 𝜙 is defined in (28).

5 | Numerical Results

We conducted numerical experiments to test the efficacy of the
proposed approach outlined in Section 4 using both noiseless and
noisy measurements. For the results shown in this section, we
used simulated measurement values. These values were created
using p∗ = [𝑦0,p𝑔2

,p𝑔3
], where 𝑦0 = 0.35,p𝑔2

= [12,−1,−0.0008],
and p𝑔3

= [11.5,−1,−0.0004], which are similar to values used
in previous work [29]. All experiments are conducted using
𝐹1, . . . , 𝐹5 depicted in Figure 1b.

5.1 | Experiment I: Noiseless Measurements

In the case of noiseless measurements, our approach solves the
optimization problem (31) to machine precision when using 𝑛 =
5 values of 𝐹 with either Formulation I or II. Figure 2 shows how
the loss function (31) converges to zero with iterations for both
formulations. However, similar results have been obtained using
a variety of selected 𝐹 values.

To demonstrate this, we create𝑁 = 30 sets of new coefficients. In
particular, these coefficients are defined as

q∗
𝑠
= Θ𝑠p∗, 𝑠 = 1, . . . , 𝑁 (38)

where Θ𝑠 ∈ ℝ7×7 is a diagonal matrix with diagonal elements
randomly drawn from the interval [1 − 𝜎, 1 + 𝜎], for some scalar
𝜎 > 0. In this experiment, we use 𝜎 = 0.20.

Table 1 depicts the number of iterations required for each formu-
lation to converge to the solution, given an initial iterate com-
puted using the correct asymptotic pairing. Comparing these
formulations, we observe that Formulation II requires fewer
iterations on average when the correct asymptotic pairing is
used. We surmise that this is due to the “elimination” of 𝑦0 in
Formulation II.

To test alternative initial iterates, we also tested using random ini-
tial iterates “near” the solution. For each q∗

𝑠
, we generate 10 initial

iterates. In particular, these initial iterates are defined as

q𝑡 = Θ𝑡q∗
𝑠
, 𝑡 = 1, . . . , 10 (39)

FIGURE 2 | Results for Experiment I: Loss function values using For-
mulation I and Formulation II as functions of iterations.
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Θ𝑡 ∈ ℝ7×7 is a diagonal matrix with diagonal elements randomly
drawn from the interval [1 − 𝜌, 1 + 𝜌], for some scalar 𝜌 > 0. In
this experiment, we use 𝜌 = 0.20. As seen in Table 2, the conver-
gence rate for initial iterates with coefficients within 𝜌 = 20% of
the true coefficients was just over 80%, versus the 100% observed
using the proposed warmstarting method.

5.2 | Experiment II: Noisy Measurements

We model inaccurate measurements and modeling errors as per-
turbations in the values of the eigenvalue differences. To consider
this, we introduce perturbations, 𝜏𝑖(𝐹𝑘)𝜖, at each 𝐷𝑖,1(𝐹𝑘), where
𝜏𝑖(𝐹𝑘) ∈ {−1, 1} is a binary random variable and the perturbation
parameter 𝜖 is positive. Thus, we model our noisy eigenvalue dif-
ferences measurements as

𝐷̃𝑖,1(𝜖, 𝜏, 𝐹𝑘) = 𝐷𝑖,1(𝐹𝑘) + 𝜏𝑖(𝐹𝑘)𝜖 (40)

We denote the computed coefficients by p̃(𝜖). To determine the
effects of noise on our approach, we simulated noise in the

TABLE 1 | Experiment I: Out of 30 sets of coefficients, this table
shows the number of times each formulation converged to a solution
using correct initial iterate pairings for various numbers of iterations.

Iterations 4 5 6 7

Formulation I 0 12 14 4
Formulation II 17 8 5 0

TABLE 2 | Experiment I: Out of the 30 sets of coefficients, this table
shows the convergence rate to a solution using 10 random initial iterates
per set of coefficients versus the proposed warmstart approach.

Initial iterate Random Warmstart

Formulation I 81.33% 100%
Formulation II 80.67% 100%

measurements of eigenvalue differences using (40) for six dif-
ferent values of 𝜖. In particular, 𝜖 ∈ {10−1, . . . , 10−6}. As in the
first part of Experiment I, we assume that we have the correct
asymptotic pairing to initialize the method. Figure 3 depicts the
differences between the computed coefficients and the true ones
using the two different algebraic formulations. In particular, it
illustrates that

||p̃(𝜖) − p∗||22 = 𝑂(𝜖) (41)

for both formulations. Similar decreases were observed for p𝑔3
.

This shows that our methods are effective in the presence of
noise.

5.3 | Experiment III: Warmstart Testing

To test the warmstarting approach, we consider the coefficients
sets, q∗

𝑠
, described in Experiment I (see (38)). For each q∗

𝑠
, we

repeat Experiment II only using Formulation II, given its bet-
ter performance than Formulation I for correct asymptotic pair-
ings. However, in this experiment, we obtain initial iterates with-
out assuming knowledge of the correct asymptotic pairings, as
described in Section 4.3.

For each new coefficient q∗
𝑠

and perturbation parameter 𝜖 ∈
{10−1, . . . , 10−6}, we compute the corresponding solution, q̃𝑠(𝜖),
and the maximum error among its coefficients, which is given by

||q̃𝑠(𝜖) − q∗
𝑠
||∞.

These errors are used to calculate the maximum error value

𝜂(𝜖) = max
𝑠

||q̃𝑠(𝜖) − q∗
𝑠
||∞,

and mean error value

𝜇(𝜖) = 1
𝑁

𝑁∑
𝑠=1

||q̃𝑠(𝜖) − q∗
𝑠
||∞

FIGURE 3 | Results of Experiment II. Error in the coefficients 𝑦0 and p𝑔2
as a function of noise in the data using (a) Formulation I and (b) Formu-

lation II. (a) Coefficient error using Formulation I. (b) Coefficient error using Formulation II.
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FIGURE 4 | Results of Experiment III: We repeat Experiment II 30
times and report the maximum error value 𝜂(𝜖) and mean error value𝜇(𝜖).
We only report the results of Formulation II.

for each 𝜖. Figure 4 depicts these errors. In particular, it illustrates
a decrease of 𝑂(𝜖) in both errors. We conclude from Figure 4
that our optimization approach is effective for solving the IEDP,
i.e., minimizing (31), even in the case of unknown asymptotic
pairings.

6 | Conclusions

In this article, we formulated the problem to recover the quan-
tum Hamiltonian matrix of a three quantum dot system as a
parameterized IEDP. The proposed optimization and warmstart-
ing approach successfully recovers ground state coefficients using
eigenvalue differences. In particular, we find that this strategy
yields initial iterates, for which the optimization method con-
verges consistently to an accurate solution, even in the presence
of noise. Furthermore, the proposed method outperforms ran-
dom initialization. This demonstrates the feasibility of recovering
the physical parameters of a particular three quantum dot system,
suggesting extensions to other quantum dot system.
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Appendix A

The (1,1) Entry of G(F)

We now demonstrate that, for our IEDP, without loss of generality, one
can set the (1, 1) element of 𝐺(𝐹 ) to zero, i.e., 𝑔1(𝐹 ) = 0 in (1).

Consider the shifted matrix

𝐺̃(𝐹 ) = 𝐺(𝐹 ) + 𝛿(𝐹 )𝐼 (A1)

where 𝛿(𝐹 ) is any scalar-valued function of 𝐹 and 𝐼 is the identity
matrix. Let {𝜉1(𝐹 ), 𝜉2(𝐹 ), 𝜉3(𝐹 )} be the eigenvalues of 𝐺̃(𝐹 ), with 𝜉1(𝐹 ) ≤
𝜉2(𝐹 ) ≤ 𝜉3(𝐹 ). Note that 𝜉𝑖(𝐹 ) = 𝜉𝑖(𝐹 ) + 𝛿(𝐹 ) for 𝑖 = 1, 2, 3. Then the
eigenvalue differences in 𝐺̃(𝐹 ) are equal to the eigenvalue differences in
𝐺(𝐹 ) since

𝜉𝑖(𝐹 ) − 𝜉𝑗 (𝐹 ) = (𝜉𝑖(𝐹 ) + 𝛿(𝐹 )) − (𝜉𝑗 (𝐹 ) + 𝛿(𝐹 )) = 𝜉𝑖(𝐹 ) − 𝜉𝑗 (𝐹 ) (A2)

for all 𝑖 and 𝑗. Thus, if 𝐺(𝐹 ) is a solution to our IEDP, then so is 𝐺̃(𝐹 ).
Choosing 𝛿(𝐹 ) = −𝑔1(𝐹 ) yields a solution whose (1, 1) is zero. Thus, with-
out loss of generality, we may set 𝑔1(𝐹 ) = 0.

Appendix B

Proof of Proposition 1

Proof. The proof consists of the following parts: (1)The same eigenvalue
differences can be obtained using {𝜉1, 𝜉2, 𝜉3} or {−𝜉3,−𝜉2,−𝜉1}. (2) Given
a set of eigenvalues and a solution with 𝑔2 and 𝑔3, then another solution
exists by swapping 𝑔2 and 𝑔3. (3) Given a set of eigenvalues, no other solu-
tions can be obtained using five or more values of 𝐹 . (4) Given a set of
eigenvalue differences and a solution with 𝑔2 and 𝑔3, then another solu-
tion exists with −𝑔2 and −𝑔3. (5) Given a set of eigenvalue differences and
a solution with 𝑔3 and 𝑔2, then another solution exists with −𝑔3 and −𝑔2.
(6) Given the set of eigenvalue differences, no other solutions exist.

1. We first identify that there are two possible sets of eigenvalues
for 𝐺 defined in (8) that both satisfy a set of eigenvalue differences,
{𝐷3,1, 𝐷2,1, 𝐷3,2} and maintain 𝑔1(𝐹 ) ≡ 0, namely,

{𝜉1, 𝜉2, 𝜉3} and {−𝜉3,−𝜉2,−𝜉1} (B1)

The first set satisfies the eigenvalue differences by definition. Since the
eigenvalues are defined in increasing order, let 𝜉3 = −𝜉1, 𝜉2 = −𝜉2, and
𝜉1 = −𝜉3, where 𝜉3 ≥ 𝜉2 ≥ 𝜉1. Using 𝐷̂2,1, 𝐷̂3,1, and 𝐷̂3,2 as defined simi-
larly in (4–6), by substitution we have that

𝐷̂2,1(𝐹 ) = −𝜉2(𝐹 ) − (−𝜉3(𝐹 )) = 𝐷3,2, (B2)

𝐷̂3,1(𝐹 ) = −𝜉1(𝐹 ) − (−𝜉3(𝐹 )) = 𝐷3,1, (B3)

𝐷̂3,2(𝐹 ) = −𝜉1(𝐹 ) − (−𝜉2(𝐹 )) = 𝐷2,1, (B4)

which shows {𝐷̂3,1, 𝐷̂2,1, 𝐷̂3,2} = {𝐷3,1, 𝐷2,1, 𝐷3,2}.

2. The fact that [𝑦∗0 ,p
∗
𝑔3
,p∗

𝑔2
] is also a solution follows from swapping the

second and third rows and columns of the 𝐺 matrix (8).

3. We now demonstrate that, given the eigenvalue set {𝜉1, 𝜉2, 𝜉3} and solu-
tions [𝑦∗0 ,p

∗
𝑔2
,p∗

𝑔3
] and [𝑦∗0 ,p

∗
𝑔3
,p∗

𝑔2
], no additional solutions exist.

Lemma 1. Suppose [𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
] and [𝑦∗0 ,p

∗
𝑔3
,p∗

𝑔2
] are solutions to the

IEDP with eigenvalues {𝜉1, 𝜉2, 𝜉3} for 𝐹 ∈ {𝐹1, . . . , 𝐹5}. Suppose there is
an additional solution

q∗ = [𝑦∗0 ,q
∗
ℎ2
,q∗

ℎ3
] (B5)

where q∗
ℎ2

= [𝑎∗2 , 𝑏
∗
2 , 𝑐

∗
2 ] and q∗

ℎ3
= [𝑎∗3 , 𝑏

∗
3 , 𝑐

∗
3 ], which correspond to the

quadratic polynomials

ℎ𝑖(𝐹 ) = 𝑎∗
𝑖
+ 𝑏∗

𝑖
𝐹 + 𝑐∗

𝑖
𝐹 2, 𝑖 = 2, 3 . (B6)

Then, q∗ is of the form [𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
] or [𝑦∗0 ,p

∗
𝑔3
,p∗

𝑔2
].

Proof. First, we rewrite (22) as an equivalent system (see [29]) of
the form

−𝑦2
0(𝜉1 + 𝜉2 + 𝜉3) − 𝜉1𝜉2𝜉3 = 0 (B7a)

𝑔2
2 + 𝑔2(𝜉1 + 𝜉2 + 𝜉3) + 2𝑦2

0 + 𝜉1𝜉2 + 𝜉1𝜉3 + 𝜉2𝜉3 = 0 (B7b)

𝑔2 + 𝑔3 − 𝜉1 − 𝜉2 − 𝜉3 = 0 (B7c)

where 𝑔𝑗 (𝐹 ) = 𝛼𝑗 + 𝛽𝑗𝐹 + 𝛾𝑗𝐹
2 for 𝑗 = 2, 3. Solving this system yields

𝑦0 = ±

√
−

𝜉1𝜉2𝜉3

𝜉1 + 𝜉2 + 𝜉3
(B8a)
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𝑔±2 = 1
2
(𝜉1 + 𝜉2 + 𝜉3)

±
√
(𝜉1 − 𝜉2 − 𝜉3)(𝜉1 − 𝜉2 + 𝜉3)(𝜉1 + 𝜉2 − 𝜉3)(𝜉1 + 𝜉2 + 𝜉3)

2(𝜉1 + 𝜉2 + 𝜉3)
(B8b)

𝑔∓3 = 1
2
(𝜉1 + 𝜉2 + 𝜉3)

∓
√
(𝜉1 − 𝜉2 − 𝜉3)(𝜉1 − 𝜉2 + 𝜉3)(𝜉1 + 𝜉2 − 𝜉3)(𝜉1 + 𝜉2 + 𝜉3)

2(𝜉1 + 𝜉2 + 𝜉3)
(B8c)

where the superscript “+” corresponds to the positive root and the super-
script “−” corresponds to the negative root. It follows from (B8a) that we
have two sets of solutions, each corresponding to a sign of 𝑦0. However,
we only consider the case where 𝑦0 > 0. Note from (B8b) and (B8c) that
𝑔±2 = 𝑔±3 . Using these notations, if 𝑔2 = 𝑔+2 = 𝑔+3 , then 𝑔3 = 𝑔−3 = 𝑔−2 . Alter-
natively, if 𝑔2 = 𝑔−2 = 𝑔−3 , then 𝑔3 = 𝑔+3 = 𝑔+2 . This yields the two solutions
[𝑦∗0 ,p

∗
𝑔2
,p∗

𝑔3
] and [𝑦∗0 ,p

∗
𝑔3
,p∗

𝑔2
].

Without loss of generality, we assume that 𝑔2(𝐹 ) = 𝑔+2 (𝐹 ) in (B8b) and
𝑔3(𝐹 ) = 𝑔−3 (𝐹 ) in (B8c). Note that by their definition, ℎ2(𝐹 ) and ℎ3(𝐹 )
must also satisfy (B8b) and (B8c), respectively, at each 𝐹𝑘 (𝑘 = 1, . . . , 𝑛).
Thus, for q∗ to be a solution, it must satisfy, at each 𝐹𝑘,

ℎ2(𝐹𝑘) = 𝑔2(𝐹𝑘) and ℎ3(𝐹𝑘) = 𝑔3(𝐹𝑘) (B9a)

or
ℎ2(𝐹𝑘) = 𝑔3(𝐹𝑘) and ℎ3(𝐹𝑘) = 𝑔2(𝐹𝑘) (B9b)

For 𝑛 ≥ 5, (B9a) or (B9b) (or both) must hold for at least three values of
𝐹 . If (B9a) holds for at least three values of 𝐹 , then ℎ2(𝐹 ) ≡ 𝑔2(𝐹 ) and
ℎ3(𝐹 ) ≡ 𝑔3(𝐹 ) since they are quadratic polynomials that intersect at least
three different points. Hence, q∗

ℎ2
= p∗

𝑔2
and q∗

ℎ3
= p∗

𝑔3
. Similarly, if (B9b)

holds for at least three values of𝐹 , thenℎ2(𝐹 ) ≡ 𝑔3(𝐹 ) andℎ3(𝐹 ) ≡ 𝑔2(𝐹 ).
Hence, q∗

ℎ2
= p∗

𝑔3
and q∗

ℎ3
= p∗

𝑔2
. Thus, q∗ is of the form [𝑦∗0 ,p

∗
𝑔2
,p∗

𝑔3
] or

[𝑦∗0 ,p
∗
𝑔3
,p∗

𝑔2
]. ◽

From Lemma (1), given the eigenvalue set {𝜉1, 𝜉2, 𝜉3}, no additional solu-
tions exist.

4. We now demonstrate that if [𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
] is a solution to the IEDP corre-

sponding to the eigenvalue set {𝜉1, 𝜉2, 𝜉3}, then [𝑦∗0 ,−p∗
𝑔2
,−p∗

𝑔3
] is a solu-

tion to the IEDP corresponding to the eigenvalue set {−𝜉3,−𝜉2,−𝜉1}.

Lemma 2. If [𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
] is a solution to the IEDP corresponding to the

eigenvalue set {𝜉1, 𝜉2, 𝜉3}, then [𝑦∗0 ,−p∗
𝑔2
,−p∗

𝑔3
] is a solution to the IEDP cor-

responding to the eigenvalue set {−𝜉3,−𝜉2,−𝜉1}.

Proof. Given [𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
] is a solution to the IEDP using the eigenvalue

set {𝜉1, 𝜉2, 𝜉3}, the matrix

− 𝐺(𝐹 ) =
⎡⎢⎢⎢⎣

0 −𝑦0 −𝑦0

−𝑦0 −𝑔2(𝐹 ) 0
−𝑦0 0 −𝑔3(𝐹 )

⎤⎥⎥⎥⎦ (B10)

also satisfies the eigenvalue differences with eigenvalues {−𝜉3,−𝜉2,−𝜉1},
but is not a solution since −𝑦0 < 0. Pre- and post-multiplying −𝐺 by the
3 × 3 diagonal matrix 𝑃 = diag (1,−1,−1) yields

𝐺̂ = 𝑃 (−𝐺)𝑃 =
⎡⎢⎢⎢⎣

0 𝑦0 𝑦0

𝑦0 −𝑔2(𝐹 ) 0
𝑦0 0 −𝑔3(𝐹 )

⎤⎥⎥⎥⎦ (B11)

Note that 𝑃 = 𝑃 −1. Therefore, 𝐺̂ is similar to −𝐺 and consequently has
the same eigenvalues as −𝐺, which has the same eigenvalue differences
as 𝐺. Therefore, [𝑦∗0 ,−p∗

𝑔2
,−p∗

𝑔3
] is a solution. ◽

From Lemma (2), since [𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
] is a solution to the IEDP, then

[𝑦∗0 ,−p∗
𝑔2
,−p∗

𝑔3
] is also a solution to the IEDP.

5. Similarly to Part 4, from Lemma (2), since [𝑦∗0 ,p
∗
𝑔3
,p∗

𝑔2
] is a solution to

the IEDP, then [𝑦∗0 ,−p∗
𝑔3
,−p∗

𝑔2
] is also a solution to the IEDP.

6. Given the two solutions to the IEDP

[𝑦∗0 ,−p∗
𝑔2
,−p∗

𝑔3
] and [𝑦∗0 ,−p∗

𝑔3
,−p∗

𝑔2
] (B12)

corresponding to {−𝜉3,−𝜉2,−𝜉1}, then no additional solutions exist cor-
responding to {−𝜉3,−𝜉2,−𝜉1} per Lemma (1).

Thus, the four solutions to the IEDP are

[𝑦∗0 ,p
∗
𝑔2
,p∗

𝑔3
], [𝑦∗0 ,p

∗
𝑔3
.p∗

𝑔2
], [𝑦∗0 ,−p∗

𝑔2
,−p∗

𝑔3
], and

[𝑦∗0 ,−p∗
𝑔3
. − p∗

𝑔2
] (B13)

concluding the proof. ◽
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