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ABSTRACT

A system of three tunnel-coupled quantum dots is considered in the presence of an applied electric field. Given the measurements

of differences between ground state energy levels as the electric field is varied, we seek to recover the quantum Hamiltonian matrix

that describes this system. We formulate this as an inverse Eigenvalue difference problem and develop algebraic and computational

methods along with a warm starting strategy to solve it. The results demonstrate the efficacy of these approaches in the presence

of measurement noise.

1 | Introduction

Inverse eigenvalue difference problems (IEPs) arise in many
branches of science and engineering [1-4]. Broadly speaking,
IEPs involve reconstructing a matrix from its eigenvalues. The
breadth of IEPs has been expanding with scientific and techno-
logical progress. In this vein, this study describes an IEP that
arises in the emerging field of quantum sensing, which facilitates
high-resolution sensing of gravitation, acoustic waves, and elec-
tromagnetic fields [5-14]. We study a system of coupled quan-
tum dots (QDs). The eigenstates of coupled quantum dot systems,
such as self-assembled epitaxial quantum dots, can be experi-
mentally measured primarily through optical techniques. These
methods rely on the interaction of light with the quantum dot
system, providing direct access to energy levels and transitions
between them. Among the most widely used techniques are emis-
sion spectroscopy, including photoluminescence (PL) and pho-
toluminescence excitation (PLE), as well as laser spectroscopy
methods such as differential transmission, reflection, and absorp-
tion measurements [12, 13, 15-20].

In laser spectroscopy, a tunable laser excites electrons from
the valence band to the conduction band of the quantum

dots, creating holes in the valence band. The optical
response—measured as variations in transmitted, reflected,
or absorbed laser intensity—maps the allowed transitions
between quantum dot eigenstates as a function of photon energy.
In PL and PLE, the system is excited, and the emitted photons are
detected as electrons recombine with holes. PL typically involves
non-resonant or quasi-resonant excitation, where the electron
first relaxes to lower-energy conduction band states via phonon
interactions before recombining with a hole, emitting a pho-
ton. Because phonon-mediated relaxation is non-deterministic,
PL spectra provide insight into a range of accessible states. In
PLE, instead of measuring all emitted photons, the intensity
of a specific emission line is monitored as a function of excita-
tion wavelength, offering spectral information similar to laser
spectroscopy.

If the quantum dots are integrated into tunable electric field envi-
ronments, such as Schottky-type or p-i-n diode structures, their
optical spectra can be measured as a function of applied elec-
tric field. This allows experimental observation of energy shifts
due to potential variations and the quantum-confined Stark effect
[12,14, 21]. In coupled quantum dot systems, applying an electric
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field enables control over eigenstate alignment, facilitating elec-
tron or hole tunneling between neighboring dots [17, 22]. These
tunneling processes manifest in optical spectra as avoided cross-
ings, revealing the underlying structure of electron or hole energy
levels. By systematically analyzing these crossings, one can recon-
struct the energy landscape of the system [23].

The energy levels of the QDs are represented by a quantum
Hamiltonian matrix. The matrix elements depend on intrinsic
physical properties, such as polarizabilities, spin-orbit coupling,
and quantum tunneling, which, in turn, can reveal useful data
about the system, such as the distances between the QDs. How-
ever, measuring this data directly is challenging. Thus, the objec-
tive is to determine the matrix elements from spectral measure-
ments, forming an IEP.

There are many categorizations of IEPs. The primary IEP catego-
rizations of interest to us are structured [24], parameterized [25],
and partially described [26, 27]. Structured IEPs impose some
structure on the recovered matrix. This could include requiring
the matrix to be symmetric, tridiagonal, orthogonal, or nonnega-
tive. In this case, structure is imposed by requiring the matrix to
be symmetric, tunnel coupling is negligible between two quan-
tum dots due to sufficient distance between quantum dots, and
the structural dependence on electric field is assumed to be
known. In this work, we define Parameterized IEPs as an IEP
involving one or more elements of the matrix to be functions of
a known, tunable parameter. In our case, this appears from the
diagonal elements being function of an applied electric field. Par-
tially described IEPs occur when the full spectral information
of the matrix is unknown. Using eigenvalue differences instead
of eigenvalues classifies this problem as a partially described
IEP. The IEP studied in this paper is an overlap of these three
categorizations.

Mathematically, our IEP differs from those that have been studied
in two significant ways.

1. The matrix depends on a “tunable” (known) parameter.
Specifically, the diagonal elements are quadratic polynomi-
als of an applied electric field [28, 29]. As this field is varied
between measurements, so does the matrix. Thus, this is a
one-parameter family of matrices. In our terminology, the
parameter (electric field) is known —its values are selected
during measurements, whereas the polynomials’ coeffi-
cients are unknown.

2. The eigenvalue differences are measured for a set of electric
field values, but the eigenvalues themselves are unknown.
The physical reason for this is that, as the QDs transition
between energy states, they emit photons whose frequencies
are proportional to energy differences. These photons are
measured using photoluminescence techniques. We refer to
this as an Inverse Eigenvalue Difference Problem (IEDP).

To the best of our knowledge, IEPs of this kind have not received
attention. We develop a combination of analytical and computa-
tional methods to solve this IEDP. A common strategy for solv-
ing IEPs numerically is constructing a system of equations sat-
isfied by the Hamiltonian and implementing a Newton method
[30-32]. We build upon this framework and previous work

solving IEDPs for 2 X 2 matrices [29], exploring two formulations
converting an IEP to an IEDP and a warmstarting approach to
help ensure the initial iterate is sufficiently close for a Newton
method to converge.

2 | Problem Description

‘We consider a system of three QDs, whose ground-state quantum
Hamiltonian is, in general, described by a 3 X 3 real symmetric
matrix [28] of the form

ga(F) 1
GE)=| y, &F) y |- @

oo o &)

Here, the diagonal elements correspond to the self-energies
of each QD, whereas, the off-diagonal elements correspond to
tunnel-coupling energies between the QDs. We further assume
that the diagonal elements depend quadratically on the applied
electric field, F € R, as
g(F)=o,+BF+yF* i=123, ®)
where the coefficients {«;, §;,7;} are real. Equation (2) mod-
els the quadratic Stark shift [33]. The coefficients «; are the
eigenenergies absent an electric field. The coefficients g; are
the electric dipole moments, which are proportional to the dis-
tances between the QDs. The coefficients y; correspond to the
polarizabilities of the ground-state electronic and hole wavefunc-
tions. The off-diagonal elements correspond to hole tunneling
strengths. The (implied) assumption that the off-diagonal ele-
ments are independent of F is a good approximation for weak
electric fields and for weak tunnel-coupling between the QDs.

In this work, we consider a specific physical system. In particular,
we assume that y; = y,, which roughly corresponds to a system
where the three QDs are similar and equally spaced on a straight
line. In addition, we assume that y, = 0, which means that the
QDs are far apart. Therefore, we have the Hamiltonian matrix

‘6 (F) Yo
GIE)=| y, &F) 0 |. 3)

Yo 0 g(F)

Since G(F) is symmetric, its eigenvalues are real. We denote its
eigenvalues by {&,(F), &, (F), &(F)}. The physical measurements
can be used to determine the differences between the eigenvalues
of G(F). The eigenvalue differences are denoted by

D, (F) = &(F) = &(F), C))
Dy (F) = &(F) — & (F), (5)
D5 ,(F) = &(F) — &,(F). (6)

Note that D; ,(F) = D;,(F) — D, ;(F). The measured data is pro-
vided over a set of n values of F € R, denoted by { F, - Hence,
we consider the measured dataset to be

M = {FkiDZ.l(FkL D3,1(Fk)}z=1 (7
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Our objective is to recover G(F) using the dataset M. In Appendix
A we prove that, without loss of generality, one can set g;(F) = 0.
This has the effect of eliminating an arbitrary shift in the diagonal
elements and in the eigenvalues of G(F) that would satisfy the
dataset M. For this reason, henceforth we consider

0 ¥ Yo
G(F)=|y, &(F) 0 [. ®
Yo 0 g(F)

We denote the vector of unknown coefficients as (for convenience
we also refer to y, as a coefficient)

P = [V . 2. 72 @3, B3, v3] € R7 9
and denote the “ground truth” coefficients by p*, which corre-

sponds to G(F) that generates the dataset M. We also use the
more compact notation

P = o, P,, P, | ER’ (10)

where p, = [, Bi» 7;]1 € R3 fori = 2, 3. To summarize, we seek to
solve the following:

Inverse Eigenvalue Difference Problem (IEDP)

Given the eigenvalue difference dataset M in (7), find coeffi-
cients p, such that G(F) in (8) generates M.

For ease of presentation, we shall assume that the off-diagonal
elements are positive, i.e., y,>0, which corresponds to
positive tunnel coupling. However, our methods still work
ify, <0.

Importantly, in the presence of noisy data, a solution of this IEDP
is understood as a solution of a related optimization problem
(see Section 4.2). Though this IEDP does not have a unique solu-
tion, the diversity of the spectral data for the different values of
F, reduces the non-uniqueness. In particular, in Appendix B we
prove the following:

Proposition 1. The IEDP with n > 5 values of F has at most
Jfour solutions. In particular, if p* = [y;, p;, p;] is a solution, then
there are four solutions, which are

5P, ) 5.0 P, ) g.—p,.—p; ] and [y -p,.-p,1 (11)
These solutions are different unless g,(F) = g;(F), i.e., the diagonal
elements are the same.

The four solutions in (11) correspond to the invariance of the
eigenvalues to the swapping of the diagonal elements g, and g,
and the nonuniqueness of eigenvalues resulting in eigenvalue dif-
ferences. In this sense, we refer to “uniqueness” up to these four
types of solutions.

3 | Previous Approach

In previous work, we developed an approach for solving the
eigenvalue difference problem for a 2 X 2 G(F) matrix [29]. In

this section, we discuss this previous method, how it scales in
higher dimensions, and our decision to formulate an alternative
approach.

Consider the leading 2 X 2 matrix G,(F) of G(F) given by

0
GZ(F>=[ Y ] (12)
y a+pF

where the coefficient of the quadratic term is 0. The eigenvalues
of G,(F) are given explicitly by

&(F) = 3@+ pF) - 2@+ pPR+47 and
&(F) = S+ P + 2\t P+ 472 (13)
Tt follows from (4) and (13) that
[D,1(F)* = f*F? + 2apF + a® + 4y (14)

Assuming that the set { D, (F)} is known for (at least) three val-
ues of F, we can recover f, a, and y by solving the least-squares
problem

min Y {[Dy,(FOP - (6, F2 + 5, F, + 50} 2 (15)
k=1

KosK1,K>

and letting
ﬂ=+\/,<_,a=ﬁ,andy=l Ko — a? (16)
+ 25 S5 V¥o

In our approach, we solve the normal equations associated with
(15) to obtain k, k;, and k.

The left- and right-hand sides of (14) are expressions of the dis-
criminant of the characteristic polynomial of G,(F). In general,
for any square matrix G, the left-hand side of (14) can be gen-
eralized as the product of the squared-differences between the
eigenvalues, i.e.,

d(@) =[] - 4 a7

i<j

which is called the discriminant. It is well-known that the dis-
criminant can be expressed in terms of the matrix elements as
follows. Let G be an m X m matrix, p;(4) its characteristic poly-
nomial, and p;;(i) its derivative with respect to 4. Let .S be the
(2m — 1) X (2m — 1) Sylvester matrix [34] associated with p(4)
and p’G(/l). The determinant of .S is the resultant of p;(4) and
p’G(/l), which can be shown to be the same as the discriminant
[34, 35], i.e., (14) generalizes as

d(G) = det(S (ps(4), ply(1))).

It is possible to calculate det(.S) using symbolic algebra algo-
rithms and use this to generalize the above approach to any
square matrix. However, this approach scales poorly as the size
of G(F) increases. In particular, for an m X m matrix G(F), det(.S)
(and thus d(G)) is a homogeneous polynomial in the elements
of G(F) of degree m(m —1) [34, 35]. Assuming the diagonal
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elements of G(F) are degree-r polynomials in F, the discriminant
is a polynomial in F of degree

deg[d(G(F))] = m(m — Dr (18)
with coefficients {x; }}:l'"('"_l)’ that generalize the right-hand
side of (14). Therefore, it would require at least 1 + m(m — 1)r
equations to have unique «’s, which implies that this approach
requires at least 1 + m(m — 1)r data points of F. Once the x coef-
ficients have been found, the coefficients in G(F) (that gener-
alize y, a, p above) can be found by solving a set of polynomial
equations of degree m(m — 1). While this could work, we propose
an alternative approach that is lower-degree in the coefficients of
G(F) and requires significantly fewer data points of F.

4 | Proposed Approach

In this section, we outline our proposed approach to recover the
vector of coefficients p in G(F). To do this, we algebraically derive
a vector function whose root corresponds to the solution p*, and
formulate an optimization problem using this vector function.
Due to the importance of initial iterates when solving optimiza-
tion problems for related IEPs [36], we also propose an approach
for generating sufficiently good initial iterates.

For clarity of presentation, we suppress the dependence of the
eigenvalues &,(F), the quadratic diagonal functions g;(F), and the
eigenvalue differences D, ;(F) on F in this section.

41 | Algebraic Formulation

The eigenvalues of G(F) are roots of the characteristic polynomial
det(G(F) = &¢I = 4@ + L PE + L& - & (19)
where the coefficients are given by
and  &(p) =8 + &3
(20)

Since the eigenvalues of G(F) are known to be roots of the charac-
teristic polynomial, the characteristic polynomial is also given by

O = (& + 8)yv5.  L1(P) = —(8283 — 2¥7):

det(G(F)—&D) = (& -9 - & -9 (21

Comparing the coefficients in (19) with those in (21) leads to the
following system of equations:

go(Pa £1,6,,8)=8(p) —£,65 =0 (22a)
FP.E.56.8) =0+ (EE+EE+EE) =0 (22b)
J"“Lz(P, £.6.86)=0P -G +5+8)=0 (220)

whose solution is p*. We can eliminate &, and &; from these func-
tions using the eigenvalue differences D, ; and Ds; from (4) and
(5), respectively, yielding the following system of equations:

Fo@.6) = — (g + g3)y(2) =&+ Dz,l)(fl + D3,1) =0,
(23)

F1(D,&) = 8,83 = 2y; — &1(& + Dyy) — & + Ds))
=+ D& +Dsy)=0, (24)

Fop.é)=8+tg-&—-E+ Dz,l) =+ D3,1) =0,
(25)

which contains the seven unknown coefficients in p. We note
that, at this point, &, is also unknown since our data consist only
of the eigenvalue differences D, ; and D, at each F,.

Formulation I: We can eliminate &, in (23) and (24) by first
defining the function

1
v(Pg,sP,,) = g(gz + 8 — Dy, — Dsy). (26)
Note that at the true coefficients pzz and p;, we have that
y/(p;, p;) = ¢, from (25). Then, substituting y in (23) and (24)
gives the system of equations

Fo(B) = — (& +8)vs — vy + Dy )W+ D; ) =0 (272)
F{0) = 88 = 27~ v + Dy ) ~wy + Dy )
—(y+Dy)w+D;y;) =0 (27b)

According to Proposition 1, n = 5 values of F are sufficient to
guarantee a unique solution. By choosing n = 5 values of F, we
get 10 equations from (27) in the 7 unknowns.

Formulation II: In this formulation, we eliminate the coefficient
¥,- We define a new function

1 1
D@, P,: F) = 5 (8283 =D, D3,1) + 5 ((Dz,l + D3,1)2 - (g + gs)z)a
(28)

where we explicitly show the dependence of ¢» on F. The moti-
vation for this definition is as follows: By substituting (26) into
(27b), at the true coefficients p;'z and ng’ it follows that

o, . P, s F) =y, (29)
for all F. We substitute ¢ in (27a) to obtain a new equation,

Fo' (D, P,) = — (82 +83) — w(w + Dyy)(w + Ds;) =0
(30a)

This equation contains the six unknown coefficients in p, and
p,,- Hence, a system of equations obtained from 30a with n = 6
values of F will have the same number of equations as unknowns.
However, this means it would require one more F value than in
Formulation I. To address this, we propose additional equations
of the form

gf”)(pgz’pg;; F) = ¢(pgz’pg3; Fo) - ¢(pgz’p83; F)=0 (30b)

which holds at p;z and p; for all F by (29). Using n = 5 values
of F, the system of equations (30a) and (30b) will consist of 9
equations for 6 unknowns. This requires the same number of F
values as in Formulation I, namely n = 5. Finally, the coefficient
¥, can be obtained from (28) using pzz and p; without requiring
additional data.
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“Asymptotic” relationships between the diagonal elements of G and its eigenvalues. (a) Case I: interval of F away from intersection

regions, (b) Case II: the diagonal elements g, g, and g; intersect near F = 12.

4.2 | Optimization Problem

To recap, Formulation I (27) and Formulation II (30) consist of
a system of nonlinear equations for the unknown coefficients, p.
Given the dataset M = { F, D,,(F,), D;1(F})}]_,, we propose to
solve an 7, minimization problem for the coefficients p. In par-
ticular, we aim to solve

n

minimize L(p; M) = Z{ (F D, Fy. Dy 1 (F), Dy (FO)P
k=1

HF (0. Fy Dy (F). Dy ()P | (3D

where i € {I, 1}, corresponding to the two different algebraic
formulations in Section 4.1. We denote the “true” solution, i.e.,
the coefficients that generate the dataset M, by p*, and the com-
puted solution of the optimization problem by p.

In our numerical experiments, we use a trust-region approach
[37], which solves a sequence of constrained subproblems that
use quadratic approximations of the objective function. We
implemented this approach using the “trust-exact” method in
Python’s scipy.optimize.minimize package. Similar results were
also obtained using line-search methods.

Regardless of the chosen optimization method, good initial iter-
ates are required for convergence to a solution [36]. In what fol-
lows we discuss our approach for finding good initial iterates.

4.3 | Warmstarting

Here, we propose approaches for obtaining good initial iterates
for the coefficients p given the dataset M. We recall that the diag-
onal elements of G are quadratically dependent on F. To describe
the main ideas, we consider the following two cases:

Case I: The values of F are far from regions where the diago-
nal elements intersect.

Case II: The values of F are near regions where the diagonal
elements intersect.

We illustrate these two cases in Figure 1a (Case I) and Figure 1b
(Case II).

In Case I, G(F) is diagonally dominant and its eigenval-
ues are well-approximated by the diagonal elements, that
is {&(F),&(F),&(F)} are well-approximated by {g,(F) =
0, g,(F), g5(F)}, for some ordering of the latter. This is illustrated
in Figure 1a, where &,(F) = 0,&,(F) = g5(F), and &(F) ~ g,(F).
Therefore, D, (F)~ g;(F) and D;,(F) = g,(F). With this in
mind, we can compute an initial iterate p(O) for the coefficients
of g,(F) by choosing any n = 3 values of F say F,, F,, and F;,
and solving

<o> 4 ﬂ<0> F + J,<0> Fz =Dy, (F) (32a)
(o> Jrﬁw)F2 +y(O)F2 =Dy, (F,) (32b)
(0) +/3(°)F +y(O)F2 = D;,(Fy) (32¢)

A similar strategy is used to obtain initial iterates for the coeffi-
cients p, of g;(F) using the same values of F.

In Case II, this strategy needs to be modified. While the eigen-
values can still be approximated by the diagonal elements, the
pairings between the &;(F)’s and g;(F)’s can vary as a function
of F. This is illustrated in Figure 1b, where g,(F,) ~ &(F;) and
8,(F,) = &(F,). However, g,(Fs) = &,(Fs) (not &(Fy)). Further-
more, note that, as in Case I, & (F;) and &, (F,) are approximately
zero. However, unlike in Case I, &(Fs) = 0. Therefore, to compute
an initial iterate pg?, we solve

o + By Fy 47, F] = Dy y(F) (332)
ol + pOF, + v\ F? = Dy | (F,) (33b)
o + BV Fy + 7" F? = D, ,(Fs) - Dy, (Fs) (33¢)
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A similar strategy is used to obtain initial iterates for p,, , using the
same values of F and its corresponding “asymptotic” pairings.

Note that if we were to investigate a region further to the right of
Figure 1b, we would again be “far” from the regions where the
diagonal elements intersect, in which case Case I would again
be applicable. However, it would differ from Figure 1a in that
&,(F) ~ g5(F), &(F) = g,(F), and &(F) ~ 0.

To describe this approach in general, we write the system of
equations to simultaneously solve for p, and p, as

V,p,=b (34)

g

where

Vo b
Vv, = { ] p, = [pgz , and b, = [ gz] (35)
oV pg3 bgz
with V =V(F,,F,,F,) a 3x3 Vandermonde matrix with
iy,iy,i3 € {1, ...,n} and the elements of b, and b, correspond
to specific “asymptotic” pairing combinations.

In the case where the asymptotics pairings are unknown, we
could solve (34) for all possible pairings between the eigenvalue
and diagonal elements, and use the corresponding solutions as
initial iterates to solve (31). However, doing so would require solv-
ing the optimization problem many times, each corresponding
to a different initialization. To address this more efficiently, we
reduce this to a single minimization problem by defining a metric
that determines the “best” initial iterate, while using of all n avail-
able values of F (in our numerical experiments, n = 5). Let b,[/]
be as in (35), which here corresponds to the j® pairing between
the diagonal elements and eigenvalues. The initial iterate candi-
date pg’) [j] corresponding to b,[j] is given by the solution to the
following least squares problem:

p[j] = argmin r(p,) = IV, p, — b, [j1II3 (36)

p,ER®
where V, is defined similarly as in (35) but with V =
V(F,, F,, ..., F,) € R™3 This optimization problem is solved

exactly using normal equations. We then compare the squared
residuals for all the possible pairings, letting j* be the index with
the smallest squared residual:

Jj*=argmin r (p;‘” [j]) (37

J
We choose as our initial iterate pg’) = pg’) [j*]. In other words, we
choose the initial iterate that is obtained by the pairing that min-

imizes the two-norm of the residual of (34).

Using these initial iterates, pg) and pifz), an initial iterate for y, is
obtained from (29). Specifically, ‘

1/2
W = [o(p0 00 )|

for any F,, where ¢ is defined in (28).

5 | Numerical Results

We conducted numerical experiments to test the efficacy of the
proposed approach outlined in Section 4 using both noiseless and
noisy measurements. For the results shown in this section, we
used simulated measurement values. These values were created
using p* = [yo,pgz,pgs],where Yo = 0.35,pgZ =[12,-1,-0.0008],
and P, = [11.5,—1,—-0.0004], which are similar to values used
in previous work [29]. All experiments are conducted using
F,, ..., Fs depicted in Figure 1b.

5.1 | Experiment I: Noiseless Measurements

In the case of noiseless measurements, our approach solves the
optimization problem (31) to machine precision when using n =
5 values of F with either Formulation I or II. Figure 2 shows how
the loss function (31) converges to zero with iterations for both
formulations. However, similar results have been obtained using
a variety of selected F values.

To demonstrate this, we create N = 30 sets of new coefficients. In
particular, these coefficients are defined as

q;=0,p", s=1...,N (38)

where O, € R™7 is a diagonal matrix with diagonal elements
randomly drawn from the interval [1 — ¢, 1 + ], for some scalar
o > 0. In this experiment, we use ¢ = 0.20.

Table 1 depicts the number of iterations required for each formu-
lation to converge to the solution, given an initial iterate com-
puted using the correct asymptotic pairing. Comparing these
formulations, we observe that Formulation II requires fewer
iterations on average when the correct asymptotic pairing is
used. We surmise that this is due to the “elimination” of y, in
Formulation II.

To test alternative initial iterates, we also tested using random ini-
tial iterates “near” the solution. For each q¥, we generate 10 initial
iterates. In particular, these initial iterates are defined as

q,=0q;, t=1,...,10 (39)
A 4 4 Formulation I
10 4 A a ®  Formulation IT
. A
A
. d A

o 107
£ A
< o
z 10”7
.S
g A
2 0"
3
o o
2 07
210
=

10*11 4

A
107
o
0 2 i 6 8 10
Iteration
FIGURE2 | Resultsfor ExperimentI: Loss function values using For-

mulation I and Formulation IT as functions of iterations.
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0, € R is a diagonal matrix with diagonal elements randomly
drawn from the interval [1 — p, 1 + p], for some scalar p > 0. In
this experiment, we use p = 0.20. As seen in Table 2, the conver-
gence rate for initial iterates with coefficients within p = 20% of
the true coefficients was just over 80%, versus the 100% observed
using the proposed warmstarting method.

5.2 | Experiment II: Noisy Measurements
‘We model inaccurate measurements and modeling errors as per-
turbations in the values of the eigenvalue differences. To consider
this, we introduce perturbations, z;(F})e, at each D, ,(Fy), where
7;(F,) € {—1,1} isabinary random variable and the perturbation
parameter ¢ is positive. Thus, we model our noisy eigenvalue dif-
ferences measurements as

D; (e, 7, F) = D;1(F,) + 7;,(F)e (40)
We denote the computed coefficients by p(e). To determine the
effects of noise on our approach, we simulated noise in the

TABLE1 |
shows the number of times each formulation converged to a solution

Experiment I: Out of 30 sets of coefficients, this table

using correct initial iterate pairings for various numbers of iterations.

Iterations 4 5 6 7
Formulation I 0 12 14
Formulation II 17 8 5

TABLE 2 | Experiment I: Out of the 30 sets of coefficients, this table

shows the convergence rate to a solution using 10 random initial iterates
per set of coefficients versus the proposed warmstart approach.

measurements of eigenvalue differences using (40) for six dif-
ferent values of e. In particular, e € {1071, ...,107°}. As in the
first part of Experiment I, we assume that we have the correct
asymptotic pairing to initialize the method. Figure 3 depicts the
differences between the computed coefficients and the true ones
using the two different algebraic formulations. In particular, it
illustrates that

IB(e) = p"I5 = O(e) (41)
for both formulations. Similar decreases were observed for p, .
This shows that our methods are effective in the presence of
noise.

5.3 | Experiment III: Warmstart Testing

To test the warmstarting approach, we consider the coefficients
sets, q, described in Experiment I (see (38)). For each q}, we
repeat Experiment II only using Formulation II, given its bet-
ter performance than Formulation I for correct asymptotic pair-
ings. However, in this experiment, we obtain initial iterates with-
out assuming knowledge of the correct asymptotic pairings, as
described in Section 4.3.

For each new coefficient q} and perturbation parameter ¢ €

{1071, ...,107%}, we compute the corresponding solution, g;(e),
and the maximum error among its coefficients, which is given by

~ *
“q;(e) - qs ”oo
These errors are used to calculate the maximum error value

n(e) = max 11d,(€) - 4|,

Initial iterate Random Warmstart and mean error value
Formulation I 81.33% 100% N
. 1 - «
Formulation II 80.67% 100% ule) = N ZHqS(e) —q; e
s=1
10-14 ’) ®
T 1071 . -
1024 v ot 3 JPtas
3 1T 10-24 o

1072+ i P ¢
5 .« L 5 1077 . T,
o 107%- = 5 -
= * 7T ! 2 107 s 7 o
3 10-31 e o |as(e)—al 7] -~
E L] - + | 2 2 | E 10_5 T ® ,’.’ +
o P L * 7] - L] |& (&) — ﬂ*l
O 10-64 & = |B2(e) =B, | o . ¢l me" 2 2
(W) A ‘ J " W) 10 T ’ s N

10-71 ¢ [va(e) - va | 107 = |Ba(e) - B5]

‘ ¥ - i ~
Loms s [Fole) - y5| A N AGER%
--- Ofe) 107 --- Ole)
10~ 2 T T T T : 1079+ T T : : :
10~ 103 1074 1073 1072 1071 10~ 1073 1074 1073 1072 1071
Noise () Noise (¢)
(a) ()
FIGURE3 | Results of Experiment II. Error in the coefficients y, and p,, asa function of noise in the data using (a) Formulation I and (b) Formu-

lation II. (a) Coefficient error using Formulation I. (b) Coefficient error using Formulation II.
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FIGURE4 | Results of Experiment III: We repeat Experiment II 30

times and report the maximum error value 7(e) and mean error value p(e).
We only report the results of Formulation II.

for each e. Figure 4 depicts these errors. In particular, it illustrates
a decrease of O(e) in both errors. We conclude from Figure 4
that our optimization approach is effective for solving the IEDP,
i.e., minimizing (31), even in the case of unknown asymptotic
pairings.

6 | Conclusions

In this article, we formulated the problem to recover the quan-
tum Hamiltonian matrix of a three quantum dot system as a
parameterized IEDP. The proposed optimization and warmstart-
ing approach successfully recovers ground state coefficients using
eigenvalue differences. In particular, we find that this strategy
yields initial iterates, for which the optimization method con-
verges consistently to an accurate solution, even in the presence
of noise. Furthermore, the proposed method outperforms ran-
dom initialization. This demonstrates the feasibility of recovering
the physical parameters of a particular three quantum dot system,
suggesting extensions to other quantum dot system.
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Appendix A
The (1,1) Entry of G(F)

We now demonstrate that, for our IEDP, without loss of generality, one
can set the (1, 1) element of G(F) to zero, i.e., g;(F) = 0in (1).

Consider the shifted matrix
G(F) = G(F) + 6(F)I (A1)

where §(F) is any scalar-valued function of F and [ is the identity
matrix. Let {€,(F), &,(F), & (F)} be the eigenvalues of G(F), with &, (F) <
&,(F) < &,(F). Note that &,(F) = &(F)+ 6(F) for i =1,2,3. Then the
eigenvalue differences in G(F) are equal to the eigenvalue differences in
G(F) since

E(F) = &;(F) = (§(F) + 8(F)) = (&§;(F) + 6(F)) = §(F) = §,(F)  (A2)

for all i and j. Thus, if G(F) is a solution to our IEDP, then so is G(F).
Choosing 6(F) = —g,(F)yields a solution whose (1, 1) is zero. Thus, with-
out loss of generality, we may set g, (F) = 0.

Appendix B
Proof of Proposition 1

Proof. The proof consists of the following parts: (1)The same eigenvalue
differences can be obtained using {&,,&,, &} or {—&;, —¢&,, =&, }. (2) Given
a set of eigenvalues and a solution with g, and g5, then another solution
exists by swapping g, and g. (3) Given a set of eigenvalues, no other solu-
tions can be obtained using five or more values of F. (4) Given a set of
eigenvalue differences and a solution with g, and g5, then another solu-
tion exists with —g, and —g5. (5) Given a set of eigenvalue differences and
a solution with g5 and g,, then another solution exists with —g; and —g,.
(6) Given the set of eigenvalue differences, no other solutions exist.

1. We first identify that there are two possible sets of eigenvalues
for G defined in (8) that both satisfy a set of eigenvalue differences,
{Ds,,D,,,D;,} and maintain g, (F) = 0, namely,

{,6,5) and {-&,-&,-¢} (B1)
The first set satisfies the eigenvalue differences by definition. Since the
eigenvalues are defined in increasing order, let &, = —¢,, &, = =¢,, and
& =&, where & > &, > £. Using D, ,, D, ,, and D5, as defined simi-
larly in (4-6), by substitution we have that

D, (F) = —&,(F) = (=&(F)) = Ds,, (B2)
Dy (F) = —&/(F) — (=&(F)) = Dy, (B3)
Dy ,(F) = —&,(F) — (=&,(F)) = D;;. (B4)

which shows { D5, D, Ds,} = Dy, D,;. D3, ).

2. The fact that [y, p; , p;] is also a solution follows from swapping the
second and third rows and columns of the G matrix (8).

3. We now demonstrate that, given the eigenvalue set {£,, &,, &} and solu-
tions [y;, p;z ) p;] and [y;, p; ) p;z], no additional solutions exist.

Lemmal. Suppose [y;,p;,p;] and [y;,p;,pz 1 are solutions to the
IEDP with eigenvalues {&,,&,,&,} for F € {F,, ..., F5}. Suppose there is
an additional solution

q° =0.9;,-9;, ] (BS)
where q;z = [a}, b3, ¢] and q;3 = [a3, b3, ¢, which correspond to the
quadratic polynomials

h(F)=d +b/F+c'F>, i=23. (B6)

Then, q is of the form [y;. p;, ., 10r [y;.p; .p; 1.

Proof. First, we rewrite (22) as an equivalent system (see [29]) of
the form

_y(z)@l +&+&E) 6656 =0 (B7a)
g; + 8,6 + & +§3)+2y(2)+§1§2 +&68+86586=0 (B7b)
&teg—&6-&-6=0 (B7¢)

where g;(F) = a; + f,; F +y; F? for j = 2,3. Solving this system yields

R 1
TN H+5+4

(B8a)
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g;_r = %(51 +&6H+8)

. VE -6 -8)E —H+E)E+E-E)E +5+E) (B8b)
26 +6+ &)
1
= 5(51 + 52 +§3)
CVE S -E)E L+ E)E+E -G +E+E)
T (B8c)
26, +6,+ &)

where the superscript “+” corresponds to the positive root and the super-
script “—” corresponds to the negative root. It follows from (B8a) that we
have two sets of solutions, each corresponding to a sign of y,. However,
we only consider the case where y, > 0. Note from (B8b) and (B8c) that
g = g; - Usingthese notations, ifg, = g} = g}, then g, = g; = g, . Alter-
natively, if g, = g; = g5, then g; = g} = g}. This yields the two solutions
(5. p5, P, 1 and 5, b7 B, |-

Without loss of generality, we assume that g,(F) = g;’ (F) in (B8b) and
g(F) = g7 (F) in (B8c). Note that by their definition, h,(F) and h;(F)
must also satisfy (B8b) and (B8c), respectively, at each F, (k =1, ...,n).
Thus, for g* to be a solution, it must satisfy, at each F,

hy(F) = g,(F,) and hy(F,) = g5(F) (B9a)
or

hy(F) = g3(F,) and hy(F,) = g,(F) (B9b)
For n > 5, (B9a) or (B9b) (or both) must hold for at least three values of
F. If (B9a) holds for at least three values of F, then h,(F) = g,(F) and
h;(F) = g;(F) since they are quadratic polynomials that intersect at least
three different points. Hence, qh =p;, and qh = p; - Similarly, if (B9b)
holds for at least three values ofF then hz(F) g3(F) and h;(F) = g,(F).
Hence, qh2 = pg3 and qhz = pgl. Thus, q* is of the form [yo,pgz,p;] or
s P, - P, I o
From Lemma (1), given the eigenvalue set {£,, &,, &}, no additional solu-
tions exist.

4. We now demonstrate thatif [y, p; ) pz ]is a solution to the IEDP corre-
2 3
sponding to the eigenvalue set {£;,&,,&;}, then [y, —p; R —p; ] is a solu-
2 3
tion to the IEDP corresponding to the eigenvalue set {—&;, —&,, =&, }.

Lemma2. If [y;, p;, p;] is a solution to the IEDP corresponding to the
eigenvalueset {&,,&,, &, }, then [y, —pZz s _ng] is a solution to the IEDP cor-
responding to the eigenvalue set {—&;,—¢&,, =&, }.

Proof.  Given [y;,p;, .p; 1isasolution to the IEDP using the eigenvalue
set {&,,&,, &}, the matrix

0 —Yo —Yo
—GF)=|-y, —&F) 0 (B10)
—Yo 0 —g3(F)

also satisfies the eigenvalue differences with eigenvalues {—&;, —&,, —& },
but is not a solution since —y, < 0. Pre- and post-multiplying —G by the

3 X 3 diagonal matrix P = diag (1, -1, —1) yields
0 Yo Yo
G =P(-G)P =|y, —g,(F) 0 (B11)
Yo 0 _g3(F)

Note that P = P~!. Therefore, G is similar to —G and consequently has
the same eigenvalues as —G, which has the same eigenvalue differences
as G. Therefore, [y;, —p* N —p* ]1is a solution. O

From Lemma (2), since [yo,p p ] is a solution to the IEDP, then
v, p ,—p ]1s also asolutlon to the IEDP.

5. Similarly to Part 4, from Lemma (2), since [vgs p’gf ,p; ]1is a solution to
3 2

the IEDP, then [y;, —p; ) —p;] is also a solution to the IEDP.

6. Given the two solutions to the IEDP

=P, .—P, 1 and [y5,-p,.-p, ] (B12)
corresponding to {—¢&;, —&,, =&, }, then no additional solutions exist cor-
responding to {—¢;, —&,, —¢, } per Lemma (1).

Thus, the four solutions to the IEDP are

yo:P,,-p; 1. 5P, P ) [y, —p, .—p, ], and

[¥5: =Py, - — P ] (B13)

concluding the proof. O
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