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Abstract

Unseen Action Recognition (UAR) aims to recognise

novel action categories without training examples. While

previous methods focus on inner-dataset seen/unseen splits,

this paper proposes a pipeline using a large-scale train-

ing source to achieve a Universal Representation (UR) that

can generalise to a more realistic Cross-Dataset UAR (CD-

UAR) scenario. We first address UAR as a Generalised

Multiple-Instance Learning (GMIL) problem and discover

‘building-blocks’ from the large-scale ActivityNet dataset

using distribution kernels. Essential visual and semantic

components are preserved in a shared space to achieve the

UR that can efficiently generalise to new datasets. Pre-

dicted UR exemplars can be improved by a simple se-

mantic adaptation, and then an unseen action can be di-

rectly recognised using UR during the test. Without fur-

ther training, extensive experiments manifest significant im-

provements over the UCF101 and HMDB51 benchmarks.

1. Introduction

The field of human action recognition has advanced

rapidly over the past few years. We have moved from

manually designed features [41, 8] to learned convolutional

neural network (CNN) features [39, 15]; from encoding

appearance information to encoding motion information

[37, 40, 36]; and from learning local features to learning

global video features [42, 6, 19]. The performance has con-

tinued to soar higher as we incorporate more of the steps

into an end-to-end learning framework [56, 55]. However,

such robust and accurate action classifiers often rely on

large-scale training video datasets using deep neural net-

works, which require large numbers of expensive annotated

samples per action class. Although several large-scale video

datasets have been proposed like Sports-1M [15], Activi-

∗Yang Long contributed equally to this work.

tyNet [13], YouTube-8M [1] and Kinetics [16], it is prac-

tically infeasible and extremely costly to annotate action

videos with the ever-growing need of new categories.

Zero-shot action recognition has recently drawn consid-

erable attention because of its ability to recognize unseen

action categories without any labelled examples. The key

idea is to make a trained model that can generalise to unseen

categories with a shared semantic representation. The most

popular side information being used are attributes, word

vectors and visual-semantic embeddings. Such zero-shot

learning frameworks effectively bypass the data collection

limitations of traditional supervised learning approaches,

which makes them more promising paradigms for UAR.

Extensive work on zero-shot action recognition has been

done in the past five years. [22, 10, 12, 26, 24] considered

using attributes for classifications. These attribute-based

methods are easy to understand and implement, but hard

to define and scale up to a large-scale scenario. Semantic

representations like word vectors [9, 3, 25] are thus pre-

ferred since only category names are required for construct-

ing the label embeddings. There also has been much recent

work on using visual-semantic embeddings extracted from

pre-trained deep networks [14, 44, 28] due to their superior

performance over single view word vectors or attributes.

However, whichever side information we adopt, the gen-

eralisation capability of these approaches is not promising,

which is referred to as the domain shift problem. Most pre-

vious work thus still focuses on inner-dataset seen/unseen

splits. This is not very practical since each new dataset or

each category will require re-training. Motivated by such

a fact we propose to utilise a large-scale training source

to achieve a Universal Representation (UR) that can auto-

matically generalise to a more realistic Cross-Dataset UAR

(CD-UAR) scenario. Unseen actions from new datasets can

be directly recognised via the UR without further training

or fine-tuning on the target dataset.

The proposed pipeline is illustrated in Fig. 1. We first

leverage the power of deep neural networks to extract vi-
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Figure 1. The proposed CD-UAR pipeline: 1) Extract deep features for each frame and summarise the video by essential components that

are kernelised by GMIL; 2) Preserve shared components with the label embedding to achieve UR using NMF with JSD; 3) New concepts

can be represented by UR and adjusted by domain adaptation. Test (green line): unseen actions are encoded by GMIL using the same

essential components in ActivityNet to achieve a matching using UR.

sual features, which results in a Generative Multiple In-

stance Learning (GMIL) problem. Namely, all the visual

features (instances) in a video share the label while only a

small portion is determinative. Compared to conventional

global summaries of visual features using Bag-of-Visual-

Word or Fisher Vector encoding, GMIL aims to discover

those essential “building-blocks” to represent actions in the

source and target domains and suppress the ambiguous in-

stances. We then introduce our novel Universal Representa-

tion Learning (URL) algorithm composed of Non-negative

Matrix Factorisation (NMF) with a Jensen-Shannon Diver-

gence (JSD) constraint. The non-negativity property of

NMF allows us to learn a part-based representation, which

serves as the key bases between the visual and semantic

modalities. JSD is a symmetrised and bounded version of

the Kullback-Leibler divergence, which can make balanced

generalisation to new distributions of both visual and se-

mantic features. A representation that can generalise to both

visual and semantic views, and both source and target do-

mains, is referred to as the UR. More insighs of NMF, JSD,

and UR will be discussed in the experiments. Our main

contributions can be summarised as follows:

• This paper extends conventional UAR tasks to more

realistic CD-UAR scenarios. Unseen actions in new

datasets can be directly recognised via the UR without

further training or fine-tuning on the target dataset.

• We propose a CD-UAR pipeline that incorporates

deep feature extraction, Generative Multiple Instance

Learning, Universal Representation Learning, and se-

mantic domain adaptation.

• Our novel URL algorithm unifies NMF with a JSD

constraint. The resultant UR can substantially preserve

both the shared and generative bases of visual semantic

features so as to withstand the challenging CD-UAR

scenario.

• Extensive experiments manifest that the UR can ef-

fectively generalise across different datasets and out-

perform state-of-the-art approaches in inductive UAR

scenarios using either low-level or deep features.

2. Related Work

Zero-shot human action recognition has advanced

rapidly due to its importance and necessity as aforemen-

tioned. The common practice of zero-shot learning is to

transfer action knowledge through a semantic embedding

space, such as attributes, word vectors or visual features.

Initial work [22] has considered a set of manually de-

fined attributes to describe the spatial-temporal evolution of

the action in a video. Gan et al. [12] investigated the prob-

lem of how to accurately and robustly detect attributes from

images or videos, and the learned high-quality attribute de-

tectors are shown to generalize well across different cate-

gories. However, attribute-based methods suffer from sev-

eral drawbacks: (1) Actions are complex compositions in-

cluding various human motions and human-object interac-

tion. It is extremely hard (e.g., subjective, labor-intensive,

lack of domain knowledge) to determine a set of attributes

for describing all actions; (2) Attribute-based approaches

are not applicable for large-scale settings since they always

require re-training of the model when adding new attributes;

(3) Despite the fact that the attributes can be data-driven

learned or semi-automatically defined [10], their semantic

meanings may be unknown or inappropriate.

Hence, word vectors have been preferred for zero-shot

action recognition, since only category names are required

for constructing the label embeddings. [9, 45] are among

the first works to adopt semantic word vector spaces as the

9437



intermediate-level embedding for zero-shot action recogni-

tion. Following [45], Alexiou et al. [3] proposed to explore

broader semantic contextual information (e.g., synonyms)

in the text domain to enrich the word vector representation

of action classes. However, word vectors alone are deficient

for discriminating various classes because of the semantic

gap between visual and textual information.

Thus, a large number of recent works [14, 21, 44, 43]

exploit large object/scene recognition datasets to map ob-

ject/scene scores in videos to actions. This makes sense

since objects and scenes could serve as the basis to construct

arbitrary action videos and the semantic representation can

alleviate such visual gaps. The motivation can also be as-

cribed to the success of CNNs [49, 51, 48]. With the help of

off-the-shelf object detectors, such methods [28] could even

perform zero-shot spatio-temporal action localization.

There are also other alternatives to solve zero-shot ac-

tion recognition. Gan et al. [11] leveraged the semantic

inter-class relationships between the known and unknown

actions followed by label transfer learning. Such similarity

mapping doesn’t require attributes. Qin et al. [32] formu-

lated zero-shot learning as designing error-correcting out-

put codes, which bypass the drawbacks of using attributes

or word vectors. Due to the domain shift problem, several

works have extended the methods above using either trans-

ductive learning [9, 46] or domain adaptation [17, 47].

However, all previous methods focus on inner-dataset

seen/unseen splits while we extend the problem to CD-

UAR. This scenario is more realistic and practical; for ex-

ample, we can directly recognise unseen categories from

new datasets without further training or fine-tuning. Though

promising, CD-UAR is much more challenging compared

to conventional UAR. We contend that when both CD and

UAR are considered, the severe domain shift exceeds the

generalization capability of existing approaches. Hence, we

propose the URL algorithm to obtain a more robust univer-

sal representation. Our novel CD-UAR pipeline dramati-

cally outperforms both conventional benchmarks and state-

of-the-art approaches, which are in inductive UAR scenar-

ios using low-level features and CD-UAR using deep fea-

tures, respectively. One related work also applies NMF to

zero-shot image classification [50]. Despite the fact that

promising generalisation is reported, which supports our in-

sights, it still focuses on inner-class splits without consid-

ering CD-UAR. Also, their sparsity constrained NMF has

completely different goals to our methods with JSD.

3. Approach

In this section, we first formalise the problem and clar-

ify each step as below. We then introduce our CD-UAR

pipeline in detail, which includes Genearalised Multiple-

Instance Learning, Universal Representation Learning and

semantic adaptation.

SolutioŶ: Feature LearŶiŶg+ Aŵbiguity Reŵoval

Figure 2. Visualisation of feature distributions of action ‘long-

jump’ and ‘triple-jump’ in the ActivityNet dataset using tSNE.

Training Let (x1, y1), · · · , (xNs
, yNs

) ⊆ Xs × Ys denote

the training actions and their class labels in pairs in the

source domain Ds, where Ns is the training sample size;

each action xi has Li frames in a D-dimensional visual fea-

ture space [xi] = (x1
i , ...,x

Li

i ) ∈ R
D×Li ; yi ∈ {1, · · · , C}

consists of C discrete labels of training classes.

Inference Given a new dataset in the target domain Dt

with Cu unseen action classes that are novel and distinct,

i.e. Yu = {C + 1, ..., C + Cu} and Yu ∩ Ys = ∅, the

key solution to UAR needs to associate these novel con-

cepts to Ds by human teaching. To avoid expensive anno-

tations, we adopt Word2vec semantic (S) label embedding

(ŝ1, ŷ1), · · · , (ŝCu
, ŷCu

) ⊆ Su × Yu. Hat and subscript

u denote information about unseen classes. Inference then

can be achieved by learning a visual-semantic compatibility

function minL(Φ(Xs),Ψ(Ss)) that can generalise to Su.

Test Using the learned L, an unseen action x̂ can be recog-

nised by f : Φ(x̂)→ Ψ(Su)× Yu.

3.1. Genearalised Multiple­Instance Learning

Conventional summary of xi can be achieved by Bag-

of-Visual-Words or Fisher Vectors [31]. In GMIL, it is as-

sumed that instances in the same class can be drawn from

different distributions. Let P (·) denote the space of Borel

probability measures over its argument, which is known as

a bag. Conventionally, it is assumed that some instances are

attractive P+(x) while others are repulsive P−(x). This

paper argues that many instances may exist in neutral bags.

In Fig. 2, we show an example of visual feature distribu-

tions of ‘long-jump’ and ‘triple-jump’. Each point denotes

a frame. While most frames fall in the neutral bags (red

thumb), only a few frames (green thumb) are attractive to

one class and repulsive to others. The neutral bags may

contain many basic action bases shared by classes or just

background noise. Conventional Maximum Mean Discrep-

ancy [7] may not well represent such distributions. Instead,

this paper adopts the odds ratio embedding, which aims to

discover the most attractive bases to each class c and sup-

press the neutral ones. This can be simply implemented by
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the pooled Naive Bayes Nearest Neighbor (NBNN) kernel

[33] at the ‘bag-level’. We conduct k-means on each class

to cluster them into H bags. The associated kernel function

is:

k(x,x′) = φ(x)Tφ(x′), (1)

where Φ(Xs) = [φ(xi)] = [φ1(xi), ..., φ
CH(xi)]

T is the

kernelised representation with odds ratio [27] applies to

each kernel embedding: φci(x) =
∑Li

l=1 log
p(c|xl)
p(c̄|xl)

. Spe-

cific implementation details can be found in the supplemen-

tary material. In this way, we discover C × H bases as

‘building-blocks’ to represent any actions in both the source

and target domains.

3.2. Universal Representation Learning

For clarity, we use A = Φ(Xs) and B = Ss to de-

fine the visual and semantic embeddings in the source do-

main Ds : A × B. Towards universal representation, we

aim to find a shared space that can: 1) well preserve the key

bases between visual and semantic modalities; 2) generalise

to new distributions of unseen datasets. For the former, let

A = [a1, · · · ,aNs
] ∈ R

M1×Ns

≥0 and B = [b1, · · · ,bNs
] ∈

R
M2×Ns

≥0 ; M1 = C × H and M2 = L. NMF is employed

to find two nonnegative matrices from A: U ∈ R
M1×D1

≥0

and V1 ∈ R
D1×Ns

≥0 and two nonnegative matrices from B:

W ∈ R
M2×D2

≥0 and V2 ∈ R
D2×Ns

≥0 with full rank whose

product can approximately represent the original matrix A

and B, i.e., A ≈ UV1 and B ≈ WV2. In practice, we set

D1 < min(M1, Ns) and D2 < min(M2, Ns). We constrain

the shared coefficient matrix: V1 = V2 = V ∈ R
D×Ns

≥0 .

For the latter aim, we introduce JSD to preserve the gen-

erative components from the GMIL and use these essential

‘building-blocks’ to generalise to unseen datasets. Hence,

the overall objective function is given as:

L = min
U,W,V

‖A− UV ‖2F +‖B −WV ‖2F

+η JSD, s.t. U,W, V ≥ 0,
(2)

where ‖·‖F is the Frobenius norm; η is a smoothness pa-

rameter; JSD is short for the following equation:

JSD(PA||PB) =
1

2
KL(PA||Q) +

1

2
KL(PB ||Q)

=
1

2

∑

i

∑

j

p
ij
A log pijA − p

ij
A log qij

+
1

2

∑

i

∑

j

p
ij
B log pijB − p

ij
B log qij

(3)

where PA and PB are probability distributions in space A

and B. We aim to find the joint probability distribution Q in

the shared space V that is generalised to by PA and PB and

their shifted distributions in the target domain. Specifically,

JSD can be estimated pairwise as:







































p
ij
A =

g(ai,aj)
∑

k 6=l g(a
k,al)

p
ij
B =

g(bi,bj)
∑

k 6=l g(b
k,bl)

qij =
(1 + ‖vi − vj‖

2)−1

∑

k 6=l(1 + ‖vk − vl‖2)−1
.

(4)

Without loss of generality, this paper use the cross-

entropy distance to implement g(·).

3.2.1 Optimization

Let the Lagrangian of Eq. 2 be:

L = ‖A− UV ‖2 + ‖B −WV ‖2 + η JSD

+ tr(ΦUT ) + tr(ΘWT ) + tr(ΨV T ),
(5)

where Φ, Θ and Ψ are three Lagrangian multiplier matrices.

tr(·) denotes the trace of a matrix. For clarity, JSD in Eq. 3

is simply denoted as G. We define two auxiliary variables

dij and Z as follows:

dij = ‖vi − vj‖ and Z =
∑

k 6=l

(1 + d2kl)
−1. (6)

Note that if vi changes, the only pairwise distances that

change are dij and dji. Therefore, the gradient of function

G with respect to vi is given by:

∂G

∂vi

= 2

N
∑

j=1

∂G

∂dij
(vi − vj). (7)

Then ∂G
∂dij

can be calculated by JS divergence in Eq. (3):

∂G

∂dij
=−

η

2

∑

k6=l

(pklA+p
kl
B)

(

1

qklZ

∂((1+d2kl)
−1)

∂dij
−
1

Z

∂Z

∂dij

)

. (8)

Since
∂((1+d2

kl)
−1)

∂dij
is nonzero if and only if k = i and

l = j, and
∑

k 6=l pkl = 1, it can be simplified as:

∂G

∂dij
= η(pijA + p

ij
B − 2qij)(1 + d2ij)

−1. (9)

Substituting Eq. (9) into Eq. (7), we have the gradient of

the JS divergence as:

∂G

∂vi

=2η

N
∑

j=1

(pijA+p
ij
B−2qij)(vi−vj)(1+‖vi−vj‖

2)−1.

(10)
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Let the gradients of L be zeros to minimize Of :

∂L

∂V
=2(−UTA+UTUV−WTB+WTWV )+

∂G

∂V
+Ψ=0, (11)

∂L

∂U
= 2(−AV T + UV V T ) + Φ = 0, (12)

∂L

∂W
= 2(−BWT +WV V T ) + Θ = 0. (13)

In addition, we also have KKT conditions: ΦijUij = 0,

ΘijWij = 0 and ΨijVij = 0, ∀i, j. Then multiplying Vij ,

Uij and Wij in the corresponding positions on both sides of

Eqs. (11), (12) and (13) respectively, we obtain:

(

2(−UTA+UTUV−WTB+WTWV )+∂G
∂vi

)

ij
Vij=0, (14)

2(−AV T + UV V T )ijUij = 0, (15)

2(−BV T +WV V T )ijWij = 0. (16)

Note that

(

∂G

∂vj

)

i

=

(

2η

N
∑

k=1

(pjkA + p
jk
B − 2qjk)(vj − vk)

1 + ‖vj − vk‖2

)

i

= 2η

N
∑

k=1

(pjkA + p
jk
B − 2qjk)(Vij − Vik)

1 + ‖vj − vk‖2
.

The multiplicative update rules of the bases of both W

and U for any i and j are obtained as:

Uij←
(AV T )ij
(UV V T )ij

Uij , (17)

Wij←
(BV T )ij

(WV V T )ij
Wij . (18)

The update rule of the shared space preserving the coeffi-

cient matrix V between the visual and semantic data spaces

is:

Vij←
(UTA)ij+(W

TB)ij+Υ

(UTUV )ij+(WTWV )ij+Γ
Vij , (19)

where for simplicity, we let Υ = η
N
∑

k=1

(pjk
A
+pjk

B
)Vik+2qjkVij

1+‖vj−vk‖2 ,

Γ = η
N
∑

k=1

(pjk
A
+pjk

B
)Vij+2qjkVik

1+‖vj−vk‖2 .

All the elements in U , W and V can be guaranteed to

be nonnegative from the allocation. [20] proves that the ob-

jective function is monotonically non-increasing after each

update of U , W or V . The proof of convergence about U ,

W and V is similar to that in [53, 5].

3.2.2 Orthogonal Projection

After U , W and V have converged, we need two projection

matrices PA and PB to project A and B into V . However,

since our algorithm is NMF-based, a direct projection to the

shared space does not exist. Inspired by [4], we learn two

rotations to protect the data originality while projecting it

into the universal space, which is known as the Orthogonal

Procrustes problem [35]:







min
PA

‖PAA− V ‖, s.t. PT
APA = I,

min
PB

‖PBB − V ‖, s.t. PT
BPB = I,

(20)

where I is an identity matrix. According to [52], orthogonal

projection has the following advantages: 1) It can preserve

the data structure; 2) It can redistribute the variance more

evenly, which maximally decorrelates dimensions. The op-

timisation is simple. We first use the singular value de-

composition (SVD) algorithm to decompose the matrix:

ATV = QΣST . Then PA = SΛQT , where Λ is a con-

nection matrix as Λ = [I,0] ∈ R
D×M and 0 indicates all

zeros in the matrix. PB is achieved in the same way. Given

a new dataset Dt, semantic embeddings Bu = Su can be

projected into V as class-level UR prototypes in an unseen

action gallery V̂B = PBBu. A test example â can be simply

predicted by nearest neighbour search:

ŷ = argmax
C+16u6C+Cu

‖PAâ− v̂Bu
‖22, (21)

where v̂Bu
∈ V̂B . The overall Universal Representation

Learning (URL) is summarised in Algorithm 1.

Algorithm 1 Universal Representation Learning (URL)

Require:

Source domain Ds: A ∈ R
M1×N and B ∈ R

M2×N ;

number of bases D; hyper-parameter η;

Ensure: The basis matrices U , W , orthogonal projections

PA and PB .

1: Initialize U , W and V with uniformly distributed ran-

dom values between 0 and 1.

2: repeat

3: Compute the basis matrices U and W and UR matrix

V via Eqs. (17), (18) and (19), respectively;

4: until convergence

5: SVD decomposes the matrices ATV and BTV to ob-

tain QAΣST
A and QBΣST

B

6: PA = SAΩQT
A; PB = SBΩQT

B

3.3. Computational Complexity Analysis

The UAR test can be achieved by efficient NN search

among a small number of prototypes. The training con-
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sists of three parts. For NMF optimisation, each it-

eration takes O(max{M1ND,M2ND}). In compari-

son, the basic NMF algorithm in [20] applied to A and

B separately will have complexity of O(M1ND) and

O(M2ND) respectively. In other words, our algorithm is

no more complex than the basic NMF. The second regres-

sion requires SVD decomposition which has complexity

O(2N2D). Therefore, the total computational complexity

is: O(max{M1ND,M2ND}t+2N2D), w.r.t. the number

of iterations t.

3.4. Semantic Adaptation

Since we aim to make the UR generalise to new datasets,

the domain shift between Ds and Du is unknown. For

improved performance, we can use the semantic informa-

tion of the target domain to approximate the shift. The

key insight is to measure new unseen class labels using

our discovered ‘building blocks’. Because the learnt UR

can reliably associate visual and semantic modalities, i.e.

V̂A ∼ V̂B we could approximate the seen-unseen discrep-

ancy VA → V̂A by VA → V̂B .

To this end, we employ Transfer Joint Matching

(TJM) [23], which achieves feature matching and instance

reweighing in a unified framework. We first mix the

projected semantic embeddings of unseen classes with

our training samples in the UR space by [VA, V̂B ] ∈
R

D×(Ns+Cu), where VA = PAA. TJM can provide an

adaptive matrix A and a kernel matrix K:

LTJM (VA, V̂B)→ (A,K), (22)

through which we can achieve the adapted unseen class

prototypes V̂ ′
B in the UR space via Z = ATK = [V ′

A, V̂
′
B ].

Unseen Action Recognition Given a test action x̂, we

first convert it into a kernelised representation using the

trained GMIL kernel embedding in Eq. 1: â =
[φ1(x̂), ..., φCH(x̂)]T . Similar to Eq. 21, we can now make

a prediction using the adapted unseen prototypes:

ŷ = argmax
C+16u6C+Cu

‖PAâ− v̂
′
Bu
‖22. (23)

4. Experiments

We perform the URL on the large-scale ActivityNet [13]

dataset. Cross-dataset UAR experiments are conducted on

two widely-used benchmarks, UCF101 [38] and HMDB51

[18]. UCF101 and HMDB51 contain trimmed videos while

ActivityNet contains untrimmed ones. We first compare our

approach to state-of-the-art methods using either low-level

or deep features. To understand the contribution of each

component of our method, we also provide detailed analysis

of possible alternative baselines.

Method Feature Setting HMDB51 UCF101

ST [45] BoW T 15.0±3.0 15.8±2.3

ESZSL [34] FV I 18.5±2.0 15.0±1.3

SJE [2] FV I 13.3±2.4 9.9±1.4

MTE [47] FV I 19.7±1.6 15.8±1.3

ZSECOC [32] FV I 22.6±1.2 15.1±1.7

Ours FV I 24.4±1.6 17.5±1.6

Ours FV T 28.9±1.2 20.1±1.4

Ours GMIL-D CD 51.8±0.7 42.5±0.9

Table 1. Comparison with state-of-the-art methods using standard

low-level features. Last two sets of results are just for reference.

T: transductive; I: inductive; Results are in %.

4.1. Settings

Datasets ActivityNet1 consists of 10024 training, 4926 val-

idation, and 5044 test videos from 200 activity classes.

Each class has at least 100 videos. Since the videos are

untrimmed, a large proportion of videos have a duration be-

tween 5 and 10 minutes. UCF101 is composed of realistic

action videos from YouTube. It contains 13320 video clips

distributed among 101 action classes. Each class has at least

100 video clips and each clip lasts an average duration of

7.2s. HMDB51 includes 6766 videos of 51 action classes

extracted from a wide range of sources, such as web videos

and movies. Each class has at least 101 video clips and each

clip lasts an average duration of 4.3s.

Visual and Semantic Representation For all three

datasets, we use a single CNN model to obtain the video

features. The model is a ResNet-200 initially trained on

ImageNet and fine-tuned on ActivityNet dataset. Overlap-

ping classes between ActivityNet and UCF101 are not used

during fine-tuning. We adopt the good practices from tem-

poral segment networks (TSN) [42], which is one of the

state-of-the-art action classification frameworks. We extract

feature from the last average pooling layer (2048-d) as our

frame-level representation. Note that we only use features

extracted from a single RGB frame. We believe better per-

formance could be achieved by considering motion infor-

mation, e.g. features extracted from multiple RGB frames

[39] or consecutive optical flow [37, 57, 54]. However, our

primary aim is to demonstrate the ability of universal rep-

resentations. Without loss of generality, we use the widely-

used skip-gram neural network model [29] that is trained

on Google News dataset and represent each category name

by an L2-normalized 300-d word vector. For multi-word

names, we use accumulated word vectors [30].

Implementation Details For GMIL, we estimate the

pooled local NBNN kernel [33] using knn = 200 to esti-

mate the odds-ratio in [27]. The best hyper-parameter η for

URL and that in TJM are achieved through cross-validation.

In order to enhance the robustness, we propose a leave-one-

hop-away cross validation. Specifically, the training set of

1We use the latest release 1.3 of ActivityNet for our experiments
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Method Train Test Splits Accuracy (%)

Jain et al. [14] - 101 3 30.3

Mettes and Snoek [28] - 101 3 32.8

Ours - 101 3 34.2

Kodirov et al. [17] 51 50 10 14.0

Liu et al. [22] 51 50 5 14.9

Xu et al. [47] 51 50 50 22.9

Li et al. [21] 51 50 30 26.8

Mettes and Snoek [28] - 50 10 40.4

Ours - 50 10 42.5

Kodirov et al. [17] 81 20 10 22.5

Gan et al. [12] 81 20 10 31.1

Mettes and Snoek [28] - 20 10 51.2

Ours - 20 10 53.8

Table 2. Comparison with state-of-art methods on different splits

using deep features.

ActivityNet is evenly divided into 5 hops according to the

ontological structure. In each iteration, we use 1 hop for

validation while the other furthest 3 hops are used for train-

ing. Except for feature extraction, the whole experiment is

conducted on a PC with an Intel quad-core 3.4GHz CPU

and 32GB memory.

4.2. Comparison with State­of­the­art Methods

Comparison Using Low-level Features Since most exist-

ing methods are based on low-level features, we observe a

significant performance gap. For fair comparison, we first

follow [32] and conduct experiments in a conventional in-

ductive scenario. The seen/unseen splits for HMDB51 and

UCF101 are 27/26 and 51/50, respectively. Visual features

are 50688-d Fisher Vectors of improved dense trajectory

[41], which are provided by [47]. Semantic features use

the same Word2vec model. Without local features for each

frame, our training starts from the URL. Note some meth-

ods [45] are also based on a transductive assumption. Our

method can simply address such a scenario by incorporating

V̂A into the TJM domain adaptation. We report our results

in Table 1. The accuracy is averaged over 10 random splits.

Our method outperforms all of the compared state-of-

the-art methods in the same inductive scenario. Although

the transductive setting to some extent violates the ‘unseen’

action recognition constraint, the TJM domain adaptation

method shows significant improvements. However, none

of the compared methods are competitive to the proposed

pipeline even though it is completely inductive plus cross-

dataset challenge.

Comparison Using Deep Features In Table 2, we follow

recent work [28] which provides the most comparisons to

related zero-shot approaches. Due to many different data

splits and evaluation metrics, the comparison is divided into

the three most common settings, i.e. using the standard su-

pervised test splits; using 50 randomly selected actions for

testing; and using 20 actions randomly for testing.

The highlights of the comparison are summarised as fol-

1 2

3 4
Figure 3. Convergence analysis w.r.t. # iterations. (1) is the overall

loss in Eq. 2. (2) is the JSD loss. (3) and (4) show decomposition

losses of A and B, respectively.

lows. First, [28] is also a deep-feature based approach,

which employs a GoogLeNet network, pre-trained on a

12,988-category shuffle of ImageNet. In addition, it adopts

the Faster R-CNN pre-trained on the MS-COCO dataset.

Secondly, it also does not need training or fine-tuning on

the test datasets. In other words, [28] shares the same spirit

to our cross-dataset scenario, but from an object detection

perspective. By contrast, our CD-UAR is achieved by pure

representation learning. Overall, this is a fair comparison

and worthy of a thorough discussion.

Our method consistently outperforms all of the com-

pared approaches, with minimum margins of 1.4%, 2.1%,

and 2.6% over [28], respectively. Note that, other than [14]

which is also deep-model-based, there are no other compet-

itive results. Such a finding suggests future UAR research

should focus on deep features instead. Besides visual fea-

tures, we use the similar skip-gram model of Word2vec for

label embeddings.Therefore, the credit of performance im-

provements should be given to the method itself.

4.3. In­depth Analysis

Since our method outperforms all of the compared

benchmarks, to further understand the success of the

method, we conduct 5 baselines as alternatives to our main

approach. The results are summarised in Table 3.

Convergence Analysis Before analysing baselines, we first

show examples of convergence curves in Fig. 3 during our

URL optimisation. It can be seen the overall loss reliably

converges after approximately 400 iterations. The JSD con-

straint in (2) gradually resolves while the decomposition

losses (3) and (4) tend to be competing to each other. This

can be ascribed to the difference of ranks between A and B.

While A is instance-level kernelised features, B is class-

level Word2vec that has much lower rank than that of A.

The alternation in each iteration reweighs A and B once in

turn, despite the overall converged loss.
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Dataset HMDB51 UCF101

Setting Cross-Dataset Transductive Cross-Dataset Transductive

GMIL+ESZSL[34] 25.7 30.2 19.8 24.9

UR Dimensionality Low High Low High Low High Low High

Fisher Vector 47.7 48.6 53.9 54.6 35.8 39.7 42.2 43.0

NMF (no JSD) 17.2 18.0 19.2 20.4 15.5 17.4 18.2 19.8

CCA 13.8 12.2 18.2 17.1 8.2 9.6 12.9 13.6

No TJM 48.9 50.5 51.8 53.9 32.5 36.6 38.1 38.6

Ours 49.6 51.8 57.8 58.2 36.1 42.5 47.4 49.9

Table 3. In-depth analysis with baseline approaches. ‘Ours’ refers to the complete pipeline with deep features, GMIL kernel embedding,

URL with NMF and JSD, and TJM. (Results are in %).

Pipeline Validation Due to the power of deep features

demonstrated by the above comparison, an intuitive as-

sumption is that the CD-UAR can be easily resolved by

deep features. We thus use the same GMIL features fol-

lowed by a state-of-the-art ESZSL [34] using RBF ker-

nels. The performance in Table 1 (15.0%) is improved to

(19.8%), which is marginal to our surprise. Such a results

shows the difficulty of CD-UAR while confirms the contri-

bution of the proposed pipeline.

GMIL vs FV As we stated earlier, the frame-based action

features can be viewed as the GMIL problem. Therefore,

we change the encoding to conventional FV and keep the

rest of the pipeline. It can be seen that the average per-

formance drop is 2% with as high as 6.9% in transductive

scenario on UCF101.

Separated Contribution Our URL algorithm is arguably

the main contribution in this paper. To see our progress over

conventional NMF, we set η = 0 to remove the JSD con-

straint. As shown in Table 3, the performance is severely

degraded. This is because NMF can only find the shared

bases regardless of the data structural change. GNMF [5]

may not address this problem as well (not proved) because

we need to preserve the distributions of those generative

bases rather than data structures. While generative bases

are ‘building blocks’ for new actions, the data structure may

completely change in new datasets. However, NMF is bet-

ter at preserving bases than canonical correlation analysis

(CCA) which is purely based on mutual-information max-

imisation. Therefore, a significant performance gap can be

observed between the results of CCA and NMF.

Without Domain Adaptation In our pipeline, TJM is used

to adjust the inferred unseen prototypes from Word2vec.

The key insight is to align the inferred bases to that of GMIL

in the source domain that is also used to represent unseen

actions. In this way, visual and semantic UR is connected

by V̂B ∼ VA ∼ V̂A. Without such a scheme, however, we

observe marginal performance degradation in the CD-UAR

scenario (roughly 3%). This is probably because Activi-

tyNet is rich and the concepts of HMDB51 and UCF101 are

not very distinctive. We further investigate the CD trans-

ductive scenario, which assumes V̂A can be observed for

TJM. As a result, the benefit from domain adaptation is

large (roughly 5% on HMDB51 and 1% on UCF101 be-

tween ‘Ours’ and ‘No TJM’).

Basis Space Size We propose two sets of size according to

the original sizes of A and B (recall section 3.2), namely the

high one Dhigh = 1
2 (M1 + M2) and the low one Dlow =

1
4 (M1 + M2). As shown in Table 3, the higher dimension

gives better results in most cases. Note that the performance

difference is not significant. We can thus conclude that our

method is not sensitive to the basis space size.

5. Conclusion

This paper studied a challenging Cross-Dataset Unseen

Action Recognition problem. We proposed a pipeline con-

sisting of deep feature extraction, Generative Multiple-

Instance Learning, Universal Representation Learning, and

Domain Adaptation. A novel URL algorithm was proposed

to incorporate Non-negative Matrix Factorisation with a

Jensen-Shannon Divergence constraint. NMF was shown

to be advantageous for finding shared bases between visual

and semantic spaces, while the remarkable improvement

of JSD was empirically demonstrated in distributive basis

preserving for unseen dataset generalisation. The resulting

Universal Representation effectively generalises to unseen

actions without further training or fine-tuning on the new

dataset. Our experimental results exceeded that of state-

of-the-art methods using both conventional and deep fea-

tures. Detailed evaluation manifests that most of contribu-

tion should be credited to the URL approach.

We leave several interesting open questions. For method-

ology, we have not examined other variations of NMF or

divergences. The GMIL problem is proposed without in-

depth discussion, although a simple trial using pooled local-

NBNN kernel showed promising progress. In addition, the

improvement of TJM was not significant in inductive CD-

UAR. A unified framework for GMIL, URL and domain

adaptation could be a better solution in the future.
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