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Benchmark datasets are critical for developing, evaluating, and comparing remote sensing image retrieval
(RSIR) approaches. However, current benchmark datasets are deficient in that (1) they were originally
collected for land use/land cover classification instead of RSIR; (2) they are relatively small in terms of
the number of classes as well as the number of images per class which makes them unsuitable for devel-
oping deep learning based approaches; and (3) they are not appropriate for RSIR due to the large amount
of background present in the images. These limitations restrict the development of novel approaches for
RSIR, particularly those based on deep learning which require large amounts of training data. We there-
fore present a new large-scale remote sensing dataset termed ‘‘PatternNet” that was collected specifically
for RSIR. PatternNet was collected from high-resolution imagery and contains 38 classes with 800 images
per class. Significantly, PatternNet’s large scale makes it suitable for developing novel, deep learning
based approaches for RSIR. We use PatternNet to evaluate the performance of over 35 RSIR methods rang-
ing from traditional handcrafted feature based methods to recent, deep learning based ones. These results
serve as a baseline for future research on RSIR.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Over the past several decades, remote sensing has experienced
dramatic changes in the increased spatial resolution of the imagery
as well as the increased rate of acquisition. These changes have had
profound effects on the way that we use and manage remote sens-
ing images. The increased spatial resolution provides new opportu-
nities for advancing remote sensing image analysis and
understanding, making it possible to develop novel approaches
that were not possible before. The increased acquisition rate
enables us to acquire a considerable volume of remote sensing data
on a daily basis. But this has resulted in the significant challenge of
how to efficiently manage the large data collections, particularly so
that the data of interest can be accessed quickly.

Content based image retrieval (CBIR) is a useful technique for
the fast retrieval of images of interest from a large-scale dataset
(Agouris et al., 1999). The remote sensing community has invested
significant effort to adapt CBIR to remote sensing images in recent
years, making remote sensing image retrieval (RSIR) an active and
challenging research topic. The remote sensing community has
been particularly focused on developing powerful feature extrac-
tion methods since retrieval performance is heavily dependent
on the effectiveness of the features.

Traditional RSIR methods use low-level visual features to repre-
sent the content of the images. These features can be either global
or local. Global features are extracted from the whole image, e.g.
color (spectral) features, texture features and shape features. In
contrast to global features, local features like Scale Invariant Fea-
ture Transform (SIFT) Lowe (2004) are extracted from image
patches that are centered at interesting points. Local features enjoy
several advantages over global ones such as robustness to occlu-
sion as well as invariance to viewing angle and lighting conditions.
The remote sensing community has sought to exploit these proper-
ties of local features for remote sensing image retrieval (Özkan
et al., 2014). These local and global features are hand-crafted
though. Their development is time consuming and often involves
ad-hoc or heuristic design decisions, making them suboptimal for
the task at hand. Deep learning has dramatically advanced the
state-of-the-art in various computer vision problems (LeCun
et al., 2015) as well as remote sensing problems such as simultane-
ous roads and buildings extraction (Alshehhi et al., 2017), very-
high-resolution optical image (Zhao et al., 2017) and hyperspectral
image (Ma et al., 2016) classification. Unlike hand-crafted features,
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deep learning is capable of discovering intricate structure in large
data sets and can automatically learn optimal and powerful feature
representations. Inspired by the great success of deep learning,
researchers have begun exploiting the potential of deep learning
techniques for image retrieval (Wan et al., 2014).

Though the remote sensing community has achieved notable
progress in RSIR in recent years, particularly through deep
learning-based methods, a comprehensive survey of the existing
methods on a benchmark dataset is lacking. The existing evalua-
tions are deficient in that they are performed using different per-
formance metrics, on different datasets, and/or under different
experimental configurations. There are two fundamental chal-
lenges to performing a consistent evaluation. First is the effort
and technical challenges of re-implementing the methods to pro-
duce results that can be meaningfully compared. Second is estab-
lishing consistent experimental conditions, central to which is
having a rich evaluation dataset. Actually, there are a number of
publicly available remote sensing benchmark datasets; however,
they were collected for land use/land cover classification and not
RSIR.

Image classification and image retrieval differ in terms of their
goals, how they accomplish those goals, and how they are
employed by users. They also require different types of datasets
to develop and evaluate novel methods.

The goal of image classification is to assign one or more seman-
tic labels to a given image (Han et al., 2017). The goal of image
retrieval is to identify images in a target set that are similar to a
query image. Classification is typically performed using a classifier
that is trained using a set of labeled images. Retrieval is performed
by comparing features extracted from the query image to features
extracted from the target images. These comparisons are used to
rank the target images in order of decreasing similarity.

When performing retrieval, a user usually selects a query image
that contains only the pattern/object/scene of interest. For this
case, the query image does not contain other patterns/objects/sce-
nes by construction since they are irrelevant to the task at hand.
Therefore, image retrieval methods should be developed and eval-
uated using datasets in which sample images contain only a single
pattern/object/scene of interest without any background. In con-
trast, a user performing classification might want to assign multi-
ple labels to an image including a background label. Classification
methods can be developed and evaluated using sample images
with multiple patterns/objects/scenes of interest including back-
ground in which all instances are labeled. (This generally makes
classification the more difficult task.)

From a dataset perspective, classification methods can be devel-
oped and evaluated using image retrieval datasets but not vice
versa. Image retrieval images should not have distracting pat-
terns/objects/scenes or background.

In this paper, we first introduce a novel, large-scale remote
sensing dataset, named PatternNet. PatternNet provides the
remote sensing community with a publicly available benchmark
dataset to develop novel algorithms for RSIR. We then provide a
comprehensive review of the existing RSIR approaches ranging
from traditional handcrafted feature-based methods to recently
developed deep learning feature-based ones. The main contribu-
tions of this paper are as follows:

– We construct a large-scale remote sensing benchmark dataset,
PatternNet, for RSIR. PatternNet is a publicly available, high-
resolution dataset which contains more classes and more
images than the current RSIR datasets.

– We provide a comprehensive review of the state-of-the-art
methods for RSIR, ranging from traditional handcrafted feature
based methods to recently developed deep learning feature
based ones.
Please cite this article in press as: Zhou, W., et al. PatternNet: A benchmark dat
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– We evaluate more than 35 methods on PatternNet under con-
sistent experimental conditions. This provides the literature
with extensive baseline results for future research on RSIR.

The rest of this paper is organized as follows. We provide a com-
prehensive review of several publicly available remote sensing
datasets and introduce our large-scale dataset PatternNet in Sec-
tion 2. Section 3 reviews the existing methods including hand-
crafted features and deep learning features for RSIR. The results
and comparisons of these methods are shown in Section 4. Sec-
tion 5 draws some conclusions.
2. PatternNet: A large-scale dataset for remote sensing image
retrieval

In addition to the limitations (i.e. datasets are collected for clas-
sification problem) of the existing datasets mentioned above, most
of those datasets are also small, making them unsuitable for devel-
oping deep learning based RSIR methods. Further, there tends to be
a large amount of background present in the images which makes
them inappropriate for RSIR. A large scale benchmark dataset col-
lected specifically for RSIR is needed to advance the field. Such a
dataset is particularly important to exploit deep learning based
approaches which have shown tremendous success on other com-
puter vision problems.

This section first reviews several publicly available remote
sensing datasets and then introduces the proposed large-scale Pat-
ternNet dataset for RSIR.
2.1. The existing remote sensing datasets

UC Merced dataset (http://vision.ucmerced.edu/datasets/lan-
duse.html). The UC Merced dataset (UCMD) Yang and Newsam
(2013) is a land use/land cover classification dataset which con-
tains 100 images of the following 21 classes: agricultural, airplane,
baseball diamond, beach, buildings, chaparral, dense residential,
forest, freeway, golf course, harbor, intersection, medium density
residential, mobile home park, overpass, parking lot, river, runway,
sparse residential, storage tanks and tennis courts. Each image
measures 256 � 256 pixels. The images are cropped from large aer-
ial images downloaded from the United States Geological Survey
(USGS) and the spatial resolution is around 0.3 m. The UCMD data-
set has several highly overlapping classes (i.e. sparse residential,
medium residential and dense residential), which makes it a chal-
lenging dataset. It was also the first publicly available remote sens-
ing evaluation dataset and has been used extensively to develop
and evaluate RSIR methods.

WHU-RS19 dataset (http://dsp.whu.edu.cn/cn/staff/yw/
HRSscene.html). The WHU-RS19 remote sensing dataset (RSD)
Sheng et al. (2012) is manually collected from Google Earth Ima-
gery and labeled into 19 classes: airport, beach, bridge, commercial
area, desert, farmland, football field, forest, industrial area, mea-
dow, mountain, park, parking, pond, port, railway station, residen-
tial area, river, and viaduct. The dataset consists of a total of 1005
images and each image has the size of 600 � 600 pixels. The
images in the RSD dataset have a wide range of spatial resolutions
with a maximum of 0.5 m.

RSSCN7 dataset (https://www.dropbox.com/s/j80iv1a0mv-
honsa/RSSCN7.zip?dl=0). The RSSCN7 dataset (Zou et al., 2015) is
sampled on four different scale levels from Google Earth imagery
and consists of 7 classes: grassland, forest, farmland, parking lot,
residential region, industrial region, river, and lake. There are 400
images in each class and each image has size of 400 � 400 pixels.

Aerial image dataset (http://www.lmars.whu.edu.cn/xia/AID-
project.html). The aerial image dataset (AID) Xia et al. (2017) is a
aset for performance evaluation of remote sensing image retrieval. ISPRS J.
.004
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large-scale dataset which was collected with the goal of advancing
the state-of-the-art in scene classification of remote sensing
images. It is notably larger than the three datasets mentioned
above and contains 30 classes: airport, bare land, baseball field,
beach, bridge, center, church, commercial, dense residential,
desert, farmland, forest, industrial, meadow, medium residential,
mountain, park, parking, playground, pond, port, railway station,
resort, river, school, sparse residential, square, stadium, storage
tanks, and viaduct. There are a total of 10,000 images in the AID
dataset and each class has 220–420 images of size 600 � 600 pix-
els. The spatial resolution of this dataset varies greatly between
approximately 0.5 to 8 m.

NWPU-RESISC45 dataset (https://1drv.ms/u/s!AmgKYzARBl5-
ca3HNaHIlzp_IXjs). The NWPU-RESISC45 dataset (NWPU45)
Cheng et al. (2017) is currently the largest publicly available
benchmark dataset for remote sensing scene classification. It is
constructed by first investigating all scene classes of the existing
datasets and then selecting a list of 45 representative ones: air-
plane, airport, baseball diamond, basketball court, beach, bridge,
chaparral, church, circular farmland, cloud, commercial area, dense
residential, desert, forest, freeway, golf course, ground track field,
harbor, industrial area, intersection, island, lake, meadow, medium
residential, mobile home park, mountain, overpass, palace, parking
lot, railway, railway station, rectangular farmland, river, round-
about, runway, sea ice, ship, snow berg, sparse residential, stadium,
storage tank, tennis court, terrace, thermal power station, and wet-
land. Each class has 700 images of size 256 � 256 pixels and the
spatial resolution of the images varies from approximately 0.2 to
30 m.

The UCMD dataset has been used the most widely as a bench-
mark for RSIR as it is the oldest. It is too small, however, for devel-
oping deep learning based approaches. The NWPU45 and AID
datasets are larger compared to UCMD, RSD, and RSSCN7. However,
their images contain significant amounts of background and thus
are not suitable for retrieval. See the sample images in Fig. 1. The
top 12 images are from NWPU45. The class of interest only repre-
sents a small portion of each image. The remainder of the image
contains widely varying background which will dominate the
image representation and distract retrieval. The bottom three
images in Fig. 1 are from AID and are also seen to contain a large
amount of background. The third image of this set is also potentially
mislabeled as it contains a wastewater treatment plant and not
storage tanks. Finally, the spatial resolution of the images in the
NWPU45 and AID datasets vary greatly, approximately 0.2 to 30
m for NWPU45 and 0.5 to 8 m for AID. Such a large range is not
appropriate for retrieval as the images will cover significantly dif-
ferently sized regions and thus are unlikely to be visually or seman-
tically similar. It also increases the chance they are mislabeled.
2.2. A New, Large-scale dataset for remote sensing image retrieval

A new dataset is needed for RSIR, one which overcomes the lim-
itations of the datasets above. We thus present the new RSIR data-
set PatternNet.

The PatternNet dataset. PatternNet1 is a large-scale2 high-
resolution remote sensing dataset collected for RSIR. It contains 38
classes: airplane, baseball field, basketball court, beach, bridge,
cemetery, chaparral, Christmas tree farm, closed road, coastal man-
sion, crosswalk, dense residential, ferry terminal, football field, for-
est, freeway, golf course, harbor, intersection, mobile home park,
nursing home, oil gas field, oil well, overpass, parking lot, parking
space, railway, river, runway, runway marking, shipping yard, solar
1 PatternNet is available at https://sites.google.com/view/zhouwx/dataset.
2 In this paper, ‘‘large-scale” means ‘‘large amount”.
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panel, sparse residential, storage tank, swimming pool, tennis court,
transformer station and wastewater treatment plant. Each class con-
tains 800 images measuring 256 � 256 pixels. The images in Pat-
ternNet are collected from Google Earth imagery or via the Google
Map API for US cities. Table 1 compares the PatternNet dataset with
the existing datasets in terms of the number of images per class, the
number of classes, the total number of images, the image spatial res-
olution and size, and the target application. PatternNet is seen to be
a better dataset for RSIR, especially for deep learning which requires
large amounts of labeled data.

Table 2 provides additional details about PatternNet including
the source and spatial resolution of the images for each class. Sim-
ilar to the AID and the NWPU45 datasets, the PatternNet images
vary in resolution. However, they tend to be much higher resolu-
tion. Even at the lowest resolution, 4.693 m, they cover a much
smaller region, approximately 1.4 km2, versus 59.3 km2 for the
NWPU45 and 23.0 km2 for the AID datasets. This again makes
the NWPU45 and AID images more likely to contain background
regions and be visually or semantically different.

Fig. 2 shows sample images from the PatternNet dataset. Note
that the class of interest covers most of the image—there is very lit-
tle background. In summary, our proposed PatternNet dataset has
the following notable characteristics.

– RSIR dataset. The PatternNet dataset is the largest publicly
available remote sensing dataset collected specifically for RSIR.

– Large scale. PatternNet has a large number of images per class
and a large number of images overall making it more suitable
for deep learning based RSIR approaches than the existing
datasets.

– High resolution. The AID and NWPU45 datasets have spatial
resolutions ranging from 0.5 m to 8 m and from 0.2 m to 30 m
respectively. Many images thus cover a large area and contain
a large amount of background which is not appropriate for RSIR.
In contrast, PatternNet has a higher spatial resolution so that
the classes of interest constitute a larger portion of the images.

3. Remote sensing image retrieval methods

The retrieval performance of RSIR methods depends greatly on
the representation strength of the image features. Significant effort
has therefore been undertaken to develop effective features over
the past few decades. Existing feature representations for RSIR
can be generally categorized into two groups, handcrafted features
and deep learning features. Note that the two categories are not
strictly distinct—hybrid or combinations have also been proposed.

3.1. Handcrafted feature based methods

3.1.1. Methods based on low-level features
Early RSIR methods relied on handcrafted low-level visual fea-

tures to represent the content of remote sensing images. This
includes globally extracted features (global features) and locally
extracted features (local features).

Generally, there are three kinds of global features: color (spec-
tral) features Bosilj et al. (2016), texture features (Aptoula, 2014;
Zhu and Shao, 2011; Shao et al., 2014), and shape features
(Zhang et al., 2013; Scott et al., 2011). Color and texture features
have been used more widely than shape features for RSIR. Remote
sensing images typically have several spectral bands (e.g. multi-
spectral imagery) and sometimes even have hundreds of bands
(e.g. hyper-spectral imagery) and therefore spectral information
is crucial for remote sensing image analysis. Bosilj et al. explored
both global and local pattern spectral features for geographical
image retrieval, and implemented pattern spectra features for the
first time with a dense strategy (Bosilj et al., 2016). The
aset for performance evaluation of remote sensing image retrieval. ISPRS J.
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Fig. 1. Some example images from the NWPU45 (top row) and the AID (bottom row) datasets.

Table 1
Comparison of the proposed PatternNet dataset and the existing datasets.

Dataset Images/class Classes Images Resolution (m) Size Application

UCMD 100 21 2100 0.3 256 � 256 Classification
RSD �50 19 1005 up to 0.5 600 � 600 Classification
RSSCN7 400 7 2800 N/A 400 � 400 Classification
AID 220–420 30 10,000 0.5– 8 600 � 600 Classification
NWPU45 700 45 31,500 0.2–30 256 � 256 Classification
PatternNet 800 38 30,400 0.062–4.693 256 � 256 Retrieval
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performance of the global spectral features as well as its new coun-
terpart were evaluated and compared to state-of-the-art
approaches on a benchmark dataset, resulting in the best
morphology-based results thus far. Color features, however, per-
form poorly when instances of an object/class vary in spectra or
spectra are shared between different objects/classes. Texture fea-
tures have therefore been applied to capture the spatial variation
of pixel intensity, and, indeed, they have demonstrated remarkable
performance on a range of remote sensing tasks including RSIR.
Aptoula explored the potential of recently developed multiscale
texture descriptors, the circular covariance histogram and the
rotation-invariant point triplets, for the problem of geographic
image retrieval, and introduced several new descriptors based on
the Fourier power spectrum (Aptoula, 2014). These descriptors
were shown to outperform the best retrieval scores in spite of their
low dimensions. However, most existing texture features are
Please cite this article in press as: Zhou, W., et al. PatternNet: A benchmark dat
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extracted from greyscale images, discarding the useful color infor-
mation of remote sensing images. Shao et al. therefore proposed
improved color texture descriptors for RSIR which incorporate dis-
criminative information among color channels (Shao et al., 2014)
and thus outperform other texture features like Gabor texture
and local binary pattern (LBP) Ojala et al. (2002). Zhu et al. pro-
posed a multi-scale, multi-orientation texture transform spectrum
to perform two-level coarse-to-fine rotation- and scale-invariant
texture image retrieval (Zhu and Shao, 2011). Experiments on a
benchmark texture dataset show that the proposed approach cap-
tures the primary orientation of an image and generates an infor-
mative descriptor. There are other works that focus on
combining color and texture features to improve the performance
of hyperspectral imagery retrieval (Shao et al., 2015). Other global
features like simple statistics (Yang and Newsam, 2013), and GIST
features (Oliva and Torralba, 2001) have also been used for RSIR.
aset for performance evaluation of remote sensing image retrieval. ISPRS J.
.004
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Table 2
Details of PatternNet dataset. ‘‘GMA” means the images are collected using the Google Maps API and ‘‘GE” means the images are collected from Google Earth imagery.

Class Resolution (meter/pixel) Source

GMA GE GMA GE

Airplane N/A 0.217 No Yes
Baseball field 0.233–0.293 0.124 Yes Yes
Basketball court 0.116–0.146 0.161 Yes Yes
Beach N/A 0.158 No Yes
Bridge 0.465–0.586 0.466 Yes Yes
Cemetery 0.233–0.293 N/A Yes No
Chaparral 0.233–0.293 N/A Yes No
Christmas tree farm N/A 0.124 No Yes
Closed road 0.233–0.293 0.217 Yes Yes
Coastal mansion 0.233–0.293 N/A Yes No
Crosswalk 0.233–0.293 N/A Yes No
Dense residential 0.233–0.293 N/A Yes No
Ferry terminal 0.465–0.586 0.311 Yes Yes
Football field 0.931–1.173 0.817 Yes Yes
Forest 0.233–0.293 N/A Yes No
Freeway N/A 0.311 No Yes
Golf course 0.233–0.293 0.233 Yes Yes
Harbor 0.233–0.293 N/A Yes No
Intersection 0.465–0.586 N/A Yes No
Mobile home park N/A 0.248 No Yes
Nursing home 0.465–0.586 N/A Yes No
Oil gas field 3.726–4.693 N/A Yes No
Oil well N/A 0.062 No Yes
Overpass N/A 0.466 No Yes
Parking lot 0.233–0.293 N/A Yes No
Parking space 0.116–0.146 0.102 Yes Yes
Railway 0.233–0.293 N/A Yes No
River 0.931–1.173 N/A Yes No
Runway 0.465–0.586 N/A Yes No
Runway marking 0.233–0.293 N/A Yes No
Shipping yard 0.233–0.293 N/A Yes No
Solar panel 0.233–0.293 N/A Yes No
Sparse residential 0.233–0.293 N/A Yes No
Storage tank 0.465–0.586 N/A Yes No
Swimming pool 0.116–0.146 N/A Yes No
Tennis court 0.116–0.146 0.158 Yes Yes
Transformer station 0.233–0.293 N/A Yes No
Wastewater treatment plant 0.233–0.293 0.124/0.189/0.248 Yes Yes
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Unlike global features, local features are extracted from image
patches centered at interesting points in an image. SIFT is one of
the most popular local feature descriptors and has been used
widely for various remote sensing tasks including scene classifica-
tion, RSIR, etc. Yang et al. investigated the use of local invariant fea-
tures to perform an extensive evaluation of geographic image
retrieval on the UCMD data which was, at the time, the only pub-
licly available remote sensing benchmark dataset (Yang and
Newsam, 2013). The local invariant features are compared to sev-
eral global features, such as simple statistics, color histograms, and
texture features. The extensive experiments indicate the superior-
ity of local invariant features over global features. In Özkan et al.
(2014), the performance of various image representations for
image search problems for geographic image retrieval are investi-
gated. The results demonstrate the suitability of local features for
RSIR. Shechtman et al. proposed a local self-similarity (SSIM)
descriptor Shechtman and Irani (2007) to measure the similarity
between images or videos based on internal similarities. This
descriptor is shown to be efficient and effective for deformable
shape retrieval. Other popular local features include histogram of
oriented gradient (HOG) Dalal and Triggs (2005) and its variant,
descriptor pyramid histogram of oriented gradient (PHOG)
(Bosch et al., 2007).

3.1.2. Methods based on mid-level features
In general, local features like SIFT are of high dimension and

numerous, making them impractical for large-scale RSIR. Methods
have therefore been developed to transform the local, low-level
Please cite this article in press as: Zhou, W., et al. PatternNet: A benchmark dat
Photogram. Remote Sensing (2018), https://doi.org/10.1016/j.isprsjprs.2018.01
features into mid-level features of intermediate complexity
through feature encoding techniques such as bag of visual words
(BOVW) Sivic and Zisserman (2003), vector of locally aggregated
descriptors (VLAD) Jégou et al. (2010), and improved fisher kernel
(IFK) Perronnin et al. (2010). BOVW is one of the most popular
mid-level features and has been widely used to encode local fea-
tures into a compact global image representation. BOVW and its
variants have shown remarkable performance in image retrieval
(Özkan et al., 2014; Yang and Newsam, 2013; Aptoula, 2014;
Yang et al., 2015). In Yang and Newsam (2013), BOVW features
obtained by encoding saliency and grid based SIFT descriptors
are compared to several global features. The extensive experi-
ments demonstrate the superiority of BOVW over these global
features. In Özkan et al. (2014), BOVW is compared with VLAD
and its more compact variation, product quantized VLAD (VLAD-
PQ), for the purpose of geographic image retrieval from satellite
imagery. The results show that VLAD-based representations are
more discriminative than BOVW in almost all the land cover
classes.

BOVW is not only an image representation but also a frame-
work that can be combined with other features to extract even
more powerful representations. For instance, in Aptoula (2014),
morphological texture descriptors are combined with the BOVW
paradigm in order to extract bags of morphological words for
content-based geographic image retrieval. The existing global mor-
phological texture descriptors are adapted to local sub-windows.
These local descriptors are then used to form a vocabulary of
‘‘visual morphological words” through clustering.
aset for performance evaluation of remote sensing image retrieval. ISPRS J.
.004
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Fig. 2. Two sample images from each class of the PatternNet dataset.
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Other works focus on improving the BOVW framework in order
to achieve better performance. For instance, in Yang et al. (2015),
an improved BOVW framework is proposed for remote sensing
Please cite this article in press as: Zhou, W., et al. PatternNet: A benchmark dat
Photogram. Remote Sensing (2018), https://doi.org/10.1016/j.isprsjprs.2018.01
image retrieval in large-scale image databases. It is shown to have
better performance than the standard BOVW framework yet
requires less storage.
aset for performance evaluation of remote sensing image retrieval. ISPRS J.
.004

https://doi.org/10.1016/j.isprsjprs.2018.01.004


W. Zhou et al. / ISPRS Journal of Photogrammetry and Remote Sensing xxx (2018) xxx–xxx 7
Though BOVW and its variants have achieved remarkable per-
formance on various tasks, the major limitation of such approaches
is that the spatial distribution of local features is ignored, which
has been shown to be very helpful in improving retrieval perfor-
mance. Therefore, methods have been proposed to incorporate
the spatial arrangement of local features. Cao et al. proposed spa-
tial bags of features to encode the geometric information of objects
within an image (Cao et al., 2010) for large scale image retrieval.
Compared with BOVW, the spatial bags of features work well for
image retrieval since the spatial information is encoded.

3.2. Deep learning feature based methods

As mentioned above, image retrieval performance depends
greatly on the effectiveness of the features. Deep learning has
demonstrated that it is capable of deriving powerful feature
representations.

3.2.1. Unsupervised feature learning based methods
Unsupervised feature learning (UFL) aims to directly learn pow-

erful feature representations from large volumes of unlabeled data.
It is therefore attractive for remote sensing since the field has rela-
tively little labeled data compared with many other image analysis
areas. In (Cheriyadat, 2014), an unsupervised feature learning
approach combining SIFT and sparse coding is proposed to learn
sparse feature representations for aerial scene classification. Since
then, a number of unsupervised feature learning approaches have
been proposed for various remote sensing applications like RSIR
(Zhou et al., 2015; Wang et al., 2016; Li et al., 2016). In Zhou et al.
(2015), an unsupervised feature learning framework based on an
auto-encoder is proposed. It consists of the four steps shown in
Fig. 3: (1) local feature extraction, (2) unsupervised feature learning,
(3) feature encoding and (4) sparse feature extraction and pooling.
The local features extracted from the training images are first fed
into an auto-encoder network for unsupervised feature learning.
Once trained, the auto-encoder network is used to encode the local
feature descriptors to obtain the learned feature set. The final fea-
ture representation is then generated by pooling the learned feature
descriptors into a global feature vector. The learned sparse feature
Fig. 3. The flowchart of the unsupervised feature learning m
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representation shows better performance than handcrafted BOVW
features for high-resolution remote sensing imagery retrieval.

In a recent work Wang et al. (2016) developed a novel graph-
based learning method for effectively retrieving remote sensing
images based on a three-layer framework. This framework inte-
grates the strengths of query expansion and the fusion of holistic
and local features, achieving remarkable performance on a bench-
mark dataset. In Li et al. (2016), a novel content-based remote
sensing image retrieval approach is proposed via multiple feature
representation and collaborative affinity metric fusion. This
approach can generate four types of unsupervised features that
outperform several handcrafted features on two publicly available
datasets.

In contrast to traditional handcrafted features, unsupervised
feature learning based methods directly learn powerful feature
representations from the data for RSIR. The performance improve-
ment, however, has been limited. This is because the unsupervised
feature learning methods mentioned above are often based on
shallow networks (e.g. the three-layer auto-encoder in Zhou
et al. (2015)) which cannot learn higher-level information. It is
therefore worth investigating deeper networks in order to extract
more discriminative features for RSIR.

3.2.2. Convolutional neural networks based methods
Convolutional neural networks (CNNs) have proven to be the

most successful deep learning approach to image analysis based
on their remarkable performance on the ImageNet (Deng et al.,
2009) and other problems. CNNs learn high-level feature represen-
tations that are more discriminative than unsupervised features
via a hierarchical architecture consisting of convolutional, pooling,
and fully-connected layers. However, large numbers of labeled
images are needed to train effective CNNs from scratch.

Transfer learning is often used to remedy the lack of enough
labeled images by treating the CNNs pre-trained on ImageNet as
feature extractors, possibly fine-tuning the pre-trained CNNs on
the target dataset to learn domain-specific features. This is very
helpful for some domains (e.g. remote sensing) where large-scale
publicly available datasets are lacking. In Penatti et al. (2015),
the generalization power of deep features extracted by CNNs is
ethod (UFL). The figure is adapted from previous work.

aset for performance evaluation of remote sensing image retrieval. ISPRS J.
.004

https://doi.org/10.1016/j.isprsjprs.2018.01.004


8 W. Zhou et al. / ISPRS Journal of Photogrammetry and Remote Sensing xxx (2018) xxx–xxx
investigated by transferring deep features from everyday objects to
remote sensing. Experiments demonstrate that transfer learning is
an effective approach for cross-domain tasks. There are a number
of pre-trained CNNs that can be used for transfer learning, such
as the baseline model AlexNet (Krizhevsky et al., 2012), the Caffe
(Convolutional Architecture for Fast Feature Embedding) reference
model (CaffeRef) Jia et al. (2014), the VGG networks (Chatfield
et al., 2014) including VGGF, VGGM and VGGS, the VGG-VD net-
works (Simonyan and Zisserman, 2014) including VGG-VD16 and
VGG-VD19, and the recently developed deeper models, GoogLeNet
(Szegedy et al., 2015) and Residual networks (ResNet) He et al.
(2016) including ResNet-50, ResNet-101 and ResNet-150.

Currently, these pre-trained CNNs and corresponding variants
have beenwidely used for various retrieval tasks ranging from com-
puter vision (Chandrasekhar et al., 2016; Yandex and Lempitsky,
2016; Gordo et al., 2016) to remote sensing (Napoletano, 2016;
Zhou et al., 2017). In Napoletano (2016), an extensive evaluation
of visual descriptors including handcrafted global and local features
as well as CNN features is conducted for content-based retrieval of
remote sensing images. The results demonstrate that CNN-based
features usually outperform handcrafted features except for remote
sensing images that have more heterogeneous content. In Zhou
et al., (2017) investigated how to extract powerful feature represen-
tations based on the pre-trained CNNs for high-resolution remote
sensing imagery retrieval. In one scheme, the fully-connected lay-
ers of pre-trained CNNs are regarded as feature extractors. Though
Fig. 4. The flowchart of the low dimensional CNN (LD

Table 3
The handcrafted and deep learning features and the details used to extract them. K is the s
hidden units, and P is the number of image classes.

Feature
dimension

Implementat

Low-level Handcrafted
Features

Simple
statistics

2-D Mean and sta

Color
histogram

96-D Quantize eac
histograms

Gabor texture 80-D Five scales an
GIST 512-D Default param
LBP 10-D 8 pixel circul
PHOG 680-D Default param

Mid-level Handcrafted
Features

BOVW K-D k-means clus
VLAD KM-D VLAD is extra
IFK 2KM-D IFK is extract

Unsupervised Feature
Learning

UFL 2N-D UFL is extrac

Convolutional Neural
Networks

AlexNet 4096-D Features are
CaffeRef 4096-D
VGG 4096-D
VGG-VD 4096-D
GoogLeNet 1024-D Features are
ResNet 2048-D Features are
LDCNN P-D VGGF model
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these features can achieve remarkable performance, they have
4096 dimensions which presents computational and storage chal-
lenges for large-scale RSIR. Therefore, in a second scheme, a novel,
low dimensional CNN (LDCNN) is proposed to learn low dimen-
sional features. LDCNN consists of five convolutional layers and
an mlpconv layer (three-layer perceptron) as shown in Fig. 4. A glo-
bal average pooling layer is used to compute the average of each
feature map in the previous layer, leading to an n-dimensional fea-
ture vector (n is the number of image classes).

It should be noted that although deep learning feature based
methods can directly learn powerful feature representations and
often outperform handcrafted feature based methods for RSIR, they
still have limitations. A large amount of data is needed to train the
models. Supervised models such as CNNs require this data to be
labeled. There is relatively little labeled data in remote sensing.
The other limitation is that ‘‘tricks” are often necessary to speed
up the training and to achieve satisfactory performance. This
makes it difficult and time consuming to determine the optimal
model for a particular task.
4. Experiments and results

In this section, we evaluate a large number of state-of-the-art
handcrafted and deep learning feature based RSIR methods on
the proposed PatternNet dataset. The methods and details used
to extract these features are shown in Table 3.
CNN). The figure is adapted from previous work.

ize of the dictionaries, M is the dimension of the local descriptors, N is the number of

ion details

ndard deviation of corresponding grayscale image

h channel of the RGB color space into 32 bins and concatenate the three

d eight orientations; Gabor filter window size 32 � 32
eters of original implementation

ar neighborhood of radius 1; uniform rotation invariant histogram
eters of original implementation

tering with L2 distance
cted with default parameters
ed with default parameters

ted using original implementation

extracted from the first and second fully-connected layers.

extracted from the last pooling layer.
extracted from the fifth pooling layer.
is used as the basic block.
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4.1. Experimental setup

CNNs require images to have fixed dimensions. The PatternNet
images are therefore resized to 227 � 227 pixels for AlexNet and
CaffeRef and to 224 � 224 pixels for the other CNNs. In addition,
average images provided by the pre-trained CNNs are subtracted
from the resized images. Recent work (Zhou et al., 2017) demon-
strates that including element-wise rectified linear units (ReLU)
as activation functions affects the performance of features
extracted from the fully-connected layers. In particular, the fea-
tures extracted from the first fully-connected layer (Fc1 feature)
achieve better performance without the use of ReLU while features
extracted from the second fully-connected layer (Fc2 feature) ben-
efit from the use of ReLU. Therefore, in our experiments, Fc1 fea-
tures are extracted without ReLU and Fc2 features are extracted
with ReLU.

With respect to LDCNN, the weights of the five convolutional
layers are transferred from VGGF and are also kept fixed during
training in order to speed up training. The weights of the mlpconv
layer are initialized from a Gaussian distribution (with a mean of 0
Table 4
The results of the handcrafted low-level features on PatternNet. For ANMRR, lower values i
the best performance of each permormance metric.

Features ANMRR mAP P@5

Simple Statistics 0.8968 0.0662 0.0739
Color Histogram 0.6697 0.2510 0.7475
Gabor Texture 0.6422 0.2769 0.8021
GIST 0.7511 0.2001 0.6429
LBP 0.6470 0.2583 0.6358
PHOG 0.8162 0.1312 0.4852

Fig. 5. The results of low-level features for
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and a standard deviation of 0.01). We randomly select 80% of the
images from each class of PatternNet as the training set and the
remaining 20% of the images are used for retrieval performance
evaluation.

For the three mid-level features (i.e. BOVW, VLAD and IFK), the
dictionary is constructed by aggregating the 128-D SIFT descriptors
extracted at the salient points within the image. The dictionary
sizes of VLAD and IFK are set to 64. For BOVW, a set of dictionary
sizes (i.e. 64, 128, 256, 512, 1024, 2048, and 4096) are used. For
the unsupervised feature learning method (UFL), the number of
neural units in the hidden layer is set to 400, 600 and 800, and
the sparsity value is set to 0.4 to generate sparse features.

We empirically select L1 as the distance function to compute
image similarity for the histogram features including color his-
togram, BOVW and UFL, and select L2 as the distance function
for the remaining features including simple statistics, Gabor tex-
ture, GIST, LBP, PHOG and the CNNs. All the features are L2 normal-
ized before the similarity measure is applied. Four commonly used
performance metrics, average normalized modified retrieval rank
(ANMRR), mean average precision (mAP), precision at k (P@k
ndicate better performance, while for mAP and P@k, larger is better. Bold values mean

P@10 P@50 P@100 P@1000

0.0741 0.0739 0.0738 0.0701
0.7032 0.5733 0.5062 0.2349
0.7631 0.6393 0.5674 0.2556
0.5957 0.4645 0.4013 0.1773
0.6027 0.5115 0.4646 0.2505
0.4430 0.3376 0.2903 0.1295

each class in the PatternNet dataset.
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where k is the number of retrieved images), and precision-recall
(PR) curves, are used to evaluate the retrieval performance. In
the following experiments, each image is taken as a query image,
which means the ANMRR, mAP, and P@k are the averaged values
over all the queries.
4.2. Experimental results

4.2.1. Results of handcrafted low-level features
Table 4 shows the performance of the handcrafted low-level

features including simple statistics, color histogram, Gabor texture,
GIST, LBP, and PHOG measured using ANMRR, mAP and P@k (k = 5,
10, 50, 100, 1000). We can see that Gabor texture features achieve
the best performance and simple statistics features achieve the
worst. Fig. 5 shows the results of these handcrafted features for
each class. Simple statistics and PHOG perform worse than the
other features for most of the classes in the PatternNet dataset.
4.2.2. Results of handcrafted mid-level features
The results of the mid-level features are shown in Table 5. For

the BOVW features, a set of dictionary sizes (64, 128, 256, 512,
Table 5
The results of the handcrafted mid-level features on PatternNet. For ANMRR, lower values i
the BOVW extracted with a dictionary size of K. Bold values mean the best performance o

Features ANMRR mAP P@5

BOVW-64 0.6593 0.2536 0.5418
BOVW-128 0.6393 0.2729 0.5853
BOVW-256 0.6573 0.2613 0.5819
BOVW-512 0.7696 0.1781 0.3974
BOVW-1024 0.8604 0.1111 0.2068
BOVW-2048 0.9020 0.0820 0.1425
BOVW-4096 0.9231 0.0667 0.0938
VLAD 0.5686 0.3367 0.6466
IFK 0.6016 0.3093 0.6310

Fig. 6. The results of mid-level features for each class in the Pattern
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1024, 2048, 4096) are investigated. We can see BOVW with a dic-
tionary size of 128 achieves better performance than BOVW with
the other dictionary sizes. In contrast to BOVW, the higher dimen-
sional features VLAD and IFK achieve about 7% and 4% improve-
ment respectively in terms of ANMRR value. Though VLAD and
IFK outperform BOVW, the main limitation is that they are of high
dimension, resulting in high storage cost and low retrieval effi-
ciency. The results of these mid-level features for each class are
shown in Fig. 6. Generally, VLAD is the best mid-level feature for
most of the classes.
4.2.3. Results of deep learning features
Table 6 shows the results of the deep learning feature based

methods including the unsupervised feature learning method
(UFL) and several pre-trained CNNs. For UFL features, we investi-
gate the performance of UFL extracted with different numbers of
neural units in the hidden layer. We can see UFL extracted with
400 hidden units performs better than the other UFL configura-
tions. The pre-trained CNN features improve over the performance
of UFL by more than 30% in terms of ANMRR values, indicating that
supervised CNNs produce more discriminative features.
ndicate better performance, while for mAP and P@k, larger is better. ‘‘BOVW-K” means
f each permormance metric.

P@10 P@50 P@100 P@1000

0.5158 0.4506 0.4172 0.2430
0.5564 0.4855 0.4489 0.2583
0.5498 0.4725 0.4323 0.2450
0.3596 0.2721 0.2323 0.1638
0.1773 0.1213 0.1014 0.0973
0.1205 0.0782 0.0639 0.0676
0.0795 0.0565 0.0471 0.0525
0.6204 0.5620 0.5318 0.3124
0.6049 0.5436 0.5114 0.2874

Net dataset. For BOVW representation, BOVW-128 is selected.
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The best performance of the various CNNs is achieved by
ResNet50, showing that the deeper networks tend to achieve better
performance than the shallower networks (i.e. AlexNet, CaffeRef,
VGG, VGG-VD and GoogLeNet). However, the increased depth does
reduce the performance when the network is too deep (see the per-
formance of ResNet101 and ResNet152). It can also be observed
that the features extracted from the second fully-connected layer
(Fc2 feature) outperform the features extracted from the first
fully-connected layer (Fc1 feature) except for the VD19 network.
A possible explanation is that the second fully-connected layer is
connected to the classifier layer and hence learns higher-level
information. The results of these deep learning features for each
class are shown in Fig. 7.
Fig. 7. The results of deep learning features

Table 6
The results of deep learning features on PatternNet. For ANMRR, lower values indicate bett
neural units in the hidden layer. Bold values mean the best performance of each permorm

Features ANMRR mAP P@5

UFL-400 0.6574 0.2525 0.5937
UFL-600 0.6588 0.2508 0.5903
UFL-800 0.6595 0.2501 0.5902
AlexNet_Fc1 0.3328 0.6003 0.9545
AlexNet_Fc2 0.3260 0.6042 0.9448
CaffeRef_Fc1 0.3134 0.6221 0.9602
CaffeRef_Fc2 0.3133 0.6171 0.9475
VD16_Fc1 0.3302 0.6020 0.9388
VD16_Fc2 0.3283 0.5986 0.9327
VD19_Fc1 0.3423 0.5869 0.9352
VD19_Fc2 0.3448 0.5789 0.9253
VGGF_Fc1 0.3184 0.6170 0.9592
VGGF_Fc2 0.3005 0.6309 0.9544
VGGM_Fc1 0.3124 0.6231 0.9576
VGGM_Fc2 0.3110 0.6188 0.9511
VGGS_Fc1 0.3070 0.6290 0.9595
VGGS_Fc2 0.2982 0.6333 0.9547
GoogLeNet 0.2983 0.6311 0.9445
ResNet50 0.2606 0.6788 0.9665
ResNet101 0.2624 0.6765 0.9638
ResNet152 0.2632 0.6757 0.9635
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Fig. 8 shows the precision-recall curves for the handcrafted fea-
tures and deep learning features. For families of features, the con-
figuration that achieves the best performance is selected, namely
BOVW-128, UFL-400, AlexNet_Fc2, CaffeRef_Fc2, VGGF_Fc2,
VGGM_Fc2, VGGS_Fc2, VD16_Fc2, VD19_Fc1, and ResNet50.

Though the pre-trained CNNs achieve remarkable performance,
their features are usually thousands of dimensions which are not
compact enough for large-scale RSIR. In contrast, LDCNN is able
to generate low-dimensional features. LDCNN is compared with
handcrafted low-level and mid-level features, as well as deep
learning features including UFL and several pre-trained CNNs on
20% of the PatternNet images. As shown in Table 7, the results indi-
cate that LDCNN outperform the pre-trained CNNs such as VGGF
for each class in the PatternNet dataset.

er performance, while for mAP and P@k, larger are better. ‘‘UFL-K” means UFL with K
ance metric.

P@10 P@50 P@100 P@1000

0.5646 0.4920 0.4516 0.2442
0.5629 0.4898 0.4497 0.2430
0.5619 0.4890 0.4489 0.2426
0.9438 0.8986 0.8617 0.4934
0.9331 0.8872 0.8529 0.4985
0.9511 0.9121 0.8787 0.5083
0.9370 0.8936 0.8604 0.5086
0.9268 0.8806 0.8459 0.4959
0.9204 0.8740 0.8404 0.4972
0.9210 0.8694 0.8320 0.4865
0.9113 0.8605 0.8247 0.4840
0.9493 0.9080 0.8738 0.5033
0.9442 0.9028 0.8714 0.5174
0.9472 0.9055 0.8717 0.5086
0.9405 0.8958 0.8627 0.5087
0.9508 0.9112 0.8784 0.5129
0.9449 0.9047 0.8734 0.5192
0.9331 0.8918 0.8603 0.5202
0.9594 0.9274 0.9006 0.5533
0.9551 0.9208 0.8933 0.5525
0.9550 0.9208 0.8939 0.5511
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(the basic block of LDCNN), VGGS and even ResNet50 which
achieves the best performance on PatternNet. The features
extracted by LDCNN are 38-D which is compact compared to the
features extracted by the pre-trained CNNs.
Table 7
Comparisons of LDCNN and other features. For ANMRR, lower values indicate better perfor
extracted under optimal configurations (i.e. the configurations that achieve the best perfo

Features ANMRR mAP P@5

Gabor Texture 0.6439 0.2773 0.6855
VLAD 0.5677 0.3410 0.5825
UFL 0.6584 0.2535 0.5209
VGGF_Fc1 0.3177 0.6195 0.9246
VGGF_Fc2 0.2995 0.6337 0.9152
VGGS_Fc1 0.3050 0.6328 0.9274
VGGS_Fc2 0.2961 0.6374 0.9192
ResNet50 0.2584 0.6823 0.9413
LDCNN 0.2416 0.6917 0.6681

Table 8
The performance of the pre-trained CNNs on the PatternNet and four other datasets. The

UCMD RSD

AlexNet_Fc1 0.411 0.313
AlexNet_Fc2 0.410 0.304
CaffeRef_Fc1 0.397 0.286
CaffeRef_Fc2 0.402 0.283
VD16_Fc1 0.380 0.311
VD16_Fc2 0.394 0.324
VD19_Fc1 0.386 0.326
VD19_Fc2 0.398 0.342
VGGF_Fc1 0.399 0.294
VGGF_Fc2 0.386 0.288
VGGM_Fc1 0.375 0.291
VGGM_Fc2 0.378 0.300
VGGS_Fc1 0.387 0.294
VGGS_Fc2 0.381 0.296
GoogLeNet 0.360 0.299
ResNet50 0.358 0.230
ResNet101 0.356 0.248
ResNet150 0.362 0.251

Fig. 8. The precision-recall curves of handcrafted feature based methods and deep learnin
precision-recall curves of deep learning features.
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The proposed PatternNet dataset is also compared to the exist-
ing datasets by evaluating the performance of the pre-trained
CNNs on each dataset, as shown in Table 8. The NWPU45 dataset
is not considered due to the time required to evaluate the 18
mance, while for mAP and P@k, larger is better. The handcrafted features and UFL are
rmance on the entire PatternNet dataset).

P@10 P@50 P@100 P@1000

0.6278 0.4461 0.3552 0.0899
0.5570 0.4757 0.4111 0.1104
0.4882 0.3811 0.3192 0.0979
0.9037 0.7926 0.6905 0.1425
0.8964 0.7999 0.7047 0.1452
0.9070 0.8003 0.7013 0.1436
0.9009 0.8021 0.7073 0.1455
0.9241 0.8371 0.7493 0.1464
0.6611 0.6747 0.6880 0.1408

numbers are ANMRR values. The lower ANMRR values indicate better performance.

RSSCN7 AID PatternNet

0.437 0.537 0.333
0.446 0.534 0.326
0.410 0.518 0.313
0.433 0.526 0.313
0.436 0.545 0.330
0.452 0.568 0.328
0.441 0.546 0.342
0.457 0.570 0.345
0.419 0.532 0.318
0.440 0.527 0.301
0.412 0.519 0.312
0.440 0.533 0.311
0.408 0.518 0.307
0.441 0.523 0.298
0.417 0.519 0.298
0.405 0.484 0.261
0.420 0.491 0.262
0.424 0.493 0.263

g feature based methods: (a) precision-recall curves of handcrafted features, and (b)
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features. The pre-trained CNNs achieve much better performance
on PatternNet than on the existing datasets (with the exception
of the RSD dataset which is small and thus not very challenging).
The decreased performance on the UCMD, RSSCN7, and AID data-
sets is due to their images having a relatively large amount of back-
ground compared to PatternNet.
5. Conclusions

We present PatternNet, the largest publicly available remotely
sensed evaluation dataset constructed for RSIR. We expect Pat-
ternNet help advance the state-of-the-art in RSIR, particularly deep
learning based methods which require large amounts of labeled
training data. We also surveyed a large number of RSIR approaches
including traditional handcrafted features and recent deep learning
features and evaluated them on PatternNet to establish baseline
results to inform future research.
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