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Abstract

This paper describes a framework for applying traditional
data mining techniques to the non-traditional domain of
image datasets for the purpose of knowledge discovery. In
particular, perceptual association rules, a novel extension of
traditional association rules, are used to distill the frequent
perceptual events in large image datasets in order to dis-
cover interesting patterns. The focus is on spatial associa-
tions although the method is equally applicable to associa-
tions within or between other dimensions; i.e., spectral, or in
the case of video, temporal. A primary contribution is the
derivation of image equivalents for the traditional associa-
tion rule components, namely the items, the itemsets, and
the rules. The proposed approach is modular, consisting of
three steps that can be individually adapted to a particular
application. First, the image dataset is labeled in a per-
ceptually meaningful way using a visual thesaurus. Second,
the first- and second-order associations are tabulated in a
scalable data structure termed a spatial event cube. Finally,
the higher-order associations and rules are determined using
an adaptation of the Apriori algorithm. The proposed ap-
proach is applied to an aerial video dataset to demonstrate
the kinds of knowledge perceptual association rules can help
discover.

1 Introduction

Multimedia data is being acquired at an increasing rate
due to technological advances in sensors, computing
power, and storage. The value of these sizable datasets
extends beyond what can be realized by traditional “fo-
cused” computer vision solutions, such as face detection,
object tracking, etc. Instead, new methods of analysis
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based on data mining techniques are required to discover
the implicit patterns, relationships and other knowledge
that is not readily observable. Such knowledge is useful
for a variety of applications, ranging from data summa-
rization and visualization in scientific experimentation,
to query refinement in multimedia data management
systems.

Data mining techniques have been used for some
time to discover implicit knowledge in transaction
databases. In particular, methods are available for de-
termining the interesting associations among itemsets
over large numbers of transactions, such as the products
that are most frequently purchased together in market
basket analysis. Achieving similar success with multi-
media datasets remains a challenge, however, not only
due to the size and complexity of image and video data,
but also the lack of image equivalents for the associa-
tion rule components, namely the items, the itemsets,
and even the rules. It is not straightforward to define,
let alone detect, the items and itemsets appropriate for
discovering the implicit spatial knowledge contained in
large collections of aerial images. The main contribu-
tion of this work is a framework for applying a spe-
cific set of traditional data mining techniques to the
non-traditional domain of image datasets. In particu-
lar, perceptual association rules are proposed as a novel,
multimedia extension to traditional association rules.

1.1 Motivation

The objectives for applying association rule algorithms
to traditional transaction databases are clear. A pri-
mary objective of market basket analysis is to determine
optimal product placement on store shelves. However,
the objectives for mining association rules in multimedia
datasets are less obvious at this early stage in research
on perceptual data mining when the limit of what is
technically feasible are not known. Ideally, the rules
would provide insight into the prominent trends in the
dataset, such as interesting but non-obvious spatial or
temporal causalities.



A spatial association rule derived from remote
sensed imagery might help discover that two particu-
lar crops have a higher yield when planted near to each
other. A strong motivation for the research presented
in this paper is to investigate the kinds of knowledge
perceptual association rules can help discover. This, in
turn, will allow data mining practitioners to work with
domain experts in identifying objectives that are both
interesting and feasible.

1.2 Overview of the Proposed Approach
An association rule [1] is an expression of the form
A = B meaning the presence of itemset A implies the
presence of itemset B. An association rule algorithm
discovers the rules that have support and confidence
larger than a specified threshold. The bottom-up ap-
proach proposed by this work transforms the raw image
data into a form suitable for such analysis in three steps.
First, image regions are labelled as perceptual synonyms
using a visual thesaurus that is constructed by apply-
ing supervised and unsupervised machine-learning tech-
niques to low-level image features. The region labels are
analogous to items in transaction databases. Second,
the first- and second-order associations among regions
with respect to a particular spatial predicate are tabu-
lated using spatial event cubes (SECs). The SEC en-
tries are analogous to first- and second-order itemsets.
Finally, higher-order associations and rules are deter-
mined using an adaptation of the Apriori association
rule algorithm. These modular steps can be individ-
ually tailored, making the framework applicable to a
variety of problems and domains

The rest of the paper is organized as follows. Sec-
tion 2 presents related work and Section 3 provides a
general description of association rules and outlines a
widely-used algorithm for discovering them. The pro-
posed approach is described in Section 4 and experi-
mental results for an aerial video dataset are presented
in Section 5. Section 6 concludes with a discussion.

2 Related Work

Several approaches to applying association rules to
image datasets have been proposed. Ordonez and
Omiecinksi [2] use segmentation results from the Blob-
world system [3] to mine the co-occurrence of image re-
gions that have been labeled as similar using an empir-
ically determined distance measure and threshold. The
segmented regions are viewed as items and the images
are viewed as transactions so that the resulting rules are
of the form, “The presence of regions A and B imply the
presence of region C with support X and confidence Y”.
It is not clear, however, that the results from applying
the technique to a dataset of synthetic images composed

of basic colored shapes would generalize to real images
for which segmentation and notions of region similarity
present a significant challenge.

Ding et al. [4] extract association rules from remote
sensed imagery by considering set ranges of the spectral
bands to be items and the pixels to be transactions.
They also consider auxiliary information at each pixel
location, such as crop yield, to derive association rules
of the form “Band 1 in the range [a,b] and band 2 in the
range [c, d] results in crop yield Z with support X and
confidence Y.” However, analysis at the pixel scale is
susceptible to noise, unlikely to scale with dataset size,
and limited in its ability to discover anything other than
unrealistically localized associations-i.e., in reality, what
occurs at one pixel location is unlikely to be independent
of nearby locations.

3 Association Rules

This section provides a general description of association
rules and outlines a widely used algorithm to discover
them. Association rule approach was first introduced
in [1] as a way of discovering interesting patterns in
transactional databases. An association rule tells us
about the association between two or more items.

Let U = {uy,...un} be set of items. A set A is a
K —itemset, if A C U and |A| = K. An association rule
is an expression A = B, where A and B are itemsets
that satisfy AN B = @. Lets D as a superset, i.e.
D = {T|T C U}. Elements of database D are called
transactions. Transaction T" C D supports an itemset
Aif A C T. Support of itemset A over all database
transactions T is defined as:
By s = EEDEED
Apriori algorithm discovers combination of items that
occur together with greater frequency than might be
expected if the values or items were independent. The
algorithm selects the most “interesting” rules based on
their support and confidence. Rule A = B expresses
that whenever a transaction T' contains A, it probably
contains B also.

Support measures statistical significance of a rule:

TeD ACTANBCT
52 (T eDIACTABET)

Confidence is a measure of a strength of a rule:

supp(A = B) =

{T e DIACTABCTY
(3.3) conf(A= B)= T eDACTY
The probability of rule confidence is defined as condi-
tional probability p(B C T|A C T'). Association rules
can be between more than 2 items, i.e. A, B = C where
A, B, C C U. Association rule is strong if its confi-
dence is larger than user’s specified minimum support.




Several improvements have been proposed for mining
association rules [5]. They deal with complexity of rule
mining and separating interesting rules from the gener-
ated rule set in a more efficient way.

The user has to specify minimum support of fre-
quent itemsets. Every subset of a frequent itemset is
also frequent. An itemset can be frequent only if it is
frequent in at least one of these partitions and algo-
rithm takes advantage of that property. The Apriori
algorithm identifies frequent itemsets as following:

Algorithm 1 Apriori Algorithm
1. Find frequent item sets;
F1 = {u;| ||u;|| > minimum support}
for (K =2; Fx_1# O; K+ +) do
Ck = {cg|c A c®) € Fre_1}, where:

Clo = (Ui s evey Uy Wip_y 5 Uiy, )
cla) = (uil, ...,uik72,uik71)
¢® = (u;, o us, ., ui,)

lex]| = 0;

for (VI,T C D) and (Veg, ¢, € Ck) do
if (¢, € T') then
lewll = fleell + 1;
end if
end for
Fr = {cl|||ck]| > minimum support }
end for
F=Ug Fx
2. Use the frequent itemsets to generate
strong association rules.

4 Perceptual Association Rules

This section describes the three steps of the proposed
approach: 1) perceptual labeling of the image regions
using a visual thesaurus; 2) tabulation of first- and
second-order associations using SECs; and 3) mining
of higher-order associations and rules.

4.1 Perceptual Labeling using a Visual The-
saurus
A visual thesaurus is used to label the image regions
in a perceptually meaningful way. The visual thesaurus
is constructed in two stages using the low-level region
features and a manually labeled training set. First, the
dimensionality of the feature space is reduced by feeding
the training set into a self-organizing map (SOM),
a clustering technique that is known to preserve the
topology of the input space. The resulting clusters
are assigned class labels using a majority-vote rule and
the SOM is used to classify the entire dataset. The
second stage fine-tunes these classes using an improved
Learning Vector Quantization (LVQ) algorithm. The
resulting sub-classes group the region features into the

perceptual synonyms of the visual thesaurus. The image
dataset is then labeled by assigning each region the
codeword of its entry in the thesaurus. More details on
the visual thesaurus and its construction can be found
in [6].

4.2 Spatial Event Cubes

The visual thesaurus is used to label the image regions
based solely on their distribution in the feature space.
Knowledge of the spatial arrangement of the regions is
incorporated through SECs, a scalable data structure
that tabulates the region pairs that satisfy a given
binary spatial predicate, see [7].

Define the raster space R for an image partitioned
into M x Ntiles as R = {(z,y)| z € [1, M], y € [1, N]}.
Let the set of T' of thesaurus entries u; be: T = {u;|u; is
a thesaurus entry/codeword}. Let 7 be a function that
maps image coordinates to thesaurus entries, 7(P) = u,
where P € R and u € T’; and let p be the given binary
spatial predicate, PpQ@ € {0,1}, where P,@ € R. Then,
an SEC face is the co-occurrence matrix C,(u, v) of all
pairs of points that have codeword labels u and v, and
satisfy the binary predicate p:

Cp(u,v) = [|(P, Q)| (PpQ) A (7(P) = u) A (7(Q) = v)|
These co-occurrences are computed over all the
images in the dataset. Note that it is the relation p that
determines the particular spatial arrangement tabulated
by the SEC. The choice of p is application dependent
and can include spatial relationships such as adjacency,
orientation, and distance, or combinations thereof.

4.3 Perceptual Association

An attribute value set T contains N thesaurus entries
u;. Spatial Event Cube face entries C,(u,v) mark
frequency of codeword tuples that satisfy binary relation
p. Define F}. as a set of frequent itemsets of size
K. Also define S, as a minimum support value for
frequency of C,(u;,,...,u;, ). Our goal is to find sets
of tuples that show some dependency among tile spatial
configurations. F? = J, Ff.. Since the Spatial Event
Cube captures spatial relationship only between two
tiles, we need to implement some clever processing to
build higher order candidates. Spatial relationship for
K — —itemsets depends on the characteristics of binary
function p.

Perceptual Association Rule Algorithm supports
atomic pattern set approach to candidate itemset gener-
ation in multimedia datasets [8]. We test occurrences of
interesting patterns in a dataset, thus avoiding the for-
mulation of transactions. A set of atomic patterns for
our representative dataset D is Fy = {u;| |Ju;|| > S,(,l)}.
For F5 we build the conjunction of two atomic patterns



(u;,u;) and look for the corresponding SEC entries. If
Cplui,uj) > S,(,Q), then (u;,uj) € Fh. Spatial Event
Cubes are built on a binary relationship p. For higher
order candidate sets we are imposing a clever processing
rule i.e. ordering. Then, we go back to representative
dataset D and record the occurrences of new candidates,
as explained in the previous paragraph. Only the ones
with support larger that the user specified minimum
S,()K) qualify for the frequent itemset of size k. Note
that the clever processing rule can differ for a different
itemset size.

If we have more elements in an itemset, there
are more ways to spatially organize those elements.
Association rules can be between 3 items is in the
form w;,u; = wup where wu;uj,ur S D. If
Cp(ui, uj, ur)/Cp(us, uj) is larger than minimum con-
fidence required, the rule u;,u; = wuy is a valid rule.
For the right neighbor example, this rule could be for-
mulated as “If codeword wu; is right neighbor of code-
word u;, that might imply that ug is on the right side
of u;”. Extended association rule algorithm for spatial
relationship p is:

Algorithm 2 Perceptual Association Rule
1. Find frequent item sets
FY = {ui] Jusll > 557
Ff = {(uwi,0)|Cplui,u) > 7}
for (K =3; Fx_1 # O; K ++) do
Candidate K-item frequent itemset C is formed
of K
joint elements from any frequent Ff. | item set;
Ck = {cg|c,c® € Fre_1}, where:
Clo = (Ui s evey Uiy Wip_y 5 Uiy,
D = (wi, s ooy Wiy Uiy )
e = (wg, s oy u, i)
for (Vk,c, € Ck) and (Vi,o; € RX) do
llek|] = ||[{oi|os satisfies spatial relationship}||
AND (7(Py) =u1) A ... A (7(Pk) = uk),
where g; = (Pl, ...,PK), (Pl, ceey PK) € RK
end for
Frc = {cxllleel| > 553
end for
FPr=Ug Fg
2. Use the frequent itemsets to generate
association rules;

5 Experimental Results

The proposed technique is applied to a collection of
aerial videos of Amazonia made available by the Insti-
tute for Computational Earth System Science (ICESS)
at UCSB. Aerial videography is an affordable alterna-
tive to expensive high-resolution aerial and satellite im-

Figure 1: Training set samples. From top to bottom
row: pasture, forest, agriculture, road, and urban

agery. It is particularly attractive for areas plagued by
cloud cover, such as the Amazon, since the aircraft are
flown at low altitudes. The sample dataset was cap-
tured using a high-end commercial video camera and
is geo-referenced. The aerial videos are temporally sub-
sampled to create a sequence of just-overlapping frames,
which are treated as a collection of images. One hour
of video results in approximately 450 frames of size 720
by 480 pixels. Figure 3(a) shows a sample frame. The
results presented here are for one hour of the 40-hour
dataset. The proposed method can alternately be ap-
plied to image mosaics created from the video although
care must be taken that the mosaicking process does
not introduce unwanted artifacts.

5.1 Homogeneous Texture Descriptor

The raw image data is perceptually characterized us-
ing a low-level descriptor based on homogeneous tex-
ture. The Vision Research Lab at UCSB has exten-
sive experience with using texture to analyze remote
sensed imagery. In particular, an MPEG-7 [9] com-
pliant descriptor based on the outputs of orientation—
and scale—selective Gabor filters [6] has shown to effec-
tively characterize a variety of land cover types, such
as agriculture, forest, and urban development. Since
the texture descriptor captures the spatial distribution
of relative pixel values, it is less sensitive to changes in
lighting conditions than spectral descriptors. This turns
out to be a significant advantage for analyzing the aerial
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Figure 2: Similarity retrieval based on a distance function

Class Description Training Set Size
0 Pasture 285
1 Forest 238
2 Agricultural 116
3 Road 185
4 Urban 116

Table 1: Training set for 5 class manual labeling. Total
Number of Training Tiles is 940

videos of Amazonia, which contain a mixture of sunny
and cloud-shaded regions.

The texture descriptors are extracted in an auto-
mated fashion by dividing the video frames into non-
overlapping 64 by 64 pixel tiles and applying Gabor fil-
ters tuned to combinations of six orientations and five
scales. The first— and second—order moments of the
filter outputs form the texture feature vector. Thus,
one hour of video results in approximately 35,000 tiles
each characterized by a 60-dimension vector. The visual
similarity between tiles is computed by defining a dis-
tance function on the high-dimensional feature space.
Euclidean distance results in an orientation— and scale—
selective similarity measure.

Invariant similarity is measured using a distance
function that exploits the structure of the feature
vectors [10].  Figure 2 shows examples of both
orientation-selective and orientation-invariant similarity
retrieval. The visual thesaurus is constructed using the
invariant similarity measure since the image regions oc-
cur at arbitrary orientations in the aerial videos.

5.2 Visual Thesaurus

The visual thesaurus is used to label the video frame
tiles in a perceptually meaningful way by clustering the
high-dimensional texture feature vectors using super-
vised and unsupervised learning techniques. The train-
ing set required by the supervised learning stage is man-
ually chosen with the help of domain experts. The pri-

mary land cover types are identified as pasture, forest,
water, agricultural, and urban.

Water is not considered separately since it does not
occur often and is similar to clear pasture with respect
to the texture. Roads occur frequently and are distinct
so the final basic land cover types are pasture, forest,
agricultural, road, and urban. Table 5.1 lists the size
of the five classes in the training set. Note that the
training set measures less than three percent of the
entire dataset.

Figure 1 shows sample tiles from the training set.
The LVQ stage of the training algorithm results in a
visual thesaurus with 73 codewords. These codewords
can be considered as fine tuned subclasses of the manu-
ally chosen training classes. Figures 3(b) and 3(c) show
the results of using the visual thesaurus to label the
frame in Figure 3(a). Figure 3(b) shows the class as-
signments, which are mostly correct. Figure 3(c) shows
the codeword labels, which are subclasses of the train-
ing set labels. For example, codeword labels 0 through
19 correspond to subsets of the pasture class, and labels
49 through 63 correspond to subsets of the road class.

This demonstrates a key feature of the visual the-
saurus: the final codeword labeling represents a finer
and, therefore, more consistent partitioning of the high
dimension feature space than the manually chosen train-
ing set.

5.3 Spatial Event Cubes

An SEC is computed from the codeword labeled frames
using 8-neighbor adjacency as the spatial predicate. The
diagonal entries of the SEC indicate the number of times
a codeword appears next to itself.

Thus, the largest diagonal values correspond to the
homogeneous regions of the dataset. Table 2 lists the
diagonal entries with the largest values. These entries
correspond to pasture and forest codewords.

A second SEC is computed this time using a direc-
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Figure 3: Thesaurus codewords for the most frequent
elements of FY

tional spatial adjacency predicate p:

(1, y1)p(x2,y2) & (21 = 22) A (y1 + 1 = y2),

where x; and y; are the horizontal and vertical coor-
dinates of tile ¢. This predicate allows spatial analysis
along the direction of flight of the aerial video. Table 4
lists the diagonal entries with the largest values. These
entries correspond to pasture and forest codewords.

5.4 Itemsets and Rules
The support 3.2 and confidence 3.3 of constructed rule

u; = u; for 8-connectivity neighborhood can be derived
from the SEC entries:

Cp(ui,
supp(u; = uj) = (ﬁ)luj)

C 1
conf(u; = u;) = —"’—Hﬁuﬁ )

A factor of two is needed in the denominator in this case
since p is symmetric.

Constructed associated rules from Fj are listed
in tables 2 and 3, respectively. The corresponding
confidence values are also indicated. Figure 3 shows the
corresponding codewords to the most frequent elements
of the second order item set Fj. Codewords in the

(b) Labeled frame - 5 classes

(c) Labeled frame - 73 codewords

i Tl | Coluiyu) [ Colus,ua) /il |
21 [ 3621 2366 0.653411
0 2555 2273 0.889628
35 | 2330 1608 0.690129
12 | 2903 1566 0.539442
17 || 2081 1054 0.506487
33 || 1183 796 0.672866
24 884 508 0.575226
41 943 508 0.538706
4 1289 492 0.382079
38 728 450 0.618819

Table 2: Corresponding Frequencies of largest diagonal
SEC entries for 8-connectivity neighborhood

| i || J | Colus,uy) | conf(u; = uy) | conf(u; = u;) |

12 0 2461 0.423872 0.481605
17 || 12 1764 0.423835 0.303824
35 || 33 1095 0.234979 0.462806
17| 4 939 0.225613 0.364236
12 9 876 0.150878 0.344611
35 || 24 781 0.167597 0.441742
38 || 24 601 0.412775 0.339932
21 || 13 071 0.078846 0.402113

Table 3: Confidence of generated rules from F} set

range 0 through 19 correspond to pasture subclasses
and codewords in the range 20 through 39 correspond
to forest subclasses.

While it is no surprise that forest and pasture
are the most frequently occurring land types, table
3 indicates that specifically forest codeword 21 and
pasture codeword 0 occur most frequently. Pasture
codeword 13 is more likely to occur next to forest
codeword 21 than vice versa.

For the second SEC, constructed associated rules
from FY are listed in tables 4 and 6, respectively. note
that the confidence of constructed rule w; = u; for
“righthand neighborhood rule” is

supp(u; = ;) %

Cp(ui,uj)
[ui

conf(u; = uy)



’ 7 H [ | ‘ Cplug, u;) ‘ Colug, us)/||uil] ‘ ’ 7 H j ‘ Cylus, uy) ‘ conf(u; = u;) ‘ conf(u; = u;) ‘
21 3621 1159 0.320077 0 | 12 521 0.203914 0.179470
0 2555 1093 0.427789 12 0 507 0.174647 0.198434
35 2330 677 0.290558 21 || 35 480 0.132560 0.206009
12 2903 1760 0.261798 35 || 21 442 0.189700 0.122066
17 2081 425 0.204229 17 || 12 346 0.166266 0.119187
33 1183 329 0.278107 12 || 17 335 0.115398 0.160980
24 884 191 0.216063 35 || 33 227 0.097425 0.191885
41 943 209 0.221633 33 || 35 208 0.175824 0.089270
4 1289 225 0.174554 12| 9 202 0.069583 0.158930
38 728 167 0.229396 9 | 12 198 0.155783 0.068205

17 4 185 0.088900 0.143522

Table 4: Corresponding Frequencies of largest diagonal
SEC entries for the “righthand neighbor” spatial rule

(12, 0, 0) conf((12,0) = 0) = 0.23077
(9, 12, 12) conf((9,12) = 12) = 0.23737
(21, 35, 35) || conf((21,35) = 35) = 0.27708
(21, 17, 0) conf((12,17) = 0) = 0.095

Table 5: Confidence of generated rules from FY set, for
the “righthand neighbor” rule

Since these results are almost identical to the ones
for 8-neighborhood adjacency, it can be concluded that
the dataset is isotropic with respect to adjacency.

Mining rule for third order itemset is formulated as
“If codeword u; is right neighbor of codeword wu;, that
implies that uy is on the right side of u; with confidence
conf((u;, u;) = ug)”. We constrained the candidates in
C% to form a “righthand neighbor” chain. Constructed
associated rules from FY are listed in table 5.

6 Conclusion

In this paper, we introduce an association rule min-
ing framework that supports spatial event discovery in
large image datasets. Feature vectors are extracted
from image tiles and summarized into visual thesaurus.
Visual thesaurus allows us to record spatial relation-
ships among labelled features using Spatial Event Cube
(SEC) approach. SEC support perceptual association
rule mining approach and provide efficient pruning for
generating higher order candidate itemsets. We demon-
strate the use and possible applications of proposed
framework on a large collection of aerial videos of Ama-
zonia and large collection aerial photos of Santa Bar-
bara region. Future research include implementation of
mining more complex spatial rules and a cost function
that will prove the efficiency of the proposed method.
We are also planning to use Spatial Event Cubes as an
index structure for multimedia database access.

Table 6: Confidence of generated rules from FY¥ set, for
the “righthand neighbor” rule
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