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ABSTRACT
This work explores the potential for increased synergy be-
tween gazetteers and high-resolution remote sensed imagery.
These two data sources are complementary. Gazetteers pro-
vide high-level semantic information about what is where
but they must be manually compiled and maintained. On
the other hand, imagery can be automatically acquired but
only provides low-level radiometric information. We explore
ways in which these two data sources can be integrated
to more fully automate geographic data management. In
particular, we show how gazetteers represent a rich source
of semi-supervised training data for geospatial object mod-
elling. We also describe an example of information flow in
the other direction, namely, how high-resolution imagery can
be used to refine the spatial extents of geospatial objects in
gazetteers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
spatial databases and GIS ; J.2 [Physical Science and En-
gineering]: Earth and Atmospheric Sciences; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—
object recognition

General Terms
Information Integration, Appearance Modeling

Keywords
Remote sensed imagery, gazetteers, appearance models, geo-
spatial objects, interest points, Markov random fields

1. INTRODUCTION
Thanks to advances in technology, our ability to capture

and store remote sensed imagery, such as that taken from
satellite or aerial platforms, continues to improve. Unfor-
tunately, our ability to analyze this imagery has not scaled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS’08 , November 5-7, 2008. Irvine, CA, USA
Copyright 2008 ACM ISBN 978-1-60558-323-5/08/11 ...$5.00.

proportionally and so automated methods are needed to re-
alize the true value of this data. One approach that is prov-
ing particularly promising for making progress on automated
image understanding is to leverage (non-image) data asso-
ciated with the images. The nature of this meta-data varies
not only in the richness of its description but also in how
directly it is related to the image content. Extremes range
from a well-annotated set of images in which keywords are
associated with specific image regions, to the co-occurrence
of large sections of text and multiple images in the same doc-
ument without explicit correspondences, such as on a Web
page.

Remote sensed imagery is a particulary interesting cate-
gory of images to be considered in this context since geo-
graphic location enables a great variety of meta-data to be
associated with a georeferenced image. In this paper, we ex-
plore one such association, that of integrating gazetteers and
high-resolution satellite imagery. We describe novel methods
for how these complementary data sources can be combined
to more fully automate geographic data management. We
first describe how gazetteers can serve as a source of semi-
supervised training data for geospatial object modelling. We
then describe how high-resolution imagery can be used to re-
fine the spatial extents of items in the gazetteer.

2. RELATED WORK
Fully automated image understanding based only on the

image content–the pixel values–is likely to remain an un-
solved problem. Even the most effective system we know of,
the human visual system, relies heavily on experience, con-
text, and other information external to an image. It makes
sense therefore that machine vision systems should leverage
non-image data sources wherever possible. Our increased
ability to acquire, store, and aggregate data, along with the
tremendous growth of the Internet, has made a great variety
of such data sources available. Over the past decade, com-
puter vision researchers have developed novel ways in which
to fuse image and non-image data to advance automated
image understanding.

Content based image retrieval (CBIR) is limited by the
semantic gap between the low-level image features, such as
color and texture, and the kind of higher-level annotation
needed to support meaningful search. Researchers have ex-
plored various ways to overcome this by incorporating other
sources of information. CBIR systems for the World Wide
Web (WWW) often query associated text, such as an im-
age’s ALT tag or text near the image, in addition to the
low-level image features. The CORTINA system of Quack



et al. [25] combines text and image context to search over
3 million images on the WWW. Other systems exploit the
structure of the WWW, such as Newsam et al.’s category
based image retrieval system [22] which makes use of the
hierarchical structure of the WWW pages containing the
images in addition to associated text. Other approaches en-
able keyword search by tackling the more difficult problem
of assigning keywords to images. Barnard and Forsyth in [9]
learn the statistical associations between image regions and
words in a large corpus of annotated images. The learned
associations can then be used to annotate new images. (In-
terestingly, this association also enables the complementary
task of auto-illustration.)

Computer vision researchers have exploited various forms
of meta-data associated with image collections to learn vi-
sual object models. Berg et al. in [11] data mine a large col-
lection of captioned images of faces from online news sources
to train a recognition system for commonly occurring peo-
ple. Barnard et al. in [8] develop an object recognizer using
10,000 images of works of art along with associated free text
which varies greatly from physical description to interpre-
tation and mood. And, Li et al. in [16] turn the search
paradigm around by using search results from the Google
image search engine to learn visual models for a variety of
object categories.

Closer to the work presented in this paper is the idea of
using spatial and temporal meta-data to organize personal
photo collections. Researchers have explored ways in which
access to large collections of snapshots can be improved by
classifying and grouping photographs using not only the
time stamps of individual photographs but also the temporal
spacing between photographs [12]. The advent of hand held
global positioning systems (GPS) and even on-camera GPS
now allows photographs to be organized geospatially. While
research continues in this area, such as Yahoo Research’s
ZoneTag project [20, 3], many of the online photo sharing
portals, such as Flickr [2], already offer this capability.

Researchers working in the geographic information sci-
ences have proposed a number of ways to leverage non-image
data sources to improve remote sensed image understanding.
Using satellite or aerial imagery to maintain road networks
has always held great appeal but automatically extracting
roads is a challenging task. An obvious way to improve
road extraction, at least for known roads, is to use existing
vectorized road networks as seeds [28, 5, 13]. Researchers
have also incorporated other information to improve road
extraction, such as using digital surface models to account
for gaps between road segments due to shadows [10]. Auto-
mated building extraction is another appealing use of remote
sensed imagery. Agouris et al. [4] propose a SpatioTemporal
Gazetteer that incorporates aerial imagery as well as existing
vector datasets of extracted outlines and thematic datasets
(building blueprints, building usage records) to automati-
cally detect changes to the spatial footprints of buildings
using template matching.

There has been research effort on using non-image GIS
data to recognize a broader variety of object classes but
largely without implementation or experimental results. Bail-
loeul et al. in [6] describe the theoretical aspects of a system
which uses a priori knowledge in form of outdated urban
maps to control contour- and region-based segmentation of
new imagery. And, Baltsavias in [7] discusses a wide range of
ways in which “knowledge” can improve image analysis but,

as he indicates, his definition of non-image information is ex-
tremely broad and includes concepts such as rules, models,
and context, in additional to specific GIS data. (He notes
that very few of the works he surveyed use priori knowledge
in the form of maps, GIS or other geodatabases.) Walter
and Fritsch in [26] do provide results from using GIS data
to automatically derive appearance models which are then
applied to imagery to verify the GIS data but their applica-
tion is at the level of land use classification.

The work presented in this paper is different from previous
approaches in that it leverages non-image GIS data to model
a much broader range of object classes. We achieve this
by integrating an extensive gazetteer, which catalogs over
200 object classes, with state-of-the-art approaches to object
recognition.

Note that the discussion above, and the context of this pa-
per, concerns techniques for integrating multiple data sources,
one of which is unprocessed image data. This is different
from approaches which assume the image analysis has al-
ready been carried out such as the interesting recent work
by Michalowski et al. [18] on combining street vector data,
phone-book records and building outlines to map postal ad-
dresses.

3. DATA SOURCES
This section describes the two data sources being consid-

ered for integration, gazetteers and high-resolution remote
sensed imagery.

3.1 Gazetteers
A gazetteer is a geographic directory. It contains records

indicating what-is-where on the surface of the earth. The
what varies greatly both in terms of the class of object as
well as its physical characteristics, such as its spatial extent.
While the minimal set of fields is a name and a point lo-
cation, gazetteers typically include both proper names (e.g.,
San Francisco Internal Airport) and object classification (e.g.,
Airport), more complex spatial extents, such as a bounding
box or higher-order polygon, and relations to other records
(e.g., part of San Francisco County).

Gazetteers are not a new concept but advances in in-
formation technology have enabled them to become more
extensive, thanks to automated aggregation, and more ac-
cessible, thanks to the Internet, than ever before. In this
work, we focus on the Alexandria Digital Library (ADL)
gazetteer [1] which is part of the ADL project at the Uni-
versity of California at Santa Barbara. The ADL gazetteer
is an exemplar of modern gazetteers. It was created by ag-
gregating the United States Geological Survey’s Geographic
Names Information System (GNIS) and the National Im-
agery and Mapping Agency’s Geographic Names Processing
System (GNPS) [15]. It has an online browser-based map
interface for interactive querying. More important for our
work is the ADL Gazetteer Service Protocol which supports
remote query and response functions using standard HTTP
XML-formatted requests.

The ADL gazetteer contains almost six million records
and thus represents one of the most extensive and diverse
collections of its kind. It covers the entire world although
due to the nature of its original sources, its coverage is more
complete for the US. It catalogs over 200 different classes
of geographic features. Further, a feature class thesaurus
maps almost 1,000 non-preferred terms to these primary



classes. The feature classes are organized hierarchically un-
der the following six root classes: administrative areas, hy-
drographic features, land parcels, manmade features, phys-
iographic features, and regions. Table 5 contains a (slightly
out-of-date) list of the primary feature classes and their total
counts.

While the ADL gazetteer is an impressive collection of ge-
ographic data, it has several shortcomings. Some of these
could potentially be compensated for by advances in au-
tomated image analysis such as the techniques presented
in this paper. At the moment, the spatial extent of the
records is limited to a single point, a longitude/latitude pair.
While the system includes provisions for at least a bounding
box representation, this information was not present in the
original sources and post-ingest manual specification is pro-
hibitively expensive. As the ADL development team points
out [15], “for a digital library application, the spatial ex-
tent of the feature, either approximately with a bounding
box or more accurately with a polygonal representation, is
better, but there are no large sets of gazetteer data with
spatial extents.” They go on to state that, “establishing
the standards that will enable the sharing of gazetteer data
will help harvest data from many sources, but ultimately
deriving spatial locations and extents from digital mapping
products and other sources automatically will be needed.”
Section 5 of this paper presents results from our work on
this important problem.

3.2 Remote Sensed Imagery
We believe that remote sensed image analysis is poised to

undergo a paradigm shift thanks to the growing availability
of wide area coverage submeter pixel resolution data. The
domain is faced with the prospects and challenges of object
level analysis on a scale not possible before. The higher res-
olution imagery greatly increases the variety of objects that
are now observable, at least according to theoretical bounds
such as Shannon’s sampling theorem. This aligns the prob-
lem more closely with the well researched computer vision
challenge of generic object recognition and allows it to lever-
age the many advances made over the past several decades
in that area. In particular, it can leverage recent successes
such as a new class of image descriptors, termed interest
point descriptors, which have proven effective at modelling
the appearances of diverse categories of objects viewed un-
der widely varying conditions. In recent work [23, 24, 27], we
investigated the application of this new class of descriptors
to content based image retrieval and land cover classification
in high-resolution remote sensed imagery with encouraging
results. In section 4 below, we extend this investigation to
geospatial object modelling.

Meter (e.g. IKONOS) and submeter (e.g. Quickbird)
pixel resolution satellite imagery has been available commer-
cially now for nearly a decade. GeoEye-1, which is scheduled
to launch in August of 2008, will provide 0.41 meter/pixel
imagery. This is in addition to the growing collection of
aerial imagery which boasts even higher resolution. Auto-
mated image analysis is needed to realize the full potential
of these information rich data sources. We believe the inte-
gration of gazetteers and remote sensed imagery represents
a promising step in this direction.

4. GEOSPATIAL OBJECT MODELLING
This section describes a framework for using prior knowl-

edge in the form of gazetteer records to learn appearance
models for a variety of geospatial objects in an unsupervised
fashion. It is one of two applications presented in this pa-
per which leverage the integration of gazetteers and remote
sensed imagery. The other application, on using appear-
ance models to improve the spatial extent associated with
geospatial objects in a gazetteer, is described in section 5.

This investigation proceeds as follows. First, we use the
ADL gazetteer to locate and extract image regions corre-
sponding to 13 different classes of geospatial objects in a
large collection of IKONOS satellite imagery. We then ex-
tract high-dimensional image features from these regions and
show they are clustered in the feature space, a potentially
sufficient condition for learning object models. We then in-
vestigate classification strategies to further demonstrate that
we are able to learn appearance models of geospatial objects
in an unsupervised fashion through integration of a gazetteer
and remote sensed imagery.

4.1 Data
Thanks to a generous grant from Lockheed Martin Corpo-

ration, we have access to a set of 16 georeferenced IKONOS
satellite images which cover over 3,000 square kilometers of
the continental US. While this imagery consists of one meter
panchromatic band and four meter multispectral bands, we
only utilize the panchromatic imagery. These IKONOS im-
ages are mostly of metropolitan areas and include coverage
of Phoenix, Los Angeles, New York City, San Diego, San
Jose, Washington DC, and El Paso.

We selected a subset of object classes cataloged by the
ADL gazetteer (see table 5 for the full list) using the fol-
lowing criteria. First, the spatial extent of the objects must
be limited enough for them to be contained within a single
IKONOS image. This rules out larger objects such as coun-
ties. Second, the objects must be visible in the imagery.
This obvious constraint rules out subterranean objects such
as caves. Third, the visual characteristics of the object taken
as a whole must be distinctive. This allows different object
types to share some visual features but requires that there
should be some way of discriminating between them visually.
Finally, since most of our imagery is of urban/suburban re-
gions, we focused on manmade objects. This selection pro-
cess resulted in the 13 geospatial object classes listed in table
1.

We then used the ADL Gazetteer Service Protocol to iden-
tify instances of these 13 geospatial object classes in our
IKONOS imagery. This was achieved by issuing XML for-
matted queries requesting all instances of a particular object
class contained within the spatial footprint of each of the im-
ages separately. Table 1 lists the total number of instances
identified in all 16 images. Table 1 also indicates the class
ID assignments that will be used in subsequent tables.

As mentioned earlier, a shortcoming of the ADL gazetteer
(and most gazetteers) is that it specifies the spatial extents
of the objects as only a single point location. Therefore,
even though we can use the gazetteer to identify object in-
stances in the IKONOS imagery, we know very little about
which region in the image actually corresponds to the ob-
jects. Without additional information, the best we can do is
extract a square subimage centered at the gazetteer specified
location and assume the object is contained somewhere in
this subimage. At the moment, the size of these subimages is
set manually and varies from 300 by 300 pixels for heliports



Table 1: Appearance models were learned for the
following geospatial object classes. The column la-
belled count refers to the total number of examples
in the IKONOS imagery as found by querying the
ADL gazetteer.

ID Object Class Count
1 Airport Features 24
2 Cemeteries 40
3 Country Clubs 12
4 Educational Facilities 694
5 Golf Courses 23
6 Harbors 6
7 Heliports 50
8 Medical Facilities 70
9 Mobile Home Parks 88
10 Parks 274
11 Railroad Features 9
12 Religious Facilities 126
13 Shopping Centers 147

to 1000 by 1000 pixels for airports with most being 600 by
600 pixels. A better estimate of the size of the subimages
for different object classes could be obtained using a dataset
with spatial extents. This would reduce the amount of back-
ground (non-object) regions in the subimages and therefore
improve the appearance modelling.

Figure 1 contains two sample subimages from four ob-
ject classes: educational facilities, golf courses, mobile home
parks, and shopping centers. Again, these subimages were
extracted in a completely automated fashion by cropping a
fixed sized region from an IKONOS image centered at the
point location specified by the ADL gazetteer. These are
some of the better samples in that 1) the point locations
are actually within the objects; 2) the ratio of the object to
background is quite high; and 3) the objects are good visual
examples of their classes. Overall, the subimages form a
fairly noisy dataset. Frequently, the ADL specified point lo-
cation is not within the object due to inaccuracies of the
original gazetteer data sources and/or the georeferencing
process. We can compensate for this by extracting larger
regions but this results in a lower object to background ra-
tio. There can also be significant variance visually between
the samples for a particular class. The less-than-perfect na-
ture of the subimage dataset make the object modelling task
an interesting challenge.

4.2 Image Features
Our visual appearance models are based on a new class

of image features termed interest point descriptors. These
descriptors seek to capture the visually salient regions of an
image under the assumption that it is these regions that
will be the most discriminative for an image analysis task.
Extracting interest point descriptors involves first using a
saliency detector to identify the salient locations in an im-
age and then describing the image patches at these locations
using local descriptors. We use David Lowe’s Scale Invari-
ant Feature Transform (SIFT) descriptors [17] as they have
been shown to be robust to image rotation and scale, and
to be capable of matching images with geometric distortion
and varied illumination. They have shown to outperform
other local descriptors in an image matching task [19], and,

in previous work [23, 24, 27], we demonstrated their effec-
tiveness for content based image retrieval and land cover
classification in high resolution remote sensed imagery.

We use the standard SIFT interest point detector and
the standard histogram-of-gradients descriptor. These 128
dimension descriptors can be thought of roughly as summa-
rizing the edge information in an image patch centered at
an interest point. SIFT features can be quite dense spatially
especially in complex imagery. Each of our subimages ends
up being described by 6,313.8 descriptors on average.

We use a bag-of-words approach from document analysis
to compactly summarize the SIFT features of a subimage.
First, we construct a feature codebook by applying k-means
clustering to a large collection of SIFT features selected at
random from the IKONOS imagery. We then quantize the
SIFT features in our subimages by assigning each one the
label of its closest cluster center. Finally, we compute a
single frequency feature vector for each subimage as

SIFTfreq = [t0, t1, . . . , tk−1] , (1)

where ti is number of occurrences of the quantized SIFT
features with label i and k is the size of the quantization
codebook. SIFTfreq is similar to a term vector in docu-
ment retrieval. The frequency features are scaled so their
components sum to one to account for the varying number
of SIFT descriptors per subimage. We use a codebook with
50 entries (i.e., k = 50 in the k-means clustering) as our ear-
lier work [24] showed this number was optimal for an image
retrieval task.

The cosine distance measure has shown to be effective
for comparing documents represented by term vectors [14]
so we use it here to compute the similarity between im-
ages. The similarity between a query image Q with counts
[q0, . . . , qk−1] and a target image T with counts [t0, . . . , tk−1]
is computed as

Dfreq(Q, T ) =

k−1
P

i=0

qiti

s

k−1
P

i=0

q2

i

s

k−1
P

j=0

t2j

. (2)

The cosine distance measure ranges from zero (not similar)
to one (very similar or perfect match).

We first investigate whether the frequency features be-
longing to the different object classes form clusters in the
space induced by the cosine distance. We compare the av-
erage within cluster feature distance to the average between
cluster feature distance. The results of this analysis are
shown in table 2. We observe that the features for most
classes are more similar to themselves than to the features
for other classes.

4.3 Classification
We used a classification framework to further show that

we are learning discriminative appearance models for the 13
object classes. We computed average classification rates us-
ing a leave-one-out approach in which we train classifiers us-
ing all the features for an object type except one selected at
random which is later used as the test feature. We explored
two types of classifiers, a simple nearest centroid classifier
and a maximum likelihood classifier.

The nearest centroid classifier assigns a test feature to the
object class with the closest centroid as computed using the
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Figure 1: Sample subimages of different object classes extracted in an unsupervised fashion from IKONOS
imagery using the ADL gazetteer. Two samples of each of the following classes are shown in scan order:
educational facilities, golf courses, mobile home parks, and shopping centers.

cosine distance. This centroid is simply the average of the
training features for an object type. A separate classifier
is trained for each class. Table 3 shows the confusion ma-
trix for 1,500-fold cross validation. The classification rates
for different object classes vary significantly from a low of
0.02 for parks to 0.69 for mobile home parks, with several
above 0.50. Overall, the fact that we are doing much better
than chance (0.08) confirms we are learning discriminative
appearance models, at least for most of the classes.

We also performed classification using a maximum likeli-
hood classifier to better incorporate the spread of the fea-
tures for an object class. We modelled the distribution of the
features for each class using a von Mises-Fisher (vMF) prob-
ability density function. A vMF density can be thought of as
a normal density for points on a unit hyper-sphere which is
appropriate for our features since they are directional (thus
compared using the cosine distance). The probability den-
sity function of a vMF distribution has the following form

p(x|µ, κ) = cd(κ)eκµT x
, (3)

where d is the dimension, and µ, the distribution “mean,”
and κ, the distribution spread, are the parameters. We again
use a leave-one-out approach in which a separate classifier
is learned for each class by estimating µ and κ from the set
of features with one left out. The left out samples are then
classified as the object class which maximizes their likeli-
hood:

c
∗ = arg max

c∈allclasses
p(xsample|µc, κc) . (4)

The results of performing a 1,500-fold cross validation are
shown in table 4. Again, though the classification rates

vary significantly between classes, several of the rates are
above 0.5 confirming we are learning discriminative appear-
ance models.

4.4 Discussion
This section described a fully automated technique for

learning visual appearance models for geospatial object class-
es by integrating the ADL gazetteer and high-resolution
IKONOS imagery. Preliminary exploration of the class fea-
ture distributions and on training both a nearest centroid
and a maximum likelihood classifier indicates we are learn-
ing discriminative models even though the training images
are extremely noisy.

We find the two classifiers perform quite differently. In
particular, the maximum likelihood classifier, which accounts
for the variation in feature spread between classes, com-
pletely miss-classifies educational facilities, harbors, railroad
features, religious facilities, and shopping centers. These
objects instead are predominantly classified as medical fa-
cilities. Further investigation here is needed although we
observed that the estimated von Mises-Fisher distributions
for these classes are more peaked (the value of κ is larger)
and thus classes with wider distributions, such as medical
facilities, can “sweep-up” noisy instances.

We are continuing work on this problem. We plan to use
feature selection algorithms to determine which of the quan-
tized SIFT features are the most discriminative for different
classes. We also plan on extending the appearance models
to capture the spatial arrangements of the features as we ex-
pect this to be a discriminative characteristic of geospatial
objects.



Table 2: The features belonging to different object classes form clusters in the feature space. The value at
row i, column j is the average distance of the features for object class (ID) i to the features for object class j.
The higher the value, the more similar the features. Note that the features of most object classes are more
similar to themselves than to the features of other object classes. The entries on the diagonal are emphasized
for readability.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.854 0.837 0.813 0.847 0.814 0.859 0.835 0.851 0.848 0.839 0.878 0.839 0.870
2 0.837 0.926 0.902 0.922 0.896 0.896 0.853 0.916 0.896 0.913 0.920 0.919 0.907
3 0.813 0.902 0.891 0.896 0.884 0.873 0.836 0.892 0.873 0.889 0.894 0.895 0.885
4 0.847 0.922 0.896 0.938 0.878 0.912 0.865 0.932 0.917 0.924 0.933 0.938 0.929
5 0.814 0.896 0.884 0.878 0.891 0.863 0.830 0.876 0.854 0.875 0.885 0.875 0.869
6 0.859 0.896 0.873 0.912 0.863 0.938 0.869 0.915 0.882 0.903 0.925 0.924 0.921
7 0.835 0.853 0.836 0.865 0.830 0.869 0.841 0.869 0.861 0.857 0.882 0.864 0.880
8 0.851 0.916 0.892 0.932 0.876 0.915 0.869 0.928 0.912 0.919 0.931 0.934 0.928
9 0.848 0.896 0.873 0.917 0.854 0.882 0.861 0.912 0.928 0.902 0.916 0.911 0.920
10 0.839 0.913 0.889 0.924 0.875 0.903 0.857 0.919 0.902 0.912 0.922 0.925 0.915
11 0.878 0.920 0.894 0.933 0.885 0.925 0.882 0.931 0.916 0.922 0.949 0.931 0.937
12 0.839 0.919 0.895 0.938 0.875 0.924 0.864 0.934 0.911 0.925 0.931 0.948 0.930
13 0.870 0.907 0.885 0.929 0.869 0.921 0.880 0.928 0.920 0.915 0.937 0.930 0.938

Table 3: The confusion matrix of classification using a closest centroid classifier. 1,500-fold cross validation is
performed using a leave-one-out approach. The value at row i, column j indicates the average classification
rate that a sample of object class i is classified as class j. The entries on the diagonal are emphasized for
readability. These results confirm that we are learning discriminative appearance models for most object
classes.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.58 0.04 0.00 0.09 0.04 0.03 0.00 0.00 0.05 0.04 0.08 0.00 0.04
2 0.00 0.34 0.02 0.03 0.19 0.03 0.00 0.02 0.06 0.05 0.02 0.20 0.04
3 0.00 0.00 0.16 0.00 0.34 0.00 0.00 0.00 0.26 0.00 0.00 0.08 0.15
4 0.04 0.08 0.00 0.27 0.01 0.03 0.01 0.02 0.15 0.03 0.06 0.25 0.05
5 0.00 0.08 0.04 0.00 0.56 0.04 0.00 0.00 0.00 0.13 0.00 0.03 0.12
6 0.00 0.00 0.00 0.00 0.00 0.67 0.16 0.00 0.00 0.00 0.00 0.17 0.00
7 0.13 0.00 0.00 0.04 0.10 0.13 0.33 0.02 0.06 0.03 0.06 0.06 0.06
8 0.06 0.09 0.01 0.11 0.03 0.09 0.05 0.14 0.10 0.03 0.02 0.20 0.08
9 0.01 0.05 0.01 0.07 0.00 0.03 0.03 0.02 0.69 0.01 0.01 0.00 0.08
10 0.02 0.16 0.01 0.17 0.08 0.10 0.02 0.04 0.08 0.02 0.07 0.18 0.05
11 0.21 0.00 0.00 0.00 0.11 0.00 0.00 0.11 0.00 0.11 0.22 0.12 0.11
12 0.00 0.05 0.01 0.08 0.02 0.18 0.01 0.03 0.00 0.03 0.05 0.54 0.01
13 0.07 0.02 0.00 0.06 0.01 0.06 0.08 0.04 0.22 0.01 0.06 0.11 0.27

Table 4: The confusion matrix of classification using a maximum likelihood classifier. The features of each
object class are modelled using a von Mises-Fisher distribution. 1,500-fold cross validation is performed using
a leave-one-out approach. The value at row i, column j indicates the average classification rate that a sample
of object class i is classified as class j. The entries on the diagonal are emphasized for readability. These
results confirm that we are learning discriminative appearance models for most object classes.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.63 0.04 0.00 0.00 0.04 0.00 0.02 0.22 0.04 0.01 0.00 0.00 0.00
2 0.00 0.45 0.00 0.00 0.14 0.00 0.01 0.21 0.05 0.13 0.00 0.00 0.00
3 0.00 0.17 0.01 0.00 0.36 0.00 0.00 0.08 0.33 0.05 0.00 0.00 0.00
4 0.04 0.12 0.00 0.00 0.01 0.00 0.03 0.50 0.16 0.13 0.00 0.00 0.00
5 0.00 0.13 0.06 0.00 0.49 0.00 0.00 0.18 0.05 0.09 0.00 0.00 0.00
6 0.21 0.00 0.00 0.00 0.00 0.00 0.29 0.34 0.00 0.16 0.00 0.00 0.00
7 0.30 0.02 0.02 0.00 0.07 0.00 0.35 0.11 0.07 0.06 0.00 0.00 0.00
8 0.05 0.13 0.02 0.00 0.01 0.00 0.04 0.52 0.17 0.06 0.00 0.00 0.00
9 0.01 0.06 0.00 0.00 0.00 0.00 0.09 0.06 0.76 0.02 0.00 0.00 0.00
10 0.02 0.19 0.01 0.00 0.05 0.00 0.07 0.45 0.10 0.10 0.00 0.00 0.00
11 0.23 0.19 0.00 0.00 0.01 0.00 0.00 0.51 0.00 0.05 0.00 0.00 0.00
12 0.00 0.09 0.00 0.00 0.01 0.00 0.07 0.68 0.00 0.15 0.00 0.00 0.00
13 0.08 0.03 0.00 0.00 0.00 0.00 0.08 0.44 0.33 0.03 0.00 0.00 0.00



5. GAZETTEER MAINTENANCE
This section describes our earlier work [21] on using ap-

pearance models to improve the spatial extent associated
with objects cataloged by gazetteers. Again, most gazetteers,
including the ADL gazetteer, only contain single point loca-
tions so improving this even to a bounding box, which would
still an approximation for most instances of an object, would
be a significant improvement. The proposed technique is an-
other example of integrating gazetteers and remote sensed
imagery, in this case to provide the means for automatically
maintaining, both constructing and updating, a gazetteer.

A summary of the approach is as follows. We learn the
appearance models for different object classes from a set
of training images. This could be done in an unsupervised
fashion using the framework described in the previous sec-
tion although we here use a set of training images in which
the object boundaries have been manually delineated. We
then use these models to estimate the bounding box for ob-
ject instances whose boundaries are not known. Once again,
gazetteer information is used to improve the image analysis
since the gazetteer point location is used to seed an itera-
tive process which grows the bounding box optimally with
respect to the learned appearance model until a stopping
criterion is met. Thus, we are not attempting the more dif-
ficult problem of detecting and localizing object instances;
instead, we focus on the simpler but still important task of
localizing an instance given an internal point.

5.1 Appearance Models
The appearance models used here are different from the

ones described in the previous section. They are based on
image texture characterized by the outputs of orientation
and scale selective spatial filters. High-dimensional tex-
ture feature vectors formed from the first- and second-order
statistics of the filter outputs are quantized into texture mo-
tifs using a codebook based on the clustering of features from
known object instances using a Gaussian mixture model
expectation maximization framework (GMMEM). The spa-
tial arrangement of the texture motifs for a particular ob-
ject type is modelled as a multi-level logistic model (MLL)
Markov random field (MRF) whose parameters are learned
using Markov chain Monte Carlo (MCMC) techniques again
using known object instances.

The motivation behind this hierarchical model is as fol-
lows. Object classes that we wish to discriminate between
might share the same low-level texture motifs albeit in dif-
ferent spatial arrangements. For example, both golf courses
and parks share grass and trees as their motifs but these two
classes can be distinguished based on the the spatial arrange-
ment of these motifs. Our appearance model captures the
spatial arrangement of an object’s constituent motifs using
a Markov random field.

5.2 Bounding Box Estimation
We use the appearance model to estimate the bounding

box of a known object instance as follows. First, the box is
initialized as a single pixel using the seed location provided
by the gazetteer. We then grow the box in an iterative fash-
ion by extending the side abutting the region most like the
appearance model. Specifically, at each step, we use MCMC
to estimate the MLL parameters of the rectangular regions
immediately above, below, to the left, and to the right of
the current bounding box. We then add a row or column

of pixels from the region whose parameters are most similar
to those of the appearance model for the object class being
considered. Similarity is measured using the L1 distance. A
stopping criterion is used to halt the growing process. We
here stop the process when the distances between the MLL
parameters of all four adjacent regions and the model are
above a pre-specified threshold.

Figure 2 shows the growth of bounding boxes for a mo-
bile home park and a golf course. The image regions out-
side the object masks are dimmed to indicate the manually
specified spatial footprints that serve as the ground truth.
The bounding boxes are shown at 75-iteration intervals from
random starting points until the stopping criterion is met.
These examples demonstrate that the proposed technique
effectively estimates the spatial extent of the objects even
when the starting points are near the boundaries.

Receiver operating characteristic (ROC) curves can be
used to quantitatively evaluate the expansion of the bound-
ing box. Using a manually delineated boundary for the test
image, the true-positive ratio can be computed as the per-
centage of the object that is contained in the bounding box,
and the false-positive ratio as the percentage of the bounding
box that is not part of the object. Figures 3(a) and 3(b) show
the ROC curves averaged over five mobile home park im-
ages and five golf course images, respectively. The proposed
technique is shown to maintain a high true-positive to false-
positive ratio and outperforms a naive approach that begins
at the same random location but does not consider the MRF
model and uniformly expands the sides of the bounding box.

5.3 Discussion
This section described a method for estimating the bound-

ing box of geospatial objects using high-resolution remote
sensed imagery. Visual appearance models were used to op-
timally grow a seed location internal to the object. Future
work on this problem includes investigating other appear-
ance models such as the one described in section 4 above
and dealing with the case when the seed location does not
fall within the object due to inaccuracies in the georeferenc-
ing and/or the location source (such as a gazetteer).

6. CONCLUSION
This work explored the potential for increased synergy be-

tween gazetteers and remote-sensed imagery. We described
two specific ways in which these complementary data sources
can be integrated to more fully automate geographic data
management. We first presented a novel approach to using
gazetteers as a source of semi-supervised training data for
appearance based modelling of geospatial objects. We then
demonstrated how high-resolution imagery can be used to
refine the spatial extents of geospatial objects in gazetters.
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Table 5: Object classes indexed by the ADL gazetteer along with counts.
Class Count Class Count Class Count
administrative areas 2,126,610 cemeteries 64,535 dunes 5,270
military areas 813 disposal sites 247 flats 4,722
parks 20,408 fisheries 45 gaps 15,762
political areas 32,623 fortifications 2,471 isthmuses 79
countries 165 historical sites 66,228 karst areas 113
countries, 1st order div 3,328 archaeological sites 1,654 ledges 644
countries, 2nd order div 14,602 hydrographic structures 123,991 mesas 5,529
countries, 3rd order div 13,115 breakwaters 101 mineral deposit areas 667
countries, 4th order div 1,330 canals 21,482 moraines 39
populated places 2,000,821 dam sites 45,828 mountains 362,194
cities 273 harbors 5,250 mountain ranges 526
capitals 271 levees 726 mountain summits 21,401

reference locations 42,597 marinas 45 ridges 21,916
reserves 4,704 offshore platforms 58 natural rock formations 2,154
tribal areas 4,183 piers 403 arches (natural formation) 446
hydrographic features 636,5 64 reservoirs 49,976 plains 7,171
bays 34,898 waterworks 82 plateaus 1,165
fjords 1,656 landmarks 545 playas 4
channels 13,874 mine sites 24,070 reefs 8,270
deltas 66 monuments 8,560 seafloor features 2,112
drainage basins 208 oil fields 4,834 continental margins 140
estuaries 424 recreational facilities 7,526 ocean trenches 252
floodplains 4 amusement parks 18 seamounts 1,025
gulfs 420 camps 3,744 submarine canyons 590
guts 932 performance sites 312 tectonic features 476
ice masses 3,569 sports facilities 1,948 earthquake features 345
glacier features 3,492 storage structures 11,969 faults 127
lakes 94,758 telecom features 12,240 fracture zones 123
seas 273 towers 14,423 folds (geologic) 4
oceans 42 transportation features 77,933 anticlines 4
ocean currents 24 airport features 24,814 valleys 36,815
streams 480,921 heliports 3,802 canyons 18,706
rivers 15,907 seaplane bases 451 volcanic features 2,262
bends (river) 1,637 aqueducts 101 lava fields 391
rapids 3,095 bridges 4,709 volcanoes 1,819
waterfalls 4,945 locks 259 regions 120,132
springs (hydrographic) 3,016 parking sites 5 biogeographic regions 44,782
thermal features 407 pipelines 186 barren lands 11

land parcels 12,424 railroad features 34,029 deserts 588
manmade features 858,145 roadways 578 forests 19,476
agricultural sites 174,912 trails 7,582 petrified forests 2
buildings 243,448 tunnels 761 woods 871
capitol buildings 29 wells 71,680 grasslands 4,419
commercial sites 2,711 windmills 171 habitats 56
industrial sites 1,465 physiographic features 575,964 oases 362
power generation sites 26 alluvial fans 66 shrublands 1,900

court houses 664 arroyos 45,359 snow regions 77
institutional sites 189,02 badlands 17 tundras 6
correctional facilities 32 banks (hydrographic) 2,014 wetlands 17,887
educational facilities 14,885 bars (physiographic) 12,167 coastal zones 165
medical facilities 5,558 basins 8,957 economic regions 8
religious facilities 78,26 3 storage basins 20 firebreaks 8
library buildings 2,134 beaches 3,584 land regions 70,094
museum buildings 886 bights 590 continents 3
post office buildings 11,16 capes 19,707 islands 70,088
research facilities 339 caves 966 map regions 2,311
data collection facilities 14 cirques 196 map quadrangle regions 2,311
residential sites 22,719 cliffs 5,557 research areas 195
housing areas 21,756 craters 435 uncategorized 20,719


