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ABSTRACT
We investigate the application of a new category of low-level
image descriptors termed interest points to remote sensed
image analysis. In particular, we compare how scale and
rotation invariant descriptors extracted from salient image
locations perform compared to proven global texture fea-
tures for similarity retrieval. Qualitative results using a geo-
graphic image retrieval application and quantitative results
using an extensive ground truth dataset show that inter-
est point descriptors support effective similarity retrieval in
large collections of remote sensed imagery.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Image retrieval

Keywords
Interest points, similarity search, remote sensed imagery

1. INTRODUCTION
Remote sensed imagery continues to accumulate at an in-

creasing rate. Exciting new geographic information systems
such as Google Earth and Microsoft Virtual Earth are allow-
ing more and more people to access this imagery. However,
these systems only allow users to view the raw image data. A
much richer interaction would be enabled by the integration
of automated techniques for annotating the image content.
Services such as land-use classification, similarity retrieval,
and spatial data mining would not only satisfy known de-
mands but would also spawn new unthought-of applications.

Automated remote sensed image analysis remains by-and-
large an unsolved problem. There has been significant effort
over the last several decades in using low-level image de-
scriptors, such as spectral, shape and texture features, to
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make sense of the raw image data. While there has been
noted successes for specific problems, ample opportunities
remain.

In this paper, we investigate the application of a new cat-
egory of low-level image descriptors, termed interest points,
to remote sensed image analysis. Interest point descriptors
have enjoyed surprising success for a range of traditional
computer vision problems. There has been little research,
however, on applying them to remote sensed imagery.

Our investigation is done in the context of similarity re-
trieval. In particular, we compare interest point descriptors
to global texture features which have been shown to be par-
ticularly effective for remote sensed image retrieval. Simi-
larity retrieval is not only an interesting application but also
serves as an excellent platform for evaluating the overall de-
scriptiveness of a descriptor.

Our comparison confirms that interest point descriptors
show great promise for remote sensed image analysis. Even a
straight forward application to similarity retrieval performs
comparably to the proven global texture features. This find-
ing opens the door to further investigation.

2. RELATED WORK
Content-based image retrieval (CBIR) has been an ac-

tive research area in computer vision for over a decade with
IBM’s Query by Image Content (QBIC) system from 1995
[2] being one of the earliest successes. A variety of image
descriptors have been investigated including color, shape,
texture, spatial configurations, and others. A recent survey
is available in [5].

Similarity based image retrieval has been proposed as an
automated method for managing and interacting with the
the growing collections of remote sensed imagery. As in
other domains, a variety of descriptors have been investi-
gated including spectral [3, 4], shape [14], texture [11, 7,
10, 15, 20], and combinations such as multi-spectral tex-
ture [19]. While the most effective descriptor is problem de-
pendent, texture features have enjoyed success since, unlike
spectral features, they incorporate spatial information which
is clearly important for remote sensed imagery but avoid the
difficult pre-processing step of segmentation needed to ex-
tract shape features.

The recent emergence of interest point descriptors has re-
vitalized several research areas in computer vision. A num-
ber of different techniques have been proposed which have
two fundamental components in common. First, a method
for finding the so-called interesting or salient locations in an
image. Second, a descriptor for describing the image patches
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at these locations. Interest point detectors and descriptors
have shown to be robust to changes in image orientation,
scale, perspective and illumination conditions as well as to
occlusion, and, like global features, do not require segmenta-
tion. They are very efficient to compute which allows them
to be used in real-time applications. They have been suc-
cessfully applied to a number of problems including image
stereo pair matching, object recognition and categorization,
robot localization, panorama construction, and, relevant to
this work, image retrieval. Excellent comparisons of differ-
ent interest point detectors and descriptors can be found in
[18] and [17] respectively.

The application of interest point detectors and descriptors
to image retrieval has focused primarily on retrieving im-
ages of the same object or scene under different conditions.
Examples include finding additional appearances of a given
object in scenes or shots in a video [22], finding images of
3D objects acquired from different viewpoints [21, 23, 24] or
against different backgrounds [27], finding images belonging
to distinct, homogeneous semantic categories [8, 23], finding
frames of the same scene in a video [25], and finding im-
ages of the same indoor scene for localization [9]. There has
been little application to finding similar images or image
regions. In particular, to the best of our knowledge, interest
point detectors and descriptors have not been applied to the
problem of similarity retrieval in large collections of remote
sensed imagery.

3. METHODOLOGY

3.1 Global Features
We consider Gabor texture features as the global features.

Texture features, and in particular Gabor texture features,
have proven to be effective for performing content-based sim-
ilarity retrieval in remote sensed imagery [11, 19, 20, 10,
15, 7]. The MPEG-7 Multimedia Content Description In-
terface [16] standardized Gabor texture features after they
were shown to outperform other texture features for similar-
ity retrieval. One of the evaluation datasets used in the com-
petitive standardization process consisted of remote sensed
imagery.

Gabor texture analysis is accomplished by applying a bank
of scale and orientation selective Gabor filters to an image.
Gabor functions are Gaussians functions modulated by a
sinusoid. Two dimensional spatial filters based on Gabor
functions can be made orientation and scale selective by con-
trolling this modulation. While the choice of the number of
orientations and scales is application dependent, experimen-
tation has shown that a bank of filters tuned to combina-
tions of five scales, at octave intervals, and six orientations,
at 30-degree intervals, is sufficient for the analysis of remote
sensed imagery.

A Gabor texture feature vector is formed from the filter
outputs as follows [26]. Applying a bank of Gabor filters
with R orientations and S scales to an image results in a
total of RxS filtered images:

f ′
11 (x, y) , . . . , f ′

RS (x, y) . (1)

A single global feature vector for the original image is formed
by computing the first and second moments of the filtered
images. That is, a 2RS dimension feature vector, hGABOR,

is formed as

hGABOR = [µ11, σ11, µ12, σ12, . . . , µ1S , σ1S , . . . , µRS , σRS ] ,
(2)

where µrs and σrs are the mean and standard deviation of
f ′

rs (x, y). Finally, to normalize for differences in range, each
of the 2RS components is scaled to have a mean of zero and
a standard deviation of one across the entire dataset.

The (dis)similarity between two images is measured by
computing the Euclidean distance between their texture fea-
tures

d(h1, h2) = ‖h1 − h2‖2 =

vuut2RSX
i=1

(h1i − h2i)2 . (3)

This results in an orientation (and scale) sensitive similar-
ity measure. Orientation invariant similarity is possible by
using the modified distance function

dRI(h1, h2) = min
r∈R

‖h1<r> − h2‖2 (4)

where h<r> represents h circularly shifted by r orientations:

h<r> = (5)

[(hr1, hr2, · · · , hrS), (h(r+1)1, h(r+1)2, · · · , h(r+1)S),

· · · , (hR1, hR2, · · · , hRS), (h11, h12, · · · , h1S),

· · · , (h(r−1)1, h(r−1)2, · · · , h(r−1)S)] .

Parentheses have been added for clarity. Conceptually, this
distance function computes the best match between rotated
versions of the images without repeating the feature extrac-
tion. The granularity of the rotations is of course limited by
the filter bank construction.

3.2 Interest Points
We choose David Lowe’s Scale Invariant Feature Trans-

form (SIFT) [12, 13] as the interest point detector and de-
scriptor. SIFT-based descriptors have been shown to be
robust to image rotation and scale, and to be capable of
matching images with geometric distortion and varied il-
lumination. An extensive comparison with other local de-
scriptors found that SIFT-based descriptors performed the
best in an image matching task [17]. Like most interest
point based analysis, there are two components to SIFT-
based analysis. First, a detection step locates points that
are identifiable from different views. This process ideally
locates the same regions in an object or scene regardless of
viewpoint, illumination, etc. Second, these locations are de-
scribed by a descriptor that is distinctive yet also invariant
to viewpoint, illumination, etc. In short, SIFT-based analy-
sis focuses on image patches that can be found and matched
under different image acquisition conditions.

The detection step is designed to find image regions that
are salient not only spatially but also across different scales.
Candidate locations are initially selected from local extrema
in Difference of Gaussian (DoG) filtered images in scale
space. The DoG images are derived by subtracting two
Gaussian blurred images with different σ

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) . (6)

where L(x, y, σ) is the image convolved with a Gaussian ker-
nel with standard deviation σ, and k represents the different
sampling intervals in scale space. Each point in the three
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dimensional DoG scale space is compared with its eight spa-
tial neighbors at the same scale, and with its nine neighbors
at adjacent higher and lower scales. The local maximum
or minimum are further screened for minimum contrast and
poor localization along elongated edges. The last step of
the detection process uses a histogram of gradient directions
sampled around the interest point to estimate its orientation.
This orientation is used to align the descriptor to make it it
rotation invariant.

A feature descriptor is then extracted from the image
patch centered at each interest point. The size of this patch
is determined by the scale of the corresponding extremum
in the DoG scale space. This makes the descriptor scale
invariant. The feature descriptor consists of histograms of
gradient directions computed from a 4x4 spatial grid. The
interest point orientation estimate described above is used to
align the gradient directions to make the descriptor rotation
invariant. The gradient directions are quantized into eight
bins so the final feature vector has dimension 128 (4x4x8).
This histogram-of-gradients descriptor can be roughly thought
of a summary of the edge information in the image patch
centered at the interest point.

Rather than work with the full 128 dimension SIFT fea-
ture vectors, we clustered a large sampling of the features
and labeled the full SIFT feature set with the id of the closest
cluster center. Representing the features using the cluster
labels has been shown to be effective in other image retrieval
tasks [22]. The clustering was performed using the standard
k-means algorithm.

The final interest point descriptor used to compute the
similarity between two images is composed of the frequency
counts of the labeled SIFT feature vectors. That is, hINT

for an image, is

hINT = [t0, t1, . . . , tk−1] , (7)

where ti is number of occurrences of SIFT features with label
i in the image. hINT is similar to a term vector in document
retrieval. The cosine distance has shown to be effective for
comparing documents represented by term vectors [6] so we
use it here to compute the similarity between images:

d(h1, h2) =

k−1P
i=0

h1ih2is
k−1P
i=0

h12
i

k−1P
i=0

h22
i

. (8)

The cosine distance measure ranges from zero (no match)
to one (perfect match). To make it compatible with the dis-
tance function used for comparing the global Gabor texture
features, for which zero is a perfect match, we use one mi-
nus the cosine distance to perform similarity retrieval using
interest point descriptors.

3.3 Similarity Retrieval
The above features and associated distance measures are

used to perform similarity retrieval as follows. Let T be
a collection of M images; let hm be the feature vector ex-
tracted from image m, where m ∈ 1, . . . , M ; let d(·, ·) be a
distance function defined on the feature space; and let hquery

be the feature vector corresponding to a given query image.
Then, the image in T most similar to the query image is
the one whose feature vector minimizes the distance to the

query’s feature vector:

m∗ = arg min
1≤m≤M

d(hquery, hm) . (9)

Likewise, the k most similar images are those that result in
the k smallest distances when compared to the query image.
Retrieving the k most similar items is commonly referred to
as a k-nearest neighbor (kNN) query.

Given a ground-truth dataset, there are a number of ways
to evaluate retrieval performance. One common method is
to plot the precision of the retrieved set for different values
of k. Precision is defined as the percent of the retrieved
set that is correct and can be computed as the ratio of the
number of true positives to the size of the retrieved set. It
is straight forward and meaningful to compute and compare
the average precision for a set of queries when the ground
truth sizes are the same. (It is not straight forward to do
this for precision-recall curves.)

Plotting precision versus the size of the retrieved set pro-
vides a graphical evaluation of performance. A single mea-
sure of performance that not only considers that the ground-
truth items are in the top retrievals but also their order-
ing can be computed as follows [16]. Consider a query q
with a ground-truth size of NG(q). The Rank(k) of the kth
ground-truth item is defined as the position at which it is
retrieved. A number K(q) ≥ NG(q) is chosen so that items
with a higher rank are given a constant penalty

Rank(k) =

(
Rank(k), if Rank(k) ≤ K(q)

1.25K(q), if Rank(k) > K(q)
. (10)

K(q) is commonly chosen to be 2NG(q). The Average Rank
(AVR) for a single query q is then computed as

AV R(q) =
1

NG(q)

NG(k)X
k=1

Rank(k) . (11)

To eliminate influences of different NG(q), the Normalized
Modified Retrieval Rank (NMRR)

NMRR(q) =
AV R(q) − 0.5[1 + NG(q)]

1.25K(q) − 0.5[1 + NG(q)]
(12)

is computed. NMRR(q) takes values between zero (indicat-
ing whole ground truth found) and one (indicating nothing
found) irrespective of the size of the ground-truth for query
q, NG(q). Finally, the Average Normalized Retrieval Rate
(ANMRR) can be computed for a set NQ of queries

ANMRR =
1

NQ

NQX
q=1

NMRR(q) . (13)

4. EVALUATION
This section describes the datasets and techniques used to

perform the comparisons.

4.1 Datasets
A collection of IKONOS 1-m panchromatic satellite im-

ages of the United States was used to compare the descrip-
tors. Separate datasets were created for the qualitative and
quantitative analyses. For the qualitative analysis, two large
IKONOS images of the Phoenix and Los Angeles areas were
partitioned into non-overlapping 64-by-64 pixel tiles. The
Phoenix image measures 21,248-by-11,328 pixels for a total
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Figure 1: Image patches corresponding to two of the
50 clusters used to label the SIFT features. The top
row shows a cluster that has captured corner-like
patches. The bottom row shows a cluster that has
captured grid-like patches.

of 58,764 tiles and the Los Angeles image measures 10,560-
by-10,624 pixels for a total of 27,390 tiles (86,154 tiles in
total). A single Gabor texture feature was extracted from
each tile using a filterbank tuned to R = 6 orientations and
S = 5 scales. The interest points descriptors were extracted
and assigned to the tiles as follows. First, interest points
and SIFT features were extracted from the complete im-
ages, resulting in 4,880,415 features for the Phoenix image
and 2,406,787 features for the Los Angeles image. 100,000
features were sampled from the combined set and clustered
into 50 clusters using k-means clustering. Figure 1 shows
sample image patches for two of the 50 clusters. Each of the
7,287,202 features in the large images was labeled based on
the clustering results and assigned to the tile containing the
interest point location. Thus, the 86,154 tiles contained 84.6
labeled SIFT features on average. Finally, a single interest
point descriptor consisting of the label counts was assigned
to each tile.

The quantitative analysis required a ground-truth dataset.
Ten sets of 100 64-by-64 pixel images were manually ex-
tracted from 22 large IKONOS images for the following land-
use/cover classes: aqueduct, commercial, dense residential,
desert chaparral, forest, freeway, intersection, parking lot,
road, and rural residential. Figure 2 shows examples from
each of these ten classes. A single Gabor texture feature was
extracted for each of the 1,000 ground-truth images, again
using a filterbank tuned to R = 6 orientations and S = 5
scales. Interest points and SIFT features were also extracted
from each image and labeled using the clustering from the
larger dataset above (thus the clustering and labeling was
not tuned to the ground-truth dataset). A single interest
point descriptor consisting of the label counts was assigned
to each image. The images here contained an average of
59.1 labeled features (fewer than above since the SIFT fea-
tures were extracted from the small images placing an upper
bound on the scale of the interest points). Figure 3 shows
the locations of the detected interest points for the sample
images in figure 2.

It is worth pointing out the different feature extraction
times for the ground-truth dataset. It took approximately
51 seconds to extract and label the interest points and ap-
proximately 353 seconds to extract the Gabor texture fea-
tures for the 1,000 images in the ground-truth dataset (on a
typical desktop workstation). While the extraction software
was not optimized and the timing measurements were not
scientific, we believe this order-of-magnitude difference be-
tween the two features is to be expected. Efficient extraction
is a noted strength of SIFT features.

4.2 Qualitative Analysis
A Geographic Image Retrieval (GIR) demonstration ap-

plication was used for the qualitative analysis. The GIR
demo allows a user to navigate large IKONOS images and
select 64-by-64 pixel tiles as query images. The user can
then perform a k-nearest neighbor query using either the
interest points or the global Gabor texture features. The
most similar k tiles in the result set is displayed in order of
decreasing similarity. This demo turns out to be a valuable
tool for evaluating the descriptive power of a feature. Figure
4 shows a screen capture of the GIR demo in which the user
has selected a tile from a dense residential region in the cen-
ter of the displayed IKONOS image of Phoenix. The user is
now ready to perform a 128-nearest neighbor query in the
86,154 tile Los Angeles and Phoenix image dataset. Figure
5 shows the top 32 retrievals in order of decreasing similarity
for this query tile for each of the three approaches. An ear-
lier version of this demo that uses the global Gabor texture
features to perform similarity retrieval on a large collection
of aerial images is available online at [1].

4.3 Quantitative Analysis
The quantitative analysis involved a comprehensive set of

similarity retrievals using each of the 1,000 images in the
ground-truth dataset as a query. Precision was computed
for each query as a function of retrieved set size from 1
to 1,000. These precision values were then averaged over
the 100 queries from each of the ten ground-truth classes.
This was performed three times: 1) for the interest point
descriptors; 2) for the global Gabor texture features using
the standard orientation sensitive distance measure; and 3)
for the global Gabor texture features using the modified ro-
tation invariant (RI) distance measure. Figure 6 shows the
averaged precision curves for the ground truth datasets. The
optimal case is also plotted for comparison.

The Average Normalized Modified Retrieval Rate (AN-
MRR) described in section 3.3 was also computed for each
of the three similarity retrieval methods, for each of the
ten ground-truth classes. Table 1 shows these values which
range from zero for all the ground-truth items retrieved in
a result set the size of the ground-truth to one for none of
the ground-truth items retrieved.

Table 1: Average Normalized Modified Retrieval Rate
(ANMRR). Lower value is better.
Ground-truth Interest pts Global Global RI
Aqueduct 0.494 0.417 0.243
Commercial 0.604 0.432 0.385
Dense residential 0.413 0.314 0.280
Desert chaparral 0.023 0.015 0.020
Forest 0.188 0.327 0.368
Freeway 0.458 0.761 0.430
Intersection 0.438 0.358 0.420
Parking lot 0.358 0.502 0.460
Road 0.637 0.623 0.485
Rural residential 0.463 0.413 0.454
Average 0.408 0.416 0.354

Again, the interest point descriptors were more compu-
tationally efficient, this time in terms of how long it took
to perform all 1,000 queries. On average, using the interest
point descriptors took only two seconds, using the global Ga-
bor texture features took 12 seconds, and using the texture
features with the rotation invariant distance measure took
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2: Two examples from each of the ground-truth classes. (a) Aqueduct. (b) Commercial. (c) Dense
residential. (d) Desert chaparral. (e) Forest. (f) Freeway. (g) Intersection. (h) Parking lot. (i) Road. (j)
Rural residential.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 3: The interest point locations for the images in figure 2.

Figure 4: The Geographic Image Retrieval demo which allows users to perform similarity retrieval in remote
sensed imagery.
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(a)

(b)

(c)

Figure 5: Examples of similarity retrieval using the GIR demo. The query tile (top left) and the top 32
retrieved images in order of decreasing similarity for (a) interest point descriptors, (b) global Gabor texture
features, and (c) global Gabor texture features using the rotation invariant similarity measure.
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Figure 6: Precision as a function return set size for the three similarity retrieval methods for the ground-
truth classes. (RI=rotation invariant) (a) Aqueduct. (b) Commercial. (c) Dense residential. (d) Forest.
(e) Freeway. (g) Intersection. Not shown are desert chaparral (methods perform comparably), parking lot
(curves are similar to forest), road (curves are similar to aqueduct), and rural residential (curves are similar
to commercial).

60 seconds. This variation could be critical for supporting
interactive similarity retrieval.

5. DISCUSSION
The qualitative analysis provided by the GIR demo showed

the interest point descriptors support effective similarity re-
trieval. Retrieval results for the interest points, such as the
example in figure 5, are rotation invariant, and when com-
pared to the global features, are less sensitive to differences
in scale. This makes sense because the interest points are
normalized for scale during the detection step. We also ob-
served that they are more robust to variation in the spatial
configurations of the ground truth classes. Notice that the
retrieved set for the interest point descriptors in figure 5 ex-
hibits greater variability in the arrangement of the houses
and streets than the retrieved sets for the global texture
features.

None of the approaches was shown to clearly outperform
the others in the quantitative analysis. Both the precision
curves and the ANMRR values indicate that different de-
scriptors are better for different ground truth classes. The
following general observations can be made from the preci-
sion curves in figure 6. The interest points descriptors have
difficulty with the aqueduct, commercial, and road classes
(the precision curves for the road class are not shown but are
very similar in shape to those for the aqueduct class). These
classes tend to be very structured which presents a challenge
for the interest point descriptors. The interest point descrip-
tors perform the best for the forest and parking lot classes

(the curves for parking lot are similar to those for forest).
Again, these classes exhibit less structure–forest is a stochas-
tic rather than a regular pattern, and the parking lots vary
in how full they are. The rotation invariance of the interest
point descriptors makes them perform comparable to the
rotation invariant global texture approach for the freeway
class. Finally, the rotation sensitive global texture approach
performs the best for the intersection and rural residential
classes (the curves for rural residential are similar to those
for forest). Due to the nature of the IKONOS images, these
classes tend to be similarly oriented thus providing an ad-
vantage to an approach that exploits this.

The ANMRR values in table 1 are in agreement with these
observations. The ANMRR averaged over all ground-truth
classes indicates the rotation invariant global texture ap-
proach performs the best overall, followed by the interest
points, and last is the rotation sensitive global texture fea-
tures.

This work represents an initial investigation into using in-
terest point descriptors for content-based analysis of remote
sensed imagery. This new category of low-level features was
shown to perform comparably to proven approaches to sim-
ilarity retrieval. There is plenty of future work to be done.
We plan to incorporate the spatial arrangement of the in-
terest points into the descriptor. This should improve the
performance for ground-truth classes such as aqueduct and
road. The challenge will be to do this in a computationally
efficient manner. We also plan on performing a comparison
using a ground-truth dataset containing class exemplars at
varying scales. This should further validate the scale invari-
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ance of the interest point descriptors.
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