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ABSTRACT

On-line photo sharing websites such as Flickr not only al-
low users to share their precious memories with others, they
also act as a repository of all kinds of information carried
by their photos and tags. In this work, we investigate the
problem of geographic discovery, particularly land-use clas-
sification, through crowdsourcing of geographic information
from Flickr’s geotagged photo collections. Our results show
that the visual information contained in these photo collec-
tions enables us to classify three types of land-use classes
on two university campuses. We also show that text entries
accompanying these photos are informative for geographic
discovery.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Vision]: Scene
Analysis; 1.5.4 [Pattern Recognition|: Applications; H.2.8
[Database Management]: Database Applications—spa-
tial databases and GIS

Keywords

Geotagged images, land-use classification

1. INTRODUCTION

On-line photo sharing websites such as Flickr [1] and Pi-
casa [2] have become a popular means for people to share
their precious memories. However, these datasets contain
more than just memories; they potentially contain a wealth
of information about the world. We usually think of the
five W’s and one H (Who, What, Where, When, Why, and
How) as only applying to text documents but each of the
photos in these collections along with its metadata can also
provide us with these six types of information. As many
researchers are discovering, innovative knowledge discovery
is possible through analyzing these photo collections. With
more than 180 million georeferenced photos available from
Flickr, our goal in this paper is to map what-is-where on the
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surface of the Earth using the What and Where aspects of
the information. In particular, we use georeferenced photos
collected from two university campuses to perform land-use
classification.

In traditional remote sensing, overhead imagery is used
to distinguish different types of land-cover in a given region;
however, it is more difficult to tell the type of land-use a
certain land-cover class belongs to. For example it is easy to
locate a region with large buildings and parking lots in the
satellite view mode in Google Maps but the satellite view
does not as easily indicate whether the region belongs to a
shopping center or a warehouse. To find out the answer,
one can switch to the street view mode and see the images
of nearby objects and scenes taken from the ground level. In
this work, we use the term “proximate sensing” to describe
geographic discovery using ground level images of nearby
objects and scenes.

The novel contribution of this work is to use proximate
sensing to complement the shortcoming of remote sensing for
land-use classification. We propose a novel framework using
state-of-the-art techniques in multimedia content analysis,
in particular automated image and text understanding, to
perform geographic discovery in large collections of georef-
erenced photos.

2. RELATED WORK

We consider geographic discovery to be a process that de-
rives knowledge about what-is-where on the surface of the
earth in the broad sense of the term “what”. Simply put,
it can be used to generate maps not only of the physical
aspects of our world, such as the terrain, but also of the
cultural and behavioral aspects. While there has been rel-
atively little work on using georeferenced images for geo-
graphic discovery, we feel it has significant potential for re-
alizing the full worth of georeferenced photo collections as
a repository for geographic imformation, particularly as an
alternate to traditional means of geographic inquiry. Exam-
ples of work in this area include using large collections of
georeferenced images to discover spatially varying (visual)
cultural differences among concepts such as “wedding cake”
[12]; to discover interesting properties about popular cities
and landmarks such as the most photographed locations [4];
to estimate weather satellite images using widely distributed
Web cameras [8]; and to create a map-like partitioning of a
country-sized region into geographically coherent subregions
[5]. Our work on proximate sensing as applied to georefer-
enced photo collections, however, represents a more com-
prehensive framework for geographic discovery particularly



(c) Sample Residential images

Figure 1: Sample images used to perform land-use classification.

of phenomena often not observable through other means.
We previously investigated proximate sensing for land-cover
classification [10, 11]. We here investigate the more difficult
problem of land-use classification.

The salient aspects of the work in this paper includes:

e To our knowledge, our work is the first to consider
georeferenced images for land-use classification.

e Our approach does not require individual images to
be manually labelled for training. Instead, labels are
propagated from existing land-use maps to the images
which greatly reduces the effort required to train the
classifiers.

3. DATASET

Two university campuses (University of California, Berke-
ley and Stanford University) are selected as our study areas
to learn the land-use classification models. We use the Flickr
application programming interface (API) to download Flickr
images located within the campus regions. For each cam-
pus, a land-use map is derived manually according to its
campus map. Three land-use classes are considered: Aca-
demic, Residential, and Sports. Each downloaded image is
then assigned a ground truth land-use class label accord-
ing to its geographic location on the map. Figure 1 shows
sample images from each class.

Besides training classifiers at the image level, we also train
classifiers at the group-of-images level. Since the content of
user contributed photos as well as the distribution of user
contributions are very diverse, having many photos con-
tributed by the same user may bias the training data. As a
result, we partition the dataset into groups based on users
(owners of photos), geographic locations, and the time when
the photos are taken. For each campus, we first partition
all images into 20 sub-regions based on their geographic lo-
cations using k-means clustering. These sub-regions are in-
dependent from the land-use classes. Finally, within each
sub-region we group all the images taken by the same user
on the same day. Our grouping methodology is based on the

Table 1: Dataset used in visual image level classifica-
tion experiments. Counts are the number of images.

Academic | Sports | Residential | Total

Berkeley Training 5029 2153 463 7645
Berkeley Test 2000 1500 50 3550
Stanford Training 1524 2772 747 5043
Stanford Test 200 200 100 500

Table 2: Dataset used in visual group level classifica-
tion experiments. Counts are the number of groups

(of images).

Academic | Sports | Residential | Total

Berkeley Training 1517 365 122 2004
Berkeley Test 200 50 30 280
Stanford Training 504 204 186 894
Stanford Test 50 30 30 110

assumption that same user takes photos of similar scenes in
a nearby location within a short period of time. Tables 1-3
provides the details of the three campus datasets, including
the sizes of the training and test sets.

3.1 Features

We use Jiang’s implementation [9] of bag of visual words
(BoW) with a soft-weighing scheme to extract a BoW fea-
ture from each image. Instead of assigning a visual word
nearest to a keypoint detected, the soft-weighing scheme as-

Table 3: Dataset used in textual group level clas-
sification experiments. Counts are the number of
groups (of images).

Academic | Sports | Residential | Total

Berkeley Training 1425 348 123 1896
Berkeley Test 150 30 20 200
Stanford Training 421 193 141 755
Stanford Test 50 20 20 90
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Figure 2: Framework of the proposed approach.

signs the four nearest visual words to a detected keypoint. A
dictionary of 500 visual words is used in our implementation.

Since Flickr images commonly have user-supplied text as-
sociated with them, we also study the effectiveness of this
text for land-use classification. To obtain the text features,
we create a dictionary of terms based on the words extracted
from the image title, descriptions, and tags associated with
each image. After applying stopping and stemming, a total
of 2457 unique terms are recorded, and out of these the 1949
most frequent terms are selected as the dictionary.

The text analysis is performed at the group level since
there is typically not enough text associated with the indi-
vidual images for effective classification. Each of the text
components associated with an image is parsed into a set
of terms (words) which are then pooled at the group level.
At the moment, all terms are given equal weight although
different weightings based on the relative importance of the
components would be an interesting extension. As a result,
each group of images is represented by a histogram of terms
among the dictionary.

It is unlikely that classification at the term level would be
effective due to the sparse occurrence of terms, so we apply
a latent semantic approach from text document analysis in
which a hidden topic z € Z = {z1, ..., zk } is associated with
the observed occurrence of a word w € W = {w1,...,wnm}
in a document (image group) d € D = {di,...,dn}. This
latent layer also helps overcome the problems of synonymy
and polysemy.

We use a generative probabilistic technique termed prob-
abilistic latent semantic analysis (pLSA) [6, 7] to learn the
hidden topics. A pLSA model can be expressed as

P(w|d) = P(w|z)P(z|d),

z2€Z

where P(w|d) is the observed word distributions over docu-
ments.

To learn the distribution of words over hidden topics, we
use the Expectation Maximization (EM) algorithm. In the

E-step, the posterior probabilities for the hidden topics are
evaluated:

P(z)P(d|z) P(w|z)
P(z|d =
Bt ) = 5 PP Py
while in the M-step the parameters of the E-step are esti-
mated based on the result of the E-steps:

L Sunldw)P(eld,w)
Pl = e w P(ald, w)”

Y, n(d,w)P(z|d, w)
P(d|z) = > n(d w)P(z[d, )’

P() = 5 S n(d w)P(eld,w), R= " n(d,w).
d,w d,w

Instead of defining the number of hidden topics as the
number of ground truth classes as most pLSA approaches
do, we use pLSA as a tool to reduce the dimensionality
of the term histogram of each image group by computing
the distributions over hidden topics for the image groups,
P(z|d). In our past experiments, we noticed that distri-
butions of hidden topics provide an explicit representation
of the image groups that is more robust than distributions
over terms. To evaluate the hidden topic distribution of a
novel image group, the EM algorithm is applied with a fixed
P(w|z) learned from the training step.

4. EXPERIMENTS

The goal of the experiments is to use the georeferenced
photos as represented by their visual or text features to
perform land-use classification. We formulate this as a su-
pervised classification problem in which support vector ma-
chines (SVMs) are trained on a labeled subset of the data
and then used to assign labels to a disjoint held-out set.
We compare applying the SVMs 1) at the image level and
2) applying them at the group level. These two modes are



Figure 3: Land-use classification of the Berkeley
campus. (a) Ground truth map. (b) Predicted map
using classifiers trained on the Stanford dataset.
Academic, Sports, and Residential are denoted by
red, green, and blue.

described in the following subsections. Performance is eval-
uated at two levels. First at the image or group level, and
the second by comparing the predicted land-use maps to the
ground truth maps derived manually from the campus maps.
The workflow of the experiments is illustrated in figure 2.

The SVMs are implemented using the LIBSVM package
[3]. We use radial basis function (RBF) kernels and de-
termine optimal values for the two parameters, the penalty
term C and the kernel width, through grid-search on a ran-
dom partitioning of the training set.

4.1 Image Level Classification

In this set of experiments, the SVMs are used to classify
individual images as being Academic, Sports, or Residential.
We use a one-versus-all approach to train the SVMs for each
campus and class. To generate a predicted land-use map,
we first divide each campus into a map of 50x50 regions
(tiles). The trained SVMs are then used to label each of
the test images within each tile. As a result, each tile is
represented by three ratio of images being classified into the
three respective classes—e.g., Academic versus other. We use
the label of the highest ratio to assign a land-use label to
each tile for comparison with the ground truth maps.

4.2 Group Level Classification

In this set of experiments, the SVMs are used to label the
groups directly. A single visual feature is computed for each
group by averaging the features from all the images within
the group. The text features are already computed at the
group level so no aggregation is needed. Due to the fact
that not all images have accompanying text, the size of the
training sets for the text features is slightly reduced from
that of the image features.

5. RESULTS

The different approaches are evaluated based on their ac-
curacy, precision, and recall. Accuracy is the number of
correctly predicted labels (both positive and negative) for a
particular classifier normalized by the size of the particular
test set. It is reported as a percentage. For example, if the
binary classifier trained on the Berkeley Academic dataset
classifies 320 of the 500 images in the Stanford test set cor-
rectly then the accuracy is 60%. An “accuracy” value can

Figure 4: Land-use classification of the Stanford
campus. (a) Ground truth map. (b) Predicted map
using classifiers trained on the Berkeley dataset.
Academic, Sports, and Residential are denoted by
red, green, and blue.

also be computed when a classifier is used to detect a class
other than the one it is trained for. For example, the binary
classifier trained on the Berkeley Academic dataset can be
applied to the Stanford test with the Sports images as the
positive labels. In this case, a low accuracy value would be
a good result. Precision is the fraction of images that are
assigned a particular class that actually have that class and
recall is the fraction of the images with a particular class
that are assigned that class.

Table 4 summarizes the visual image level classification ac-
curacy of each classifier trained using one class and applied
to detect another class for both the intra- and inter-campus
cases. These results clearly demonstrate that the classifiers
are learning discriminating visual features for the three dif-
ferent land-use classes. Classifiers trained on a particular
class are always more likely to detect that class than an-
other. As might be expected, the intra-campus results are
better than the inter-campus ones. However, the approach
is seen to generalize quite well from one campus to another.
The high values for the Residential class can be explained
by the relatively few images in this test set especially for the
Berkeley campus.

Table 5 summarizes the visual group level accuracy. The
classification performance at the visual group level is com-
parable to that at the visual image level. This is significant
since grouping the images results in smaller number of train-
ing samples, greatly reducing the computational cost of the
SVM learning.

Table 6 summarizes the textual group level classification
accuracy. We can see that despite the diversity of text
accompanying the images, pLSA is able to extract suffi-
cient discriminating semantic information to distinguish the
classes.

Table 7 summarizes the precision and recall rates for each
approach. These results corroborate those of the accuracy
results: the classifiers are able to distinguish between dif-
ferent classes; the intra-campus results are better than the
inter-campus but the generalization is still good; and that
the visual group and textual group results are comparable
to that of the visual image. The poor precision and recall
values for the Berkeley Residential class are again a result
of there being too few images in this dataset.

Finally, we produce land-use maps using the visual image



Table 4: Visual image level classification accuracy

Berkeley Test Sets Stanford Test Sets
Training Sets Academic | Sports | Residential | Academic | Sports | Residential
Berkeley Academic 82 17 36 62 27 39
Berkeley Sports 18 84 68 42 72 65
Berkeley Residential 44 57 97 59 59 80
Stanford Academic 64 36 69 75 31 58
Stanford Sports 28 73 54 28 85 44
Stanford Residential 44 57 96 55 54 84

Table 5: Visual group level classification accuracy

Berkeley Test Sets Stanford Test Sets
Training Sets Academic | Sports | Residential | Academic | Sports | Residential
Berkeley Academic 74 19 18 58 24 33
Berkeley Sports 25 86 84 46 78 67
Berkeley Residential 28 82 90 55 73 73
Stanford Academic 60 36 39 68 30 45
Stanford Sports 29 81 76 40 84 60
Stanford Residential 29 82 89 55 73 73

Table 6: Textual group level classification accuracy

Berkeley Test Sets Stanford Test Sets
Training Sets Academic | Sports | Residential | Academic | Sports | Residential
Berkeley Academic 80 12 16 66 21 28
Berkeley Sports 21 88 85 39 81 70
Berkeley Residential 25 85 90 44 78 78
Stanford Academic 66 33 37 72 23 46
Stanford Sports 22 87 82 37 83 70
Stanford Residential 25 85 90 44 78 78
Table 7: Precision and recall rates
Visual Image Visual Group Textual Group
Training Sets Test Sets Precision | Recall | Precision | Recall | Precision | Recall
Berkeley Academic Berkeley Academic 0.80 0.92 0.76 0.94 0.80 0.98
Berkeley Sports Berkeley Sports 0.92 0.67 0.81 0.26 0.75 0.30
Berkeley Residential | Berkeley Residential 0.13 0.14 1.0 0.03 0 0
Berkeley Academic Stanford Academic 0.52 0.93 0.52 0.98 0.62 0.96
Berkeley Sports Stanford Sports 0.79 0.41 0.80 0.27 0.67 0.30
Berkeley Residential | Stanford Residential 0.50 0.05 0 0 0 0
Stanford Academic Berkeley Academic 0.83 0.46 0.74 0.68 0.82 0.70
Stanford Sports Berkeley Sports 0.67 0.71 0.48 0.38 0.61 0.37
Stanford Residential | Berkeley Residential 0.03 0.06 0 0 0 0
Stanford Academic Stanford Academic 0.72 0.63 0.62 0.78 0.74 0.78
Stanford Sports Stanford Sports 0.79 0.85 0.83 0.50 0.78 0.38
Stanford Residential | Stanford Residential 0.84 0.25 0 0 0 0




classifications. We first divide the test images into a map
of 50x50 regions (tiles) according to their geographic loca-
tions. The trained SVMs are then used to label each of the
test images. As a result, each tile is represented by three ra-
tios of images being classified as the three respective classes.
We use the label of the highest ratio to assign a land-use
label to each tile label. Figures 3 and 4 show the classi-
fication maps compared to the ground truth maps of each
campus. Since there are not enough test images to generate
a map for each campus, we use the cross-campus classifiers
to classify the entire image set of each campus. We note
that most of the Academic class regions are correctly iden-
tified due to the strong performance of this classifier. The
Stanford Sports classifier is also able to locate a significant
amount of the Sports class regions correctly on the Berkeley
campus. On the other hand, we can see that many labels
of the Residential class are missing due to the failure of this
classifier.

6. DISCUSSION

The work in this paper represents a proof-of-concept of
land-use classification using geotagged images. Of course,
land-use maps at least in the form of campus maps already
exist for university campuses. We expect our approach to
generalize to other areas for which land-use maps are not
available. However, the ground truth for these regions will
be more difficult to derive which is part of the reason we
focused on university campuses here.

One issue with geotagged images is the accuracy of the
location information. It is likely that some of the images
will be incorrectly located due to placement error by the
user, environmental constraints on the onboard GPS sen-
sors of (phone) cameras, etc. Nevertheless, our results here
demonstrate the feasibility of our approach even with po-
tential location errors. The size of the dataset mitigates the
noisy locations. Presumably, though, more accurate loca-
tion information would improve the results. Improving the
accuracy of the dataset as whole, though, is an interesting
problem in itself.

7. FUTURE WORK

This paper represents our initial work on this interesting
but challenging problem. There are many interesting direc-
tions in which it can be extended. Using high-level object
and concept detectors instead of the low-level features used
here will likely improve the classification performance. The
problem of object and concept detection for geographic in-
ference provides an interesting context in which to apply and
evaluate existing techniques as well as develop novel ones.

It is likely that the visual and textual features are comple-
mentary. Therefore, it would be worthwhile to investigate
combining these two modalities either at the feature or post-
classification stage.

Finally, it would interesting to see if the approach can
be used to classify subclasses of the three classes studied
here. Subclasses of the Academic class such as classrooms,
libraries, and laboratories, or subclasses of the Sports class
such as stadiums, gymnasiums, and swimming pools, likely
have their own distinctive visual and textual signatures in
the images and thus could be distinguished given enough
data.

8. CONCLUSION

In this paper, we proposed a novel framework to perform
land-use classification using georeferenced images obtained
from Flickr. We considered classification using visual and
textual features, and at both the individual and group im-
age level. The results from applying the approach to two
university campuses represent promising first steps on this
interesting but challenging problem.
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