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This paper investigates image processing and pattern recognition techniques to estimate atmospheric visibility
based on the visual content of images fromoff-the-shelf cameras.We propose a predictionmodel thatfirst relates
image contrast measured through standard image processing techniques to atmospheric transmission. This is
then related to themost commonmeasure of atmospheric visibility, the coefficient of light extinction. The regres-
sionmodel is learned using a training set of images and corresponding light extinction values asmeasured using a
transmissometer.
The major contributions of this paper are twofold. First, we propose two predictive models that incorporate
multiple scene regions into the estimation: regression trees and multivariate linear regression. Incorporating
multiple regions is important since regions at different distances are effective for estimating light extinction
under different visibility regimes. The second major contribution is a semi-supervised learning framework,
which incorporates unlabeled training samples to improve the learned models. Leveraging unlabeled data for
learning is important since in many applications, it is easier to obtain observations than to label them. We
evaluate our models using a dataset of images and ground truth light extinction values from a visibility camera
system in Phoenix, Arizona.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Atmospheric visibility can be a useful indicator of atmospheric pollu-
tion resulting from suspended particulates especially in drier climates.
This coupled with the rapidly growing number of cameras in our eco-
system motivates image-based visibility estimation as an appealing
complement to traditional means of monitoring air pollution since spe-
cialized equipment for measuring pollution is comparatively expensive.
So-called visibility camera systems are already seeing widespread de-
ployment. For example, the Interagency Monitoring of Protected Visual
Environments (IMPROVE)1 program has installed and maintains cam-
eras in over two dozen national parks in the United States. In addition,
regional air quality agencies2 have deployed visibility camera systems
in over 30 cities. More broadly, though, there are potentially tens of
thousands of web, surveillance, traffic, and other cameras, which could
be used to monitor atmospheric visibility and thus air pollution.

The work in this paper represents a step towards using multimedia
data, in particular images from off-the-shelf cameras, to perform quanti-
tative estimation of atmospheric visibility. We investigate image pro-
cessing and pattern recognition techniques to derive prediction models
of light extinction based on image content. Light extinction captures
).

et, http://www.wyvisnet.com.

ghts reserved.
the joint effects of light scattering and absorption that result frompartic-
ulates in the atmosphere.

Our major contributions are twofold. First, we demonstrate that
models which incorporate scene regions located at different distances
from the camera are more effective than models which incorporate
only a single region. This result is due to the fact that far regions are
not useful when visibility is relatively poor since they are not observable
at all, and close regions are not useful when visibility is relatively good
since there is not enough intervening atmosphere to reduce visual acu-
ity by a measurable amount. Our second major contribution is a semi-
supervised learning framework which incorporates unlabeled training
samples to improve the learned models. Leveraging unlabeled data for
learning is important since, in many applications, it is easier to obtain
observations than to label them.

The rest of the paper is organized as follow. First, Section 2 discusses
relatedwork. The problem is formally defined in Section 3. Section 4 de-
scribes the general framework of our approach and Section 5 describes
the evaluation dataset and methodology. Sections 6 and 7 describe the
proposed methods for incorporating multiple image regions and incor-
porating unlabeled observations, including the experimental results.
Section 8 concludes the paper.

2. Related work

There is a sizable body of work on the related problem of improving
the fidelity of images taken under hazy or otherwise atmospherically
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degraded conditions. This includes work by Narasimhan and Nayar on
using physics-based models to improve a single image (Narasimhan &
Nayar, 2003b, 2003c) and using multiple images of the same scene
but under different conditions (Narasimhan & Nayar, 2001, 2002,
2003a); work by Schechner and colleagues on using polarization to im-
prove one or more images (Namer & Schechner, 2005; Namer et al.,
2009; Schechner et al., 2001, 2003; Shwartz et al., 2006); and work by
(He et al., 2009) on using a dark channel prior to dehaze a single
image. The objective of this paper, however, is to derive quantitative es-
timates of atmospheric visibility and so these works are not directly
applicable.

There is a much smaller body of work on using images to measure
atmospheric visibility. (Caimi et al., 2004) review the theoretical foun-
dations of visibility estimation using image features such as contrast,
and describe a Digital Camera Visibility Sensor system, but they do not
apply their technique to real data. (Kim & Kim, 2005) investigate the
correlation between hue, saturation, and intensity, and visual range in
traditional slide photographs. They conclude that atmospheric haze
does not significantly affect the hue of the sky but strongly affects the
saturation of the sky, but they do not use the image features to estimate
visibility. (Baumer et al., 2008) use an image gradient based approach to
estimate visual range using digital cameras but their technique requires
the detection of a large number of targets, some only a fewpixels in size.
This detection step is sensitive to parameter settings and is not robust to
camera movement. Also, for ranges over 10 km, they only compare
their estimates to human observations, which have limited accuracy.
(Luo et al., 2005) use Fourier analysis aswell as the image gradient to es-
timate visibility but they also only compare their estimates to human
observations. (Raina et al., 2004) do compare their estimates to mea-
surements taken using a transmissometer-like device but their ap-
proach requires the manual extraction of visual targets. The work by
(Molenar et al., 2004) is closest to the proposed technique in that it is
fully automated and the results are compared to transmissometer read-
ings. However, their technique uses a single distant and thus small
mountain peak to estimate contrast and thus is very sensitive to camera
movement and is unlikely to perform well under varying visibility
regimes.

In contrast to theworks above, our approach is fully automated, does
not rely on the detection and segmentation of small targets, is robust to
modest camera movement, and performs favorably when compared to
ground truth measurements acquired using specialized equipment.

In our previouswork (Graves &Newsam, 2011), we compared differ-
entmethods for computing image contrast as the basis for estimating vis-
ibility.We considered Sobelfilters in the spatial domain, low-, band-, and
high-pass filters in the frequency domain, and an image haze model
based on the so-called dark channel prior (He et al., 2009).We concluded
that Sobel filters worked best. This paper extends that work in two fun-
damental ways: 1) we consider multiple image regions using regression
trees aswell asmultivariate linear regression (this was introduced in our
earlier workshop paper (Graves & Newsam, 2012)); and 2) we investi-
gate semi-supervised learning to incorporate unlabeled observations.

3. The problem

Our goal is to estimate visibility from a static image. Reduced vis-
ibility by the intervening atmosphere is mainly due to three factors:
1) light radiating from the scene is absorbed before it reaches an
observer; 2) light radiating from the scene is scattered out of the vi-
sual pathway of an observer; and 3) ambient light is scattered into
the visual pathway of an observer. The combined effect of the ab-
sorption and scattering is referred to as the total light extinction.
The higher the light extinction, the poorer the visibility.

Light extinction is typicallymeasured using a transmissometer (Betts,
1971; Lee et al., 1982). This device consists of a light source (transmitter)
and light detector (receiver), generally separated by a distance of several
kilometers, and assesses visibility impairment bymeasuring the amount
of light lost over this known distance. The transmitter emits a uniform
light beam of known constant intensity. The receiver separates this
light from ambient light, computes the amount of light lost, and reports
the extinction coefficient bext, which is commonly measured in units of
inverse megameters (1 Mm−1 = 1.0 × 10−6 m−1).

Our goal is to measure bext using a camera instead of a transmissom-
eter. We do this by noting that bext is inversely related to atmospheric
transmission t through the exponential equation (Seinfeld & Pandis,
2006)

t ¼ exp−bextr ð1Þ

where r is the distance of the scene. Further, atmospheric transmission t
can be related to the observed image I through (Fattal, 2008; He et al.,
2009; Narasimhan & Nayar, 2000, 2002; Tan, 2008)

I ¼ J t þ A 1−tð Þ ð2Þ

where J is the scene radiance and A is the ambient (atmospheric) light.
The first term on the right side of this equation is inversely related to the
amount of light radiating from the scene that is scattered out of the vi-
sual pathway and thus increases with improved transmission. The sec-
ond term is the amount of ambient light typically from the sun that is
scattered into the visual pathway and thus decreases with improved
transmission. In the extremes, the perceived image can either be just
the scene radiance, i.e., no atmospheric interference, or just the
scattered ambient light.

Intuitively, reduced visibility results in an image with less detail es-
pecially in the distance. This reduced acuity is caused by two factors:
the objects and their backgrounds become more similar due to in-
creased attenuation and scattering; and the atmosphere acts as a low-
pass filter (Krishnakumar & Venkatakrishnan, 1997), suppressing the
higher-frequency image components or details. We use the term local
contrast to refer to image acuity and define it as themagnitude of differ-
ence in image intensity over a short spatial distance C = |∇I| where the
gradient is with respect to the two-dimensional image space. The same
spatial difference can be computed on the right side of Eq. (2) to get

∇Ij ¼ j∇ J t þ A 1−tð Þð Þj j ð3Þ

¼ j∇Jtj ð4Þ

¼ tj∇ Jj: ð5Þ

Line 4 results from the assumption that the ambient light A is locally
constant and line 5 results from the positivity of transmission t and the
assumption that it is locally constant as well. The quantity |∇J| is the
“true” contrast of the scene when imaged under perfect transmission;
i.e. when there is no intervening atmosphere to reduce visibility. This
equation shows that transmission has the intuitive interpretation as
the ratio of the observed contrast to the true contrast.

We use Sobel filters to estimate the image gradient at each pixel. To
compensate for slight camera movement and other sources of image
noise, we compute image contrast C as the average of the gradient mag-
nitude over an image region Ω:

C ¼ 1
Ωj j

X
Ω

j∇Ij: ð6Þ

Finally, putting it all together, we can relate the quantity we are try-
ing to estimate, the coefficient of extinction bext, to what we measure
from the image, contrast C (or, more precisely, the log of the contrast)
through the linear relation:

bext ¼
lnC
r

− lnj∇ Jj
r

: ð7Þ
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Here, 1/r is the scaling factor and ln|∇J|/r is the offset, whichwe treat
as unknown in our prediction models below.

4. Our approach: Supervised learning

We learn our prediction models by using supervised learning.
Given a labeled set of observations–the training set–we learn a pre-
dictive regression model. In our case, the observations are the im-
ages, or, more precisely, the image contrast measured from one or
more image regions, and the labels are the values of the coefficient
of extinction associated with the images as measured with a trans-
missometer. These values are considered the ground truth. We eval-
uate the learned models by predicting the coefficient of extinction
for a separate set of images–the test set–based on image contrast
and then comparing the predicted values with the ground truth
values.

More formally, wewant to learn a function y = f(x)where the input
is the image contrast and the output is the coefficient of extinction. We
only consider linear models. In the univariate case, which corresponds
to Eq. (7), the function f (x) has the form

f xð Þ ¼ α1 � xþ α0 ð8Þ

where x is the log of the image contrast, α1 is the scaling factor, andα0 is
the offset.

The problem is now reduced to learning the unknown coefficientsα1

and α0 using the labeled training set. We formulate this as a least-
squares optimization problem. Given l observations xi and correspond-
ing labels yi where i = 1,…,l, we find the values of the coefficients
that minimize the sum of the squared differences between the predict-
ed and ground truth labels:

α�
1;α

�
0 ¼ arg min

α1 ;α0

1
l

Xl

i¼1

yi− f xið Þð Þ2: ð9Þ

5. Dataset and evaluation

We evaluate our prediction models by using a set of images and
ground truth extinction readings from the Arizona Department of Envi-
ronmentalQuality,whichmanages the PhoenixVis.net visibilityweb cam-
eras website (Phoenixvis).3 This website contains live images from six
visibility cameras of scenic urban and rural vistas in the Phoenix, Arizona
region. Our dataset consists of the following acquired over 2006:

• Digital images of South Mountain (SOMT) captured every 15 min.
• The extinction coefficient bext measured every hour using a transmis-
someter. This serves as the ground truth.

The imagesmeasure 1536 × 1152 pixels in size, are in the RGB color
space, and (unfortunately) have been JPEG compressed at an unknown
quality level. We initially consider only images taken at the top of each
hour, since this is when the transmissometer readings are made, and
during daylight hours, approximately 10 am to 4 pm. This results in a
dataset of 1963 images from the SOMT camera which is “labeled” with
ground truth extinction bext values. Note that these images are taken
over the entire year and are not specific to a particular season, or time
of month or week. In our work on semi-supervised learning in
Section 7 where we incorporate unlabeled observations, we consider
all the images–i.e., images captured every 15 min–but on a smaller
dataset. Sample images corresponding to good and poor visibility condi-
tions are shown in Fig. 1.
3 http://phoenixvis.net.
We evaluate the accuracy of our models using the coefficient of de-
termination R2 between the predicted and ground truth values. Let yi′
and yi be the predicted and true extinction coefficients for image i then

R2 ¼ 1−
Xn

i¼1
yi′−yið Þ2Xn

i¼1
yi−yð Þ2 ð10Þ

where n is the number of images in the evaluation set and y is themean
of the true values. R2 is unitless and ranges from zero to onewith higher
values indicating a more accurate model.

In order to provide an intuitive feel for the predictions, we also com-
pute the mean absolute error (MAE) between the predicted and true
values:

MAE ¼ 1
n

Xn
i¼1

yi′−yij j: ð11Þ

MAE has the same units as Bext, Mm−1, and has a minimum value of
zero with higher values indicating a less accurate model.

6. Incorporating multiple image regions

The hypothesis andmotivation behind incorporatingmultiple image
regions are that no single image region will be effective for estimating
light extinction under different visibility regimes. Far regions are not
useful when visibility is relatively poor since they are not observable
at all, and close regions are not useful when visibility is relatively good
since there is not enough intervening atmosphere to reduce visual acu-
ity by a measurable amount.

We experimentwith a number of image partitionings. First, we parti-
tion the images into square blocks of different sizes including: a 24 × 18
grid of 64 × 64-pixel blocks (B64); a 12 × 9 grid of 128 × 128-pixel
blocks (B128); an 8 × 6 grid of 192 × 192-pixel blocks (B192); and a
6 × 4 grid of 256 × 256-pixel blocks (B256). We also consider regions
corresponding to rows of these blocks; i.e. regions composed of the
grouping of all blocks in a row. This results in three additional
partitionings: a 24 × 1 grid of 64 × 1536-pixel regions (R64); a 12 × 1
grid of 128 × 1536-pixel regions (R128); and an 8 × 1 grid of
192 × 1536-pixel regions (R192). The motivation here is that each
such row represents a large image region which is situated at approxi-
mately the same distance. These extended horizontal regions might
thus be more effective than smaller blocks for estimating visibility.
Table 1 summarizes the different partitionings and also indicates the di-
mensionality of the feature vectors that result since we extract one con-
trast value per region using Eq. (6). The terms in parenthesis above are
the IDs assigned to the different partitionings.

In Sections 6.1 and 6.2 below, we explore and compare two different
methods for incorporatingmultiple regions from the above partitionings
into the visibility estimation.

6.1. Method: Regression trees

Transmission is an inverse exponential function of both distance and
the extinction coefficient. For areaswith a low transmission value, there
will be aminimal change in contrast for small shifts in the extinction co-
efficient. However, these same areas can become very informative as
the visibility improves. Regression trees generate a decision-making
process by which multiple linear fits can be considered within the
same model. As the conditions of the image change, different image re-
gionsmay be used to generate the output. By using a regression tree, the
system can be trained to observe closer landmarks if distant points be-
come overly attenuated.

Weextendour earlierwork by allowing for the use of all regions in the
image and optimizing their contributions to the overall estimation. This
problem is handled by partitioning the image into regions (see above)

http://phoenixvis.net


(a) bext = 25 Mm-1 (b) bext = 174 Mm-1

Fig. 1.We investigate methods to estimate light extinction bext using visibility cameras. Shown above are images corresponding to good and poor conditions from a visibility camera in
Phoenix, Arizona. Ground truth readings from a transmissometer appear in the captions.
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and using an M5’ regression tree (Quinlan, 1992; Wang &Witten, 1997)
to estimate visibility. That is, multiple features, one from each region, are
provided to the regression tree which, during the training phase, learns
which features (regions) to use under different visibility regimes. This ap-
proach results in a discontinuous but piece-wise linear predictive model.

Regression trees are a type of decision tree learning method. They
are very similar to classification trees, but the primary goal is to output
a real number instead of a class. The performance at each iteration of
tree growth is measured by the information gain. This provides a quan-
titative value for the quality of each data split, and is calculated as the
standard deviation of the examples assigned to the resulting leaf
nodes. Intuitively, this means that we select splits that group similar re-
gimes together. Regression trees select inequalities that split data in a
way that maximizes this information gain. Each leaf node is then repre-
sented by a numerical value or a simple linear model to produce the
output. An example tree using two features is shown in Fig. 2.

M5’ regression generates a decision tree using standard deviation to
calculate the information gain. The feature with the largest information
gain asmeasured in reduction of standard deviation, represents the best
way to split the current examples into two distinct groups. Standard de-
viation reduction (SDR) is calculated as

SDR ¼ sd Tð Þ−
X
i

Tij j
Tj j � sd Tið Þ ð12Þ

where sd (T) is the standard deviation of the parent node, sd (Ti) is the
standard deviation of each child node, |T| is the number of data points
in the parent node, and |Ti| the number of data points in the child
Table 1
The image partitionings considered and the dimensionality (Dim) of the resulting feature
vectors (one contrast value per region). See the end of section 6 for more details on the
partitionings, which are identified by ID.

ID Dim Description

B64 432 Blocks 64 × 64 px
B128 108 Blocks 128 × 128 px
B192 48 Blocks 192 × 192 px
B256 24 Blocks 256 × 256 px
R64 24 Rows 64-px tall
R128 12 Rows 128-px tall
R192 8 Rows 192-px tall
All 224 All of the above, except B64
nodes. This splits the training data in a way thatminimizes the standard
deviation of each subset proportional to the size of those sets. Because
variables contain continuous values, we perform the fit based on in-
equalities (e.g. X2 N 4.5). The function stops splitting when the SDR be-
comes sufficiently low or the number of examples in the set becomes
too small to continue splitting. The algorithm then begins pruning the
tree for reduced error. This is necessary because the building process re-
lies solely on SDR and does not test fits as it progresses. If the summed
error of child nodes is greater than a parent node, the parent node will
become a leaf node instead. Each leaf node consists of a set of data points
which can be characterized by a single value or a linear model. We use
theM5PrimeLab implementation ofM5’ regression trees (M5PrimeLab).

We evaluate the regression trees using fivefold cross validation. The
6897 labeled images are partitioned randomly into five approximately
equal sized sets. A regression tree is then learned using four of these par-
titions–the training set–and then evaluated on the fifth partition–the
test set. This is then repeated four times using different training/test
Fig. 2. Amock-up example of a regression tree for a 2-feature visibility problem. Here, Bext
is expressed in terms of X1 and X2. The number of training points that are used to learn
each of the constituent parts of the model is indicated by the count N.
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sets and the final results are averaged. This is performed for each of the
image (spatial) partitionings described in Section 5.

Table 2 shows the results for the different image partitionings. It is
immediately apparent that using regression trees to incorporate multi-
ple regions significantly improves upon our previous approach (Graves
& Newsam, 2011), which used only a single region and resulted in an R2

value of 0.646 and a MAE value of 12.5 Mm−1. We discuss these results
further below.

6.2. Method: Multivariate linear regression

In addition to the regression tree approach above, we also consider
multivariate linear regression as a way to incorporate multiple image
regions into the visibility estimation. Given n image regions, we have
n instances of Eq. (7). Assuming a constant value of the light extinction
bext for the scene (i.e., the atmosphere is approximately uniform), we
can sum these instances to get

nbext ¼
Xn
j¼1

lnC j

r j
−

lnj∇ J jj
r j

ð13Þ

where Cj, rj, and Jj are themeasured contrast, distance, and true contrast
of region j respectively. We can rewrite this as

bext ¼
Xn
j¼1

lnC j

nr j
−K ð14Þ

where the individual offsets have been grouped into a single offset K.
We can consider this as a multivariate linear regression model in
which the (logs of the) contrasts of the regions Cj are the variables, the
1/nrj are the scaling factors, and K is the offset. Using the notation of
Section 4, this model can be written as

f xð Þ ¼ αn…α1½ � � x þ α0: ð15Þ

Given a training set, we can then use least-squares to estimate the
coefficients of the model αj for j = 1,…, n.

We evaluate this model using the same fivefold cross validation and
image (spatial) partitionings as for the regression tree model. The re-
sults for the multivariate linear regression model are summarized in
Table 2. This model is shown to outperform the regression tree model.

6.3. Discussion

We make the following observations based on the results
in Table 2. First, not surprisingly, models which incorporate multiple
image regions are more effective than those with only a single
region. The best results for the regression tree and multivariate line-
ar regressionmodels are R2 = 0.780 (MAE = 8.90 Mm−1) and R2 =
0.845 (MAE = 7.95 Mm−1) respectively, while the best result using
Table 2
Results of the regression tree and multivariate linear regression predictive models for
different image partitionings. See Table 1 for details on the partitionings. MAE is in units
of Mm−1.

Regression trees Multi. linear reg.

Partitioning R2 MAE R2 MAE

All 0.780 8.90 0.845 7.95
B64 0.776 8.88 0.830 8.21
B128 0.762 9.22 0.813 8.94
B192 0.735 9.82 0.830 8.21
R64 0.733 9.72 0.748 10.5
R128 0.722 10.3 0.729 11.1
R192 0.698 10.5 0.719 11.1
a single region in our previous work was R2 = 0.646 (MAE =
12.5 Mm−1). This represents improvements of 20.7% and 30.8% in
terms of R2. This improvement is likely in large part due to the fact
that scene regions at different distances are effective for estimating
light extinction under different visibility regimes. Far regions are not
useful when visibility is relatively poor since they are not observable
at all, and close regions are not useful when visibility is relatively
good since there is not enough intervening atmosphere to reduce visual
acuity by a measurable amount.

We also observe thatmodels incorporating a larger number of small-
er regions are better than those incorporating a smaller number of larger
regions. This is true for both the regression tree and multivariate linear
regressionmodels. For themost part, more small blocks performed bet-
ter than fewer large blocks andmore small rows performed better than
fewer large rows. Using the smaller blocks also performed better than
the larger rows. This finding is further evidence that it is useful to have
regions at varying distances so as to better model different visibility
regimes.

Themultivariate linear regressionmodel is shown to outperform the
regression tree model for all image partitionings. While it is difficult to
make any general conclusions based on this result since these are two
very different approaches, it is likely that the regression trees are
over-fitting the training data.Many of the leaf nodes of the trees contain
very few samples–some as few as four–which makes it difficult to fit
even a simple linear univariatemodel. It is possible thatmore aggressive
pruning of the tree could improve this. This is potentially a topic for fur-
ther investigation.

7. Incorporating unlabeled observations

In this section, we propose a framework to incorporate unlabeled
observations using semi-supervised learning to improve the prediction
models. The motivation here is that ground truth data is typically more
difficult to obtain than observed data. In remote sensing in the geo-
graphic sciences, this is due to the effort involved in collecting ground
level field data and results in ground truth data which is sparsely sam-
pled and/or distributed spatially. In image understanding in computer
vision, this is due to the time required to manually annotate images
and results in relatively few labeled image examples compared to the
total number of images that are typically available. In our case, our
observations–the images–are sparsely labeled temporally since the
transmissometer only provides readings every hourwhereas the images
are captured every 15 min.

The goal of semi-supervised learning is to use theunlabeled observa-
tions to improve the learned model. This of course requires that some
assumptions aremade about the relationship between the observations.
In remote sensing, it is assumed that spatially nearby observations will
be similar based on the first law of geography: all things are related
but nearby things are more related that distant things. In our problem,
we assume that visibility does not change rapidly and that observations
(images) obtained a short time apart will correspond to similar atmo-
spheric conditions in terms of the coefficient of extinction. The technical
challenge in semi-supervised learning is how to exploit this assumption
of similarity to smooth the model so that observations that are close in
time are not assigned drastically different labels. An alternate view is
that we would like to in some sense “propagate” the labels from the la-
beled observations to the unlabeled observations to learn a better
model.

7.1. Method: Laplacian regularized linear least squares

Our approach to semi-supervised learning is inspired and based on
the paper by (Xie et al., 2010). We use a weighting scheme to make
sure our predictions do not vary significantly for related observations.
In our case, these weights are based on the time between observations.
In the following, we describe a general mechanism to perform this



Table 3
Dataset used to evaluate the proposed LRLLS approach.

# Labeled images # Unlabeled images

Training set (TR) 21 63
Validation set (V) 30 0
Test set 1 (T1) 119 0
Test set 2 (T2) 119 0
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weighting in a linear regression framework.We then investigate several
weighting schemes.

To state it formally, given l labeled and u unlabeled observations xi
with temporal index i, we want to minimize (f (xi) − f (xj))2, the differ-
ence in our predictions for these observations, for i and j values that are
close in time. That is, we do not want to assign drastically different coef-
ficients of extinction to images that are taken a short time apart since it
is unlikely that the atmospheric conditions changed drastically during
this period. This is of course in addition to the prediction error on the la-
beled training data (yi − f (xi))2. In the general case, we use wij to
weight (f (xi) − f(xj))2. This results in the following optimization prob-
lem in whichmma determines the relative weighting of the smoothing
component:

f ′ ¼ arg min
α

1
l

Xl

i¼1

yi− f xið Þð Þ2 þ γ
Xlþu

i; j

wij f xið Þ− f x j

� �� �2 ð16Þ

where

f xð Þ ¼ α0 þ α1x1 þ :::þ αnxn: ð17Þ

Note how the objective function simultaneously minimizes the
prediction error on the labeled training set and the prediction be-
tween closeby observations whether they are labeled or not. If we
construct a graph matrix W that captures the (temporal) distance
between observations, the solution to this optimization problem
can be solved using the graph Laplacian. We thus refer to this
method as Laplacian regularized linear least-squares (LRLLS)
regression.

Let Dii = ∑ j = 1
l + uwij. The graph Laplacian can then represented as

L = D − W. Our optimization problem can now be rewritten as

f ′ ¼ arg min
α

1
l
J Y−Xα
� �2 þ γ Xαð ÞTLXα ð18Þ

where α are our regression coefficients, X is the stacked observations, Y
is the stacked labels, and J is a matrix used to separate labeled and
unlabeled observations. It is an (u + l) × (u + l) matrix with form

Jii ¼ 1 if xi is labeled
0 if xi is unlabeled

:

�

The optimization problem now becomes

f ′ ¼ arg min
α

1
l
J Y−Xα
� �2 þ γ Xαð ÞTLXα : ð19Þ

The optimal α for a fixed γ is found by taking the partial derivative
and solving with respect to α.

∂
∂α

1
l
J Y−Xα
� �T Y−Xα

� �þ γ Xαð ÞTLXα
¼ 0 J

l
−XT

� �
Y−Xα
� �þ γXTLXα

¼ 0− JXTY þ JXTXα þ γXTLXα

¼ 0 JXTX þ αXTLX
� �

α ¼ JXTYα

¼ JXTX þ γXTLX
� �−1

JXTY:

ð20Þ

Eq. (20) is used to compute the coefficients α for the linear
model.

We consider two cases for the temporal connections between near-
by observations: adjacent and Gaussian weights. For adjacent weights,
wij = 1 if i connected to j as shown in Wa. Adjacent here means that
two observationswere taken 15 min apart. Alternatively, these weights
can be determined using a Gaussian scaling. Examples of both Wa and
WG are shown below, where the Gaussian connectivity matrix uses
σ = 20 min. The motivation behind the Gaussian weighting is to
model the smoothly changing atmospheric visibility.

Wa ¼

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

2
66664

3
77775

WG ¼

0 0:47 0:22 0:11 0:05
0:47 0 0:47 0:22 0:11
0:22 0:47 0 0:47 0:22
0:11 0:22 0:47 0 0:47
0:05 0:11 0:22 0:47 0

2
66664

3
77775

Note that the Wa and WG above are reduced versions of the graph
matrices corresponding to a dataset of only five observations. The actual
matrices are of the size of the number of observations used in the learn-
ing stage and have values of zero for pairs of observations that are not
adjacent in the case of Wa, and zeros for pairs of observations that are
more than one hour apart in the case of WG.

To evaluate the proposed LRLLS approach, we construct a dataset
that contains both labeled and unlabeled training samples, a validation
set for determining optimal values of model parameters, and two test
sets. Labeled here means the image was acquired at the top of the
hour at approximately the same time as the transmissometer reading.
Unlabeled means images acquired at other times during the hour.
Table 3 provides details on this dataset. Note that since the main pur-
pose of this section it to investigate the benefits of the proposed semi-
supervised learning framework and not to improve on the results in
the previous sections of the paper, we use a smaller set of images to sim-
plify the analysis.

We use a bivariate linear regression model in which the (log) of the
contrast from two 128 × 128-pixel blocks is the input to themodel and
the output is the predicted coefficient of extinction. The two blocks
were manually chosen to correspond to a distant ground region and a
sky region just above the horizon. Note that the goal of this section is
to evaluate the benefit of incorporating unlabeled observations inde-
pendent of whether the selected image regions are necessarily optimal.

The validation set is used to determine the values of two model pa-
rameters, γ, which determines the relative weighting of the smoothing
component of Eq. (16), and the width of the Gaussian weightingmatrix
WG. Simple grid searchwas used to find the optimal values of these two
parameters.

Table 4 compares the results of the proposed LRLLS approach to that
of standard linear least squares (LLS). In the standard LLS approach, the
training data consists of only labeled observations. This includes both
the labeled training data (TR) as well as the validation data (V) for a
total of 51 labeled observations (see Table 3). In the proposed LRLLS ap-
proach, the training data consists of just 21 labeled observations as well
as 63 unlabeled observations.

7.2. Discussion

While the above results are based on a relatively small evaluation
dataset, they indicate that the proposed LRLLS approach results in a bet-
ter predictionmodel. LRLLS results in improved R2 andMAE for both test



Table 4
Comparison of the proposed LRLLS approach to incorporate unlabeled observations and
standard LLS. MAE is in units of Mm−1.

Training set Validation set Model Connectivity Test set R2 MAE

TR + V – LLS – T1 0.6803 9.7042
TR V LRLLS Gaussian T1 0.6978 9.5680
TR V LRLLS Adjacency T1 0.6981 9.4886
TR + V – LLS – T2 0.7144 11.3082
TR V LRLLS Gaussian T2 0.7368 10.6980
TR V LRLLS Adjacency T2 0.7346 10.7410

Best results shown in bold.
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sets. This is significant since unlabeled observations are typically easier
to obtain than labeled observations for learning prediction models.

There is no clear winner however between the two different
weighting schemes, strict adjacency and Gaussian smoothed. While
they both improve upon the standard LLS approach, their relative per-
formance depends on the test set. Investigating this further, as well as
a linearly smoothed weighting scheme, is the subject of future work.

8. Conclusion

We investigated image processing and pattern recognition tech-
niques for estimating atmospheric visibility using off-the-shelf cameras.
We proposed a linear regression framework in which image contrast is
related to the coefficient of light extinction through atmospheric trans-
mission. We demonstrated that prediction models which incorporate
multiple image regions, either through regression trees or multivariate
linear regression, outperform models which consider only a single
image region.We also described a semi-supervised learning framework
which incorporates unlabeled observations to improve the prediction
model.

There are many directions to take this work. One of the long-term
goals of this work is to learn predictionmodels for visibility camera sys-
tems forwhichwe do not have access to ground truth data from a trans-
missometer or similar instrument. Such models would, of course, be
limited to providing relative and not absolute estimates of visibility.
They could, however, be deployed in the growingnumber of cameras al-
ready present in our ecosystem such as web, surveillance, and traffic
cameras.

A second goal is to link the observationsmore directly to atmospher-
ic pollution. We are currently in the process of acquiring images and
corresponding particulate pollution measurements as a first step to-
wards this goal. We expect future work on that problem to be directly
informed by the findings in this paper.
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