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ABSTRACT

This paper investigates image processing and pattern recog-
nition techniques to estimate light extinction based on the
visual content of images from static cameras. We propose
two predictive models that incorporate multiple scene re-
gions into the estimation: regression trees and multivariate
linear regression. Incorporating multiple regions is impor-
tant since regions at different distances are effective for es-
timating light extinction under different visibility regimes.
We evaluate our models using a sizable dataset of images
and ground truth light extinction values from a visibility
camera system in Phoenix, Arizona.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Vision]: Scene
Analysis; 1.5.4 [Pattern Recognition]: Applications

Keywords

Atmospheric visibility, multivariate linear regression, regres-
sion trees

1. INTRODUCTION

Atmospheric visibility can be a useful indicator of atmo-
spheric pollution resulting from suspended particulates espe-
cially in drier climates. This coupled with the rapidly grow-
ing number of cameras in our ecosystem motivates image-
based visibility estimation as an appealing complement to
traditional means of monitoring air pollution since special-
ized equipment for measuring pollution is comparatively ex-
pensive. So-called visibility camera systems are already see-
ing widespread deployment. For example, the Interagency
Monitoring of Protected Visual Environments (IMPROVE)
program has installed and maintains cameras in over two
dozen national parks. In addition, regional air quality agen-
cies have deployed visibility camera systems in over 30 cities.
More broadly, though, there are potentially tens of thou-
sands of web, surveillance, traffic, and other cameras which
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(a) bext = 25 Mm™*

(b) bezt = 174 Mm™

Figure 1: We investigate methods to estimate light
extinction b.,+ using visibility cameras. Shown above
are images corresponding to good and poor condi-
tions from a visibility camera in Phoenix, Arizona.
Ground truth readings from a transmissometer ap-
pear in the captions.

could be used to monitor atmospheric visibility and thus air
pollution.

The work in this paper represents a step towards using
multimedia data, in particular images from static cameras,
to perform quantitative estimation of atmospheric visibil-
ity. We investigate image processing and pattern recognition
techniques to derive predictive models of light extinction
based on image content. Light extinction captures the joint
effects of light scattering and absorption that result from
particulates in the atmosphere. We relate light extinction
to atmospheric transmission and then finally to measures
of image contrast using a log-linear model. We evaluate our
approach using a sizable dataset of images and ground truth
light extinction values.

We demonstrate that models which incorporate scene re-
gions located at different distances from the camera are more
effective than models which incorporate only a single region.
This result is due to the fact that far regions are not useful
when visibility is relatively poor since they are not observ-
able at all and close regions are not useful when visibility is
relatively good since there is not enough intervening atmo-
sphere to reduce visual acuity by a measurable amount. We
investigate two methods for incorporating multiple regions:
linear regression trees and multivariate linear regression. We
also investigate different numbers and sizes of image regions.
Our results improve upon our previous approach [7] which
uses only a single region by over 30%.



2. RELATED WORK

There is a sizable body of work on the related problem
of improving the fidelity of images taken under hazy or oth-
erwise atmospherically degraded conditions. This includes
work by Narasimhan and Nayar on using physics-based mod-
els to improve a single image [20, 21] and using multiple im-
ages of the same scene but under different conditions [19, 18,
17]; work by Schechner and colleagues on using polarization
to improve one or more images [24, 25, 14, 27, 15]; and work
by He et al. on using a dark channel prior to dehaze a single
image [8]. The objective of this paper, however, is to derive
quantitative estimates of atmospheric visibility and so these
works are not directly applicable.

There is a much smaller body of work on using images to
measure atmospheric visibility. Caimi et al. [5] review the
theoretical foundations of visibility estimation using image
features such as contrast, and describe a Digital Camera Vis-
ibility Sensor system, but they do not apply their technique
to real data. Kim and Kim [9] investigate the correlation
between hue, saturation, and intensity, and visual range in
traditional slide photographs. They conclude that atmo-
spheric haze does not significantly affect the hue of the sky
but strongly affects the saturation of the sky, but they do
not use the image features to estimate visibility. Baumer et
al. [3] use an image gradient based approach to estimate vi-
sual range using digital cameras but their technique requires
the detection of a large number of targets, some only a few
pixels in size. This detection step is sensitive to parameter
settings and is not robust to camera movement. Also, for
ranges over 10 km, they only compare their estimates to hu-
man observations which have limited accuracy. Luo et al.
[12] use Fourier analysis as well as the image gradient to esti-
mate visibility but they also only compare their estimates to
human observations. Raina et al. [23] do compare their esti-
mates to measurements taken using a transmissometer-like
device but their approach requires the manual extraction of
visual targets. The work by Molenar et al. [13] is closest to
the proposed technique in that it is fully automated and the
results are compared to transmissometer readings. However,
their technique uses a single distant and thus small mountain
peak to estimate contrast and thus is very sensitive to cam-
era movement and is unlikely to perform well under varying
visibility regimes.

In contrast to the works above, our approach is fully au-
tomated, does not rely on the detection and segmentation
of small targets, is robust to modest camera movement, and
performs favorably when compared to ground truth mea-
surements acquired using specialized equipment.

3. THE PROBLEM

Our goal is to estimate visibility from a static image. Re-
duced visibility by the intervening atmosphere is mainly due
to three factors: 1) light radiating from the scene is absorbed
before it reaches an observer; 2) light radiating from the
scene is scattered out of the visual pathway of an observer;
and 3) ambient light is scattered into the visual pathway
of an observer. The combined effect of the absorption and
scattering is referred to as the total light extinction. The
higher the light extinction, the poorer the visibility.

Light extinction is typically measured using a transmis-
someter [2, 11, 4]. This device consists of a light source
(transmitter) and light detector (receiver), generally sepa-

rated by a distance of several kilometers, and assesses visi-
bility impairment by measuring the amount of light lost over
this known distance. The transmitter emits a uniform light
beam of known constant intensity. The receiver separates
this light from ambient light, computes the amount of light
lost, and reports the extinction coefficient be,: which is com-
monly measured in units of inverse megameters (1 Mm™ =
1.0 x 107 %m™1).

Our goal is to measure b, using a camera instead of a
transmissometer. We do this by noting that be,: is inversely
related to atmospheric transmission t through the exponen-
tial equation [26]

t =exp Uet” (1)

where r is the distance of the scene. Further, atmospheric
transmission ¢ can be related to the observed image I through
[28, 6, 16, 18, §]

I=Jt+A(l—1t) (2)

where J is the scene radiance and A is the ambient (atmo-
spheric) light. The first term on the right side this equation
is inversely related to the amount of light radiating from the
scene that is scattered out of the visual pathway and thus
increases with improved transmission. The second term is
the amount of ambient light typically from the sun that is
scattered into the visual pathway and thus decreases with
improved transmission. In the extremes, the perceived im-
age can either be just the scene radiance, i.e., no atmospheric
interference, or just the scattered ambient light.

Intuitively, reduced visibility results in an image with less
detail especially in the distance. This reduced acuity results
from two sources: the objects and their backgrounds become
more similar due to increased attenuation and scattering;
and the atmosphere acts as a low-pass filter [10], suppress-
ing the higher-frequency image components or details. We
use the term local contrast to refer to image acuity and de-
fine it as the magnitude of difference in image intensity over
a short spatial distance C' = |VI| where the gradient is with
respect to the two-dimensional image space. The same spa-
tial difference can be computed on the right side of equation
2 to get

VI = |V(Jt+A(1—1)] (3)
= |Vt (4)
t{VJ] . (5)

Line 4 results from the assumption that the ambient light
A is locally constant and line 5 results from the positivity
of transmission ¢ and the assumption that it too is locally
constant. The quantity |VJ| is the “true” contrast of the
scene when imaged under perfect transmission. This equa-
tion shows transmission has the intuitive interpretation as
the ratio of the observed contrast to the true contrast.

We use Sobel filters to estimate the image gradient at each
pixel. To compensate for slight camera movement and other
sources of image noise, we compute image contrast C' as the
average of the gradient magnitude over an image region {2:

1
C:@%:\Vﬂ. (6)

Finally, putting it all together, we can relate the quantity
we are trying to estimate, the coefficient of extinction beg:,
to what we measure from the image, contrast C' (or, more



ID Dim Description

B64 | 432 Blocks 64x64 px
B128 | 108 Blocks 128x128 px
B192 | 48 Blocks 192 x 192 px
B256 | 24 Blocks 256 x 256 px
R64 24 Rows 64 px tall
R128 12 Rows 128 px tall
R192 8 Rows 192 px tall

All 224 | All of the above, except B64

Table 1: The image partitionings considered and the
dimensionality (Dim) of the resulting feature vectors
(one contrast value per region). See the end of sec-
tion 4 for more details on the partitionings which
are identified by ID.

precisely, the log of the contrast) through the linear relation:

(7)

Here, 1/r is the scaling factor and In|V.J|/r is the offset
which we treat as unknowns in our predictive models below.

bext =

mC  In|VJ]
r ro

4. DATASET AND EVALUATION

We evaluate our prediction models using an extensive set
of images and ground truth extinction readings from the
Arizona Department of Environmental Quality which man-
ages the PhoenixVis.net visibility web cameras website [2].
This website contains live images from six visibility cameras
of scenic urban and rural vistas in the Phoenix, Arizona re-
gion. Our dataset consists of the following acquired over
2006:

e Digital images of South Mountain (SOMT) captured
every 15 minutes.

e The extinction coefficient b.,+ measured every hour
using a transmissometer. This serves as the ground
truth.

The images measure 1536 x 1152 pixels, are in the RGB
colorspace, and (unfortunately) have been JPEG compressed
at an unknown quality level. We only consider images taken
at the top of each hour, since this is when the transmissome-
ter readings are made, and during daylight hours, approx-
imately 10 am to 4 pm. This results in a dataset of 6,897
images from the SOMT camera which are “labelled” with
ground truth extinction bey+ values.

We evaluate the accuracy of our model using the coeffi-
cient of determination R? between the predicted and ground
truth values. Let bizt/ and bl,; be the predicted and true
extinction coefficients for image 7 then

’

Z?:l( ’é:ct _%)2
2 i1 (Begt = beat)?

where n is the number of images in the evaluation set and
bezt is the mean of the true values. R? has a maximum value
of 1 with higher values indicating a more accurate model.
In order to provide an intuitive feel for the predictions, we
also compute the mean absolute error (MAE) between the

R*=1-

(8)

predicted and true values:
1<~ . )
MAE = — Zl bler — Diwt 9)

In previous work [7], we demonstrated that local contrast
computed using Sobel filters outperforms both contrast com-
puted in the frequency domain and an image haze model
based on the so-called dark channel prior [8] for estimating
light extinction. We thus restrict ourselves here to local con-
trast based on Sobel filtering. The best results on the SOMT
dataset were an R? value of 0.646 and an MAE value of 12.5
Mm™. Those results were for using a single image region;
i.e., a univariate linear regression. In this paper, we extend
that work to consider multiple image regions using regression
trees as well as multivariate linear regression. The hypoth-
esis and motivation is that no single image region will be
effective for estimating light extinction under different visi-
bility regimes. Far regions are not useful when visibility is
relatively poor since they are not observable at all and close
regions are not useful when visibility is relatively good since
there is not enough intervening atmosphere to reduce visual
acuity by a measurable amount.

We experiment with a number of image partitionings.
First, we partition the images into square blocks of differ-
ent sizes including: a 24 x 18 grid of 64 x 64 pixel blocks
(B64); a 12 x 9 grid of 128 x 128 pixel blocks (B128); an
8 x 6 grid of 192 x 192 pixel blocks (B192); and a 6 x 4
grid of 256 x 256 pixel blocks (B256). We also consider re-
gions corresponding to rows of these blocks. This results in
three additional partitionings: a 24 x 1 grid of 64 x 1536
pixel regions (R64); a 12 x 1 grid of 128 x 1536 pixel regions
(R128); and an 8 x 1 grid of 192 x 1536 pixel regions (R192).
The motivation here is that each such row represents a large
image region which is situated at approximately the same
distance. These extended horizontal regions might thus be
more effective than smaller blocks for estimating visibility.
Yet, we still have a set at regions at various distances. Table
1 summarizes the different partitionings and also indicates
the dimensionality of the feature vectors that result since
we extract one contrast value per region using equation 6.
The terms in parenthesis above are the IDs assigned to the
different partitionings.

S. METHOD: REGRESSION TREES

Transmission is an inverse exponential function of both
distance and the extinction coefficient. For areas with a low
transmission value, there will be a minimal change in con-
trast for small shifts in the extinction coefficient. However,
these same areas can become very informative as the visi-
bility improves. Regression trees generate a decision-making
process by which multiple linear fits can be considered within
the same model. As the conditions of the image change, dif-
ferent image regions may be used to generate the output. By
using a regression tree, the system can be trained to observe
closer landmarks if distant points become overly attenuated.

We extend our earlier work by allowing for the use of all
regions in the image and optimizing their contributions to
the overall estimation. This problem is handled by segment-
ing the image into regions and using an M5’ regression tree
[22, 29] to estimate visibility. This approach results in a
discontinuous but piece-wise linear predictive model.

Regression trees are a type of decision tree learning method.



X1>50
N =60
X2<30 Bext = 2.5*X1 + 15
N =48 N=12
X1>90 X1<70
N =23 N =25
Bext = 100-X2  Bext = X1-X2+37 Bext = 50 Bext = 2.5%X2 -9
N=13 N=10 N=14 N=11

Figure 2: A mock-up example of a regression tree
for a 2-feature visibility problem. Here, B.,: is ex-
pressed in terms of X1 and X2. The number of
training points that are used to learn each of the
constituent parts of the model is indicated by the
count N.

They are very similar to classification trees, but the primary
goal is to output a real number instead of a class. The per-
formance at each iteration of tree growth is measured by
the information gain. This provides a quantitative value
for the quality of each data split, and is calculated as the
standard deviation of the examples assigned to the result-
ing leaf nodes. Intuitively, this means that we try to select
splits that group similar regimes together. Regression trees
select inequalities that split data in a way that maximizes
this information gain. Each leaf node is then represented
by a numerical value or a simple linear model to produce
the output. An example tree using two features is shown in
figure 2.

M5’ regression generates a decision tree using standard
deviation to calculate the information gain. The feature
with the largest information gain as measured in reduction
of standard deviation, represents the best way to split the
current examples into two distinct groups. Standard devia-
tion reduction (SDR) is calculated as

SDR = sd(T) = Y “?ﬁ" « sd(T}) (10)

where sd(T) is the standard deviation of the parent node,
sd(T5;) is the standard deviation of each child node, |T| is the
number of data points in the parent node, and |T;| the num-
ber of data points in the child nodes. This splits the training
data in a way that minimizes the standard deviation of each
subset proportional to the size of those sets. Because vari-
ables contain continuous values, we perform the fit based on
inequalities (e.g. X2 > 4.5). The function stops splitting
when the SDR becomes sufficiently low or the number of
examples in the set becomes too small to continue splitting.
The algorithm then begins pruning the tree for reduced er-
ror. This is necessary because the building process relies
solely on SDR and does not test fits as it progresses. If the
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Regression Trees | Multi. Linear Reg.

Partitioning | R? MAE R? MAE
All 0.780 8.90 0.845 7.95
B64 0.776 8.88 0.830 8.21
B128 0.762 9.22 0.813 8.94
B192 0.735 9.82 0.830 8.21
R64 0.733 9.72 0.748 10.5
R128 0.722 10.3 0.729 11.1
R192 0.698 10.5 0.719 11.1

Table 2: Results of the regression tree and multivari-
ate linear regression predictive models for different
image partitionings. See table 1 for details on the
partitionings. MAE is in units of Mm™.

summed error of child nodes is greater than a parent node,
the parent node will become a leaf node instead. Each leaf
node consists of a set of data points which can be char-
acterized by a single value or a linear model. We use the
M5PrimeLab [1] implementation of M5’ regression trees.
We evaluate the regression trees using five-fold cross vali-
dation. The 6,897 labelled images are partitioned randomly
into five approximately equal sized sets. A regression tree is
then learned using four of these partitions—the training set—
and then evaluated on the fifth partition—the test set. This
is then repeated four times using different training/test sets
and the final results are averaged. This is performed for each
of the image (spatial) partitionings described in section 4.
Table 2 shows the results for the different image partition-
ings. It is immediately apparent that using regression trees
to incorporate multiple regions significantly improves upon
our previous approach [7] which used only a single region
and resulted in an R? value of 0.646 and an MAE value of
12.5 Mm™. We will discuss these results further below.

6. METHOD: MULTIVARIATE LINEAR RE-
GRESSION

In addition to the regression tree approach above, we also
consider incorporating multiple image regions through mul-
tivariate linear regression. Given n image regions, we have
n instances of equation 7. Assuming a constant value of the
light extinction ber: for the scene (i.e., the atmosphere is
approximately uniform), we can sum these instances to get

ilnCi ~ In|VJi (11)

Nbewt = ’f" ’I“

i=1 7 K2
where C;, r;, and J; are the measured contrast, distance,
and true contrast of region ¢ respectively. We can rewrite

this as

. InC;
bewt = ; o K (12)
where the individual offsets have been grouped into a single
offset K. We can consider this as a single multivariate linear
regression model in which the (logs of the) contrasts of the
regions C; are the variables, the 1/nr; are the scaling factors,
and K is the offset. Given a training set, we can then use

least-squares to estimate the scaling factors and offset.
We evaluated this model using the same five-fold cross
validation and image (spatial) partitionings as for the re-



gression tree model. The results for the multivariate linear
regression model are summarized in table 2. This model is
shown to outperform the regression tree model.

7. DISCUSSION

We make the following observations based on the results
in table 2. First, not surprisingly, models which incorporate
multiple image regions are more effective than those with
only a single region. The best results for the regression tree
and multivariate linear regression models are R? = 0.780
(MAE=8.90 Mm™) and R? = 0.845 (MAE=7.95 Mm™") re-
spectively while the best result using a single region in our
previous work was R? = 0.646 (MAE=12.5 Mm™). This
represents improvements of 20.7% and 30.8% in terms of
R?. This improvement is likely in large part due to the fact
that scene regions at different distances are effective for es-
timating light extinction under different visibility regimes.
Far regions are not useful when visibility is relatively poor
since they are not observable at all and close regions are not
useful when visibility is relatively good since there is not
enough intervening atmosphere to reduce visual acuity by a
measurable amount.

We also observe that models incorporating a larger num-
ber of smaller regions are better than those incorporating a
smaller number of larger regions. This is true for both the re-
gression tree and multivariate linear regression models. For
the most part, more smaller blocks performed better than
fewer larger blocks and more small rows performed better
than fewer larger rows. Using the smaller blocks also per-
formed better than the larger rows. This finding is further
evidence that it is useful to have regions at varying distances
so as to better model different visibility regimes.

The multivariate linear regression model is shown to out-
perform the regression tree model for all image partitionings.
While it is difficult to make any general conclusions based on
this result since these are two very different approaches, it is
likely that the regression trees are over-fitting the training
data. Many of the leaf nodes of the trees contain very few
samples—some as few as four examples—which makes it diffi-
cult to fit even a simple linear univariate model. It is possible
that more aggressive pruning of the tree could improve this.
This is potentially a topic for further investigation.

Finally, it is instructive to examine how the prediction
error varies with visibility regime. Figure 3 plots the er-
ror of the multivariate linear regression model for different
ground truth values of bey:. These are for the “All” image
partitioning. It is clear that the model performs better for
improved visibility regimes. This decrease in performance
in poor visibility is most likely due to two factors: 1) the
dataset contains fewer samples in this regime; and 2) the in-
verse exponential relationship between extinction and trans-
mission results in reduced sensitivity of the model to changes
in image contrast in this regime.

8. CONCLUSION

We proposed and evaluated two predictive models that
incorporate multiple image regions to estimate light extinc-
tion. Our results show that models which incorporate multi-
ple regions are more effective than those with a single region.
They also show that using a larger number of smaller regions
is better than smaller number of larger regions. These find-
ings are informative for the goal of using the growing number
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Error vs, Bext in a Linear Model
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Figure 3: By plotting MAE (the mean absolute er-
ror) versus be,: (the coefficient of extinction), we
note that the model is more accurate for the im-
proved visibility regime. These results are for the
multivariate linear regression model using the “All”
image partitioning.

of cameras in our ecosystem to estimate light extinction and
possibly monitor atmospheric pollution.

While the predictive models learned here are specific to
the evaluation dataset in terms of the regression coefficients,
we expect the general findings—multiple regions at varying
distances are better than a single region and multivariate
linear regression performing better than regression trees—to
be applicable to other cameras and scenes. The long-term
challenging goal of this work is to learn predictive models
for visibility camera systems for which we do not have ac-
cess to ground truth data for calibration such as from a
transmissometer. Such systems would, of course, be limited
to providing relative and not absolute estimates of visibility.
This would, however, allow the predictive models to be de-
ployed to the growing number of cameras already present in
our ecosystem such as web, surveillance, and traffic cameras.
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