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ABSTRACT ARTICLE HISTORY
Many applications of remote sensing only require the classification Received 22 April 2017
of a single land type. This is known as the one-class classification Accepted 2 December 2017
problem and it can be performed using either binary classifiers, by

treating all other classes as the negative class, or one-class classi-

fiers which only consider the class of interest. The key difference

between these two approaches is in their training data and the

amount of effort needed to produce it. Binary classifiers require an

exhaustively labelled training data set while one-class classifiers

are trained using samples of just the class of interest. Given ample

and complete training data, binary classifiers generally outperform

one-class classifiers. However, what is not clear is which approach

is more accurate when given the same amount of labelled training

data. That is, for a fixed labelling effort, is it better to use a binary

or one-class classifier. This is the question we consider in this

article. We compare several binary classifiers, including backpro-

pagation neural networks, support vector machines, and maxi-

mum likelihood classifiers, with two one-class classifiers, one-

class SVM, and presence and background learning (PBL), on the

problem of one-class classification in high-resolution remote sen-

sing imagery. We show that, given a fixed labelling budget, PBL

consistently outperforms the other methods. This advantage

stems from the fact that PBL is a positive-unlabelled method in

which large amounts of readily available unlabelled data is incor-

porated into the training phase, allowing the classifier to model

the negative class more effectively.

1. Introduction

Remote sensing is an important source of data for classifying the surface of the earth
(Jensen 2000). One fundamental problem for which it is key is mapping land cover such
as monitoring urban growth or vegetation change. Quite frequently, we are only
interested in mapping a single land-cover type (Jeon and Landgrebe 1999; Foody
et al. 2006; Lin et al. 2014; Liu et al. 2014; Xu et al. 2016). This is an instance of what
is known in the literature as one-class remote-sensing classification since the user is only
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interested in identifying one class from among those that are potentially present in a
scene (Foody et al. 2006; Li, Guo, and Elkan 2011a). The class of interest is referred to as
the positive class while all the other classes are collectively referred to as the negative
class.

Binary and multiclass classification methods have been widely used in remote sen-
sing. For example, maximum likelihood classifiers (MLC), neural networks, and support
vector machines (SVM) are commonly applied to extract urban regions using Landsat
series data (Bischof, Schneider, and Pinz 1992; Richards and Jia 1999; Kavzoglu and
Mather 2003; Foody 2004; Foody and Mathur 2004; Pal and Mather 2005; Ahmad and
Quegan 2012). It is possible to perform one-class classification using traditional binary
classifiers (or multiclass classifiers in a two-class binary scenario). These binary classifiers,
however, require a complete and exhaustively labelled sample set for model training
(Munoz-Mari, Bruzzone, and Camps-Valls 2007). In particular, the training set must
typically contain labelled samples of all land types that occur in the imagery, which
are then divided into positive and negative sample subsets. Manually labelling such
samples is labour intensive and time consuming, especially when the aim is to map a
specific land cover at large scales such as continental or global (Lin et al. 2014; Wan et al.
2015). Further, this manual labelling will likely not include all land cover types, especially
for complex scenes. The training set will be incomplete which will limit the accuracy of
the classifier (Guo et al. 2012).

In comparison, one-class classifiers only require manually labelled samples of the
class of interest — the positive samples. There are generally two approaches to one-
class classification which differ on the nature of the training set: positive-only and
positive-unlabelled. The positive-only methods only require positive training samples.
Examples of positive-only methods include Gaussian domain descriptor (Tax 2001)
and one-class SVM (OCSVM) (Scholkopf et al. 2001). The positive-unlabelled methods
utilize a training set that contains unlabelled samples in addition to the labelled
positive samples. The unlabelled samples can be from any class, including the class of
interest, but their labels need not be known. They can therefore be obtained without
any labelling effort. Examples of positive-unlabelled methods include biased SVM (Liu
et al. 2003), maximum entropy methods (Phillips, Dud’lk, and Schapire 2004), the
positive and unlabelled learning (PUL) algorithm (Li, Guo, and Elkan 2011a), and the
presence and background learning (PBL) algorithm (Li, Guo, and Elkan 2011b). The
general motivation behind these approaches is that the unlabelled samples still
represent a source of useful information for classifier training (Castelli and Cover
1996), and, indeed, positive-unlabelled methods generally outperform positive-only
ones (Li and Guo 2010; Li, Guo, and Elkan 2011a; Baldeck and Asner 2015). Positive-
unlabelled methods have recently seen increased application to one-class classifica-
tion problems in remote sensing (Li and Guo 2010; Li, Guo, and Elkan 2011a; Zhu
et al. 2012; Doherty et al. 2014; Lin et al. 2014; Mack, Roscher, and Waske 2014;
Baldeck and Asner 2015; Chen et al. 2016; Mack et al. 2016). For example, Wan et al.
(2015) used the PUL algorithm to map US urban extents from Moderate Resolution
Imaging Spectroradiometer and the Defense Meteorological Satellite Program
Operational Linescan System night stable light data. And, Xu et al. (2016) applied
the PBL algorithm to estimate global snow cover with space-borne microwave bright-
ness temperature measurements.
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So how should practitioners decide between using binary or one-class classifiers
when faced with a one-class remote sensing classification problem? Binary classifiers
have generally been preferred since they are perceived as being more accurate given
appropriate training data (Li, Guo, and Elkan 2011b; Baldeck and Asner 2015; Mack et al.
2016). Yet, binary classifiers are typically more expensive to train since they require more
labelled data, and their performance might be limited by incomplete training data.
Practitioners are sensitive to both accuracy and cost when choosing a method. Here,
we define the cost as the effort required to manually label the training samples in terms
of number of pixels. In reality, practitioners can manually label either a number of
random pixels or polygons from the image to create samples. While the latter approach
is more efficient since each polygon contains multiple pixels, the samples are selected in
a biased rather than random approach. Please note that the random sampling assump-
tion is necessary for many supervised classifiers and accuracy assessment (Pal and
Mather 2005; Foody et al. 2006). In this study, therefore, we only consider the former
approach, i.e. randomly labelling pixels instead of polygons from the image, which is
commonly used in the literature (Kavzoglu and Mather 2003; Foody et al. 2006; Wan
et al. 2015). Meanwhile, we assume that the cost of visually labelling a sample (pixel) is
identical irrespective of the class, although it might not be the case in reality.

Suppose that we want to detect urban areas at the pixel level from an image that
contains urban, tree, grass, soil, and water pixels. If the cost is set at 1000 labelled pixels,
then these can all be from the positive class in the case of a one-class classifier. In
contrast, these 1000 pixels would need to be split between the positive class and a
negative class consisting of the other four classes in the case of a binary classifier. Would
a binary classifier still be more accurate than a one-class classifier in this case? Previous
studies have investigated the performances of different one-class classifiers (Munoz-
Mari, Bruzzone, and Camps-Valls 2007; Li, Guo, and Elkan 2011a); the one-class and
binary classifiers have also been compared previously, without considering the cost of
collecting samples for both approaches (Li, Guo, and Elkan 2011b; Guo et al. 2012; Mack
et al. 2016). However, no studies, to our knowledge, have compared one-class and
binary classifiers under the same labelling budget.

The comparison between one-class and binary classifiers is important in order to
better understand the strengths and drawbacks of different methods. The major con-
tribution of this article is a quantitative comparison of the accuracy of one-class and
binary classifiers under the same labelling cost, which can provide guidance on method
selection for one-class remote-sensing classification. The classification accuracies of
different methods including OCSVM, PBL, MLC, backpropagation neural network
(BPNN), and SVM are compared. Detailed descriptions about the methodology, compar-
ison of methods, and discussion of the implications are provided in the following
sections.

2. Methodology
2.1. Data set

The first evaluation data set is an aerial photograph of Contra Costa county in California
(CA) obtained by a Leica ADS40 digital camera with a spatial resolution of 0.3 m,
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acquired in 2004. Three bands are provided in the imagery: red (R) (610-660 nm), green
(G) (535-585 nm), and blue (B) (430-490 nm). The second evaluation data set is a
WorldView-3 image of the city Guangzhou, China, acquired in 2014, with 2 m spatial
resolution. There are four bands available: B (450-510 nm), G (510-580 nm), R (630-
690 nm), and near infrared (NIR) (770-895 nm). We consider both spectral and textural
features to perform pixel-wise classification. We extract the pixel-level mean, contrast,
homogeneity, and entropy separately for each band using ENVI software with a 3 x 3
pixel template. This results in a total of 12 and 16 features, respectively, for the two data
sets. Each feature is then rescaled to the range [0, 1].

Figure 1 shows two scenes from the aerial photograph that we use as our study sites.
Each scene measures 500 m X 500 m and contains 2,778,889 pixels. The scenes mostly
contain grass, trees, buildings, roads, soils, shadows, and water. For our experiments, we
consider the following six separate one-class classification problems: urban (including
buildings and roads), tree, grass, shadow, soil, and water. The manually labelled ground
truth used for training and testing is shown in Figure 2. A small number of pixels that are
difficult to identify are masked and excluded from the evaluations. Figure 3 shows the
third scene extracted from the WorldView-3 image. It measures 3000 m x 3000 m with
2,250,000 pixels, including houses, roads, trees, grass, soils, and shadows. The whole
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Figure 1. High-spatial-resolution aerial imagery of scenes one and two in Contra Costa county, CA.
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Figure 2. Manually labelled ground truth maps of the study sites: scene one (a) and scene two (b).
White indicates masked pixels that are difficult to label.
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Figure 3. The WorldView-3 image shown in NIR, R, and G bands of scene three in Guangzhou, China.

ground truth map for scene three is not available, and we only consider the classification
of urban areas (i.e. buildings and roads) for this scene.

As mentioned earlier, the training sets for the two categories of classification methods
are different. One-class classifiers only require positive labelled data but binary classifiers
require both positive and negative labelled data. The methods are compared using the
same amount of labelled training data. Specifically, let N denote the number of labelled
training samples per class, and k denote the number of the classes. When training the
binary classifiers, the positive sample size is N and the negative sample size is the sum of
the other classes, i.e. (k — 1) x N. In contrast, the training set for the one-class classifiers
contains only positive labelled data and so all kK x N labelled samples can be from the
positive class. Note that we make the reasonable assumption that unlabelled data can
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Figure 4. Flow chart of the sampling scheme for one-class and binary classifiers with equal sample
cost. k refers to the number of land types.

be sampled from the imagery without cost (effort of manual interpretation). The training
set size is thus considered just to be the total number of labelled samples (i.e. k x N) in
either case (Figure 4). We use manual labelling to construct training sets of sizes 200,
400, 600, 800, and 1000 pixels. We also randomly sample 5000 background pixels from
the imagery as the unlabelled data for PBL (Li, Guo, and Elkan 2011b). Each experiment
is performed 10 times with different random realizations of the training set in order to
obtain statistically meaningful results. For scenes one and two, the classification accu-
racy is determined using the ground truth maps, while an independent test data set
including 2000 positive and 2000 negative pixels is used for scene three. The overall
accuracy (OA) and kappa coefficient (k) are used for comparison.

2.2. One-class classification

MLC, BPNN, and SVM are selected as the binary classifiers in our evaluation since they
are commonly used for remote sensing classification (Richards and Jia 1999; Foody
2004). We select OCSVM, a positive-only method, as one of the one-class classifiers
since it is also commonly used (Foody et al. 2006). These are all established methods, so
we do not provide detailed descriptions. We select PBL, a positive-unlabelled method, as
the other one-class classifier since it can handle the case-control sampling scenario (Li,
Guo, and Elkan 2011b), and has also been successfully applied in one-class remote-
sensing classification (Xu et al. 2016). A brief description of PBL is provided in the
following.

Let y = 1 denote positive data, y = 0 denote negative data, and x denote the
vector of predictive features (or covariates) associated with a pixel. In one-class
classification, we aim to model the probability of a pixel being from the positive
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class conditioned on its covariates, Pr(y = 1 | x). Traditional supervised learning
methods cannot correctly model Pr(y = 1 | x) without labelled negative data because
the overall population prevalence Pr(y = 1) and the density of covariates for negative
samples Pr(x | y = 0) cannot be estimated. To address this problem, Li et al. devel-
oped the PBL algorithm that can model Pr(y = 1 | x) without relying on labelled
negative data (Li, Guo, and Elkan 2011b).

In PBL, a different model is first trained using a data set that consists of labelled
positive (denoted as s = 1) and unlabelled data (denoted as s = 0). This model is then
used to calibrate the desired model. The positive and unlabelled data are sampled
separately from the study site which is referred to as case-control sampling. The trained
model is denoted as Pr(s = 1 | x, n = 1), where n = 1 denotes the positive-unlabelled
case—control sampling scenario. The unlabelled data may contain both positive and
negative data, so the trained model Pr(s = 1 | x, n = 1) suffers from the problem of
‘contaminated controls’ and hence it is not equal to the desired model Pr(y = 1 | x).
However, Li et al. showed that the trained model and the desired model have the
following relationship:

1-— Pr(s =1 =1
¢ Prs=1lx, n=1)

P :1 =
=1 1—Pr(s=1|x,n=1)

(1)

where c is a constant (Li, Guo, and Elkan 2011b).

Thus, in order to obtain the desired model Pr(y = 1 | x), we need to estimate the
constant c. Let O denote a set of the ‘prototypical positive’ pixels. Li et al. proved that
the predicted value Pr(s = 1 | x, n = 1) of any prototypical positive pixel is equal to c (Li,
Guo, and Elkan 2011b). In practice, we average the predicted probabilities of multiple
prototypical positive pixels to obtain a more reliable estimator of c:

1
CZEZPF(SZHX, n=1) 2)

xc€0

where n is the cardinality of O.

In summary, PBL allows us to obtain the desired model Pr(y = 1 | x) indirectly based
on positive and unlabelled data through the following procedure. The naive model Pr
(s =1]|x, n=1)is first trained using positive and unlabelled data. The constant c is then
estimated from prototypical positive data as shown in Equation (2). Finally, the naive
model is used to derive the desired model Pr(y = 1 | x) using Equation (1). More details
about the PBL algorithm can be found in Li, Guo, and Elkan (2011b).

2.3. Model implementation

We used our own Matlab (version R2011b, MathWorks) implementation of MLC (Richards
and Jia 1999). Under the assumption that the distribution of each class can be repre-
sented using a multivariate normal, we can infer the conditional probability of a test
sample being positive (or negative). Each multivariate normal distribution is character-
ized by a mean vector and a covariance matrix which are estimated from the training
data. According to the maximum likelihood criterion, a test sample is classified as
positive if Pr(y = 1 | x) is larger than Pr(y = 0 | x), and negative otherwise.



INTERNATIONAL JOURNAL OF REMOTE SENSING . 1897

We implemented SVM and OCSVM using the LIBSVM SVM library developed by Chang
and Lin (2015). We used Gaussian radial basis function (RBF) kernels and performed grid
search to find the optimal free parameter values (Li and Guo 2014). The original training
set was randomly divided into two subsets: 75% for training and 25% for validation. For
SVM, the penalty parameter C and RBF kernel width y were chosen from the following
ranges: C=27,273,...,2"% y=2"%2"3 ..., 2% For OCSVM, the RBF kernel width y and
rejection fraction v were chosen from y =274, 273, ..., 2'% v = 0.01, 0.02, ..., 0.5 (Li and
Guo 2014). Please note that, during training, SVM is provided with both positive and
negative data, and so we can use k to measure the cross-validation accuracy. For
OCSVM, negative data are not available during training, so we used Fg, (F-measure
based on positive and background data), an accuracy measure for one-class data, to
measure the cross-validation accuracy (Li and Guo 2014).

We implemented BPNN using Matlab (version R2011b, MathWorks). We obtained a
probabilistic output by using a mean-squared-error objective function and log sigmoid
transfer function. The other parameters were set to default values. To improve the
performance of the model, the original training set was randomly divided into two
subsets: 75% for training and 25% for validation. We trained the network 10 times and
the individual outputs were averaged to generate the final prediction. Since BPNN is
trained using positive and negative data, the output is the posterior probability Pr(y = 1 |
x). Binary classification of a test sample is achieved by applying a decision threshold of 0.5.

PBL requires that a binary classifier that can estimate posterior probability be trained
on the labelled positive and unlabelled data. Since neural networks can accurately
estimate posterior probability (Richard and Lippmann 1991; Hung et al. 1996; Palocsay,
Stevens, and Brookshire 2001), we used the same BPNN and training procedure as above
to implement PBL. This BPNN is trained using labelled positive and unlabelled data and
results in the naive model Pr(s = 1| x, n = 1). The predicted values of the positive data in
the training set were then averaged to estimate the constant c. Please note that the
constant ¢ can be estimated either from the training set or from the validation set, and
both methods produce similar results according to our test. The naive model Pr(s = 1 | x,
n = 1) was used to calibrate the desired model Pr(y = 1 | x) though Equation (1). Binary
classification of a test sample is achieved by applying a decision threshold of 0.5.

3. Results

Scene one: Figure 5 shows the predicted binary maps of each land type in scene one for
each classifier with a training set size of 1000 pixels. Ten random realizations of the
training set produce similar results so we only present one. Overall, PBL provides the
best visual results that have the least ‘salt-and-pepper’ effects particularly for urban,
grass, and shadow. SVM and BPNN provide relatively good results while OCSVM and
MLC produce the worst results with obvious over-prediction of the positive classes. The
quantitative evaluations are provided in Table 1 including the mean and standard
deviation of OA and k. Generally, PBL results in the best performance (highest values
of OA and k), followed by BPNN and SVM, whereas OCSVM and MLC perform the worst.
The average k values over 10 random realizations of the training sets with different
sample sizes are shown in Figure 6. The k value for PBL is relatively stable over different
sample sizes, and is the highest among different methods. The k values for SVM, OCSVM,
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Figure 5. Predicted binary maps of each land type for scene one. Training set size: 1000. Red:
positive class. Black: negative class. White: masked pixels.

and MLC are also relatively stable, except for the water class. By contrast, BPNN is more
sensitive to the sample size, with larger sample sizes resulting in higher k values.

Scene two: Figure 7 shows the predicted binary maps in scene two again with a
training set size of 1000 pixels. The corresponding quantitative evaluations are provided
in Table 2. Again, PBL performs the best followed by BPNN and SVM, whereas MLC and
OCSVM perform the worst. For example, PBL obtains a k value of 0.8 for the urban class,
whereas OCSVM only achieves 0.24; the k values for BPNN, SVM, and MLC are 0.77, 0.76,
and 0.67. Figure 8 shows the average k values over 10 random realizations of the
training sets with different sample sizes. Similar to scene one, PBL is shown to be a
robust method that results in the highest accuracies for all cases. The accuracy of the
other methods is lower and less stable than that of PBL. BPNN is shown to be the most
sensitive to training sample size.
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Table 1. Mean and standard deviation of overall accuracy (OA) and kappa coefficient (k) for scene
one.

PBL BPNN SVM 0CSVM MLC
Class 0OA(%) K OA(%) K OA(%) K OA(%) K OA(%) K
Urban 87.93 0.76 78.43 0.51 84.14 0.65 66.41 0.34 80.99 0.62
(0.84) (0.02) (5.7) (0.14) (0.79) (0.05) (1.32) (0.02) (2.66) (0.05)
Tree 85.28 0.58 84.86 0.24 86.51 0.46 78.43 0.39 67.21 0.32
(1.35) (0.02) (0.93) (0.09) (0.67) (0.05) (2.67) (0.02) (1.78) (0.02)
Grass 88.88 0.53 91.85 0.39 91.88 0.52 74.37 0.23 59.49 0.18
(1.07) (0.02) (0.87) (0.16) (0.54) (0.02) (5.42) (0.03) (4.66) (0.04)
Soil 90.39 0.5 92.77 0.41 90.09 0.46 80.5 0.24 64.31 0.17

(0.9) (0.02) (0.43) (0.15) (1.92) (0.02) (3.33) (0.24) (3.94) (0.03)
Shadow 90.97 0.77 91.01 0.74 91.31 0.46 78.39 0.47 82.87 0.61

(1.09) (0.02) (0.49) (0.02) (0.64) (0.01) (1.81) (0.02) (2.27) (0.04)
Water 99.97 0.88 99.9 0.67 99.73 0.56 98.83 0.16 97.35 0.07

(0.01) (0.05) (0.04) (0.08) (0.22) (0.28) (0.96) (0.06) (0.61) (0.02)

Training sample size: 1000. Values in parentheses are standard deviations.

Scene Three: Figure 9 shows the predicted binary maps in scene three with a training
set size of 1000 pixels. Figure 10 and Table 3 show the corresponding quantitative
evaluations. Consistent with the previous scenes, PBL still produces the highest values of
OA and k. The accuracies of PBL with a sample size of 200 is even higher than the other
methods with a sample size of 1000. For example, the k value for PBL with a sample size
of 200 is 0.67, whereas the k values for OCSVM, BPNN, SVM, and MLC with a sample size
of 1000 are 0.54, 0.34, 0.49, and 0.55, respectively. Again, BPNN is the most sensitive to
training sample size.

4. Discussion

One-class classification can be performed by either one-class or binary classifiers. Binary
classifiers have been well studied and widely applied in remote sensing, and they are
generally perceived as being more accurate than one-class classifiers (Li, Guo, and Elkan
2011b; Baldeck and Asner 2015; Mack et al. 2016). However, binary classifiers require a
larger and exhaustively labelled training set which requires more effort to collect and
the labelling of classes that the user is not interested in. Further, the training set will be
incomplete if not all land types are identified, which can result in significantly decreased
accuracy (Guo et al. 2012). In contrast, one-class classifiers do not require labelled
negative data for training and so the labelling cost can be reduced or focused entirely
on the target class. They are less likely to suffer from the problem of incomplete training
data because only the target class needs to be labelled. The novel contribution of this
work is that we compare the binary and one-class classifiers under the same labelling
cost, while previous researchers compare the both approaches under unequal labelling
costs, which helps us better understand the performances of different classifiers. In the
scenario of unequal labelling costs, the number of labelled samples of each land type is
the same or adjusted by the class frequency, and the size of labelled samples for binary
classifiers is larger than one-class classifiers (details shown in Figure 11). According to
previous research, binary classifiers generally outperform one-class classifiers when the
training samples are ample and complete (Li, Guo, and Elkan 2011b; Guo et al. 2012;
Mack et al. 2016). With the sampling scenario in Figure 11(b), the binary classifier BPNN
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Figure 7. Predicted binary maps of each land type for scene two. Training set size: 1000. Red:
positive class. Black: negative class. White: masked pixels.

consistently outperforms PBL in predicting the spatial distribution of a virtual species (Li,
Guo, and Elkan 2011b). With the sampling scenario in Figure 11(a), classifying all the land
types in one time using the binary classifier BPNN outperforms classifying the land types
one-by-one using the one-class classifier PUL, given that all of the land types have been
exhaustively labelled in the training set; however, PUL outperforms BPNN when the
training set is incomplete, i.e. one of the land types is not sampled (Guo et al. 2012).
With the same labelling cost scenario, our experimental results show that the one-class
classifier, PBL, is the most robust method, consistently outperforming all other methods.
With these findings, we therefore confirm that both additional labelled and unlabelled
data are responsible for the improvement of classification accuracy. Although classifica-
tion accuracy increases with training sample size, PBL with a small sample size (e.g. 200)
is shown to outperform other methods with a larger sample size (e.g. 1000). This is
because PBL can take advantage of 200 labelled positive and additional 5000 unlabelled
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Table 2. Mean and standard deviation of overall accuracy (OA) and kappa coefficient (k) for scene
two.

PBL BPNN SVM 0CSVM MLC
Class 0OA(%) K OA(%) K OA(%) K OA(%) K OA(%) K
Urban 95.36 0.8 95 0.77 94.68 0.76 72.54 0.24 92.12 0.67
(0.37) (0.01) (0.18) (0.01) (0.41) (0.02) (3.25) (0.02) (0.31) (0.01)
Tree 88.59 0.63 87.69 0.44 87.57 0.53 83.38 0.47 82.49 0.51
(0.53) (0.01) (0.7) (0.09) (0.97) (0.03) (2.02) (0.03) (1.61) (0.02)
Grass 94.45 0.87 93.16 0.83 94.04 0.86 82.73 0.58 90.82 0.79
(0.17) (0) (1.21) (0.03) (0.45) (0.01) (0.52) (0.02) (1.34) (0.03)
Soil 943 0.82 93.67 0.79 93.73 0.8 84.59 0.55 91.06 0.74
0.2) (0) (0.48) (0.02) (0.68) (0.02) (2.54) (0.03) (1.3) (0.03)
Shadow 93.36 0.8 92.67 0.75 93.15 0.78 82.55 0.54 90.14 0.73
(0.39) (0.01) (0.9) (0.04) (0.44) (0.02) (1.34) (0.02) (0.98) (0.02)
Water 99.55 0.65 99.13 0.49 96.9 0.2 91.61 0.07 93.76 0.13

(0.14) (0.06) (0.28) (0.08) (0.52) (0.03) (3.1) (0.01) (2.33) (0.04)
Training sample size: 1000. Values in parentheses are standard deviations.

data for training, with the cost of labelling 200 samples; but the binary classifiers only
take advantage of 167 labelled positive and 833 labelled negative data for training, with
the cost of labelling 1000 samples. Thus, PBL is shown to be a good option for one-class
classification in remote sensing with respect to both accuracy and cost.

The solid performance of PBL results from its ability to exploit unlabelled data during
training. Although the class memberships of unlabelled data are not known, this data
provides information on the distribution of the covariates that is still useful for model
training (Castelli and Cover 1996; Li, Guo, and Elkan 2011b). Large sets of unlabelled data
can be collected without manual labelling effort making it more likely that the training set
contains samples of all land types. Positive-unlabelled one-class classifiers, such as PBL, are
thus able to achieve good classification performance even when trained with a limited
number of labelled positive samples (Elkan and Noto 2008; Li, Guo, and Elkan 2011a).
Positive-only one-class classifiers, such as OCSVM, do not exploit unlabelled data. OCSVM
is also sensitive to free parameters that are difficult to tune (Manevitz and Yousef 2002),
and appropriate model selection could significantly improve the accuracy (Mack and
Waske 2017). We used a common, empirical approach (cross-validation and grid search)
to tune the two free parameters (y and v) of OCSVM but it is possible we were not able to
find the optimal values. Please note that the model selection was based on a validation set
where each class contains the same number of samples, but the accuracy assessment for
scenes one and two was based on the whole labelled image where the population
prevalence of each class is different (e.g. the area of urban is larger than water). In order
to test whether the ratio of samples will affect the model selection, we tried to adjust the
number of samples in the validation set according the population prevalence of each
class, but we found that it does not improve the results. Whatever the reason, OCSVM does
not perform well in our experiments. This is consistent with previous results which show
positive-unlabelled methods generally outperform positive-only methods (Liu et al. 2003;
Elkan and Noto 2008; Li and Guo 2010; Li, Guo, and Elkan 2011a).

Note that PBL is not a classifier but a framework that uses a naive model Pr(s = 1 | x,
n = 1) to calibrate the desired model Pr(y = 1 | x). Even though the naive model for our
implementation of PBL has the same network structure as the binary BPNN classifier that
we consider, PBL is shown to outperform the binary classifier. This can be explained by the
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Figure 8. The average and standard deviation of kappa coefficients (k) obtained by different
methods with different training sample sizes for scene two. (a) Urban. (b) Tree. (c) Grass. (d) Soil.
(e) Shadow. (f) Water.

fact that BPNN is very sensitive to training set size. Neural networks can model complex,
non-linear relationships but they require large amounts of training data (Bishop 2006).
When BPNN is used as a binary classifier, it sees only 33 and 167 positive samples when the
training set size is 200 and 1000. PBL, and thus the associated naive BPNN model, not only
sees significantly more positive labelled samples in these two cases, 200 and 1000
respectively, but also sees 5000 unlabelled samples. This explains why PBL outperforms
the binary classifiers even when it is trained with a smaller labelled set.
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Figure 9. Predicted binary maps of urban class for scene three. Training set size: 1000. White:
positive class. Black: negative class. (a) PBL. (b) BPNN. (c) OCSVM. (d) SVM. (e) MLC.

SVM is another state-of-the-art binary classifier, especially for classifying high-dimen-
sional data given small training sample sizes (Huang, Davis, and Townshend 2002; Pal
and Mather 2005). Our experiments show that larger sample sizes result in slightly
higher accuracy for SYM but the effect is less significant compared to BPNN. SVM is
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Figure 10. The average and standard deviation of kappa coefficients (k) of urban class obtained by
different methods with different training sample sizes for scene three.

Table 3. Mean and standard deviation of overall accuracy (OA) and kappa coefficient (k) of urban
class for scene three.

PBL BPNN SVM OCSVM MLC
Sample size OA(%) K 0A(%) K OA(%) K 0A(%) K 0A(%) K
200 83.72 0.67 58.22 0.16 69.35 0.39 68.87 0.38 7744 0.55
(2.94) (0.06) (6.35) (0.13) (2.97) (0.06) (2.95) (0.06) (1.98) (0.04)
400 86.7 0.73 58.83 0.18 72.28 0.45 70.27 0.41 76.95 0.54
(0.57) (0.01) (6.53) (0.13) (3.21) (0.06) (1.59) (0.03) (2.96) (0.06)
600 87.28 0.75 63.91 0.28 72.22 0.44 71.78 0.44 77.73 0.55
(2.43) (0.05) (5.27) (0.11) (4.21) (0.08) (2.74) (0.05) (1.89) (0.04)
800 88.44 0.77 67.62 035 72.65 0.45 7431 0.49 79.38 0.59
(0.66) (0.01) (2.93) (0.06) (3.31) (0.07) (2) (0.04) (2.38) (0.05)
1000 89.15 0.78 66.8 0.34 7441 0.49 77.04 0.54 77.48 0.55
(0.97) (0.02) (5.33) (0.11) (2.42) (0.05) (2.05) (0.04) (2.09) (0.04)

Values in parentheses are standard deviations.

shown to outperform BPNN for small sample sizes but the gap narrows as the sample
size increases. When compared to PBL, SVM is shown to be less accurate and less robust,
again probably due to the smaller amount of training data (positive and overall) that it
sees. SVM is also sensitive to free parameters that are difficult and time consuming to
tune. Similar to the model selection of OCSVM, we tried to adjust the number of samples
of each class in the validation set, but the results are not improved. The other binary
classifier we consider, MLC, is also widely used in remote sensing (Jeon and Landgrebe
1999; Huang, Davis, and Townshend 2002; Pal and Mather 2005). MLC is a parametric
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Figure 11. Flow chart of the sampling scheme for one-class and binary classifiers with unequal
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classifier based on the Bayes’' theorem, with the assumption that the classes have
multivariate normal distributions (Huang, Davis, and Townshend 2002; Ahmad and
Quegan 2012). Our experiments show that MLC generally performs poorly with a few
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exceptions. This again is likely due to the training sample size although it could also be
that the multivariate normal assumption is not valid for our problem.

One-class classification is a common problem in many fields, such as image classifica-
tion, text classification, species distribution modelling, wildland search and rescue incident
modelling, and landslide susceptibility modelling (Liu et al. 2003; Elkan and Noto 2008; Li,
Guo, and Elkan 2011a; Li, Guo, and Elkan 2011b; Vorpahl et al. 2012; Doherty et al. 2014). As
opposed to learning from positive and negative data, learning a classifier from positive and
unlabelled data is a challenging but important problem (Elkan and Noto 2008; Ward et al.
2009). To address this problem, different methods have been developed in the literature.
We consider PBL as one example to demonstrate that positive-unlabelled methods can be
a better choice than the traditional binary classifiers for one-class remote sensing classifica-
tion. There are other promising positive-unlabelled methods which could also be consid-
ered. Another limitation of this study is that the methods are evaluated using just three
scenes of remotely sensed data sets. Future work might consider additional positive-
unlabelled methods using a broader range of remotely sensed data.

5. Conclusion

We compare one-class and binary classifiers for detecting a single land type in high-spatial-
resolution imagery given the same amount of manual labelling effort. PBL, a positive-
unlabelled one-class classifier, is shown to provide the best results compared to three
binary classifiers, BPNN, SVM, and MLC, as well as a positive-only one-class classifier,
OCSVM. PBL does not require labelled negative training samples and thus the entire
labelling budget can go towards positive samples. This allows it to outperform the binary
classifiers. And, while OCSVM also does not require labelled negative training samples, it
does not exploit unlabelled data like PBL. It is also sensitive to free parameters. In summary,
practitioners could consider positive-unlabelled classifiers such as PBL for performing one-
class classification in remote sensing especially when there is limited labelled training data.
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