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A B S T R A C T

This paper formulates cloud and cloud shadow detection as a semantic segmentation problem and proposes a
deep convolutional neural network (CNN) based method to detect them in Landsat imagery. Different from
traditional machine learning methods, deep CNN-based methods convolve the entire input image to extract
multi-level spatial and spectral features, and then deconvolve these features to produce the detailed segmen-
tation. In this way, multi-level features from the whole image and all the bands are utilized to label each pixel as
cloud, thin cloud, cloud shadow or clear. An adaption of SegNet with 13 convolutional layers and 13 decon-
volution layers is proposed in this study. The method is applied to 38 Landsat 7 images and 32 Landsat 8 images
which are globally distributed and have pixel-wise cloud and cloud shadow reference masks provided by the U.S.
Geological Survey (USGS). In order to process such large images using the adapted SegNet model on a desktop
computer, the Landsat Collection 1 scenes are split into non-overlapping 512 * 512 30m pixel image blocks. 60%
of these blocks are used to train the model using the backpropagation algorithm, 10% of the blocks are used to
validate the model and tune its parameters, and the remaining 30% of the blocks are used for performance
evaluation. Compared with the cloud and cloud shadow masks produced by CFMask, which are provided with
the Landsat Collection 1 data, the overall accuracies are significantly improved from 89.88% and 84.58% to
95.26% and 95.47% for the Landsat 7 and Landsat 8 images respectively. The proposed method benefits from the
multi-level spatial and spectral features, and results in more than a 40% increase in user's accuracy and in more
than a 20% increase in producer's accuracy for cloud shadow detection in Landsat 8 imagery. The issues for
operational implementation are discussed.

1. Introduction

The freely available Landsat imagery are supporting more and more
applications due to their long record and global coverage (Roy et al.,
2014; Wulder et al., 2016). However, the annual mean cloud cover of
Landsat 5 and 7 images can reach as high as 40% as reported in Ju and
Roy (2008). To support most terrestrial remote sensing applications, it
is necessary to detect the clouds and cloud shadows in the imagery
before further processing. Automatic cloud and cloud shadow detection
is therefore an important issue for both data providers and users.

Clouds and cloud shadows in Landsat imagery can be detected using
spectral tests, temporal differentiation and statistical methods. Spectral

tests are based on the observation that the radiances (for thermal
bands), the reflectances (for reflective bands) or other derived values
(e.g. normalized difference vegetation index (NDVI)) for clouds or
cloud shadows fall in limited ranges. One or two thresholds are thus
employed for each original or derived band to test if the value is in the
expected range. Results for different bands are typically fused using
rules based on decision trees for example. In this way, the clouds and
cloud shadows can be distinguished from clear pixels (Hollingsworth
et al., 1996; Irish et al., 2006; Roy et al., 2010; Scaramuzza et al., 2012;
Zhu and Woodcock, 2012; Vermote et al., 2016; Qiu et al., 2017; Sun
et al., 2018). Temporal differentiation is based on the fact that clouds
and cloud shadows are dynamic. Since they move, there are often
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significant differences between images captured at different dates. By
comparing multi-temporal images, the pixels with large differences are
identified as either clouds or cloud shadows (Wang et al., 1999; Hagolle
et al., 2010; Jin et al., 2013; Zhu and Woodcock, 2014; Frantz et al.,
2015; Zhu and Helmer, 2018). Alternatively, statistics of spatial and
spectral features of clouds are utilized by statistical methods to estimate
cloud cover (Molnar and Coakley Jr, 1985) and to detect clouds
(Ricciardelli et al., 2008; Amato et al., 2008). Usually, the pixel-wise
detection is formulated as a classification problem and solved based
using classification models such as support vector machines (SVM) (Lee
et al., 2004), neural networks (NN) (Tian et al., 1999), etc.

The power of statistical methods can be enhanced by machine
learning techniques which train a classifier as well as learn the features
to be used in the classification. The training and classification are
conducted in separate stages. In the first stage, both the features and
classifiers are learned from training samples. In the second stage, clouds
and cloud shadows are detected using the learned features and classi-
fiers. Traditional neural networks are especially popular among existing
classifiers (Lee et al., 1990; Scaramuzza et al., 2012; Hughes and Hayes,
2014). Although these methods can discover and exploit the distin-
guishing characteristics of clouds and cloud shadows hidden in the
data, their performance is limited by the classification framework and
the network structures and their capacities. First, traditional neural
networks classifiers classify each pixel independently. Second, the
networks have a simple structure and limited capacity as they consist of
only one or two hidden layers between the input and output layers, and
each layer consists of only a few nodes. Third, a limited number of
features extracted from highly localized patches around a target pixel
are input to the network and forwarded to the hidden and output layers.
Due to these limitations, traditional neural networks are outperformed
by the Fmask algorithm (Zhu and Woodcock, 2012) which is based on
spectral tests.

Convolutional neural networks (CNNs) contain layers consisting of
nodes arranged in three dimensions corresponding to the rows, columns
and channels of an RGB image (LeCun et al., 1998a). A detailed de-
scription of CNNs can be found in Goodfellow et al. (2016). CNNs fa-
cilitate multi-channel image representation since each pixel can be re-
presented by one node and each input image or feature map can be
represented by one layer. An image is input to a CNN directly and is
forwarded layer by layer based on a series of image convolutions. In this
way, the context among neighboring pixels is captured by the con-
volutions, and an image is classified as a whole instead of pixel-by-
pixel. Benefiting from the improved computing power of GPUs, deep
CNNs with many layers have been developed by computer vision re-
searchers in recent years. A shallow CNN can extract local features
contained in a small field as the image convolved by only a few layers
before the final representation is output. In contrast, a deep CNN can
extract global features contained in a large field of the input image as
this large field is convolved by many layers before the final re-
presentation is output by the final layer. Further, different features at
multiple levels are also output as intermediate feature maps. This
means that deep CNNs can extract features at multiple levels. Deep
CNNs have been successfully applied to a variety of computer vision
problems, including object detection and image segmentation (Girshick
et al., 2014; Ren et al., 2015; Badrinarayanan et al., 2017) to name a
few relevant to cloud detection. Key to the success of deep CNNs is their
ability to learn and exploit such multi-level features in the data.

CNNs have become new tools for cloud detection in the remote
sensing community. In particular, researchers have employed super-
pixel methods such as SLIC (Achanta et al., 2012) to group pixels into
superpixels and then use CNNs to classify the superpixels into cloud,
cloud shadow or clear classes (Xie et al., 2017; Zi et al., 2018). The
cloud detection problem is thus formulated as a superpixel classifica-
tion problem, which can be regarded as an extension of the pixel
classification problem. Class scores are calculated for each superpixel
and the final class assignment is based on these scores. Different

superpixels are still classified independently. These methods also rely
significantly on the superpixel grouping since they treat each superpixel
as an atom. To correct for the errors resulting from the superpixel
grouping, these methods often employ a post-processing step such as
optimization based on Markov random fields (Zi et al., 2018). Such
optimizations can be very time consuming during classification (Chen
et al., 2018).

Inspired by the performance of deep neural networks for the se-
mantic segmentation in other computer vision tasks, this paper pro-
poses a novel method to detect clouds and cloud shadows in Landsat
imagery. First, cloud and cloud shadow detection is formulated as a
semantic segmentation problem instead of a pixel-by-pixel classification
problem. As shown in Fig. 1, spatial context from the whole image and
spectral information from all the channels is exploited to segment an
image as a whole, while only spatial information within a limited
neighborhood (e.g., 3 * 3 pixels) is utilized by methods that perform
pixel classification. Second, the semantic segmentation is achieved via a
deep convolutional neural network (CNN) that convolves an input
image many times to output a confidence map for each class. The
confidence of each pixel in each map indicates the probability of the
pixel belonging to the corresponding class. As shown in Fig. 2, a multi-
channel input image is convolved by the encoder (left part) to extract
features at 6 different levels, and then these features are deconvolved
by the decoder (right part) to produce 4 detailed confidence maps with
the same resolution as the input image. Finally, each pixel is classified
into the class with the highest confidence, and all pixels are classified
collaboratively and simultaneously. The proposed method is evaluated
through extensive experiments on two Landsat data sets. It is shown to
significantly improve upon the state-of-the-art methods for cloud and
cloud shadow detection.

The rest of this paper is organized as follows. The Landsat images
and the cloud and cloud shadow reference data are described in
Section 2, cloud and cloud shadow detection is formulated as a se-
mantic segmentation problem in Section 3, the deep convolution neural
network used to perform the semantic segmentation is described in
Section 4, experiments with evaluations and comparisons are presented
in Section 5, and the conclusion along with a discussion is presented in
Section 6.

2. Data description

2.1. Landsat 7 and Landsat 8 cloud and cloud shadow reference data

Both the Landsat 7 cloud reference dataset selected by Irish et al.
(2006) (L7 Irish) and Landsat 8 cloud reference dataset derived by
Foga et al. (2017) (L8 Biome) are employed in this study (please refer
to Fig. 1 in Foga et al., 2017). The L7 Irish and L8 Biome datasets
consist of 206 and 96 scenes respectively, and they are evenly dis-
tributed over nine latitude zones and eight biomes respectively. Ground
truth cloud masks have been manually labeled for each scene by ana-
lysts at the U.S. Geological Survey (USGS) Earth Resources Observation
and Science (EROS) Center for validating cloud detection algorithms.
These Landsat cloud cover assessment validation datasets are publicly
available from the USGS website1. The differences among interpreta-
tions by different analysts were reported to be 7% (Scaramuzza et al.,
2012). In the cloud masks for 41 of the L7 Irish scenes, each pixel is
labeled as cloud, thin cloud, cloud shadow or clear. In the cloud masks
for the other L7 Irish scenes, cloud shadows are not distinguished from
clear pixels mainly due to the labor intensive nature of this task. Only
those scenes with both cloud masks and cloud shadow masks are used
in our experiments below. Three of these scenes located in Antarctica
are excluded from our experiments since the cloud mask reference
images are defined in the Universal Transverse Mercator (UTM)

1 https://landsat.usgs.gov/landsat-cca-validation-datasets.
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projection while the Landsat Collection 1 images (Section 2.2) are de-
fined in the polar stereographic projection. Similarly, cloud shadows
are distinguished from clear pixels in only 32 of the L8 Biome scenes. In
total, the 38 L7 Irish and 32 L8 Biome scenes that have both cloud
masks and cloud shadow masks are used in our experiments. These
scenes are also evenly distributed over latitude zones or biomes. Their
manually labeled cloud and cloud shadow masks serve as the ground
truth in our experiments.

2.2. Landsat 7 and Landsat 8 Collection 1 data and pre-processing

The 38 Landsat 7 and 32 Landsat 8 Collection 1 data corresponding
to the scenes in L7 Irish and L8 Biome are downloaded from the USGS
Earth Resources Observation and Science (EROS) Center archive. All
the bands except for one from Landsat 8 are resampled to 30m spatial
resolution in the Collection 1 data. Since multi-channel images are re-
quired by the proposed neural network to have the same spatial re-
solution in each channel, eight Landsat 7 bands and ten Landsat 8 bands
of 30m resolution are employed to detect clouds and cloud shadows in
out experiments.

The digital number images are converted to top of atmosphere re-
flectance or brightness temperature to be input to the neural networks.
A solar zenith angle is derived for each pixel using the Landsat Angles
Creation Tool provided by the USGS. Then, using the derived solar
zenith angle and the scaling factors stored in the metadata, the digital
numbers are converted to top of atmosphere reflectance for the solar
reflective bands and to brightness temperature for the thermal bands.

A cloud mask is available in the Collection 1 data for each scene. A
pixel is set as cloud when its cloud bit is 1, and it is set as cloud shadow
when its cloud shadow bit is 1. A pixel is set as clear when both its cloud
bit and cloud shadow bit are 0. These masks are generated by the
CFMask algorithm (Zhu and Woodcock, 2012; Foga et al., 2017). In
these masks, thin clouds are also recognized as clouds. We compare the
results of our method to these CFMask generated masks in the experi-
ments using the manually created ground truth.

2.3. Training, validation and test sets

It is not possible to process entire Landsat images at once on a
standard desktop computer with limited GPU memory since the size of
the deep neural network increases dramatically with input image size.
Therefore, as shown in Fig. 3, each Landsat image is partitioned into a
set of small non-overlapping images, each of which is of 512 * 512.
Since the Landsat images are the (rotated) georeferenced versions, not
the original ones, there are fill pixels as indicated by the white areas.
We only use the images without fill pixels. This results in around 120
512 * 512 images for each Landsat scene. These 512 * 512 images are
the input to the deep neural network.

As is standard in the computer vision community, the collection of

Fig. 1. Cloud and cloud shadow detection is for-
mulated as a semantic segmentation problem. On the
left is the input, a multi-channel image in which
clouds and cloud shadows are to be detected, and on
the right is the output, a cloud mask image in which
each pixel is assigned a label denoting its class.
Cloud, thin cloud, clear and cloud shadow are illu-
strated as red, green, blue and yellow respectively.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 2. Encoding and decoding procedure. The intermediate feature maps in between the input and output demonstrate features extracted at different levels from fine
to coarse and then back to fine. This figure depicts only 6 convolved and 6 deconvolved feature maps at different resolutions among the 13 convolved and 13
deconvolved feature maps of our model. It also only depicts 10 instead of the all channels for each feature map. All the features are normalized to [0,⋯ ,255].

Fig. 3. Image partition for a typical Landsat image. The original image is in-
dicated by the gray area, the georeferenced image is indicated by the outer
rectangle. As shown, some areas are filled by white (null) pixels in the geor-
eferenced image. According to the imposed grid, the georeferenced image is
partitioned into a set of small 512 * 512 images.
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512 * 512 images is partitioned into three sets: a training set, a vali-
dation set and a test set. 60%, 10% and 30% of the images are randomly
grouped into the training, validation and test sets. Their sizes in terms
of the number of images are listed in Table 1.

The images in the training set are used to train the deep neural
networks. Those in validation set are used for experiments such as
parameter tuning. And, those in test set are used only for the final
evaluation—they are not involved in training or tuning. Note that while
we only apply our trained model to the images in the test set, it could be
applied to any other Landsat images without retraining.

3. Cloud detection as semantic segmentation

As illustrated in Fig. 1, given a multi-band input image, cloud and
cloud shadow detection consists of labeling each pixel as cloud, cloud
shadow, clear or other category. In some cases, thick cloud and thin
cloud need to be distinguished from each other. In other cases, water,
snow and ice also need to be recognized. Such a pixel-wise labeling
leads to cloud and cloud shadow detection at the pixel-level.

Previous NN-based approaches to cloud detection perform pixel-by-
pixel classification. Given a target pixel, a feature vector is extracted
from a small (e.g. 3 * 3) patch around the target pixel and input to a
neural network, which outputs a vector of class confidences indicating a
pixel classification. Each pixel in an image is classified independently
given its feature vector. The contextual relationships between neigh-
boring pixels are not explicitly modeled but encapsulated implicitly in
the features extracted from the local patches around the target pixels
(Lee et al., 1990; Scaramuzza et al., 2012; Hughes and Hayes, 2014).
Limited contextual information is sometimes also used in a post-pro-
cessing step to improve the classification results (Hughes and Hayes,
2014). Since global features of an image cannot be extracted from a
small local patch, these approaches have limited performance even with
the post-processing step. In contrast, deep CNNs can extract both global
and local features. Further, since an image is convolved layer by layer
in a CNN as a whole, the contextual information among neighboring
pixels is captured by a series of convolutions instead of a single pre-
processing step for feature extraction. Although CNNs have been ap-
plied to cloud detection, they were previously used to convolve a patch
covering a superpixel and output a class for the superpixel but not its
individual pixels (Xie et al., 2017; Zi et al., 2018). As in pixel classifi-
cation, different superpixels are classified independently.

This paper instead formulates cloud and cloud shadow detection as
a semantic segmentation problem. By utilizing both the spatial context
from the whole image and spectral features from all the bands, an
image is partitioned into a set of disjoint regions and each region is
labeled as cloud shadow, clear, thin cloud or cloud. Our formulation
does not necessarily seek to label the regions as belonging to different
objects as in standard scene parsing but instead performs cloud detec-
tion in which each pixel is labeled with a single class. However, the
segmentation, and therefore the classification, is performed for the
image as a whole rather than in a pixel-by-pixel manner.

4. Cloud detection based on deep CNN

The semantic segmentation is achieved via a fully convolutional
neural network (FCNN) (Long et al., 2015), more specifically, an

encoder-decoder network (Badrinarayanan et al., 2017) as depicted in
Fig. 2. The left/right part is called an encoder/decoder, which consists
of a sequence of layers (only a subset of layers are depicted). To re-
present pixels, the nodes in each layer are organized in 3 dimensions
corresponding to the rows, columns and channels of an image. The left
and right layers denote the input and output images respectively, and
the layers in between denote a sequence of intermediate feature maps.
An input image, from left to right, undergoes a sequence of convolu-
tions (left part) and deconvolutions (right part) before the final re-
presentation is output.

Without loss of generality, let us focus on convolving a local volume
of a previous layer to output a single pixel whose coordinates in the
current layer are (h,w,d). The convolution is carried out as follows:

∑ ∑ ∑′ =
⎛

⎝
⎜

⎞

⎠
⎟ +

=− =− =
+ +f W f b ,h w d

i j k

c

i j k
d

h i w j k
d

, ,
1

1

1

1

1
, , , ,

(1)

whereWi j k
d
, , are the weights of the convolution filter and bd is the bias of

the filter. In this case, there are 3 * 3 * c weights and one bias for each
filter. 3 * 3 is the filter size in spatial dimension, and k is the filter size
in spectral dimension. As c is the number of channels of the previous
layer, this convolution covers all the channels. When d takes 1,⋯ ,c′,
this local volume is convolved to output c′ features corresponding to c′
channels of current layer. A rectified linear function ′fmax(0, )h w d, , is
applied to each output of the convolution. This nonlinear function en-
ables the deep CNNs learn more complex features than cannot be de-
rived using linear transformations.

As depicted in Fig. 2, the encoder/decoder has the effect of down/
up sampling, which is achieved through the pooling/unpooling layers.
Pooling is developed to down-sample the feature maps along the rows
and columns but not channels. Specifically, 2 * 2 max pooling is em-
ployed to select the maximum value of a 2 * 2 window so that 2 rows by
2 columns are merged to generate one output. In this way, the feature
map is down-sampled to half its resolution in each spatial dimension.
Unpooling is developed as a counterpart to a pooling for up-sampling,
which is based on the indices calculated in its corresponding pooling
operation.

Let us focus on convolution in the spatial dimension as every con-
volution covers all bands. One pixel in the final encoding layer is
convolved from a 3 * 3 window of its previous layer, and this 3 * 3
window is convolved from a 5 * 5 window of its previous layer. Taking
account of all the convolution layers and pooling layers as listed in
Table 2, a pixel in the final encoding layer is convolved from a 212 *
212 window of the input image. In total, 512 features (i.e., 512 chan-
nels) are output by the final encoding layer. These features are global
features. As depicted in Fig. 2, feature maps at 6 levels are extracted
from the input image by the encoding layers. The left feature map stores
local features, the right one stores global features, and the middle
feature maps store features at middle levels. These features are mag-
nified by the decoding layers to generate a detailed output. Since the
decoding and encoding layers are arranged in a pairwise fashion, the
input and output have the same resolution, which assures a pixel-wise
classification.

4.1. Network architecture

Our encoder-decoder network is an adaption of SegNet
(Badrinarayanan et al., 2017), whose encoder is based on VGG
(Simonyan and Zisserman, 2014). The different types of layers in the
network are described below.
Input layer stores the input image. It is a 512 * 512 * c volume, where,

c is the number of channels (bands): c=8 for Landsat 7
images and c=10 for Landsat 8 images.

Conv layer convolves the previous layer to derive the current layer.
The number of weights involved in the convolutions are
listed for all layers in Table 2. The four numbers indicate the

Table 1
Training, validation and test sets for L7 Irish and L8 Biome. The number of 512
* 512 30m images in each set is as follows.

Images (512 * 512)

Train 60% Val. 10% Test 30%

L7 Irish 2732 420 1328
L8 Biome 2410 378 1178
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filter size in the spatial and spectral dimensions, and the
number of filters respectively. They correspond to i,j,k,d of
Wi j k

d
, , in Eq. (1). This table is for Landsat 8 images. 10 should

be replaced by 8 when the input images are Landsat 7
images. Our model contains 13 convolutional layers as listed
in Table 2.

Deconv layer is a counterpart to a conv layer. It has the same structure
as a conv layer but has different weights. Our model contains
13 deconvolutional layers as listed in Table 2.

RELU layer applies a rectified linear function to each output of the
conv/deconv layer. It generates the element-wise activations
to form a feature map.

Pool layer down-samples the feature maps along the rows and columns
to produce a feature map with half the resolution in each
spatial dimension.

Unpool layer is a counterpart to a pool layer for up-sampling.
Output layer is a class confidence map of 512 * 512 * 4, where 4 is the

number of classes (cloud, thin cloud, clear and cloud
shadow). Each pixel thus has a confidence value for each
class.

Our encoder and decoder are described in the left and right columns
of Table 2 respectively. Each conv or deconv layer is followed by a
RELU layer, which is merged into its corresponding conv or deconv
layer and not explicitly listed in the table. Starting from the input
image, the features flow downwards through the left layers and up-
wards through the right layers, and finally reach the output layer. As
indicated by the arrows in Table 2, skip connections allow features to
flow directly from the encoding layer to the decoding layer of the same
level without a reduction in spatial resolution. By skipping encoding
layers, feature details are retained to assure a precise segmentation.

4.2. Training

No parameters are involved in the RELU, pooling and unpooling
layers. However, 3 * 3 * c weights and a bias are involved in each filter
for each conv/deconv layer. These weights and biases need to be
learned from the training samples. This is achieved via optimizing these
free parameters so that the predicted class scores for the training
samples match the ground truth labels as well as possible.

Without loss of generality, let an input image and its corresponding
(ground truth) label image be x={xij} and y={yij}, where i,j are row
index and column index respectively, and let f={fk} be the vector of
class scores, where k is the class index. The objective function to be
minimized in training is the cross-entropy loss

∑= ′L x l x( ; Θ) ( ; Θ)
ij

ij
(2)

∑= −
∑

f

f
log(

exp( )

exp( )
)

ij

y

k k

ij

(3)

where Θ is the set of parameters to be optimized, l′(xij;Θ) is the loss for
pixel xij, and the total loss is the sum of losses over all pixels. If the
predicted label is the same as ground truth, i.e. fk=1 when k= yij and
fk=0 when k≠yij, then = ∑f fexp( ) exp( )y k kij

and l′(xij;Θ)= 0.

Otherwise, < ∑f fexp( ) exp( )y k kij
and l′(xij;Θ)> 0. By minimizing the

cross-entropy loss, the predicted labels become consistent with the
ground truth labels.

The backpropagation algorithm is employed to minimize the loss
(LeCun et al., 1998b). It consists of a forward pass and a backward pass.
The forward pass convolves an input image to calculate the loss. In this
pass, the local gradients of the outputs with respect to the parameters
are also computed for each layer. From the final layer to input layer, the
backward pass propagates the gradients layer by layer by multiplying
the local gradients of the current layer with those propagated to this
layer. When this reaches the input layer, the gradients of the loss with
respect to all the parameters are calculated. Based on these gradients,
the loss function can be minimized by updating the parameters based
on their gradients.

The RMSProp schema has been found to have a beneficial equalizing
effect and so we use it to update the parameters (Tieleman and Hinton,
2012):

= + −γ β γ β dθ* (1 )* 2 (4)

= −θ θ α dθ γ* /( ) (5)

where θ ∈Θ is a parameter to be updated, the learning rate α is set to
0.001, the decay rate β is set to 0.995, and γ is initialized to 0 and
updated iteratively.

A technique called dropout is employed to prevent overfitting
during training. It activates a neuron with a certain probability, which
is set to be 0.5 in this paper. Dropout effectively complements other
regularization methods such as L1 and L2 (Srivastava et al., 2014).

A typical example of training for 100 epochs (iterations) is illu-
strated in Fig. 4. After each epoch, the loss function and overall accu-
racy are computed using the validation set. As depicted in the figure,
the loss decreases and the accuracy increases as the training progresses.
Although the accuracy continues increasing with the number of itera-
tions, a good accuracy is achieved after 20 epochs. The maximal,
minimal and mean accuracy in the range of 20 to 100 epochs is 93.18%,
90.78% and 92.15% respectively and the standard deviation is 0.62%.
It is possible to reduce the training time by reducing the number of
epochs. However, the training time is not crucial since training is only
performed once. Since inference does not require iteration, the cloud
detection is very fast. 50 epochs are employed for training in the ex-
periments.

4.3. Inference

Once the network has been trained, that is, all the parameter values
have been learned, inference (classification) is performed by a simple
forward pass through the network: a given image is fed to the input
layer, it is transformed layer-by-layer by the encoder-decoder, and the
per pixel class scores are output. This is an efficient computation con-
sisting of filtering over local volumes.

Table 2
Encoder-decoder configuration. The left and right columns correspond to the
encoder and decoder respectively. The encoding, convolutional layers progress
downwards and the decoding, deconvolutional layers progress upwards. Each
conv (or deconv) layer is followed by a RELU layer (not shown). The arrows
indicate skip connections. Four numbers are listed for each convolutional/de-
convolutional layer. The last one indicates the number of filters for this layer,
and the other three indicates the filter size in the spatial and spectral dimen-
sions.

Input Output
conv3 * 3 * 10 * 96 deconv3 * 3 * 96 * 96
conv3 * 3 * 96 * 96 deconv3 * 3 * 128 * 96

Pooling → Unpooling
conv3 * 3 * 96 * 128 deconv3 * 3 * 128 * 128
conv3 * 3 * 128 * 128 deconv3 * 3 * 256 * 128

Pooling → Unpooling
conv3 * 3 * 128 * 256 deconv3 * 3 * 256 * 256
conv3 * 3 * 256 * 256 deconv3 * 3 * 256 * 256
conv3 * 3 * 256 * 256 deconv3 * 3 * 512 * 256

Pooling → Unpooling
conv3 * 3 * 256 * 512 deconv3 * 3 * 512 * 512
conv3 * 3 * 512 * 512 deconv3 * 3 * 512 * 512
conv3 * 3 * 512 * 512 deconv3 * 3 * 512 * 512

Pooling → Unpooling
conv3 * 3 * 512 * 512 deconv3 * 3 * 512 * 512
conv3 * 3 * 512 * 512 deconv3 * 3 * 512 * 512
conv3 * 3 * 512 * 512 deconv3 * 3 * 512 * 512

Pooling → Unpooling
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Fig. 2 illustrates the forward pass by showing features at different
levels. As shown, the encoder and decoder down-sample and up-sample
the features respectively. Since a large volume of the input image is
convolved to one single feature at the highest level, high-level global
features covering a large volume are extracted by the encoder.

As depicted in Fig. 5, the output layer consists of 4 maps, each of
which specifies the confidence for a specific class for all pixels. A class
label map can be induced from this output layer. Without loss of gen-
erality, let the class score map and class label map be f={fijk} and
C={Cij}, where i,j,k are the row, column and class indices respectively.
A label is assigned to pixel (i,j) based on the maximum class score:

=C farg max .ij
k ijk (6)

In this way, a class label map of size 512 * 512 is produced. This
label map is the final result of the semantic segmentation and serves as
a cloud and cloud shadow mask.

5. Experimental results

This section demonstrates the advantages of the proposed cloud
detection method by a series of comparisons. First, the base model
SegNet is compared with two widely used deep CNNs (DeepLab and
PSPNet) for semantic segmentation based on RGB bands. Then, dif-
ferent bands and types of data are input to the adapted SegNet for
further comparisons. Finally, the proposed method is evaluated and
compared with CFMask, which has been used by the U.S. Geological
Survey (USGS) to release the official Landsat products.

In each experiment, a model is trained using a training set and
evaluated using a test set. The generated cloud and cloud shadow masks
are compared with the ground truth and evaluated based on the con-
fusion matrix and accuracies for the cloud shadow (CShadow), clear
(Clear), thin cloud (TCloud) and cloud (Cloud) classes. In order to

compare with the CFMask algorithm, the cloud and thin cloud classes
are merged into one class (MCloud) to create another set of confusion
matrix and accuracies.

The overall accuracy AO, the producer's accuracy AP and the user's
accuracy AU are calculated as:

=
∑
∑

A
N
N

.O i ii

ij ij (7)

=
∑

A
N

Nj
P jj

i ij (8)

=
∑

A N
Ni

U ii

j ij (9)

where, Aj
P is the producer's accuracy for class j, Ai

U is the user's accu-
racy for class i, and Nij is the number of pixels that come from class j and
predicted as class i. The producer's and user's accuracies are the com-
plements of omission and commission errors, respectively, which are
alternatives for evaluation in the literature (Foga et al., 2017).

5.1. SegNet vs. the other networks

We compare SegNet with DeepLab (Chen et al., 2018) and PSPNet
(Zhao et al., 2017). These CNNs are widely used for semantic seg-
mentation by the computer vision community. Since they are developed
to segment RGB images, three bands corresponding to Red, Green and
Blue are input to the neural networks. More specifically, Digital Num-
bers (DNs) of Bands 4, 3 and 2 of Landsat 8 Operational Land Imager
(OLI) are input to the CNNs. As reported in Table 3, SegNet performs as
good as PSPNet, and they both outperform DeepLab.

Fig. 4. Training procedure. Left and right are the loss function and segmentation accuracy versus the number of epochs.

Fig. 5. Class confidence maps and class label map. The left 4 gray images represent the 4 confidence maps for cloud, thin cloud, clear and cloud shadow respectively.
The right color image indicates a label map, in which cloud, thin cloud, clear and cloud shadow are illustrated as red, green, blue and yellow respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.2. RGB vs. ten bands

The distinguishing characteristics hidden in data can be exploited
by CNNs to improve classification. Better performance is expected when
more data are incorporated since more cues can be utilized to improve
classification. To this end, the DNs of 10 bands of the Landsat 8 bands of
30m resolution are input to the adapted SegNet described in Table 2.
As reported in Table 3, when the RGB bands are replaced by 10 bands,
the overall accuracy of four class (CShadow, Clear, TCloud, and Cloud)
classification is improved from 91.14% to 93.23%, and the overall ac-
curacy of three class (CShadow, Clear, and MCloud) classification is
improved from 93.45% to 94.93%. These improvements support the
above expectation. Therefore, we employ all bands for cloud detection.

5.3. DN vs. TOA

The Digital Number (DN) images of Landsat 8 reflective bands and
thermal bands are converted to Top of Atmosphere (TOA) reflectance
and brightness temperature respectively, and they are input to the
adapted SegNet described in Table 2. As reported in Table 3, the seg-
mentation quality based on DN and TOA reflectance or brightness
temperature are similar. While the overall accuracy based on DN is
better than that based on TOA reflectance or brightness temperature for
the four class classification, the opposite is true for the three class
classification. This interesting difference can be explained as follows.
On one hand, certain cues distinguishing thin clouds from thick clouds
hidden in DN images may be lost in the conversion from DN to TOA
reflectance or brightness temperature. On the other hand, TOA re-
flectance or brightness temperature is more stable with respect to dif-
ferent ground scenes, and this characteristic is helpful for detecting thin
and thick clouds as a whole. Due to these stable characteristics, we
input TOA reflectance or brightness temperature to the adapted SegNet
for cloud detection just as they are input to CFMask.

5.4. Cloud detection using adapted SegNet and ten bands TOA reflectance
or brightness temperature

Based on the above experiments, we input ten bands TOA re-
flectance or brightness temperature to the adapted SegNet to detect
clouds and cloud shadows. We compare this with CFMask, which is
used to generate the official Landsat products released by the U.S.
Geological Survey (USGS). CFMask is the production state-of-the-art
and represents an informative benchmark as it is familiar to the Landsat
cloud detection community as well as the Landsat user community
more broadly. These users have a good sense of its performance.

To carry out a fair comparison in terms of the biomes of ground

scenes, 60%, 10% and 30% 512 * 512 images of each scene are ran-
domly grouped into the training, validation and test sets such that the
number of images from different biomes are balanced in all three sets.
In contrast, 60%, 10% and 30% 512 * 512 images from all scenes are
randomly grouped into training, validation and test sets to carry out the
experiments listed in Table 3.

5.4.1. Qualitative evaluation and comparison
Two L7 Irish examples from polar and subtropical regions together

with three L8 Biome examples of snow, grass and water scenes are
presented in Fig. 6 for visual demonstration. These examples represent
various land surfaces, cloud sizes and cloud shapes. They also represent
different performances of the proposed algorithm as their overall ac-
curacies are 96.80%, 76.65%, 89.20%, 88.64% and 91.81% from top to
bottom. The ground truth masks as well as the masks generated by
CFMask are also presented for visual comparison.

Since multi-level spatial and spectral features covering different
regions of the input image are captured by the deep CNN, the proposed
method detects clouds and cloud shadows successfully as demonstrated
by the five examples. The detected clouds and cloud shadows match the
ground truth well. The Landsat 8 results match better than the Landsat
7 results as the small clouds and thin clouds in the last row are better
preserved than those in the second row. This is possibly the result of
two factors. First is that 10 bands of Landsat 8 as opposed to 8 bands of
Landsat 7 are input to the neural network. Second is that the Landsat 8
OLI has 12-bit radiometric resolution as opposed to the 8-bit of the
Landsat 7 ETM+. This allows the Landsat 8 images to capture more
detailed characteristics of the scenes, which can then be fully exploited
by the deep CNN. Some thin cloud pixels are confused with cloud
pixels; however, this is not critical for Landsat data applications as both
cloud and thin cloud are considered to be invalid for land surface
monitoring.

In comparison, thin clouds are not distinguished by CFMask, and the
clouds and cloud shadows produced by CFMask are not similar to those
in ground truth. Overall, the results of CFMask are not as good as those
of the proposed method. This is because multi-level spatial and spectral
features covering large regions and all channels of the input image are
not fully utilized by CFMask. Instead, it relies heavily on the TOA va-
lues. For example, the pixels with extremely low TOA values over water
are incorrectly classified as cloud shadow in the first row and fourth
column, and the pixels with extremely high TOA values over snow/ice
are incorrectly classified as cloud in the third row and fourth column.
Such errors are avoided by the proposed method as it exploits the multi-
level spectral and spatial features.

Table 3
Overall accuracy AO(%), producer's accuracy AP(%) and user's accuracy AU(%) are reported for different experiments based on two types of input data (DN and TOA),
two band compositions (RGB and 10 bands) and three kinds of CNN networks (DeepLab, PSP and SegNet). Two versions of AO are reported: the left and right values
correspond to the classification of four classes (CShadow, Clear, TCloud, and Cloud) and three classes (CShadow, Clear, and MCloud) respectively.

Input Bands Network Accuracy CShadow Clear TCloud Cloud MCloud

DN RGB DeepLab AP 33.67 95.45 51.07 84.30 84.54
AU 64.29 92.47 57.54 79.70 85.16
AO 87.29 90.17

PSPNet AP 56.40 96.54 64.89 90.61 90.95
AU 73.38 95.17 65.87 89.69 90.89
AO 91.18 93.44

SegNet AP 56.31 95.73 72.31 90.07 93.89
AU 71.99 96.05 62.16 90.95 88.89
AO 91.14 93.45

10 bands AP 71.48 96.78 73.86 93.69 93.71
AU 72.20 96.88 73.93 92.81 93.20
AO 93.23 94.93

TOA AP 72.45 96.67 67.97 96.08 94.69
AU 73.94 97.17 74.55 88.25 92.73
AO 93.03 95.11
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5.4.2. Quantitative evaluation
Quantitative evaluations of the cloud and cloud shadow detection

on L7 Irish and L8 Biome are presented in Table 4. The overall ac-
curacies for both data sets are over 94%. For Landsat 7 images, the
producer's accuracy and user's accuracy of cloud detection, thin cloud
detection and cloud shadow detection are over 89%, 59% and 71%
respectively. For Landsat 8 images, the producer's accuracy and user's
accuracy of cloud detection, thin cloud detection and cloud shadow
detection are over 92%, 74% and 71% respectively. Even for the
challenging task of cloud shadow detection, both the producer's accu-
racy and user's accuracy are over 71%. Due to the two factors stated in
Section 5.4.1, the performance on Landsat 8 is better than on Landsat 7.

The performance of thin cloud detection is improved significantly. This
is also demonstrated by the examples in Fig. 6, where the green pixels
in the bottom three rows are more accurate than those in the upper two
rows.

As described in Section 2.1, scenes in L8 dataset are evenly dis-
tributed over eight biomes respectively. A detailed evaluation in terms
of these biomes is presented in Table 5. Only the accuracy for snow
scenes is below 90%. This is due to the fact that snow is similar to cloud
in the images. Benefiting from CNN's ability to explore both spectral
and spatial cues to distinguish clouds from snow, the overall accuracy is
over 86%. In contrast, CFMask completely fails to distinguish clouds
from snow as illustrated by the third row of Fig. 6.

Fig. 6. Examples of cloud and cloud shadow detection in Landsat 7 and 8 images. Each image is 512 * 512 30m pixels. From top to bottom, the examples are from
scenes of (L7, Path 195, Row 10), (L7, Path 31, Row43), (L8, Path 1, Row 11), (L8, Path 29, Row 37) and (L8, Path 113, Row 63) respectively. From left to right are
the input images, the ground truth cloud masks, the results of our method and the results of CFMask. The input images are true color composites of RGB bands. Cloud,
thin cloud, clear and cloud shadow are illustrated as red, green, blue and yellow respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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5.4.3. Quantitative comparison
The comparisons with the CFMask algorithm for L7 Irish and L8

Biome are presented in Table 4. Since thin clouds are not distinguished
from clouds in the Landsat Collection 1, thin clouds and clouds in the
results of the proposed method are merged into one class for a fair
comparison.

The proposed method significantly outperforms the CFMask algo-
rithm in terms of both the producer's and user's accuracies. The overall
accuracy is improved by more than 5% and 10% for L7 Irish and L8
Biome respectively.

Again the improvement is more obvious for Landsat 8 due to the two
factors stated in Section 5.4.1. The most significant improvement is for
the Landsat 8 cloud shadow detection where the proposed method re-
sults in more than a 40% increase in the user's accuracy and a 20%
increase in the producer's accuracy over CFMask. Basically, a pixel is
identified by CFMask as a potential cloud pixel based on a set of
spectral tests such as B7>0.03 and BT<27 and NDSI<0.8 and NDV
I<0.8, where, NDSI=(B2− B5)/(B2+ B5), NDV I=(B4− B3)/
(B4+ B3), Bi is the TOA reflectance for Band i and BT is TOA Bright-
ness Temperature for the thermal band. Although the view angle of the

satellite sensor and the illuminating angle are used to match clouds and
cloud shadows, CFMask relies significantly on spectral tests rather than
complex spatial and spectral features at multiple levels. Without such
multi-level features, it is difficult to distinguish cloud shadows from
certain land surface classes, e.g., water. All the user's and producer's
accuracies of all the classes for both Landsat 7 and Landsat 8 are higher
for the proposed method than for CFMask except for the producer's
accuracy for Landsat 7 cloud shadow. This exception may be because
CFMask intentionally buffers the cloud shadow masks to boost the
producer's accuracy; that is all pixels neighboring a cloud shadow pixel
are identified as cloud shadow pixels. The developers of the method
argue that commission error is preferred over omission error (Zhu and
Woodcock, 2012). Note that this commission error preference can be
easily achieved by applying the same buffering techniques to the gen-
erated cloud masks. Moreover, it can be introduced into the loss func-
tion so that a CNN model can learn the preference.

5.5. Efficiency

The main computation in both the convolution and deconvolution
stages is filtering, which is implemented as a dot product of two vectors.
This computation is independent for each pixel and so can be easily
parallelized, particularly on GPUs.

It takes around 15 h to train a model. However, only 0.45 s is needed
to segment a 512 * 512 image. All the tiled images for a typical Landsat
scene can be segmented in less than 2 min, and they can be assembled
together based on the partition grid to produce a label map for the
entire scene.

All the experiments are carried out on a desktop computer with an
Intel Core i7-7700 K CPU (4-Cores, 8MB Cache, Turbo Boost 2.0,
Overclocked up to 4.4 GHz on all four cores), an NVDIA GeForce GTX
1080Ti GPU (with 11GB GDDR5X) and 32 G (2 * 16 G) 2400MHz DDR4
Memory. This indicates that fast processing of Landsat images can be
achieved on a standard desktop computer with a single GPU.

6. Conclusion and discussion

This paper proposes a method based on deep CNNs for cloud and
cloud shadow detection in Landsat imagery. The problem is formulated
as one of semantic segmentation. The CNN based semantic segmenta-
tion allows spatial and spectral features computed over large spatial
regions to be used to classify pixels as cloud, thin cloud, cloud shadow
or clear. The semantic segmentation is achieved via a transformation
from an input image to a label map based on an adapted SegNet, which
has proven effective in the field of computer vision (Badrinarayanan
et al., 2017). The revised number of channels allows the network to
deal with multi-band Landsat imagery, and the skip connections in-
troduced between the convolution and deconvolution layers allows
detailed features to be utilized in the deconvolution. Extensive experi-
ments demonstrate that state-of-the-art performance is achieved by the
proposed method with overall accuracies of 94% for both the Landsat 7
and Landsat 8 imagery.

Although significant advantages were found using the proposed
deep CNN based method for Landsat cloud and cloud shadow detection,
operational Landsat cloud detection needs to consider the following is-
sues. First is dealing with the fill pixels in the Landsat imagery. In our
current framework, a Landsat scene is partitioned into a set of 512 *
512 30m non-overlapping images to be fed into the deep CNN model.
Only image blocks without fill pixels are currently considered.
However, image blocks at the boundaries of Landsat scenes usually
contain fill pixels. Moreover, the Landsat 7 ETM+ Scan Line Corrector
(SLC) images contain fill strips. This issue can be addressed by treating
fill pixels as an additional class. The proposed method can then learn
and distinguish fill pixels from clouds, thin clouds, cloud shadows and
clear pixels. The second issue concerns cirrus cloud detection. Since the
Landsat 8 band design has the capability to detect cirrus clouds

Table 4
Overall accuracy AO(%), producer's accuracy AP(%) and user's accuracy AU(%)
are reported for the adapted SegNet and CFMask on L7 Irish and L8 Biome
respectively. Two versions of AO are reported: the left and right values corre-
spond to classification of four classes and three classes respectively.

Dataset Network Accuracy CShadow Clear TCloud Cloud MCloud

L7 SegNet AP 71.43 97.81 59.92 89.78 86.51
AU 74.73 96.71 72.27 89.55 91.31
AO 94.33 95.26

CFmask AP 78.75 91.47 83.60
AU 31.34 97.40 83.18
AO 89.88

L8 SegNet AP 71.54 97.76 74.58 94.94 93.07
AU 81.10 96.58 80.43 92.54 94.47
AO 94.00 95.47

CFmask AP 49.33 87.47 82.66
AU 36.29 92.83 74.31
AO 84.58

Table 5
Overall accuracy AO(%), producer's accuracy AP(%) and user's accuracy AU(%)
are reported for the adapted SegNet on L8 Biome. They are evaluated in terms
of different land covers.

Biome Accuracy CShadow Clear TCloud Cloud MCloud

Barren AP 70.88 98.26 72.77 95.24 95.24
AU 87.35 96.58 68.79 96.35 94.73
AO 93.55 95.45

Forest AP 82.86 98.25 71.79 96.36 93.94
AU 86.48 96.41 85.46 97.53 98.56
AO 95.41 96.16

Grass AP 77.60 98.31 71.76 95.22 91.04
AU 80.01 97.30 82.27 90.83 94.54
AO 94.86 96.22

Shrubland AP 64.98 97.99 78.09 96.52 97.38
AU 79.59 98.71 80.39 89.99 93.63
AO 95.95 97.37

Snow AP 57.65 93.98 78.03 77.51 87.73
AU 74.49 90.68 81.11 68.12 88.45
AO 86.19 88.92

Urban AP 66.75 99.11 68.72 90.49 90.33
AU 80.44 98.12 73.36 94.63 95.23
AO 96.70 97.52

Water AP 73.99 98.99 68.30 95.97 93.88
AU 78.46 98.34 83.07 92.46 96.83
AO 96.79 97.76

Wetlands AP 81.17 87.85 73.92 97.90 98.90
AU 79.66 93.26 74.37 95.73 97.15
AO 92.05 95.60
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(Kovalskyy and Roy, 2015), it is expected that the proposed method can
detect cirrus clouds in Landsat 8 imagery. This issue can also be ad-
dressed by treating cirrus clouds as an additional class. By collecting
reference data with labeled cirrus clouds, the proposed method can
learn to distinguish cirrus clouds from the other classes. We expect that
the proposed CNN based method will perform better than the com-
monly used spectral test based methods for cirrus cloud detection. The
third issue concerns the generalization of the model. Since the training
samples used in this study are limited, they may not represent all kinds
of land surface, clouds and cloud shadows. It is not clear that the
trained model is universal enough for operational Landsat cloud and
cloud shadow detection. This issue can be addressed by collecting more
and varied cloud and cloud shadow reference data. Generally, good
prediction for new images can be achieved by a model trained using a
wide variety of training samples. More reference data can also provide
enough testing images to confirm that a universal model is achieved.

The proposed method takes multiple bands as input for cloud and
cloud shadow detection and can be easily extended to similar sensors
provided that the training data are collected. For example, the Sentinel-
2 satellite (Drusch et al., 2012) is similar to Landsat, however, thermal
bands are replaced by red edge bands. It is straightforward for the
proposed neural network to deal with the Sentinel-2 multi-band images.
Since the information hidden in the data can be exploited by deep CNN
based methods, it is expected that the proposed framework can detect
clouds and cloud shadows in Sentinel-2 multi-band images.
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