Assignments/Announcements

- Lab #2 due today by 11:59 pm through CatCourses.
- HW #3 due Mon. Oct. 15 by 11:59 pm through CatCourses.
- Lab #3 assigned, due Mon. Oct. 22 by 11:59 pm through CatCourses.
- Midterm exam will be on Wed. Nov. 7 during lecture.
 - More details closer to the time.
- Xueqing will not have office hours tomorrow, Tues. Oct. 9.
Questions?
Today

• Chap. 3: Intensity Filtering and Spatial Filtering
 – Some basic intensity transformation functions
 – Histogram processing
CSE107
Chapter 3: Intensity Transformations and Spatial Filtering
Chap 3: Intensity transformations and spatial filtering

- Two principle categories of spatial domain processing
 1. Intensity transformations
 - Operate on a single pixel
 - Usually for contrast manipulation and thresholding
 2. Spatial filtering
 - Operates in a neighborhood of every pixel
 - Image sharpening, smoothing, edge enhancement
Chap 3: Intensity transformations and spatial filtering

• Spatial domain processing

\[g(x, y) = T[f(x, y)] \]

where \(f(x,y) \) is the input image, \(g(x,y) \) is the output image and \(T \) is an operator on \(f \) defined over a neighborhood of point \((x,y)\)

• Neighborhood can be any shape but is typically rectangular and much smaller than the image
Chap 3: Intensity transformations and spatial filtering

• Spatial domain processing

\[g(x, y) = T[f(x, y)] \]
Chap 3: Intensity transformations and spatial filtering

• Spatial filtering
• Neighborhood operation is called
 – Spatial filter
 – Spatial mask
 – Kernel
 – Template
 – Window
Chap 3: Intensity transformations and spatial filtering

• We will first deal with case when neighborhood is a single pixel = intensity transformation
 – Image negative
 – Thresholding
 – Log transformations
 – Piecewise-linear transformations
 • Contrast stretching
 • Intensity-level slicing
 • Bit-plane slicing
 – Histogram processing
Chap 3: Intensity transformations and spatial filtering

- Intensity transformation
- Drop \((x,y): s = T(r)\)
- Examples
Chap 3: Intensity transformations and spatial filtering

- Can utilize different families of functions for intensity transformations

FIGURE 3.3 Some basic intensity transformation functions. All curves were scaled to fit in the range shown.
Chap 3: Intensity transformations and spatial filtering

• Image negative: \[s = L - 1 - r \]

• Useful for enhancing (for visualization) white or gray detail embedded in dark regions of an image especially when the black areas are dominant in size

FIGURE 3.4
(a) Original digital mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1).
(Courtesy of G.E. Medical Systems.)
Chap 3: Intensity transformations and spatial filtering

- Log transformations: $s = c \log(1 + r)$
- Maps a narrow range of low intensity values in the input to a wider range of output levels
- Expands the values of dark pixels in an image while compressing the higher-level values
- Useful when range of pixel values is large (example $\sim 10^6$) but most values are small
 - Such an image would be mostly dark—wouldn’t be able to see detail in dark areas
Chap 3: Intensity transformations and spatial filtering

• Log transformations: \(s = c \log(1 + r) \)
Chap 3: Intensity transformations and spatial filtering

• Piecewise linear transformation functions

• Advantages
 – Unlike log, inverse log, etc., can be arbitrarily complex

• Disadvantage
 – Require more user input (for parameter selection)
Chap 3: Intensity transformations and spatial filtering

- Piecewise linear transformation functions
- Contrast stretching
- Let

\[(r_1, s_1) = (r_{\text{min}}, 0) \text{ and } (r_2, s_2) = (r_{\text{max}}, L-1)\]

where \(r_{\text{min}}\) and \(r_{\text{max}}\) denote the minimum and maximum intensity in the image

- Stretches the levels linearly from their original range to the full range \([0, L-1]\)
Chap 3: Intensity transformations and spatial filtering

• Contrast stretching example

• $r_{min} = 84$ and $r_{max} = 152$
Chap 3: Intensity transformations and spatial filtering

- Histogram processing
- The **histogram** of a digital image with intensity levels in the range \([0, L-1]\) is a discrete function

\[
h(r_k) = n_k
\]

where \(r_k\) is the \(k\)th intensity value and \(n_k\) is the number of pixel values in the image with intensity \(r_k\).
• Usually normalize a histogram by dividing each of its components by the number of pixels in the image, MN

• A normalized histogram is thus given by

$$p(r_k) = \frac{n_k}{MN} \quad \text{for } k = 0, 1, \ldots, L-1$$

• Loosely speaking, $p(r_k)$ is an estimate of the probability of occurrence of intensity level r_k in an image
Chap 3: Intensity transformations and spatial filtering

• Histogram based analysis is good for
 – Enhancement
 – Compression
 – Segmentation

• Histograms are simple to calculate in software and lend themselves to economic hardware implementations, thus making them a popular tool for real-time image processing

• Let’s look at some examples
Chap 3: Intensity transformations and spatial filtering
Chap 3: Intensity transformations and spatial filtering