STONE HOUSES
AND EARTH LORDS
MAYA RELIGION IN THE CAVE CONTEXT
EDITED BY KEITH M. PRUFER AND JAMES E. BRADY

UNIVERSITY PRESS OF COLORADO
2005
Chapter Ten

The Sweatbath in the Cave

by Holley Moyes

A Modified Passage in
Chechem Ha Cave, Belize

In Mesoamerica a cognitive link between sweatbaths and caves has been noted by scholars (Child 2002; Gossen 1999: 16; Groark 1997: 23; Heyden 1976: 19–20; Houston 1996: 142; Vogt and Stuart 2005; Webster 2001). The reasons both spaces are similarly conceptualized may be that they are dark, enclosed, and womblike. Using ethnohistoric, ethnographic, and archaeological examples, this chapter demonstrates that in the Mesoamerican mind, both caves and sweatbaths are associated with generation, regeneration, fertility, and birth. Evidence from Chechem Ha Cave, an ancient Maya ritual cave site located in western Belize near the Guatemala border, suggests that this association dates to the Late Preclassic period (120 B.C.—A.D. 250) or possibly earlier. At Chechem Ha, morphological modifications made to a crawl space in the dark zone of the cave resemble the architectural features of ancient Maya sweatbaths from surface sites and fit descriptions of modern sweatbaths from ethnographic reports. This is the first recognized instance of a ritual sweatbath deep within a cave.
This study begins with a brief review of ethnographic and ethnohistoric examples of the function and meaning of sweatbaths in Mesoamerica. To create expectations of the morphology and artifact assemblage of a sweatbath, examples from the archaeological record are presented. Finally, the sweatbath feature located inside Chechem Ha Cave and its contents are described. The fact that the sweatbath is located within an ancient Maya ritual cave suggests that it was designed for ritual use, which is not surprising considering that ethnographically, sweatbaths are often used for ceremonial purposes. I argue that it is likely that rituals performed within the sweatbath in the cave related to earth deities.

THE ETHNOGRAPHY OF SWEATBATHING IN MESOAMERICA

Sweatbathing is an ancient indigenous custom once present throughout most of Central America (Driver and Massey 1957: 314, figure 107; Groark 1997: 6; Lopatin 1960: 977–979). The ethnohistorian Francisco Clavijero (1945: 349) notes that sweatbaths were used for hygienic, therapeutic, and ritual purposes—traditions that have continued to the present. Sweatbathing is practiced today primarily among Maya people located in the highland regions of Chiapas and Guatemala (Cresson 1938: 101–102; Groark 1997: 8; Houston 1996: 138; Tedlock 1987: 1073–1074). Barbara Tedlock (1987: 1074) notes that in Momostenango, Guatemala, sweatbaths are used for hygiene, massage, ritual purification, and birthing. Gary Gossen (1999: 15–17) notes the similarity between sweatbaths and caves and provides ethnographic data from his own experiences in a Chamula sweatbath. Gossen describes the sweatbath as “a dark, low rectangular cave slightly longer than the human body,” that could hold two or three people and had just enough headroom to allow occupants to sit up. Near the door was a stone-lined hearth. Once the space was heated, the fire was extinguished and the door closed, water was poured on the rocks to create steam, and participants laid down and beat themselves with leafy branches. Sometimes sweatbaths were used for routine bathing, but more typically they were used for ritual or therapeutic purposes such as postpartum or postmenstrual bathing. They could also be used for ritual cleansing of patients in preparation for curing ceremonies or for ceremonial purification of those about to assume ritual responsibilities.

The use of sweatbaths in birthing practices is common throughout Mesoamerica. In Central Mexico ethnohistorians describe the use of sweatbaths and their relationship to childbirth and fertility (Clavijero 1945: 349; Moedano 1977: 11). Both Diego Durán (1994: 41) and Clavijero (1804: 250) report that among the Aztecs, women sat in sweatbaths for five or six days following delivery. According to Fray Bernardino de Sahagún, steam bathing was associated with particular deities and rituals and was under the auspices of the creatrix goddesses Toci (Teteoñinan) or Yoalticítl but was sometimes related to another female goddess, Tlazolteotl (the filth eater) (Groark 1997: 17; Miller and Taube 1993: 160). Toci was associated with female fertility, pregnancy, and childbirth and was worshipped by midwives.
In the Maya area the use of sweat baths by women during and after childbirth has been noted by a number of ethnographers (Groark 1997: 50–54; Laughlin 1969: 187; Tax and Hinshaw 1969: 81; Tedlock 1987: 1074; Villa Rojas 1969a: 207; 1969b: 242; Wagley 1969: 66). In his detailed study, Kevin Groark (1997: 50–54) reports that in the central highlands village of Santo Tomás Oxchuc, Chiapas, both mother and child are given postpartum steam baths to prevent illness as a result of cold. Many Oxchuqueros believe the ancestors created the steam bath specifically to protect women during high-risk periods such as those associated with childbirth. Groark suggests that physiological changes in temperature may have initiated the practice of sweat bathing, since women may experience chills and uncontrollable shivering soon after delivery.

Steven Houston (1996) suggests that among the ancient Maya the connection between birth and sweat baths dates back to the Classic period. He argues that the small inner structures located in the interior of the temples of the Palenque Cross Group were symbolic sweat baths that represented the birthplace or origin of the gods. His interpretation is based on the inscriptions associated with the temples that refer to the buildings as sweat baths related to the births of the principal deities.

THE ASSOCIATIONS OF CAVES WITH SWEATBATHS

Direct associations between sweat baths and caves are found in the ethnohistoric and ethnographic literature and in the archaeological record. For instance, in the Codex Nuttall, figure 16a illustrates a temple within a mountain that is entered through a cave portal (Nuttall 1903). Doris Heyden (1981: 19) interprets the figure as a steam bath inside a cave.

Gary Gossen (1999: 15–17) specifically notes the similarity between sweat baths and caves in the highland Chiapas town of Chamula. One of the most well-known ethnographic examples of the association occurs at the community’s Festival of Games (Bricker 1973: 114). As part of this yearly renewal festival, villagers visit a small cave with water emerging from it. The feature is referred to as a “sweat bath” because of its morphology, which is long and narrow like a steam bath. Those who participate in the festival deposit three stones or potsherds at the entrance as tribute to earth deities, for as Bricker notes, “if they do not offer three stones to the cave, they will die.”

Mesoamerican caves are well-known mythological places of origin from which humans were thought to emerge (Brady 1989: 40; Heyden 1975; LaFarge 1947: 127–128; Nielson and Brady n.d.; Taube 1986; Thompson 1970: 314, 316; 1975: xxxiii; Vogt 1969: 375). This resonates with common beliefs about sweat baths that relate to female fertility. Sahagún (1969: vi, 118, 151) reports that among the Aztecs, women referred to their vaginas as “caves,” indicating that children were created in human caves. When a woman was about to give birth, the steam bath, or temazcalli, to which she was taken was referred to as xochicalli, or “house of flowers,” since flowers were regarded as a sexual symbol related to the uterus. According to
Sahagún, because it was a place of birth, the sweatbath represented an artificial cave.

Working among the Mixe, Ralph Beals (1939: 431; 1945: 86) reported a mountain shrine barren women used to petition for children. The shrine was located in a cavity in a natural rock that morphologically resembled a sweatbath in miniature. A pile of rocks was used to resemble the fire chamber. Fires had been built in the chamber, and branches and shrubbery were laid on top. Cornhusks were located inside the structure, and evidence of turkey sacrifice was present around the entrance.

SEXUAL CONNOTATIONS

Both caves and sweatbaths have sexual connotations. James Brady (1988) has called attention to the eroticism associated with ancient caves throughout Mesoamerica. This is explicitly expressed in cave art, such as the painting of the copulating couple found in the ancient Maya cave site of Naj Tunich (Brady 1989: 47, figure 3.2; Stone 1995: 100, plate 12) and in the painting of a jaguar copulating with a human in the Olmec cave Oxtotitlan (Grove 1973: 133). Expressions of sexuality are also stated in modern mythology concerning caves. The Tzotzil H’ik’al, or Black-man (similar to the Central Mexican pingo), is a hypersexual being with a six-foot-long penis who resides in a cave. If impregnated by the Blackman, women die from over-menstruation or multiple births of offspring that come to term in three days (Blaffer 1972: 20, 117). Among the Tzotzil Maya, the word for cave, c’en, is a humorous metaphor for the vagina (Bricker 1973: 65–66, 150–151; Laughlin 1975: 132).

Similarly, sweatbaths are also associated with sexuality and have served as discreet locations for illicit sex among the Mam (Wagley 1949: 35), the Quiché (Carmack 1979: 361–367), the Mixtec (Parsons 1936: note 40), the Tzeltal, and the Tzotzil (Groark 1996: 56, footnote 1). In a personal communication to Kevin Groark (1997: 16), J. Rus reported that “the Chamula Tzotzil tell a number of hilarious stories about old male curers (j’ilol) who prescribe the steam bath for their nubile young patients, then take advantage of them as they swoon in the heat. It is even said that you can tell when a woman has lost her attractiveness, because the j’ilol no longer insists on accompanying her to the steam bath.”

Although sweatbaths are intimately associated with the female aspect in Central Mexico, J. Eric Thompson (1970: 246) argues that the earth goddess/patroness of childbirth cult was temporally sensitive. He believes it was widespread in the Preclassic period, but among the later Maya it gave way to cults of the Young Maize God as well as the god Itzamna, who was deified as the earth reptile. Groark (1997: 20–23) reports that in the Maya Highlands, the steam bath may fall under the auspices of either a male or a female deity. The Tzeltal and Tzotzil consider the steam bath to be “owned” by either the Earth Lord, described as a male agricultural deity, or the Holy Earth, a female agricultural/lunar deity. In Chamula, the Sun-Christ
deity, possessing curative powers, is said to manifest as fire in the sweatbath. Two nearby caves are referred to as “steam bath cave,” or *pus ch’en* and *pus ch’entik*. One is thought to have been used by the people of the previous creation, and the other is thought to be a representation of an underworld steam bath located in the belly of a turtle. To burn their sins away in the heat, souls must pass through the steam bath/cave after death.

As Groark (1997: 23) has suggested, sweatbaths are metaphorically associated with caves because both reference the generative powers residing in the interior of the earth. At Santiago Atitlán, Guatemala, the Mam or Maximón, an Earth Lord who is the old god of transformative power, is thought to live in an underground sweatbath (Tarn and Prechtel 1997: 283–284). The Mam works at night and has dominion over sexual affairs and love, causes crops to grow, and forms children in the womb. His heat is said to cook them into existence, and he is considered the “road-opener” during childbirth (Groark 1997: 26). At one time the Mam figure was kept in a high niche in the wall of the church at Santiago Atitlán, which was referred to as a cave containing a sweatbath. The cave was thought to be the entrance to a hole that led underground and through which his washing water was poured (Tarn and Prechtel 1986: 184). In his underworld steam bath the Mam was thought to cohabitate with a harem of hypersexual women. Atitcos believe prostitutes in Guatemala City keep an image of the Mam in their rooms and call him “their best friend.” It is also said that women who sin ask the Mam to take them to his underworld sweatbath when they die.

SWEATBATH MORPHOLOGY

Sweatbaths with masonry construction (Figure 10.1) are found throughout the Maya area from the Preclassic (Andrews IV and Andrews V 1980: 30; Hammond and Bauer 2001) through the Late Postclassic periods (Ichon 1977). The best-preserved example is the Classic period sweatbath located at the site of Cerén in El Salvador (Sheets 1992: 97–102). Although Frank Cresson (1938: 101) believes sweatbaths were not present among the Maya of Belize, a rare example was excavated at the site of Buenavista (Ball 1993: 56, figure 48), located near Chechem Ha Cave, and an Early Preclassic example was discovered at Cuello (Hammond and Bauer 2001). Interestingly, subterranean sweatbaths, morphologically similar to caves, are located at the sites of San Antonio in Chiapas (Agrinier 1969: 16–27) and at Agua Tibia in the southeastern Guatemalan Highlands (Alcina Franch 1981; Alcina Franch, Ciudad Ruiz, and Ponce de León 1980: 93–98; Ciudad Ruiz 1984: 109–112).

In his survey of ancient sweatbaths, Houston (1996: 143) concluded that they all have basically the same dimensions, although they vary in shape, from roughly square or circular to long and narrow. In Houston’s sample the average width is 3.14 m, length is 3.34 m, and height is 2 m. The smallest structure in the sample is found at Quiriquia and measures 55 cm in width by 3.04 m in length by 1 m in height (Morley 1935: 141–142, figure 38a; Satterthwaite 1952: 25). The largest is from the
site of San Antonio in Chiapas, Mexico, which measures 3 m by 10 m by 1.6 m (Agrinier 1966: 29–30).

Linton Satterthwaite (1952: 20) lists a number of architectural features common to ancient sweathouses. At a minimum, they can be expected to have small dimensions and low ceilings, a system of steam production such as a hearth or hot surface on which water will vaporize, and a draught hole. They may also feature a water drainage system or have benches running parallel to a sunken drain. In his ethnographic survey, Cresson (1938: 93) reported that the drains did not necessarily carry the water out the door but could form a sinkhole for the water. In their simplest form, the drains were made of dirt through which water could seep.

Benches lining the central drain are found not only at the Piedras Negras sweatbaths but also at Buenavista (Ball 1993: figure 48), San Antonio Chiapas
(Agrinier 1969: 22, figure 35), Los Cimientos-Chustum (Ichron 1977: 207), and Ceren (Sheets 1992: 98, figure 6-7). Although not every Mesoamerican sweatbath exhibits this feature, the bench/trench combination is a defining characteristic of sweatbath structures.

Although they are most commonly found at surface sites, at least one sweatbath feature has been located in a natural rural environment (Webster 2001). A small construction built into a rockshelter on the periphery of Piedras Negras, Guatemala, was identified as a sweatbath. The feature was small and rectangular, measuring 1.4 m by 1.9 m, and had a red-stained plaster floor. Three crudely built walls set in mud mortar bounded the rectangular feature, and the back of the shelter functioned as the fourth wall. The heating source appeared to be burned calcified rocks located in the corner. Hypothetically, water would be poured on the hot rocks to create steam. A circular mirror and five marine shells were found within the structure.

THE SWEATBATH IN THE CAVE

The Western Belize Regional Cave Project (WBRCP), under the direction of Dr. Jaime Awe, has been conducting investigations at Chechem Ha Cave since 1998.

Figure 10.2. Map of western Belize showing location of Chechem Ha Cave (courtesy of WBRCP).
Chechem Ha (a.k.a. Vaca Falls Cave) is located in the Cayo District of western Belize on the western bank of the Macal River upstream from San Ignacio Town (Awe, Gibbs, and Griffith 2005; Figure 10.2). Positioned on a steep hill, the site can be classified as a dry cave because of the lack of an interior water source. The main tunnel is 237 m long and bifurcates 134 m from the cave entrance (Figure 10.3). One passage leads to a dead end, and the other descends to a large cathedral-like chamber designated the Stela Chamber because of the presence of a miniature stela (Awe, Gibbs, and Griffith 2005). Artifact deposits are located along the floor of the main tunnel and on eleven high ledges ranging from 3 to 7 m above the passage floor. Additionally, artifacts were found in six elevated side passages that branch off the main tunnel. Four of these passages are narrow and have low ceiling heights. These were designated as “crawls” because it is impossible to stand up in them. Crawl 3 is the focus of this chapter. It is unique in that it exhibits both morphological modifications and a hearth feature, which, coupled with the artifact assemblage, suggests that the area was used by the ancient Maya as a ritual sweat bath.

Crawl 3 is located deep within the dark zone of the cave, 154 m from the entrance. The crawl is 2.5 m above the tunnel floor. It is an L-shaped space oriented on an east/west axis, running roughly parallel to the main tunnel and opening into the tunnel system at both ends (Figure 10.4). The western end of the crawl makes a sharp turn and culminates in a vertical drop. The easiest access to the crawl is via
the east entrance. The space measures 9 m in length, and its width ranges between 0.55 m and 2.75 m. The ceiling height is between 0.70 m and 1.2 m. These dimensions are most similar to the sweatbath at the site of San Antonio reported by Pierre Agrinier (1966: 29–30).

A 3-m-long area was modified by the Maya to produce low walls lining both sides of the Crawl 3 passage and a central trench. The width between the low walls of the trench is 0.50 m at its narrowest and 1 m at the widest point. The walls on both sides of the trench measure between 0.35 m and 1 m in width, with an average height of 0.45 m. The top surfaces are flat and resemble benches. The floor of the entire passage is covered with well-compacted brownish-yellow sediment, white marl, and charcoal. The walls consist of the same brownish-yellow sediment but are loosely compacted. Vertical cuts in the sediment matrix along the side of the walls are the result of the excavation of the central trench. A large pile of similarly colored sediment lies against the wall on the tunnel floor below the eastern entrance. An elemental analysis of sediments from Crawl 3 and the pile on the tunnel floor was carried out. Results suggested that the two are very similar sediments and confirmed that the pile was backdirt from the ancient excavation.

Crawl 3 is similar to sweatbaths found in other archaeological contexts, not only in size but also in morphology. Note the morphological similarity between the
Figure 10.5. (Top) Modified area in Crawl 3 photographed from the east entrance (photo by the author). (Bottom) Reconstructed sweatbath from Piedras Negras (photo courtesy of Stephen Houston).
low walls or benches in Crawl 3 as compared with the entrance to a Classic period sweatbath from the site of Piedras Negras (Figure 10.5). The low walls in Crawl 3 correspond to the benches present in the masonry structure in the Piedras Negras example, and the center trench is analogous to the central drain.

THE ARTIFACTS

Artifact concentrations are located at the eastern entrance and in the center of the passage. The portion of the tunnel lined with the low walls or benches previously discussed separates these two areas. Beginning on the north side of the crawl, adjacent to the eastern entrance, ceramic vessels and sherds are positioned in and around fist-sized stones arranged in a circle abutting the north wall. A Late Classic jar with a kill hole at the base and exhibiting exterior charring sits in the center of the circle. Charcoal flecks are present in the sediment matrix. Resting on top of the stones are a censor bowl with a heavily blackened interior, a jar sherd exhibiting a fire-blackened exterior surface, and a large potsherd. Adhering to the interior of the jar sherd is a caked, hardened, black greasy resin containing starch grains of Zea mays (maize) (Morehart 2002: 174). The large sherd was identified as an Early Classic deep-sided bowl (Joseph Ball 1998: personal communication). Several cobbles, small sherds, and a limestone spall are located against the wall. Spalls are chips or fragments removed from rock, usually by weathering and exfoliation (Gary, McFee, and Wolf 1972: 677). They are often found accompanying other offerings in caves and in many cases resemble potsherds in size and shape. Three charred jar sherds are stacked on a large rock on the east edge of the stone circle. To the east of the circle is a stack of spalls interspersed with sherds. This stacking creates a “sandwich-like” deposit.

On the south wall, adjacent to the east entrance, is a small natural shelf. Clustered at the eastern entrance are thirty pebbles and a number of small sherds (Figure 10.6a). The rocks are not limestone, are similar in size (2–3 cm), and are smoothed, which suggests that they were collected in a river or streambed. To the west of the stones are fifteen small sherds and a spall. Next to the cluster of sherds is a stack of seven Late Classic jar sherds sitting on top of a scatter of charcoal and ash. Adjacent to the shelf are half of a Late Classic, bichrome teomate (gourd-shaped vessel) and a pile of fist-sized stones. A Late Classic jar in an inverted position with a kill hole and charring at the base sits next to the wall, along with a pile of cobbles and a spall. A Late Classic tripod dish (Ishihara 2000) sat below the shelf but was removed by the former Belize Department of Archaeology (now the Belize Institute of Archaeology). The geometric design on the interior of the vessel is faded, and all three feet are missing (Figure 10.6b).

In the midsection of the tunnel, adjacent to the western end of the low walls or benches, a dome in the ceiling creates an area with enough head room to allow visitors to sit upright. A hearth is situated on the north wall. It consists of a fully intact, Late Classic, wide-mouthed jar resting on five smoothed river cobbles (Figure
Figure 10.6. a. Western entrance to Crawl 3. Black arrow points to water-worn pebbles and sherds on natural shelf on left. Tecomate sherd and pile of stones pictured in foreground.
b. The tripod dish originally sat in the open space to the left of the north arrow (photos by the author).
Figure 10.7. (Top) View of hearth area facing east. Hearth is jar on far right behind north arrow. (Bottom) River cobbles located beneath jar surrounded by ash and charcoal (photos by the author).
10.7). The exterior base of the jar is heavily charred, as are the cobbles on which it rests. The interior surface of the jar exhibits no apparent traces of residue. Beneath the vessel is a concentration of charcoal and ash 8 to 10 cm thick, which contained kernels of *Zea mays* (Morehart 2002: 174). The limestone floor of the cave is discolorated, exhibiting a bluish cast, which is typical of the changes that occur when limestone is exposed to fire. The ceiling in the west area of the crawl is also heavily charred, which attests to the intense use of the hearth.

Next to the hearth is the top half of a charred, Late Classic, narrow-necked jar. Several jar sherds are located beneath the vessel. The base of the jar is located on the west side of the hearth. Three volleyball-sized stones with cobbles placed between them are stacked west of the jar. A scatter of twenty sherds and several cobbles lies between the vessel base and the wall.

On the south side of the midsection of the passage, at the western end of the bench, is a stack of five fist-sized stones. These stones are charred, and the artifacts in this area are surrounded by a heavy concentration of charcoal. Two polychrome vessels from the area were removed by the Department of Archaeology. Both are mostly intact, exhibit no signs of charring, and have been dated to the Late Classic period (Joseph Ball and Jennifer Taschek 2005: personal communication). Neither contained visible residues, suggesting that they either held perishable substances or functioned as offerings themselves. The first, a tripod dish with rattle feet, has a waterbird motif (Figure 10.8a). It was originally positioned on top of the stack of stones. The second vessel, a cylindrical, ash-tempered, tau-footed tripod bowl, displays a caiman motif (Figure 10.8b). It was positioned on the north side of the rocks. Adjacent to the tau-footed vessel is a stack of seven sherds. A sherd from an Early Classic dish is sandwiched between Late Classic jar sherds, and a large cobble sits on top of the stack. This stack is interesting because the Early Classic sherd sits between Late Classic examples, suggesting that it was stacked together in the later period. Although the practice of stacking sherds in caves is not well understood, in this instance it suggests repeated usage of the area, reminiscent of stacking sherds when cleaning shrine sites—a common practice among the Quiché in Guatemala (Tedlock 1992). Three sherds dating to the Late Preclassic period (Jaime Awe 1998: personal communication) sit adjacent to the stack.

To the west, adjacent to the south wall, is the bottom half of a Terminal Classic, flat-based, cylindrical, polychrome vase (Joseph Ball and Jennifer Taschek 2005: personal communication). It exhibits either fire clouding or light charring on both the interior and exterior surfaces. The polychrome design on the vessel is divided into three panels (Figure 10.9). Occupying each panel is a seated figure with its right arm extended. A birdlike creature hovers over an *akbal* vase in the center panel, and an oblong device lies on either side of each figure. Placed inside the vase were a spall and two sherds. One sherd was dated to the early part of the Late Preclassic period (Jaime Awe 1998: personal communication). Two additional Late Preclassic sherds (Joseph Ball 1998: personal communication) lie on the ground adjacent to the vase. At the elbow of the passage, also along the southern wall, is a stack of
Figure 10.8. a. Tripod dish with rattle feet. b. Tripod cylindrical vessel displaying caiman motif (photos by the author).
Figure 10.9. Flat-based cylindrical vessel containing Late Preclassic sherd. (Top) Vessel in situ. (Bottom) Vase illustrates seated figure with elongated right arm (photos by the author).
eight sherds positioned beneath a rock. West of the stack a Late Classic jar with a kill hole sits in an inverted position. A cluster of thirty-six small sherds sits next to the jar adjacent to the wall near the west opening.

CHRONOLOGY AND CHANGES OVER TIME

Chronology in caves is often difficult to establish. Ceramic chronologies provide adequate guidelines, but changes in ritual practice over time can obscure activities that do not require the use or deposition of ceramic vessels or sherds. As demonstrated in Crawl 3, artifacts and features are often surface deposits that become commingled, particularly in areas that are reused over long temporal spans. In the absence of stratigraphy, the palimpsest nature of these surface deposits can interfere with the interpretation of absolute dates from preserved or charred organic remains as well. To overcome these problems, it is necessary to utilize both absolute and relative dating techniques and to date material from subsurface contexts when possible.

Ceramic chronologies in Crawl 3 were determined by ceramic cross dating using James Gifford's type/variety method developed for Barton Ramie, Belize (1976). In Crawl 3, most of the ceramic assemblage was from the Spanish Lookout complex and dated to the later part of the Late Classic period (A.D. 700–950). The Late Classic assemblage was composed primarily of highly diagnostic whole or partial vessels. Only a few sherds dated to earlier periods. At least one sherd dated to the early part of the Late Preclassic (300–100 B.C.), two to the later part of the Late Preclassic (100 B.C.–A.D. 250), and one to the Early Classic (A.D. 250–600). Because of the paucity of ceramic sherds dating to the earlier periods, one would be tempted to assign a Late Classic date of usage to the area, but this is not the case.

To determine an absolute age for the initial use, a 25 by 25 cm test pit was excavated in the area of most intense activity. Bedrock was encountered at a depth of 7 cm, and a small sample of wood charcoal was collected from the base of the pit. The date obtained using 14C AMS was 1944 ± 71 rcybp, calibrated using OxCal3 with a two-sigma range to 120 B.C.–A.D. 250, which falls at the end of the Late Preclassic period. An additional date obtained from a bulk sample of wood charcoal obtained from below the hearth vessel was 1696 ± 36 rcybp, calibrated using OxCal3 with a two-sigma range to A.D. 250–430, which falls within the Early Classic period. A third date that is perhaps less reliable but still of interest was collected from an excavation unit placed in the backdirt mound on the main tunnel floor. The sample of wood charcoal came from the interface of the backfill pile and the original floor surface. This date was 2432 ± 33 rcybp, calibrated using OxCal3 with a two-sigma range to 770–400 B.C., which correlates with the Middle Preclassic period. Caution is observed with this date because the charcoal fragment may have been resting on the tunnel floor for a long time before the sediment was piled on top. Also, because the subsurface sample from Crawl 3 suggests a later date for the modification of the space, it is safer to assign the Late Preclassic date to the initial use of the area. The
Holley Moyes

Early Classic date of the hearth material suggests continued usage of the area, and the large number of Late Classic vessels suggests a Late Classic date for the latest use.

There appears to be a change in ritual practice during the period of latest usage. Although the space underwent modification and intense utilization before this time, the number of ceramics deposited in the area increased dramatically during the Late Classic period (A.D. 700–950). A total of thirty-five partial and whole vessels were recorded in the crawl. Of these, thirty-two were diagnostic. Twenty-seven of the diagnostic examples were from the Spanish Lookout (Late Classic) complex. Additionally, all of the partially intact or whole vessels dated to this time period, and the rest of the assemblage consisted of small fragments. The Late Classic vessel and five river cobbles sitting on top of the pile of charcoal that dated to the Early Classic period suggest that the hearthstones and jar were a later addition.

DISCUSSION

The similarity in the size and morphology typical of masonry sweatbaths from archaeological sites and those of modern communities to the modifications in Crawl 3 illustrates that the passage was constructed as a sweatbath. The dimensions of Crawl 3 and its low ceiling height are within the ranges of sweatbaths found in other archaeological contexts and are most similar to the underground sweatbath located at San Antonio in Chiapas (Agrinier 1969: 16 27). The two low walls or benches in the passage bear a striking resemblance to the walls and central trenches of Classic period masonry sweatbaths. Additionally, the working hearth, which was used extensively, would have produced the environment appropriate to a functional sweatbath. The Late Classic wide-mouthed jar sitting on top the hearthstones showed no evidence of residue, which suggests that it contained water to create steam. In earlier times there may have been another jar, or steam may have been produced by throwing water on heated stones, as evidenced by the charred rock near the hearth.

Although the smoke produced in the crawl would have been suffocating, this was probably not unusual. Payson Sheets (1992: 101), describing the sweatbath at Ceren, noted that he was puzzled by the amount of charring on the inside of the roof. He later realized that in sweatbaths the firebox was often placed at the center of the room, and at least some of the smoke was probably let out via a small plugged hole in the roof before people entered the structure (McKee 2002: 91). Also, Frank Cresson (1938: 90–93) has reported that no ventilator holes were found in the sweatbath Structure N-1 at Piedras Negras, which suggests that the central chamber became filled with smoke. In his visit to a modern sweatbath at Milpa Alta, he observed that the steam room had no ventilator holes, and the smoke from the firebox escaped from the entrance door. Crawl 3 is well ventilated by comparison because its two access areas allow cross ventilation. Considering that the outside air from the cave’s tunnel system remains cool year-round, it stands to reason that
smoke would move into the tunnel. Interestingly, the hearth is placed roughly in the center of the crawl, similar to those found in sweatbaths such as the one at Ceren.

The artifacts within the area are commensurate with what might be expected in a ritual sweat bath. Of particular interest is the tau-footed vessel with the caiman motif found on the south side of the crawl across the passage from the hearth. The caiman motif, or Earth Monster, is also present on the Temple of the Cross at Palenque, previously discussed, identified by Houston (1996) as a cosmological sweat bath that functioned as a birthplace for the gods. Additionally, Mark Child (2005) reported a vessel with a similar motif from a Piedras Negras sweat bath.

Karl Taube (1989: 9) has suggested that among the Classic Maya there was an earth/caiman metaphor. He describes Itzam Cab, the earth caiman, as the axis mundi par excellence and has identified the creature as the god of creation and sustenance in both Highland Mexico and Postclassic Yucatán (1998: 437). Taube notes that in the iconography of Copan the deity is depicted with three stones in its mouth. This motif is identified as the k’oben, or kitchen hearth fire, which in The Ritual of the Bacabs is described by the term pib, or sweat bath (Roys 1965: 61). The mouth of the deity may also be symbolized as a cave. In architectural metaphor the mouth of the Witz Monster, a similar entity located on temple pyramids, is a symbolic cave opening (Gendrop 1980; Schabelzon 1980; Stuart 1997: 15–16).

Finally, a cluster of potsherds is located at the west entrance to Crawl 3, and a cluster of pebbles and sherds is found on the natural shelf on the south side of the eastern entrance. The pebbles in the later configuration are clearly water worn. No other stones of this nature are found inside the cave, other than the river cobbles used to support the jar in the hearth feature. The arrangement and clustering of the pebbles, as well as their uniform size, suggest that they are a unique offering. The location of the clusters of sherds and pebbles near both the east and west entrances to the crawl suggests that these offerings are analogous to the pebbles and sherds offered as a tribute to earth deities at the entrance of the “sweat bath/cave” at the Festival of Games in Chamula, reported by Victoria Bricker (1973: 114). It is not unusual for pebbles to be used as payment or “money” intended for otherworld use. Bishop de Landa mentions that stones were placed in burials to be used for money by the deceased (in Tozzer 1941: 130). Among the Zapotec of Mitla, Oaxaca, in a ceremony performed on New Year’s Eve, a ritual exchange takes place at a cross at the town boundary or in a cave. People bargain with each other for things they want in the upcoming year using pebbles for payment, which they call “the money of God” (Leslie 1960: 75).

CONCLUSION

This chapter has argued that Crawl 3, a modified passage within Chechem Ha Cave, served as a ritual sweat bath. The area has a number of shared characteristics with known sweatbaths in archaeological and ethnographic contexts that support this interpretation. Additionally, both caves and sweat baths are strongly associated
with aspects of fertility. Earth deities associated with creation and renewal are denizens of both of these dark enclosed spaces. The association of the sweatbath with earth deities among the Maya suggests that offerings to the cave/sweatbath propitiate these entities. Data presented in this chapter reinforce the cognitive association between sweatbaths and caves and suggest that this ancient concept developed as early as the Preclassic period.

ACKNOWLEDGMENTS

Work on this project was conducted with the Western Belize Regional Cave Project (WBRCP) under the direction of Jaime Awe. I am grateful to Dr. Awe, who has provided the opportunity and context for my research on ancient Maya caves. I would also like to thank members of the Institute of Archaeology in Belize: Alan Moore, George Thompson, Brian Woodeye, and John Morris. Appreciation is extended to Antonio Morales and Lea Plytez on whose property the cave lies and to their son, William. Thanks also to the 1998–1999 staff and students of the WBRCP, especially Cameron Griffith, Reiko Ishihara, Mike Mirro, and Paul Duffy; to Joseph Ball for identifying problematic ceramics; and to James Aimers for his work on the ceramics in 2003. This chapter benefited from editorial suggestions from Mark Aldenderfer, James Brady, and an anonymous reviewer. Appreciation goes to Stephen Houston for allowing me to use his photograph of the reconstructed sweatbath from Piedras Negras, to Payson Sheets for his drawing of the sweatbath at Ceren, and to the WBRCP for use of the project map. Special thanks to Karl Taube, who first suggested to me that the crawl was a ritual sweatbath and commented on early drafts of this chapter.

This chapter is based on work supported by National Science Foundation Grant DGE 9870668, “Integrative Graduate Education and Research Training in Geographic Information Science,” awarded to the University at Buffalo.

REFERENCES CITED

Agrinier, Pierre

Alcina Franch, José

Alcina Franch, José, Andrés Ciudad Ruiz, and Josepha Iglesias Ponce de León
Andrews, E. Wyllis, IV, and E. Wyllis Andrews V
1980
Excavations at Dzibilchaltun, Yucatan, Mexico. Publication 48, Middle American Research Institute. Tulane University, New Orleans.

Awe, Jaime, Sherry Gibbs, and Cameron Griffith
2005

Ball, Joseph
1993
Cahal Pech, the Ancient Maya and Modern Belize: The Story of an Archaeological Park. San Diego State University Press, San Diego.

Beals, Ralph
1939
1945

Blaffer, Sara C.
1972
The Black-man of Zinacantan. University of Texas Press, Austin.

Brady, James E.
1988
1989

Bricker, Victoria Reifler
1973
Ritual Humor in Highland Chiapas. University of Texas Press, Austin.

Carmack, Robert
1979

Child, Mark B.
2002
2005

Ciudad Ruiz, Andrés
1984
Arqueología de Agua Tibia, Totonicapán (Guatemala). Instituto de Cooperación Iberoamericana, Madrid.

Clavijero, Francisco J.
1804
1945
Historia Antigua de México. Editorial Porrúa, México D.F.

Cresson, Frank M., Jr.
1938

Driver, Harold, and William C. Massey
1957
Holley Moyes

Durán, Diego

Gary, Margaret, Robert McFee Jr., and Carol L. Wolf

Gendrop, Paul

Gifford, James C.

Gossen, Gary H.

Groark, Kevin P.
1996 To Warm the Blood, To Warm the Flesh: The Role of the Steambath in Highland Maya (Tzeltal-Tzotzil) Ethnomedicine. M.A. Thesis. Department of Anthropology, University of California, Los Angeles.

Grove, David C.

Hammond, Norman, and Jeremy R. Bauer

Heyden, Doris

Houston, Stephen D.

Ichon, Alain

Ishihara, Reiko

208
LaFarge, Oliver

Laughlin, Robert M.

Leslie, Charles M.

Lopatin, Ivan A.

McKee, Brian R.

Miller, Mary, and Karl Taube

Moedano, N. Gabriel

Morehart, Christopher T.

Morley, Sylvanus G.

Nielsen, Jesper, and James E. Brady

Nuttall, Zelia
1903 *The Book of Life of the Ancient Mexicans (Codex Magliabechiano)*. University of California Press, Berkeley.

Parsons, Elsie C.

Roys, Ralph L.

Sahagún, Fray Bernardino de
Holley Moyes

University of Utah, Monographs of the School of American Research, Santa Fe, New Mexico [original sixteenth century].

Satterthwaite, Linton

Schavelzon, Daniel

Sheets, Payson D.

Stone, Andrea J.
1995 *Images From the Underworld: Naj Tunich and the Tradition of Maya Cave Painting.* University of Texas Press, Austin.

Stuart, David S.

Tam, Nathaniel, and Martin Prechtel

Taube, Karl A.

Tax, Sol, and Robert Hinshaw

Tedlock, Barbara

Thompson, J. Eric

Tozzer, Alfred M.

Villa Rojas, Alfonso

Vogt, Evon Z.

Vogt, Evon Z., and David Stuart

Wagley, Charles

Webster, David