FORMATION OF A COMPLEX POLITY ON THE EASTERN PERIPHERY OF THE MAYA LOWLANDS

Keith M. Prufer, Holley Moyes, Brendan J. Callison, Andrew Kinden, and Douglas J. Kennett

This paper pursues the application of a central-chest of the dual-processual framework, the coevolutionary framework, to the development of Urbland, a small monument-bearing polity in the eastern Maya lowlands. During its growth, Urbland underwent a transformation from a rural farming community to a complex polity with many of the trappings of state authority that characterize Classic Maya centers. It was one of the earliest complex polities to develop in the southeastern periphery of the Maya lowlands during the Early Classic period (A.D. 250-400). The polity was founded upon earlier agricultural communities that are now known to extend back to at least A.D. 100. Starting after A.D. 250 the location of the original agricultural village (Group A) was levelled and reorganized to form a public monument complex and the center of political authority throughout much of the Classic period (A.D. 400-900). In this article we present radiocarbon ages from well-defined stratigraphic contexts to establish a site chronology. Based on these data we suggest that by A.D. 450 Urbland was the center of a regionally oriented system connected to some of the larger polities in the Maya world (e.g., Tikal). We argue that this time Urbland underwent a significant change from a polity organized by a corporate incorporation form of authority to a more networked one marked by exclusionary authority vested in elites who privileged their ancestral relations and ceremonial intersections across the geopolitical landscape.

En este artículo se presenta un principio central a la teoría del duales-procesualismo, el centro urbano en un conjunto y una red, el desarrollo de Urbland, una pequeña comunidad agrícola en las tierras bajas del sur en el área maya. A través de su desarrollo Urbland se convirtió en una transformación de su pequeña comunidad agrícola a un centro urbano más complejo con muchos de los símbolos de la autoridad pública que caracterizan a los centros del período Clásico. Urbland fue uno de los primeros centros en la prehistoria temprana de las tierras bajas en desarrollarse y convertirse en una sociedad con una organización política más compleja durante el periodo Clásico Temprano (300-600 d.C.). El centro urbano de Urbland fue establecido a base de comunidades agrícolas anteriores que fueron desalojadas desde el año 100 d.C. A partir de 250 d.C. el sitio es la adición de la ciudad nueva original (Grupo A) fue nivelado y reorganizado, formando un espacio público en donde se estableció un centro de monumentos y el centro de la autoridad pública por la mayor parte del período Clásico Temprano (400-900 d.C.). Los hallazgos de radiocarbono de contextos estratigráficos bien definidos que se presentan aquí establecen una cronología del sitio. Estos datos indican que en 450 d.C. Urbland fue el centro de un sistema político regional conectado a algunos de los centros polícticos más grandes en el mundo maya (incluyendo por ejemplo a Tikal). Inclusos en este periodo, la organización política de Urbland cambió al igual que una sociedad que funcionaba como un colectivo independiente a una más conectada con mercados por la autoridad en la tierra sagrada en los que diferentes privilegiar sus relaciones ancestrales y sus interacciones con la misma red política a través del patrón geográfico.

In recent years some archaeologists studying the development of complex polities have expressed dissatisfaction with the rigidity of mainstream evolutionary approaches for describing structural variation and social change in the past (Smith 2003; Yoffee 2005:6). Among alternative approaches proposed for understanding the development of complex polities in Mesoamerica is dual-processual theory, which encompasses aspects of factional competition and within-community hierarchy (Blanton et al. 1996; Feinman 2001).

Dual-processual models emphasize variability in how power is concentrated in the hands of elites and the degree to which relations among action are

Keith M. Prufer • Department of Anthropology, University of New Mexico, Albuquerque NM 87131
Holley Moyes • Anthropology Program, University of California Merced, 200 North Lake Blvd., Merced, CA 95343
Brendan J. Callison • Department of Anthropology, University of Oregon, Eugene, OR 97401
Andrew Kinden • Department of Anthropology, University of Oregon, Eugene, OR 97401
Douglas J. Kennett • Department of Anthropology, University of Oregon, Eugene, OR 97401

Latin American Antiquity 22(1), 2011, pp. 198-223
Copyright ©2011 by the Society for American Archaeology

108
significant landscape and elites began erecting describing the achievement arresting to their grand style. Uxalba remained the region engaged in us after A.D. 390, when in Lubaanman, Nimiti Punu (Broswell and Peeler 2014) recent for understanding the southeastern age of complex politics back by at least 300 y.

Dual Processes
Corporate/Non-

Theories are sets of general help us as research make sense — make sense of the world around us” (Heath 1999). They provide us with tools to understand phenomena. Most models and economic complexity has been dominated by the model that emphasizes the accumulation of economic resources as a means to achieve social complexity (Heath 1999). Significant against models of the accumulation of economic resources is the social complexity of multiple strategies and the possibility of multiple actors and strategies employed. This view is that multiple strategies and actors can lead to significant economic and political complexity (Heath 1999).

Our discussion of Uxalba focuses primarily on the period from 500 B.C. to A.D. 600. Before A.D. 200 Uxalba was a small village or farming community, with no monumental buildings or significant public architecture. Following A.D. 200 the first documented masonry construction appears (in ceremonial buildings), the transformation of residential spaces into public places, and

Hierarchically structured (Blanton et al. 1996; Feinman 2006b). This framework is not considered an alternative to more traditional concerns with hierarchy, or as presenting new typological formulations, but rather as a means to emphasize different forms of hierarchical and hierarchical organization and to “expand our comparative theoretical concepts so that they may account for the general patterns of sociocultural variation and change” (Feinman 2006b:32).

This paper pursues the application of a central tenet of the dual-processual framework, the corporate/network continuum, to the development of Uxalba, an ancient complex polity located along the eastern periphery of the Maya Lowlands in an important archaeological region known colloquially as “southern Belize” (Figure 1). We argue that Uxalba was the first community in southern Belize with the ability to mobilize labor around significant architectural construction and landscape transformations. During its evolution Uxalba underwent a shift from a small village or hamlet during the Late Preclassic to a complex polity with social differentiation reflected in distinctions between civic-ceremonial and residential spaces, specialized architectural forms, and carved stone that record statements attesting to the authority and network interactions of individual elites. We argue that this process represents a shift in leadership dynamics at the site from corporate strategies to more network-based modes of action, with elites reaching out and making economic, social, and political connections with the rulers from larger political centers as sources of local power.

Our discussion of Uxalba focuses primarily on the period from 500 B.C. to A.D. 600. Before A.D. 200 Uxalba was a small village or farming community, with no monumental buildings or significant public architecture. Following A.D. 200 the first documented masonry construction appears (in ceremonial buildings), the transformation of residential spaces into public places, and
significant landscape alteration. After A.D. 400 elites began erecting carved stone monuments, describing the achievements of individuals and asserting their genealogical legitimacy as rulers. Uvunoki remained the only community in the region engaged in monument production until after A.D. 550, when we see the rise of Puailai, Labuanum, Ninsui Punit, and other minor capitals (Beaswells and Preber 2009). Our data have implications for understanding early settlement expansion in the southeastern lowlands and extend the age of complex polities in the southern. Before that by at least 300 years.

Dual Processual Frameworks and Corporate/Network Strategies

Theories are set of general guiding principles "that help us— as researchers and as curious human beings— make sense of specific cases and of the world around us" (Hegeman 2009:218). They provide us with tools to categorize and explain phenomena. Most models of the evolution of political and economic complexity in Mesopotamia have been dominated by theoretical notions linking centralization to hierarchical development (Flannery 1972), with more recent agent-based modifications that emphasize individual self-interest and strategies of accumulation (Clark and Blake 1994; Hayden 1995). Significant criticism has been leveled against models of this kind in Mesopotamia in that they focus primarily on directional developments of static societal types (Blanton et al. 1996:11) and that they fail to recognize that there can be multiple strategies, pathways, and organizational modes that actors can take in their pursuit of power, many of which will leave different patterns in the archaeological record (Feinman 2001:155). The dual-processual framework identifies two distinct strategies employed by politically and economically motivated actors without ignoring the "significant cross-cultural implications" of hierarchical complexity for understanding social variation (Feinman 2000b:34).

These organizational strategies occur along a continuum from decentralized/inclusive, or corporate, to highly centralized, or exclusionary, networked configurations. Corporate strategies emphasize collective approaches to group integration, particularly in staple food production, communal ritual, labor tasks, and to some degree the suppression of economic differentiation (Feinman 2000a:214). Archaeological evidence for such a strategy can include communally constructed architecture, few status markers in domestic settings, and general lack of distinction in the distribution of prestige items in both houses and burials. While long-distance trade and craft specialization may be present in corporate configurations, they tend not to be controlled by a centralized administrative hierarchy (Feinman 2001:158).

At the network—or exclusionary—end of the continuum, individual accumulation of power and prestige are favored with personal exchanges of wealth, linear patterns of inheritance, elaborated burials, and other markers of individualized leadership in greater evidence (Feinman 2000b:38). Archaeological evidence for such strategies includes prestige items from distant locations, preferentially found in elite contexts (e.g., chiefly houses or high-status burials), individualized representations on "art" or political monuments, differential size of residential structures, or highly restricted, private, elite spaces. Corporate/network strategies coexist to varying degrees in all social formations (Blanton et al. 1996:2), but to the extent that one is emphasized over the other they represent different modes of political and economic organization.

One advantage of applying the dual-processual approach to the analysis of ancient polities in its flexibility as a model. Representing two extremes of a continuum, corporate/network ideologies suggest that "there is more than one strategy or pathway to power" and that these different ends of the continuum would have different archaeological correlates (Feinman 2001:155). Further, "corporate/network is neither a typology nor a dichotomy since there is a large definable middle ground that can be empirically observed between these poles extremes. Rather, it is an axis of variation on which modes of political-economic action may be compared and contrasted" (Feinman 2000c:221). Hence, these strategies cannot be conflated with specific cultural formations or "personalities" (Feinman 2001:156). Nor can it be assumed that changes along the continuum will be uniformly directional, or that specific strategies will remain unchanged in a region or a particular temporal sequence. Understanding the corporate/network
dimension allows one to enhance comparative-evolutionary discussions while maintaining hierarchical complexity as a key analytical axis.

The flexibility of this approach is reflected in numerous applications of dual-process theory to the study of complex societies. The original treatment was a comparison of Early and Middle Formative network strategies present in the Quial Valley of Jalisco, Mexico (Beckman 2005) and inter-site competition between corporate institutions against individual aggrandizers in the Terminal Classic Naco Valley of Honduras (Urban and Schortman 2004). Elsewhere, the model has been applied to the reevaluations of political actions-strategies in the Puuc/Maya Southwest (Feinman 2000a, 2000b), and outside of the New World corporate/network strategies have been proposed as a mechanism to study the development of secondary states in the Aegean (Pernickon and Galaty 2007), and to examine leadership strategies in data-rich ancient Greece (Smith 2009).

In the southern Maya Lowlands, it has been proposed that in Late Preclassic (A.D. 300–600) polities, leadership used corporate strategy-building, evidenced by public displays of “ceramic renewal imagery” (Blanton et al. 1996:12) and reliance on cyclical notions of time. These strategies were eclipsed in Classic period (A.D. 300–900) polities where elite groups promoted named rulers whose ancestry, divinity, and paramount power was proclaimed on carved stelae placed in visible public locations. The emergence of institutionalized divine rulership (ojpop) symbolized exclusory control of both supernatural processes and prestige goods. The widespread use of the Long Count calendar system for tracking dynastic histories on stelae and other media after A.D. 300 further enhanced the exclusionary messages and practices (Feinman 2001:170). Following the decline of many lowland polities in between A.D. 700 and 950 both the stela tradition and the use of the Long Count ceased, signaling an end to these very specific elite strategies of consolidating and maintaining power, which may generally indicate a return to more corporate strategies (Ahrens 2007:246).

As Uxchená we suggest that internal developments likely fell along a corporate-network continuum, with a shift over time from a corporate kin-group organization as the polity, formed to an organization increasingly network in character. This shift along the continuum occurred parallel with the development of public spaces, landscape transformation, and elite appropriation of sacred spaces, all of which required a significant mobilization of labor. These changes culminated in establishment of carved monuments describing, acts, iconography, the authority of privileged individuals, their ancestral relations, and their network interactions across the geopolitical landscape. Our assessment is based on a renewed understanding of the chronological development of different architectural components of the site, based on stratigraphic excavations and radiocarbon dating, combined with records from carved monuments, and excavations on an important cave site that overlooks Uxchená.

Uxchená and Its Sociopolitical Context

Before discussing the development of Uxchená, it is important to describe the regional geopolitical landscape. Despite a century of research, southern Belize remains one of the least understood regions of the Maya Lowlands, in part due to its relative inaccessibility. Closely referred to as Belize as the “Soroton district,” it remained reachable only by boat or foot until the late 1960s. The region is geographically circumscribed by the Maya Mountains to the west, swampy river basins to the south, the Caribbean Sea to the east, and inaccessible pine barriers to the north. At the time when it was settled, Uxchená was positioned in a geopolitically marginal region. Through time it found itself situated near trade routes connecting larger polities, including Tikal, Copán, and Calakmul.

Chronological schemes (periods and phases) characterizing the development of complexity in the Maya Lowlands have been employed for decades, despite the fact that they cannot be applied uniformly across regions and do not measure the same processes at different polities. Following Demarest (2004:12–14) we agree that it is necessary to accept some “odd mix of terms that largely serve as arbitrary units of time, but that still have some residual implications.” Regard level of development.” Hence, cultural formation and change is both gradual and cumulative.

Figure 2. Outline of these Lowlands, generally defined to include southern Mexico, Guatemala, and Honduras. This paper focuses on Preclassic and the Early Classic.
Formation of a Complex Polity

Lowland Maya Chronological Periods

<table>
<thead>
<tr>
<th>Period</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Preclassic</td>
<td>2000 BC - 900 BC</td>
</tr>
<tr>
<td>Middle Preclassic</td>
<td>900 BC - 400 BC</td>
</tr>
<tr>
<td>Late Preclassic</td>
<td>400 BC - AD 300</td>
</tr>
<tr>
<td>Early Classic</td>
<td>AD 300 - AD 600</td>
</tr>
<tr>
<td>Late Classic</td>
<td>AD 600 - AD 800</td>
</tr>
<tr>
<td>Terminal Classic</td>
<td>AD 800 - AD 1200</td>
</tr>
<tr>
<td>Late Postclassic</td>
<td>AD 1000 - AD 1519</td>
</tr>
</tbody>
</table>

Figure 2. Outline of chronological periods in the Maya Lowlands, generally defined as the sub-tropical region of southern Mexico, Guatemala, Belize, and southern Honduras. This paper focuses on the latter part of the Late Preclassic and the Early Classic.

The politico-economic development of Uxmalika, is the regional geopolitical complexity of research, southern least understood regions that due to the interlaced mechanisms referred to in Belize as the “periods of usage” that were possible to be reached only by the 1960s. The region is bordered by the Maya Mountains to the north, the north, and inhospitable pine forests to the east. At the time when it was set to understand a geopolitically complex area, it found itself simultaneously constructing larger polities, such as Quirigua, and Caracol.

As periods and phases) development of complexity in this region have been employed for a variety of reasons, they cannot be applied in the same general way, and do not measure the same level of political organization as the polities. Following Kent and other authors, we agree that it is necessary to examine the context of phases that are largely contemporaneous, but that still have different meanings, depending on the level of study.

Southern Belize is located in a geographic and cultural frontier of the Maya Lowlands. Like other Maya frontiers (Henderson 1992), it was likely peripheral to, yet connected with, the cultural and political developments occurring in larger and more economically and politically powerful centers (Schurr and Urban 1994). During southern Belize’s apex (between A.D. 400 and 900), its polities were involved in significant economic interactions, facilitated by a range of mineral and biotic resources (Abramik and Mee 2006; Dunham 1996; Dunham and Proctor 1998; Graham 1989), even producing agricultural products such as Cacique and Quirigua (Brownell et al. 2005; Grube et al. 1999; Marcus 1992, 2003-93), Tikal (Leschtal 1992; 152; Proctor 2002; Womack et al. 2002), the western Petén (Bill and Brownell 2005; Proctor et al. 2006), the southern Petén (Proctor 2005), and the eastern Petén (Proctor 2002; 100).

Until recently most regional settlement chronologies relied on spatial and site studies (e.g., presence of ballcourts, epigraphic data, and, to a lesser extent, comparison of ceramics with other regions of the Maya Lowlands, such as Uxmalika (pro-A.D. 400) and 600 settlements along the coastal plain in the Stann Creek District, 50 km to the north, through this area is separated from southern Belize by a series of inhospitable pine savannas. Most of the occupation of the Stann Creek region is Late and Terminal Classic, and little is known about the numerous sites in the area beyond the broader temporal sketch. Some, such as Pameca, Mayflower, and Kendal, are located along rivers seasonally navigable by canoe, and have been suggested to be nodes in riverine trade routes (Graham 1994-320), or formed through expanding kin or other social networks. Coastal sites may have been simple subsistence villages that also engaged in procurement of marine and estuarine resources (Graham 1994:316) or, in some cases, mediated maritime trade networks (McKillop 2005). Along the coast of southern Belize, McKillop (1996: 56) recovered a Protoclassic...
mammiform vessel from a Preclassic shell mound (i.e., A.D. 100) and radiocarbon-dated Early Classic settlements on Wild Canoe Caye, indicating established maritime communities by A.D. 300. However, two decades of work by McKillop (2005, 2006) strongly suggest mercantile seafaring was largely a post-A.D. 900 phenomenon, further underscoring the relatively late timeframe for most regional development, albeit one that extended well into the Postclassic.

The early communities closest to Uxbenká were in the southeastern Petén (Guatemala), positioned along the western foothills of the Maya Mountains. Most of these settlements post-date A.D. 600; though there were earlier Preclassic occupations at Sacul, Ixkun, Xutkhina, and Ilamatun in the Dzulmam area (Laporte 1994, 2001; Laporte and Ramos 1998). Throughout the lowlands that drain the western Maya Mountains of Guatemala, including the Río Machaquíl, San Luis, and Pusilhá, there is continuity between the Preclassic and Early Classic at many locations, marked by what Laporte calls the “Peripheral Chicanel” sphere (2001:17). Defined by the domination of Preclassic ceramic types well into the Early Classic period, Laporte has suggested an A.D. 100 to A.D. 600 geopolitical landscape of competing local elites autonomous from the larger central Petén polities (Laporte 1994; Laporte and Ramos 1998). Overall, the southeastern Petén, like southern Belize, was the most densely populated during the Late and Terminal Classic periods, and evidence for Early Classic occupations is ephemeral (Bradly 1989:207; Laporte 2001).

The only other Preclassic or Early Classic complex polity in the region is Ek Xúx, located in the interior of the eastern Maya Mountains along the Black Branch of the Monkey River, which is home to a number of sites that have been mapped, but are generally poorly understood (Duarte and Prüfer 1998). Nine sites with public architecture are known in the eastern flank of the Maya Mountains, but excavation data only exist for Ek Xúx and Muklehá Tzul, both located in adjacent valleys near the headwaters of the Black Branch. These suggest that Ek Xúx was settled in a small alluvial valley during the Late Preclassic and persisted as a relatively small community for at least four centuries. Muklehá Tzul, located on a series of high ridges 3 km to the west of Ek Xúx, appeared rather suddenly on the landscape after A.D. 600 and quickly eclipsed its small neighbor (Prüfer 2005).

With the exception of Uxwomen and Ek Xúx, Southern Belize remained only sparsely settled until after A.D. 550 when the region rapidly grew to include at least 10 monument-bearing polities and over 100 smaller communities. The best known of these are Labanamín, Pasilhá, and Nimií Puní. Hammond (1975:52) conducted excavations at Labanamín and, based primarily on ceramics, suggested the site was founded in A.D. 731 ± 20 years (Maya calendar date 9.15.0.0.0 ± 1 kahun). He also noted that the ceramic assemblage dominated by Tepu 23-Petén styles of the Late Classic (maximally A.D. 700-800), Hammond also argued for links between southern Belize and sites in the Petén River area of the western Petén. Petén (1975:295), which are supported by more recent studies at other Late Classic centers (Brassel et al. 2005; McKillop 2006; Prüfer 2005). Labanamín lacks epigraphic history from monuments, though two carved bollard markers have been stylistically dated to the Late Classic (Wanyerka 2005).

Pusilhá was excavated by the British Museum (Joyce 1929; Joyce et al. 1927, 1990, 1992), and Brassell (Bill and Brassell 2005). Hieroglifhic texts suggest that the polity may have been formed as late as A.D. 570 and persisted at least through A.D. 790. Excavations in core and domestic contexts support this chronology (Brassel and Prüfer 2009:48), though small amounts of Early Classic materials have been recovered from cave sites in the vicinity of this center. As at Labanamín, ceramic data suggest Classic affiliation closely aligned with Tepu 23 sphere politics in the Petén, particularly in the Pasión and Petenitun areas (Bill and Brassell 2005).

Nimií Puní is the least known polity in the region. It is located on a 100 m high ridge overlooking the coastal plain (Hammond et al. 1995). Most of the published chronological material on Nimií Puní comes from 25 carved monuments found in the elite plaza of this highly consolidated center. These have been interpreted to suggest the site was occupied only during the Late Classic, with similar archaeologists between A.D. 711 and A.D. 830 bracketing a short dynamic history for the polity. The Nimií Puní inscriptions are described as both “unique and idiosyncratic” (Griese et al. 1999:36) with examples of novel calendrical signs, and epigraphers and carving of the most separated events. Epigraphers that Nimií Puní was a fragmentary at the southeast, specifically the presence of a significant center (Wanyerka 2005).

Artifacts and mounds southern Belize and the 370-500, probably via southeastern Petén (Blaeuser et al. 2006:295), have been a shift in interaction region, with epigraphic trends between southern Belize and the southeastern periphery Quinjá (Brassel and Wanyerka 1999). Wanyerka and Wanyerka 2009:67 correlate of southern Belize's apogee expansion and population those developments the Mayas. By the ninth century, and there is little evidence for Classic occupation.

A favorable location and able resources may have opium that the Uxbenká around Xúx is excavated and also has easy access trade routes. Sots area are decomposing sediments stones interposed by sterile part of a formation. Nimií Puní to several kilometer and referred to as the Teal. 1959:8. Today, these are the most fertile in the region the ancient Uxbenká polities farmers plant shifting of with a short 3-5 year fallow farmers the same lands rotation since the 1950's. This upland is ideal land for the cultivation 2002:59), a practice does little least since the seventeenth 1972:35-41 and reflects...
with examples of reverse order readings, inverted calendar signs, and evidence that the placement and carving of the monuments may be temporally separated events. Epigraphers have also suggested that Nimli Pani was regularly interacting with sites to the southeast, specifically Copán, based largely on the presence of a possible toponym for this important center (Wanyerka 2009:465).

Artifacts and monuments indicate ties between southern Belize and the central Petén from A.D. 370-500, probably via trade routes through the southeastern Petén (Prüfer 2008). During the subsequent period (A.D. 500-800) there may have been a shift in interaction and affiliation within the region, with epigraphic accounts of ties developing between southern Belize and sites located in the southeastern periphery, especially Copán and Quirigua (Brown et al. 2005; Grove et al. 1999; Masut 1992; Wanyerka 2009:440-477) and Altun Ha (Wanyerka 2009:473), though archaeological correlates of these relationships are wanting. The southern Belize apogee was a time of significant expansion and population growth in the region, and those developments lie outside the scope of this paper. By the sixth century the area was in decline, and there is little evidence of any significant inland Postclassic occupation.

A favorable location and the presence of desirable resources may have played a role in the development of the Uxbenká polity. The landscape around Uxbenká is exceptionally rich for agriculture and also has easy access to coastal and inland trade routes. Soils around Uxbenká derive from decomposing sedimentary sand, silt, and mudstones interstratified by limestone cobbles. These are part of a formation of low hills rising from Nite Lk Pani to several kilometers west of Uxbenká and referred to as the Tolteq Uplands (Wright et al. 1999:8). Today, these soils are considered among the most fertile in the region. Within the lands of the ancient Uxbenká polity, modern Mopán Maya farmers plant shifting slash-and-burn corn crops with a short 3-5-year fallow. According to local farmers the same lands have been planted and rotated since the 1950's with no loss of soil productivity. These upland soils are also considered ideal for the cultivation of cacao (Steinberg 2002:59), a practice documented in the region at least since the seventeenth century (Thompson 1972:35-41) and reflected in the modern Mopán cacao economy. Though anecdotal, remnant cacao groves in the Maya Mountains suggest a flourishing regional economy in cacao products (Prüfer 2002:186-187), and several cacao beams were found in a mortuary cave 25 km north of Uxbenká dating to ca. A.D. 300 (Prüfer and Henn 2007).

At Uxbenká excavations have focused on chronology-building and the identification of the early components at the site (Figure 5), primarily in the Stela Plaza (Group A), the North Group (Group B), and two settlement complexes near the site core. Group A is the location of three pre-A.D. 500 stelae, while Group B contains Late Classic architecture, including a probable complex. In the following section we report on our efforts to develop a reliable chronology for Uxbenká, and relate this chronology to the development of the complex polity.

Chronology and Development at Uxbenká

Radiocarbon Methods

In a region with few absolute dates from archaeological contexts, our AMS radiocarbon dating program allows us to develop an independent chronology for interpreting settlement dynamics and the growth of Uxbenká. Charcoal and other organic samples from well-documented stratigraphic contexts (see below) were prepared along with standards and backgrounds at the University of Oregon Archaeometry Facility and the University of California Irvine Keck Carbon Cycle AMS Facility (UCIRCCAMS) following standard practices. Where possible a single piece of wood or charcoal was selected to avoid the averaging inherent in bulk samples, and pieces likely to be short-lived (e.g., twigs) were chosen where possible to reduce any old wood effect (Kennett et al. 2002; Schurrer 1996). All dates are reported in Table 1 as conventional radiocarbon ages corrected for fractionation with measured 813C according to Stuiver and Polach (1977). Calendar ages discussed in the text and listed in Table 1 are 2-sigma calibrated ranges (95.4 percent probability; for clarity, discontinuous ranges are simplified in the text). Calibrations in Table 1 and bar plots in Table 2 were produced using OxCal 4.0 (Bronk Ramsey 1995, 2001, 2009), employing the IntCal04 atmospheric curve (Reimer et al. 2004). Calibrated dates are dis-
Figure 3. Map of Utebská showing corn areas and settlements discussed in the text.

Table 1. AMS Radiocarbon Dates from Utebská.

<table>
<thead>
<tr>
<th>UCIAMS#</th>
<th>Operator</th>
<th>Site</th>
<th>Description</th>
<th>14C Age (BP)</th>
<th>95.4 (2σ)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>33406</td>
<td>Grp A</td>
<td>Plaza Op A Sub 4 L4 124cmbd</td>
<td>1775 ± 20</td>
<td>AD 1420-1522</td>
<td>.861</td>
<td></td>
</tr>
<tr>
<td>33407</td>
<td>Grp A</td>
<td>Plaza Op A Sub 4 L5 151cmbd</td>
<td>1725 ± 25</td>
<td>AD 1950-1092</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>33408</td>
<td>Grp A</td>
<td>Plaza Op A Sub 4 L6 135cmbd</td>
<td>1670 ± 20</td>
<td>AD 1440-1588</td>
<td>.936</td>
<td></td>
</tr>
<tr>
<td>33409</td>
<td>Grp A</td>
<td>Plaza Op A Sub 4 L7 135cmbd</td>
<td>1700 ± 20</td>
<td>AD 1360-250</td>
<td>.780</td>
<td></td>
</tr>
<tr>
<td>42806</td>
<td>Grp A</td>
<td>Op 07-2 Unit 1 L5 26cmbd #10520</td>
<td>1725 ± 15</td>
<td>AD 1555-2820</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>46297</td>
<td>Grp A</td>
<td>Op 07-2 Unit 1 L6/7 14cmbd #11526</td>
<td>1675 ± 25</td>
<td>AD 1360-2504</td>
<td>.978</td>
<td></td>
</tr>
<tr>
<td>46303</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22160-60 L5 224cmbd #10324</td>
<td>1700 ± 15</td>
<td>AD 1505-3050</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>46304</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22200-60 L5 260cmbd #10327</td>
<td>1720 ± 15</td>
<td>AD 1505-3050</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>46305</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22160-60 L5 365cmbd #10342</td>
<td>1750 ± 25</td>
<td>AD 1455-2850</td>
<td>.922</td>
<td></td>
</tr>
<tr>
<td>46306</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22200-60 L5 223cmbd #10372</td>
<td>1725 ± 15</td>
<td>AD 1555-2820</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>46307</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22200-60 L5 236cmbd #10377</td>
<td>1700 ± 15</td>
<td>AD 1505-3050</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>46308</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22200-60 L5 270cmbd #10377</td>
<td>1720 ± 15</td>
<td>AD 1505-3050</td>
<td>.954</td>
<td></td>
</tr>
<tr>
<td>46309</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22200-60 L5 172cmbd #10342</td>
<td>1750 ± 25</td>
<td>AD 1455-2850</td>
<td>.922</td>
<td></td>
</tr>
<tr>
<td>46310</td>
<td>Grp A</td>
<td>Op 07-3 Unit 22160-60 L4 43cmbd #10372</td>
<td>1725 ± 15</td>
<td>AD 1555-2820</td>
<td>.954</td>
<td></td>
</tr>
</tbody>
</table>

All results are reported according to the convention 2001, 3900 B.C. using the IChem dates.
Table 1 (continued): AMS Radiocarbon Dates from UluBuruk

<table>
<thead>
<tr>
<th>UCAMS#</th>
<th>Operation</th>
<th>Ser.</th>
<th>Description</th>
<th>14C Age (BP) + 1σ (2007) Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>56259</td>
<td>Grp A</td>
<td>A1</td>
<td>Op 06-4 Unit 1 L3 169cm bnd #12547</td>
<td>1760 ± 15 AD 147-150 .004</td>
</tr>
<tr>
<td>56260</td>
<td>Grp A</td>
<td>A1</td>
<td>Op 06-4 Unit 1 L2 169cm bnd #12349</td>
<td>1840 ± 15 AD 126-229 .954</td>
</tr>
<tr>
<td>56267</td>
<td>Grp A</td>
<td>A3</td>
<td>Op 06-4 Unit 1 L4 169cm bnd #12351</td>
<td>1635 ± 15 AD 284-352 .812</td>
</tr>
<tr>
<td>56268</td>
<td>Grp A</td>
<td>A1</td>
<td>Op 06-4 Unit 1 L4 120cm bnd #12346</td>
<td>1785 ± 15 AD 426-536 .954</td>
</tr>
<tr>
<td>56269</td>
<td>Grp B</td>
<td>B2</td>
<td>Op 06-7 Unit 2 L6 204cm bnd #12352</td>
<td>1755 ± 15 AD 258-328 .954</td>
</tr>
<tr>
<td>56270</td>
<td>Grp B</td>
<td>B2</td>
<td>Op 06-7 Unit 2 L6 131cm bnd #12354</td>
<td>1790 ± 15 AD 215-285 .954</td>
</tr>
<tr>
<td>56271</td>
<td>Grp B</td>
<td>B2</td>
<td>Op 06-7 Unit 2 L6 135cm bnd #12357</td>
<td>1730 ± 15 AD 250-320 .954</td>
</tr>
<tr>
<td>56272</td>
<td>Grp B</td>
<td>B2</td>
<td>Op 06-7 Unit 2 L6 145cm bnd #12355</td>
<td>1735 ± 15 AD 245-315 .954</td>
</tr>
<tr>
<td>56274</td>
<td>Grp B</td>
<td>B1</td>
<td>Op 06-8 Unit 5 Li unknown depth #12354</td>
<td>1745 ± 15 AD 346-416 .954</td>
</tr>
<tr>
<td>56275</td>
<td>Grp B</td>
<td>B1</td>
<td>Op 06-9 Unit 2 L3 275cm bnd #13780</td>
<td>1710 ± 15 AD 220-290 .954</td>
</tr>
<tr>
<td>56276</td>
<td>Grp B</td>
<td>B1</td>
<td>Op 06-10 Unit 1 L3A 150cm bnd #13802</td>
<td>1725 ± 15 AD 255-325 .954</td>
</tr>
<tr>
<td>57042</td>
<td>SG 20</td>
<td>2</td>
<td>Op 06-9 Unit 2 L3 155cm bnd #15507</td>
<td>1860 ± 15 BC 55-120 .977</td>
</tr>
<tr>
<td>57058</td>
<td>SG 20</td>
<td>2</td>
<td>Op 06-2 Unit 2-6 L3 134cm bnd #15507</td>
<td>1810 ± 15 AD 135-204 .954</td>
</tr>
<tr>
<td>57066</td>
<td>SG 20</td>
<td>2</td>
<td>Op 06-2 Unit 2-6 L3 155cm bnd #15507</td>
<td>1865 ± 15 AD 84-154 .954</td>
</tr>
<tr>
<td>42024</td>
<td>SG 21</td>
<td>1</td>
<td>Op 06-7 Unit 204cm #12354</td>
<td>1775 ± 15 AD 179-255 .954</td>
</tr>
<tr>
<td>42026</td>
<td>SG 21</td>
<td>1</td>
<td>Op 06-7 Unit 155cm #12354</td>
<td>1775 ± 15 AD 179-255 .954</td>
</tr>
<tr>
<td>42028</td>
<td>KNT Case</td>
<td></td>
<td>Wood from 142 tablet</td>
<td>1750 ± 15 AD 240-309 .954</td>
</tr>
<tr>
<td>42030</td>
<td>KNT Case</td>
<td></td>
<td>Post 8, contact w/ base.</td>
<td>1555 ± 15 AD 548-602 .954</td>
</tr>
<tr>
<td>42031</td>
<td>KNT Case</td>
<td></td>
<td>Post 1, above plaster flms.</td>
<td>1585 ± 15 AD 426-516 .954</td>
</tr>
<tr>
<td>42032</td>
<td>KNT Case</td>
<td></td>
<td>Choral from step</td>
<td>1785 ± 15 AD 230-294 .954</td>
</tr>
<tr>
<td>42033</td>
<td>KNT Case</td>
<td></td>
<td>Post 5</td>
<td>1715 ± 15 AD 237-300 .954</td>
</tr>
<tr>
<td>42036</td>
<td>KNT Case</td>
<td></td>
<td>Metal core fragment</td>
<td>1510 ± 15 AD 157-200 .954</td>
</tr>
<tr>
<td>42042</td>
<td>KNT Case</td>
<td></td>
<td>Wooded Core inside edge</td>
<td>1845 ± 15 AD 96-100 .954</td>
</tr>
<tr>
<td>42045</td>
<td>KNT Case</td>
<td></td>
<td>Core wood, outside edge</td>
<td>1820 ± 15 AD 126-235 .954</td>
</tr>
<tr>
<td>42056</td>
<td>KNT Case</td>
<td></td>
<td>Core wood, inside edge</td>
<td>1855 ± 15 AD 85-235 .954</td>
</tr>
</tbody>
</table>

All results are presented as conventional radiocarbon ages corrected for isotope fractionation with measured δ13C values according to the conventions of Stuiver and Polach (1977). Calibrations were made with OxCal 4.1 (Bronk Ramsey 1995, 2001, 2009) using the IntCal09 curve (Reimer et al. 2009).
Table 2: Plot of Calibrated Age-ranges (2σ) from Late Preclassic and Early Classic Contexts at Groups A, B, SG 21, SG 22, and Kayuko Njā Tunuch Cave.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calibrated Age-ranges (2σ)</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCAMS 8201</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8202</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8203</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8204</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8205</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8206</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8207</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8208</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8209</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8210</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8211</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8212</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8213</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8214</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8215</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8216</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8217</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8218</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8219</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8220</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8221</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8222</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8223</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8224</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
<tr>
<td>UCAMS 8225</td>
<td>160-210</td>
<td>160-205</td>
<td>240-330</td>
</tr>
</tbody>
</table>

Note: These are reported in calendar years and suggest that the early dates from across the site are contemporary. Calibrations were made with OxCal 4.0 (Bronk Ramsey 1995, 2001, 2009) using the IntCal04 curve (Reimer et al. 2004).

cessed in terms of "cal A.D." or "cal B.C." as distinct from dates derived from epigraphic and typological methods.

Group A: Stela Plaza

AMS radiocarbon assays suggest that the Ushekalí was a settled community by the first century A.D. Excavations in Group A, the Stela Plaza (Figure 4), have produced radiocarbon dates as early as cal A.D. 73–211 (UCAMS-42825). Some of the pre-cal A.D. 300 dates come from surfaces associated with three low, earthen and plaster-surfaced mounds that lack masonry stone construction and that were buried under later constructions. We suggest that when initially settled Ushekalí may have been a small village with residential structures constructed of mud and dirt and capped with thin (now highly degraded) plaster floors.

Group A underwent significant modification between the Late Preclassic and the Early Classic. Excavations in the plaza reveal that what was once an open and likely conically shaped hilltop was significantly modified to create the flat, open stela plaza. The central, southwestern, and northern portions of the plaza have shallow fill, ranging from 15 to 50 cm in depth. The eastern and southern edges of the plaza are built on over 3.5 m of fill that expanded and leveled the plaza floor. Modification of bedrock was evident in excavations of a 1×1.5-m trench that revealed two thick (>15 cm) plaster floors sitting on bedrock. The soft underlying mudstone bedrock would have been relatively easy to modify. As the plaza was expanded, it was little protected from the seasonal deluges. Trenches excavated in the bedrock layers through the plaster floors expose possible drainage channels. The bedrock features likely contributed to the formation of the stela plaza. The features likely contributed to the formation of the open plaza.

Figure 4. Group A: stela plaza.
significant modification to and the Early Classic, revealed that what was originally shaped hipline was mean the flat, open stela system, and northern porous fill, ranging from the eastern and southern built on over 3.5 m of fill and the plaza floor. Modification evident in excavations of the two thick (>15 cm) bedrock. The soft under- would have been relatively easy to modify and its high clay content renders it relatively impermeable to water, but there is little pooling of water during occasional rainy season deluges. One clue as to how this plaza drains has emerged from several test units and trenches excavated into the plaza that reveal possible drainage channels cut along a N-S axis into the bedrock plaza floor. Though not datable, these features likely coincide with the transformation of space into an open plaza.

The early buildings in Group A may have been situated around the perimeter of the hipline (Group A), inside what was eventually modified into the stela plaza. In Str. A-5 constructions using cut stone blocks date to after cal A.D. 300, based on profiles from looters’ pits (Op. 06-5). A carbon sample removed from between the early plaster floor capping a dirt platform and masonry construction blocks dated to cal A.D. 348–532 (UCLAMS-33401). This single date is consistent with two others from a test unit excavated adjacent to Str. A-5 (Op. 06-5) where charcoal samples from stratigraphic layers between plaster floors produced two dates. The first (UCLAMS-33405) dates to cal A.D. 250–392 and the second (UCLAMS-33404) to cal A.D. 142–337. These dates aff serve to support the presence of an earlier dirt platform or floor below the stone constructions. In the upper levels of this unit diag-
nostic basal flange ceramics were recovered, indicative of an Early Classic occupation.

A separate indication that the Late Preclassic/Early Classic transition was a time of significant site reorganization and landscape modification comes from a 17-m-long trench excavated in front (west) of Str. A-6 in 2006 (Op. 06-7a-e). This excavation revealed a low, one- to two-course sandstone wall seemingly unassociated with any extant architecture. An AMS date from the base of this wall suggests it was constructed sometime during cal A.D. 136–324 (UCIAMS-33400). This wall parallels but is located below the western edge of Str. A-6. In addition to the wall, several large flat sandstone pavers were found directly on leveled bedrock, suggesting the presence of an early floor.

Excavations into structures in Group A also produced pre-A.D. 250 dates and artifacts. These excavations suggest that (a) the earliest buildings at Uxbenka, identifiable only by the remains of plastered floors, appear between A.D. 75 and 350, and most likely between A.D. 75 and 200; (b) the earliest buildings lacked any significant stone or masonry in their construction; (c) stone sub- and superstructures likely appear after A.D. 350; and (d) most of these Early Classic buildings show no evidence of any significant architectural remodeling (though they were frequently re-plastered).

Test units were placed into three buildings, A-1, A-4, and A-6, and excavated to bedrock. In all three buildings, there was evidence of burning in the very lowest levels, suggesting preparation of the building surface or clearing activities prior to construction. Str. A-1 is a triadic pyramidal that may have formed part of a pseudo E-group complex oriented 90 degrees off the prototypical Uxuxcan model, based on morphological similarity to other examples (see Alam and Rice 2006). A series of 2 x 2 and 2 x 4 units were placed into the eastern and western flanks of this platform. The eastern flank was shaped bedrock that was modified through leveling and the addition of a stone façade to give the appearance of a monumental construction. Below a large section of wall collapse that may have marked an interior room or chamber, we found a well-preserved inset stairway flanked by balustrades, characteristic of architecture in the central Petén (Froede 1979), albeit diminutive size. The most numerous artifacts associated with the stairway were fragments of crude Late Classic flanged and effigy modeled ceramics (A.D. 600–850), commonly found in elite contexts in the Belize Valley and central Petén (Rice 1999:38–39; Taube and Bull 1999:220). At the base (turfing) of the stairway (Op. 07-4), between two layers of plaster flooring, a large deposit of carbonized wood fragments produced a date of cal A.D. 544–610 (UCIAMS-42809), which is consistent with large censer fragments and the presence of Late Classic ceramics.

Excavations into the eastern flank of the platform between two structures (Op. 07-5) revealed degraded plaster floors with no stone constructions below them and below those floors mixed fill that produced two dates from small areas of burning, between 200 and 230 cm below the final use surface, in what may be a mixed midden soil. One of these dates to cal A.D. 73–211 (UCIAMS-42825). The second dates to cal A.D. 255–382 (UCIAMS-42808). Though not stratigraphically consistent, these suggest that the practice of building with stone on the eastern flank of Str. A-1 did not begin before the middle of the third century A.D., well into the Early Classic. Two additional samples from above the plaster floor date to between cal A.D. 420–610 (UCIAMS-46298, 42809).

A single 2 x 2-m excavation into the western flank of A-1 uncovered an earlier construction below the final building phase (Op. 08-4, Figure 5). This is the only example of multiple building phases in Group A. While the eastern flank of A-1 consisted largely of fill and a stone façade over the existing hillside, there was an intact structural wall under its western flank located approximately 180 cm below the final architectural surface. Our AMS radiocarbon assay from below a ceramic-rich midden soil dated to cal A.D. 128–229 (UCIAMS-56360). This and the ceramics recovered are consistent with a Late Preclassic occupation. A sample recovered from fill within the burial structure dated to cal A.D. 147–330 (UCIAMS-56359) and may be associated with the initial Early Classic construction of the stela plaza. Two additional samples recovered from the surface of a plaster floor covering the earlier building date to cal A.D. 354–510 (UCIAMS-56367) and cal A.D. 426–526 (UCIAMS-56368). This excavation revealed that the western flank of Str. A-1 was remodeled at least once during the Early Classic and not again during the Late Classic Period.
SubOp 08-4
East Wall Profile

Figure 5. Profile of excavations in the western flank of structure A-1 (subop 08-4) showing plaster floors and locations where samples were taken for radiocarbon assays along with subsequent dates.
The Str. A-1 radiocarbon dates are generally consistent with dates from excavations in structures A-4 and A-6. In both buildings excavation units were placed into the summits and continued to bedrock, and in both the stratigraphy suggests that the Early Classic single-phase structures were placed over earlier, plaster-topped, dirt and rubble mounds. In the lowest levels of each excavation we encountered burned soil horizons, perhaps indicating burning in preparation for the initial building events or dedicatory activities. Generally, few artifacts were found in lower levels of these excavations. Eroded ceramic fragments as well as diagnostic Late Classic Fine Orange wares were found in upper levels within the stone construction and collapse debris, suggesting use after A.D. 600. In Str. A-4 a rim-to-base fragment of an orange-slipped basal flare bowl characteristic of the Early Classic central Petén style was found in situ below the stone construction layers but above the earlier degraded floors, indicating an A.D. 300 terminus post quem for the later construction.

In Str. A-4 (Op. 07-2) an AMS date from charcoal recovered from 260 cm below the building summit, at the interface of degraded bedrock, and dated the first construction phase of the sample came from a 1–2 cm thick charcoal and ash layer that extended across the entire 1-x-2-m unit. The layer dates to cal A.D. 255–382 (UCIAMS-42806), statistically indistinguishable from the date from Str. A-3 (UCIAMS-42808). In Str. A-6 (Op 07-3, Figure 6) two AMS samples date the interface 256 and cal A.D. 402 (UCIAMS-42805, 42807). This early floor was likely the surface of a small structure, but no ceramics were recovered, and organic material for dating was not recovered.

North Group: Group B

Excavation and dating of targeted contexts in Group B (Figure 7) produced a somewhat later chronology than Group A with no evidence of Preclassic dirt platforms below later constructions. All of the extant structures appear to be post-A.D. 500 constructions. These include a temple (Str. B-1), ballcourt (Strs. B-6 and B-7) and three patio structures (Strs. B-3, B-5, and B-11). Excavations of the front stairway of Str. B-1 (Op. 08-8) produced a Late Classic assemblage consistent with elite ritual use. Artifacts include numerous effigy ceramic fragments and polychrome ceramics, suggesting the stairway was an area of ritual activity. A single AMS sample from the lowermost step produced a date of cal A.D. 628–766 (UCIAMS-56364).

Group B does appear to have a significant Early Classic component, though much of it was buried during later site reorganization. Excavations placed between Strs. B-2 and B-3 (Salvator I-8-9) uncovered a section of a 1.6 m high masonry building or wall buried below the visible structures. A single radiocarbon sample from the base of the wall dated to cal A.D. 220–335 (UCIAMS-56362), suggesting construction in Group B is consistent with the Early Classic reorganization of Group A.

Further evidence of a Early Classic reorganization of Group B comes from excavations in CLeanse from extant in front of Str. B-9, a low platform on the southwestern edge of Group B (Op 08-7, Figure 8). These revealed at least three Early Classic construction phases marked by plaster floors and partially intact construction blocks. At the base of the unit, 2 m below the surface, large cut limestone and sandstone blocks were encountered on bedrock. Apparently transported there to level the naturally northwest-sloping mudstone hill. Five calibrated dates from this excavation suggest that modification of the hilltop and construction of the Early Classic surface was carried out between cal A.D. 238 and 402 (UCIAMS-42805, 42807). This floor was likely the surface of a small structure, but no ceramics were recovered, and organic material for dating was not recovered.

Settlement Groups

We have also been able to identify early settlements on hilltops adjacent to Groups A and B. Excavations in a small residential group (SG21, Figure 3) recovered charcoal accompanying a crypt burial that dated to cal A.D. 179–334 (UCIAMS-42824). The single crypt was in a dirt mound faced with a single course of stone and contained simple ceramic grave goods with degraded white clay waterguts. This same settlement group was also occupied during the seventh century based on dates from a burial in an adjacent residential structure (cal A.D. 680–772,
(08-8) produced a Late Classic with elite ritual use, effigy censer fragments suggesting the continuity of the Early Classic. A single AMS assay on one of the sherds produced a date of cal 56362), suggesting a Late Classic period, when the structure was constructed.

Early Classic construction was inferred from excavations in front of the mounds on the southwestern slope of the site. These Early Classic construction features included large stone and partially intact plaster floors, a basement area of the building, and a partially intact plaster floor. Five calibrated dates suggest that modification of the Early Classic Structures was carried out between A.D. 209 (±5634, 56370), 1040 (±5634, 56370), and 1040 (±5634, 56370), suggesting that two plaster floors separated by 100 years were used in the construction.

A 6-x-3-m excavation on a hilltop between Group A and Group B (SY11) uncovered the remains of an Early Classic compound buried under 1.8 m of consolidated crushed rock fill that covered the entire hilltop. At 1.3 m below the modern surface, a thin plaster floor was documented in situ and profile covering a small bouldery decomposed clay mound. At the base of the mound the partial remains of a small Late Preclassic Chiquihuitl complex were found under a rock, possibly a cache commemorating the building (see Rosenthal-Kennedy 2008 for a similar example). Residues from inside the vessel produced two dates of cal 56362), suggesting a Late Classic period, when the structure was constructed.

Figure 6. Profile of excavations in structure A-4 (subop 07-3) showing plaster floors and locations where samples were taken for radiocarbon assays along with subsequent dates.
Those dates suggest that the building was abandoned and covered with fill no earlier than A.D. 134. We interpret this as being the remains of a Preclassic structure that was buried during the reorganization of the site. The presence of landscape modification outside the core architectural groups may be an indication that these reorganizations resulted in other early buildings being abandoned and effectively erased from the site core area, underscoring the difficulty of determining how this early settlement was organized.

Kayakő Naj Tunich Cave

Chronologies from Uxchenká are also informed by excavations conducted at Kayakő Naj Tunich Cave (Kayakő Cave), a small (19 m long x 2.5 m wide, maximum) cave located 2.3 km due south of the Uxchenká site core and 200 m above the valley floor (Figure 10). All the public architectural groups at Uxchenká open towards the 100 m high white cliff face where the mouth of this cave is located. Elsewhere, we (Moyle and Pifer 2009) have suggested that Kayakő Cave and the Wlt (mountain) were ideologically charged: early residents of Uxchenká occupied the landscapes demonstrating these critical elements in their claims to legitimacy and power (Bekoff 2005; Vogt and Pifer 2009) have proposed that Uxchenká has been a “founding place” for the ideologically charged elite at the site. We have argued that the “founding place” is a meaningful site for the elite and that these “elite” spaces in prehistoric Mesoamerica were modified to serve specific ideological and religious purposes. This is evidence that the Uxchenká community engaged in ritual practices associated with the cave and the mountain, and that these practices were central to the community's identity.
Figure A. Profile of excavations in front of structure B-9 (subop 08-7) showing plaster floors and locations where samples were taken for radiocarbon assays along with subsequent dates.

I. Ideologically charged landscape features for the early residents of Usbenki. Based on previous studies demonstrating that caves and mountains were critical elements in settlement planning and elite claims to legitimacy (Brady 1997; Proffer and Koons 2005; Vogt and Stuart 2005), Moyes and Proffer (2009) have proposed that Kayuk/Naj Tunich may have been a “foundational” shrine established by elites when Usbenki was reorganized in the Early Classic, a transformational time in the history of the polity. We base our assessment of this being an “elite” space in part on the scale of architectural modifications to the cave, which would have required an organized labor force to transport cut stone blocks and plaster a significant distance. During the time that the cave modifications were constructed, the only parts of Usbenki using masonry construction were in Group A. In addition, a significant body of archaeological literature on caves points to the construction of architectural modifications in subterranean spaces being a component of elite appropriation of powerful features in the sacred landscape (e.g., Britaly and Proffer 2005; Proffer 2005). Further, ethnohistoric sources indicate that, across Mesoamerica, founding and centering of communities, which are elite activities, are frequently focused on caves and sacred mountains (García-Zambrano 1994).

Accessing the cave requires scaling a 20m high cliff face to the entrance, which has significant architectural modifications, including a cut stone stairway leading 5 m to a masonry doorway, behind
which stood a large sandstone altar. The hundreds of tabular construction blocks used in these constructions were clearly chosen for their flat surfaces and likely came from the Rio Blanco, located in the valley 1 km from the cave. All the architecture in the cave and some sections of cave wall were plastered. A carved wooden canoe or basin was positioned on an altar-like feature; the outer growth edge of this wooden object dates to between cal A.D. 231–382 (UCIAMS-46295).

Wooden beams once supported additional constructions in the cave. These are evidenced by postholes in the constructed cave floor and plaster molds in the walls, as well as intact sections of a supporting beam placed into the elevated floor. The beam dated to cal A.D. 240–339 (UCIAMS-42799) while a post fragment dated to cal A.D. 257–382 (UCIAMS-42882). A charcoal sample collected from the base of a pile of crystals (spar) associated with the stairway dated to cal A.D. 230–335 (UCIAMS-42882). Several additional dates indicate repeated remodeling of the wooden apparatus in the cave and burning of income during the Early Classic Period, cal A.D. 427–601 (UCIAMS-42800, 42801, 42804). The founding and use of Kayukutal Nat Turich correlates with the establishment of monumental architecture at Ustebení, and its use is likely linked to early elites from the site.

Discussion

All of our evidence points to Ustebení being a small, likely farming, community during the Late Preclassic. While the exact size and age of the founding community remains under investigation, one of the primary loci of settlement was positioned on the hill that later developed as the stela plaza (Group A) of the Classic Period center. Excavations have revealed and dated Preclassic contexts that suggest the early occupants of the site built earthen mounds capped with thin, rammed mud or plaster floors containing postholes, consistent with perishable structures that date elsewhere in Mesoamerica to the Middle Preclassic (Flannery 1976; Willey 1977). Prior to our research project, a Middle Preclassic jade spool was found by a caretaker in Group A near a looted Classic Period tomb, but it lacks more specific provenience (Healy and Awe 2001). Our excavations produced no evidence of significant status differences (e.g., differing house sizes or elite burials) in these contexts, and no evidence of public architecture dates to this early time.

The Group A hilltop is an ideal location for initial settlements in the region; it is defensible (though we have no evidence of conflict), commands a view over the Rio Blanco Valley, is located adjacent to lands that are fertile and desirable for agriculture, and is close to year-round water supplies. Today,
local farmers vied for access to these lands immediately surrounding the site, which are favorized for both milpa (slash-and-burn) andmatambo (mulching) agriculture, allowing for crops to be grown every year without fallowing. In the small valley below Groups A, B, and F, some farmers grow two crops of corn in a single year and have marked this area with an indigenous land-use mapping project as the location of most agricultural lands (TMCC 1997).

The same criteria that made this region favorable for early settlements would have continued to make it an ideal location for later development. After A.D. 200, Group A underwent a major reorganization and Group B was integrated into the built environment. The process may have taken more than a century. Significant changes included landscape modification in the form of leveling hilltops and filling hillslopes. It also involved the transport of hundreds of thousands of cut sandstone blocks from nearby crooks and outcrops for monumental buildings. At least three of these buildings were constructed over earlier diet structures. In addition, at least one settlement compound was buried under several tons of crushed bedrock, effectively erasing it from the landscape. This time period marks a radical shift in elite strategies reflected in the ability to mobilize labor for construction projects. While it remains possible that this expansion represents an intrusive force entering the region, we have no evidence of disjunction or abandonment, and the continuity of use in Group A suggests indigenous development rather than some kind of intrusive population. Regardless, it seems likely that local populations would have been directly involved in the labor-intensive reconfiguration of Group A. This time period also represents a fundamental shift in the Group A plaza from a village settlement to a public ceremonial space.
Texts and iconography from carved monuments also serve as another source of information on the development of the Uencheni polity. The production of monuments glorifying the actions of individual rulers and elaborating their exclusionary relationships with supernatural forces is an indicator of a shift toward highly exclusionary, or network, strategies being employed by elites (Blanton et al. 1996:12; Feinman 2001:170). At Uencheni, the first carved monuments do not appear until at least 100 years after the Early Classic construction began in Groups A and B and monuments continued to be erected into the eighth century. All of the known stelae are located in the Group A plaza, suggesting it became a monumental garden glorifying living rulers and their linkage to the ancestral founders of the community and, ultimately, the land. The earliest dated monument fragment is Stela 23, which records an Initial Series date of 9.10.0.0.0 1 Ajaw 13 Yaxkin, or 25th August, A.D. 455, and is carved in a distinctively central Petén style (Prusiner and Wanyenka 2005). Another monument, Stela 11, does not record a specific calendric date, but is stylistically similar to Early Classic monuments from the central Petén. It also contains the personal moniker of Chak Tek Ich'ask 1 or “Jaguar Paw” the fourteenth king of the Tikal royal dynasty, who ascended to rulership in A.D. 360 and was recorded as having died following a major political upheaval at Tikal in A.D. 378 (Stauffer 2000:479–481). The stela has been interpreted as containing information about an event contemporaneous to its creation, as opposed to a retrospective event, and also contains several specific references to the Tikal royal dynasty (Wanyenka 2009:270–275).

Several questions surround the nature of Tikal’s relationship with Uencheni during the Early Classic. Was Tikal involved in the shift at Uencheni from a village to a complex polity? Was the relationship a form of economic hegemony? Did the Uencheni rulers maintain political and economic independence, or were they a tributary state under Tikal’s direct rule? Our data suggest that Uencheni’s initial shift from a village to a hierarchically-organized polity occurred at least a century prior to Tikal’s hegemonic southward expansion recorded elsewhere. Tikal was an expansionist polity during the latter part of the Early Classic and appears to have played a role in founding the Copán dynasty in A.D. 426 (Sharer 2003:322). While it has been proposed that Uencheni was an Early Classic vassal of Tikal, and may have been utilized by Tikal for access to trade routes or extraction of local resources (Wanyenka 2009:224), there is little archaeological evidence for such a relationship. Ceramics from dated Early Classic contexts generally resemble those found during the Late Preclassic period, consistent with Lapaute’s observations that, in the southeastern Petén, Preclassic forms persist well into the Early Classic in what he calls the “Peripheral Chacan” sphere (2001:17). We suggest that local production of ceramics with brownish-red slips and matte surface textures generally characteristic of the Late Preclassic continued well beyond A.D. 300 in southern Belize, and we see no evidence of Makín Phase ceramics from Tikal and very little evidence of central Petén Takalik 1 sphere materials in Early Classic contexts.

Nevertheless, the epigraphic data clearly refer to a relationship between Tikal and Uencheni. Whether this was an economically driven hegemonic relationship remains to be tested, and archaeological evidence of economic ties between the two polities is limited. It is also important to consider alternatives. Small monument-bearing polities might have periodically formed alliances with larger states, but were essentially autonomous centers of political development, perhaps emulating their larger neighbors. Similarly, larger polities may have fluctuated between attempts at centralization and expansion (occasionally successful) and somewhat weaker political interactions, as has been proposed in Marquén’s “Dynamic Model” (Marquén 1993:133–137, 1998:92). Adam Smith (2003:136–139) suggests that, within a given system, these non-exclusive external processes can be seen as contributing to the rise of new political centers (also see M. Smith 2003:19); authorization, the direct control by a larger and more-potent polity; memorialization, which can be triumphant or attest to symbolic subjugation; or, extension, the competitive and potentially imitative production of social forms and symbols derived from more prestigious and powerful centers. At Uencheni we see no material evidence of authorization by larger polities at any point in its early history and instead suggest a combination of emulation and memorialization may have played a role in the site’s early development.

The data presented here suggests that Tikal began with humble beginnings as a small agglomeration, founded on some local agricultural and horticultural lands in the northern highlands. In the Middle Preclassic period, Uencheni was a distinctively central Petén polity, and the Late Preclassic was a period of urban political integration throughout the Mexican-Chacan sphere. By the Early Classic period, Uencheni had become an increasingly larger and more prominent center in the Tikal region. The data presented here is consistent with these trends and suggests that Tikal may have begun to expand its political reach by the Late Preclassic period, while maintaining its own political autonomy. It is likely that Tikal’s expansion was facilitated by the political and economic development of Uencheni, and that the two polities may have been engaged in a long-term relationship. The continued presence of Uencheni as a distinctively central Petén polity throughout the Early Classic period suggests that Tikal’s expansion did not come at the expense of Uencheni’s political autonomy, but rather that the two polities may have been engaged in a long-term political relationship, with Tikal providing resources and support to Uencheni.

By the Late Classic period, Tikal had become a powerful and influential polity, and Uencheni had become an important center in the Tikal region. The data presented here suggests that Tikal’s expansion was facilitated by the political and economic development of Uencheni, and that the two polities may have been engaged in a long-term relationship. The continued presence of Uencheni as a distinctively central Petén polity throughout the Early Classic period suggests that Tikal’s expansion did not come at the expense of Uencheni’s political autonomy, but rather that the two polities may have been engaged in a long-term political relationship, with Tikal providing resources and support to Uencheni.
Conclusions

The data presented here suggest that Uxenbikal had humble beginnings as a hilltop village community, founded on some of the most productive agricultural lands in the region, with easy access to coastal and marine resources. During the Late Preclassic period an absence of significant status-differentiating goods or architecture indicates that early leadership may have been kin-based and inclusivity, existing on the corporate end of a corporate-network continuum of elite strategies. Starting around A.D. 200 Uxenbikal began a significant transformation centered on what was likely the core area of the village. This was marked by the construction of public architecture and modification of the landscape to accommodate a new community design. Whether these changes were entirely internal or they represent the appearance of an intrusive force remains unknown, though continuity with ceramic assemblages from earlier contexts suggests it may have been at least partially locally based. Regardless, these changes represent a new political strategy for the region reflected in the ability of elites to mobilize significant labor around capital projects. While the construction of the public plaza and the mobilization of labor certainly reflect hierarchical differentiation, during this time period we see no evidence of exclusionary strategies being exercised by elites; there is no evidence of elaborate residential structures, large accumulations of status marking goods, or iconography that is self-aggrandizing.

By no later than the middle of the fifth century, Uxenbikal started participating in the Classic Period monument-building tradition, erecting stelae in Group A attesting to the individual presence of named elites and their connections with powerful rulers elsewhere in other larger city centers (e.g., Tikal). The transformation of the Group A hilltop from a residential space to a public monument garden celebrating revered ancestors suggests both continuity of occupation and the memorialization of ancestral space as an elite strategy. Hence, the transformation of the hilltop space may have had as much to do with legitimizing the authority of emergent elites as with their ability to monopolize choice patches of land. While this memorialization may have begun earlier, during the centuries when Uxenbikal changed from a small farming community to a more complex political center the adoption of the monument tradition represents a clear shift in elite strategies to one in which individual named rulers asserted their legitimacy on publically visible media.

The establishment of Kayako Naj Tunich Cave is contemporaneous with Early Classic developments in the site core. Transporting new materials and the construction of architectural modifications in the case would have required a considerable labor force. The construction and use of the cave, perched on a cliff on a prominent mountain and visible from all the public spaces in the community, would have been a powerful sign of elite ability to manipulate powerful and ancestral symbols representing forces in the universe responsible for human welfare and success (Brady and Profer 2003). The cave was remodeled several times during the Early Classic, and, along with the monuments in Group A, would have served as a constant reminder of the ancestral connections and supernatural powers claimed by ruling elites (Moyes and Profer 2009).

Research currently underway at Uxenbikal suggests that the Late Classic reorganization of the polity was at least as dramatic as the Early Classic. Massive landscape modification characterized changes as the public areas of the site grew to their final configuration. Data suggest that growing numbers of elites established settlements away from the site core, while smaller household groups were pushed further into the hinterlands, possibly onto more marginal lands in terms of access to soils, year-round water sources, and proximity to the community center. Kayako Naj Tunich shows no evidence of use after A.D. 500, suggesting changes in elite strategies for appropriating symbolic capital. The stela plans continued to be used for erecting monuments at least through the middle of the eighth century, but no new construction programs were undertaken after A.D. 500. Instead, it appears to have served as a monument garden dedicated to the founding ancestors, while the focus of political power shifted to Group B. The Late Classic landscape would have been markedly different, with at least six other monument-bearing sites within 30 km of Uxenbikal, and over 40 smaller communities with public architecture crowning the landscape. Uxenbikal would have continued to dominate the Rio Blanco drainage and the most expedient trade route from the Caribbean Sea and the
eastern Maya Mountains into the Peten, and economic demands of that core area may have driven the rapid Late Classic growth in southern Belize. By the middle of the 9th century, the region was in decline. It remains to be determined if this decline was in response to simultaneous events and waning fortunes in neighboring regions or the consequences of local population growth, resource exhaustion, and general failure of elites to withstand the pressures of their highly networked geopolitical and social landscapes.

Acknowledgements. We are grateful to the Belize Institute of Archaeology, the people of Belize, the residents and community government of Santa Cruz Village for permission to work at Uxbenka. Funding for this project has come from the National Science Foundation (BCS-0620845 to Profers and Koons, HSS-0827365 to Koons and Profers, and GEP-200002778 to Culture), the Foundation for the Advancement of Mesoamerican Studies, Inc. (Profers 2005, 2006; Meyers 2007), the Archaeological Institute of America, the University of New Mexico, the University of Oregon, and Washita State University. We gratefully acknowledge the collaboration of the Kukulkan Project, the University of California at Irvine. Special thanks to Mark Althouse, Claire Geoghegan, Melissa Putney, Richard Grube, Richard Hickman, Richard Harris, Richard Schuyler, Jack Salvia, and Phil Wilcox.

References Cited

Almanza, Marc A., and William F. Sears
2006: A Preliminary Geochronological Investigation of
Granite Stone Tools in and Around the Maya Mountains.

Amaya, James J.
2007: What Maya Collapse? Terminal Classic Variation in the

Albright, James L., and Patricia M. Rove
2006: Astronomy, Ritual, and the Interpretation of Maya

Beckman, Christopher P.
2008: Corporate Power Strategies in the Late Formative to
Early Classic Terminal Periods of Central Isthmus. Latin

Bill, Cassandra E., and Geoffrey E. Braswell
2005: Life at the Crossroads: New Data from Puno Roi, Belize.

Blanton, Richard E., Gary M. Feinman, Stephen K. Kowalska,
and Peter C. Peretzi

Brady, James E.
1988: An Investigation of Maya Ritual Use With Special
Reference to Naj Tonich, Peten, Guatemala. Unpub-
ished Ph.D. dissertation, University of California at
Los Angeles, Los Angeles.
1997. Settlement Configuration and Cosmology: the Role of

Brady, James E., and Keith M. Profers
2005: Maya Censal Archaeology: A New Look at Religion
and Cosmology. In Maya Materials and Earthly Origins: Maya
Religion in the Classic Context, edited by Keith M. Profers
and James E. Brady, pp. 365–380. University of Colorado
Boulder.

Braswell, Geoffrey (editor)
2003: The Maya and Environment: Reinterpretation

Braswell, Geoffrey E., Christian M. Proctor, Cassandra R. Bill,
and Jorge A. Schrader
2005: The Rise of Secondary States in the Southeastern
Periphery of the Maya World: A Report on Project
Archaeological and Epigraphic Research at Punta, Belize.
Ancient Mesoamerica 15:229–239.

Braswell, Geoffrey, and Keith M. Profers
2009: Political Organization and Interaction in Southern

Brek, Ramon, Christopher Thoning,
2005: Radiocarbon Calibration and Analysis of Stratigraphy.

2001: Development of the Radiocarbon Calibration program

Clark, John E., and Michael Blake
1994: The Power of Prestige: Comparative Emasculation and
the Emergence of Royal Societies in Lowland Mesoamerica.
In Political Competition and Political Development
in the New World, edited by Elizabeth Brumfiel and John

Dowson, Anton
2006: Ancient Maya: The Rise and Fall of a Rainforest

Dowson, Peter E.
2008: Resource Exploitation and Exchange among the Classic

Dowson, Peter E., and Keith M. Profers
1998: La Cultura del alivio. Las descubrimientos recientes
en las regiones alrededor del río de Belize. In El Simposio de Investigaciones Arqueológicas en Guatemala, edited by
Ministerio de Cultura y Deportes, Instituto de Antropología e Historia y Museo Nacional, Guatemala City.

Flannery, Gary
2006: Corporate Networks: A New Perspective on Leadership

2006: Corporate Networks and Social Frameworks in the
Southwest. In Inherited Leadership Strategies in the Pacific
Northwest, a University of Arizona Center for

Flannery, Kent V.
1972: The Cultural Ecology of the Arid Zone. In Early
Mesoamerican Settlement Patterns, edited by
Bruce D. Finley, David A.
1979: Cultural Aspects of Approaches to the Early
Lowland American. In Garcias-Zacatitlan, Angela E.
1994: Early Mesoamerican Settlement Patterns in the
Yucatan Peninsula. In Sev 2000, edited by
pp. 217–222. Pre-Colombian Studies, Pittsburg
Society, Pittsburg.

Flament, Elizabeth A.
1976: Resource Diversification for Markets on the Gulf. In
A Mesoamerican Economy, edited by
T. edon, pp. 25–37. Pre-Colombian Studies, Pittsburg
Society, Pittsburg.

Flenniken, Norah
1995: Pathways to Power Economic Interdependence, edited by

Flenniken, Paul E., and James J. Koons

Hegman, Michelle

Henderson, John
1991: Variation in Early Texas: A Retrospective, in
New Texan by Eastone and University Museum
Philadelphia.
FORMATION OF A COMPLEX POLITY

Joyce, Thomas A.

Joyce, Thomas A., I. Cooper Clark, and J. F. Copper

Laporte, Jean Pedro

Laporte, Jean Pedro and Carles R. Ramos

Leventhal, Richard

MacNeish

McKillop, Heath
1980. Maya玛 La Maya: Maya Trading Post and the Integration of Long-Distance and Regional Economies. W.M. Brandt in South-Central Belize, by John W. Roza, pp. 185-186. Galveston, TX.

Meyers, Raymond and Keith M. Prue

Pikorr, William A., and Michael Ohlson

FORMATION OF A COMPLEX POLITY

Rethinking Archaeological and Historical Sources in the Study of Pre-Medieval Asia, University of Arizona Press, Tucson.

Note

1. After removing adhering sediment, samples were subject to acid-base washes in 1N HCl and 1N NaOH (3°C, 30 min). The initial acid wash dissolved any carbonate contamination and repeated base washes extracted bicarbonates accumulated from soil organic matter. A final acid wash removed secondary carbonates formed during the base treatment. Samples were then returned to neutral pH with (2) min baths in DI water at 39°C to remove chlorides and dried. Sample CO₂ was produced by combustion at 900°C for 6 hours of stacked evacuated quartz tubes using CuO powder and Ag wire. Sample CO₂ was graphitized at 1400°C by reduction of 550°C using H₂ and a Fe catalyst, with reaction water drawn off with Mg(OH)₂ (Stares et al. 2000). Solid graphite samples were pressed into targets in Al foils and loaded on the target wheel with standards and backgrounds for AMS analysis.

Submitted December 27, 2005; Accepted November 5, 2006; Revised December 13, 2006.