Introduction to Game Theory
Lecture Note 1: Strategic-Form Games and Nash Equilibrium (1)

Haifeng Huang

University of California, Merced
• Game theory studies rational players’ behavior when they engage in strategic interactions.

• Rational choice: the action chosen by a decision maker is better or at least as good as every other available action, according to her preferences.

• Preferences are rational if they satisfy
 - **Completeness**: between any x and y in a set, $x \succ y$ (x is preferred to y), $y \succ x$, or $x \sim y$ (indifferent)
 - **Transitivity**: $x \succeq y$ and $y \succeq z \Rightarrow x \succeq z$ (\succeq means \succ or \sim)

 ⇒ Say apple \succ banana, and banana \succ orange, then apple \succ orange
Preferences and payoff functions (utility functions)

• No other restrictions on preferences. Preferences can be altruistic.
 ▶ But individual rationality does not necessarily mean collective rationality.

• Payoff function/utility function: \(u(x) \geq u(y) \) iff \(x \succeq y \)

• For now we only deal with ordinal (as opposed to cardinal) preferences, so you can use many different utility functions to represent the same preference relation.

 • Any strictly increasing transformation of the same utility function will do.
 • Say \(x \succ y \succ z \). Then \(u(x) = 3, u(y) = 2, u(z) = 1 \) represents the same preferences as \(u(x) = 100, u(y) = 10, u(z) = 2 \).
Types of games

- Games with complete information
 - Static games
 - Dynamic games

- Games with incomplete information
 - Static games (Bayesian games)
 - Dynamic games (dynamic Bayesian games)
Static games of complete information

- Static games: simultaneous-move, single-shot games
- Complete information: a player knows other players’ utility functions (and other characteristics that affect their decision making)
- We use the strategic form/normal form to represent a static game of complete information.
- Definition: A strategic-form game consists of
 1. a set of players
 2. for each player, a set of actions (i.e., strategies)
 3. for each player, preferences over the set of action/strategy profiles
Static games of complete information

• **Strategy profile**: a list of all the player’s strategies
 ▶ E.g, my strategies: left or right; your strategies: up or down
 ▶ Strategy/action profiles: (left, up), (left, down), any other?

• Preferences are over strategy profiles rather than one’s own actionsstrategies.

• In single-shot games, actions are equivalent to strategies.
Illustration: prisoner's dilemma

- Players: two suspects, 1 and 2
- Actions: \{stay silent, confess\}
- Preferences:
 - $u_1(\text{confess, silent}) > u_1(\text{silent, silent}) > u_1(\text{confess, confess}) > u_1(\text{silent, confess})$
 - $u_2(\text{silent, confess}) > u_2(\text{silent, silent}) > u_2(\text{confess, confess}) > u_2(\text{confess, silent})$
- Game representation

<table>
<thead>
<tr>
<th>Suspect 1</th>
<th>silent</th>
<th>confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>silent</td>
<td>0, 0</td>
<td>−2, 1</td>
</tr>
<tr>
<td>confess</td>
<td>1, −2</td>
<td>−1, −1</td>
</tr>
</tbody>
</table>
Nash equilibrium

- Definition: A strategy profile a^* is a **Nash equilibrium** if, for every player i and every strategy a_i of player i, a^* is at least as good for player i as the strategy profile (a_i, a^*_i) in which player i chooses a_i while every other player j chooses a_j^*.

- In other words: $u_i(a^*) \geq u_i(a_i, a^*_j)$ for every strategy a_i of every player i.

- In plain English: no one can do better by unilaterally deviating from the strategy profile.

- A Nash equilibrium is a **steady state**. It embodies a stable “social norm”: if everyone else sticks to it, no one has incentive to deviate from it.
What’s the Nash equilibrium in PD?

<table>
<thead>
<tr>
<th>Suspect 1</th>
<th>silent</th>
<th>confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>silent</td>
<td>0, 0</td>
<td>−2, 1</td>
</tr>
<tr>
<td>confess</td>
<td>1, −2</td>
<td>−1, −1</td>
</tr>
</tbody>
</table>

Only the strategy profile (confess, confess) is a NE.

In PD each player has an **dominant strategy**: a strategy that is better for a player regardless of what other players do.
Prisoner’s dilemma cont.

- Tragedy of the PD game: there is an outcome that is better for BOTH players, but they just cannot achieve it.
- Would communication between the two players help them?
 - Watch a real game: http://www.youtube.com/watch?v=p3Uos2fzIJO&feature=player_embedded
- Applications: tragedy of commons; arms race
Battle of sexes

- He wants to watch soccer, she wants to watch ballet, but they would rather be together than separate.

<table>
<thead>
<tr>
<th></th>
<th>soccer</th>
<th>ballet</th>
</tr>
</thead>
<tbody>
<tr>
<td>soccer</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>ballet</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

- What are the Nash equilibria?
- 2 Nash equilibria: (soccer, soccer); (ballet, ballet)
- BoS models situations in which two parties want to cooperate but disagree on which point to cooperate.
Matching pennies

- A purely conflictual game (PD and BoS have elements of cooperation)

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

- Player 1 wants to take the same action as player 2, but player 2 wants to take the opposite action.
- Any (pure-strategy) Nash equilibrium?
 \[\Rightarrow\text{ No.}\]
Two hunters can succeed in catching a stag if they all exert efforts, but each can catch a hare alone.

<table>
<thead>
<tr>
<th></th>
<th>Hunter 1</th>
<th>Hunter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>stag</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>hare</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

What are the Nash equilibria?
⇒ (stag, stag) and (hare, hare)

Application: cooperative project; security dilemma
The chicken game (hawk-dove)

- Two drivers drive towards each other on a single lane. If neither swerves, they collide and may die; if one swerves while the other does not, the one who swerves loses face while the other gains respect.

<table>
<thead>
<tr>
<th>Driver 1</th>
<th>Driver 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>straight</td>
<td>-10, -10</td>
</tr>
<tr>
<td>swerve</td>
<td>-1, 1</td>
</tr>
</tbody>
</table>

- Application: brinkmanship
- Reducing options in a chicken game: throwing away the steering wheel? Burning the bridge after crossing the river?
Coordination and the focal point

- A coordination game: choosing a restaurant

<table>
<thead>
<tr>
<th></th>
<th>Italian</th>
<th>Japanese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian</td>
<td>1, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>Japanese</td>
<td>0, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

- NE: (Italian, Italian); (Japanese, Japanese)

- **Focal point**: in some real-life situations players may be able to coordinate on a particular equilibrium in a multiple equilibria game, by using information that is abstracted away from the strategic form.

 ▶ Schelling’s experiment about meeting in New York
Osborne (2004) exercise 33.1: Each of n people chooses whether to contribute a fixed amount toward the provision of a public good. The good is provided iff at least k people contribute, where $2 \leq k \leq n$; if it is not provided, contribution are not refunded. Each person ranks outcomes from best to worst as follows: (a) any outcome in which the good is provided and she does not contribute; (b) any outcome in which the good is provided and she contributes; (c) any outcome in which the good is not provided and she does not contribute; (d) any outcome in which the good is not provided and she contributes. Formulate this situation as a strategic game and find the NE.
Public good provision: strategic form

- Players: the n people
- Actions: each player’s set of action is \{contribute, not contribute\}
- Preferences: $U_i(a) > U_i(b) > U_i(c) > U_i(d)$
• Is there a NE in which more than k people contribute? One in which k people contribute? One in which fewer than k contribute?

• NE: k people contribute; none contributes
Strict and non-strict equilibria

- If an action profile \(a^* \) is a NE, then \(u_i(a^*) \geq u_i(a_i, a^*_{-i}) \) for every action \(a_i \) of every player \(i \).
- An equilibrium is strict if each player’s equilibrium action is better than all her other actions. Or, \(u_i(a^*) > u_i(a_i, a^*_{-i}) \) for every action \(a_i \neq a_i^* \) of player \(i \).
- A variant of the prisoner’s dilemma game

<table>
<thead>
<tr>
<th>Player 1</th>
<th>split</th>
<th>steal</th>
</tr>
</thead>
<tbody>
<tr>
<td>split</td>
<td>5, 5</td>
<td>0, 10</td>
</tr>
<tr>
<td>steal</td>
<td>10, 0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- How many Nash equilibria? Any strict NE?
 \[\Rightarrow 3 \text{ and } 0. \]