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Assessing the Belief Bias Effect With ROCs: It’s a Response Bias Effect
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A belief bias effect in syllogistic reasoning (Evans, Barston, & Pollard, 1983) is observed when subjects
accept more valid than invalid arguments and more believable than unbelievable conclusions and show
greater overall accuracy in judging arguments with unbelievable conclusions. The effect is measured with
a contrast of contrasts, comparing the acceptance rates for valid and invalid arguments with believable
and unbelievable conclusions. We show that use of this measure entails the assumption of a threshold
model, which predicts linear receiver operating characteristics (ROCs). In 3 experiments, subjects made
“valid”/”invalid” responses to syllogisms, followed by confidence ratings that allowed the construction
of empirical ROCs; ROCs were also constructed from a base-rate manipulation in one experiment. In all
cases, the form of the empirical ROCs was curved and therefore inconsistent with the assumptions of
Klauer, Musch, and Naumer’s (2000) multinomial model of belief bias. We propose a more appropriate,
signal detection—based model of belief bias. We then use that model to develop theoretically sound and
empirically justified measures of decision accuracy and response bias; those measures demonstrate that the
belief bias effect is simply a response bias effect. Thus, our data and analyses challenge existing theories of
belief bias because those theories predict an accuracy effect that our data suggest is a Type I error. Our results
also provide support for processing theories of deduction that assume responses are driven by a graded
argument-strength variable, such as the probability heuristic model proposed by Chater and Oaksford (1999).
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In a recent ruling by the British Court of Appeals, judges concluded
that, contrary to the ruling of a lower court, Pringles are in fact potato
chips (Associated Press, 2009). One potential result of this decision is
the application of the British value-added tax to Pringles. Much of the
argument concerning the chip status of the Pringle hinged on the
opinions of high authorities as to whether the percentage of potato
content in a Pringles chip (actually less than 50%) was large enough
to classify it as a potato chip. The logical structure of the argument can
be analyzed by arranging the information as follows.

Some of a Pringle is sliced potatoes.

Some sliced potatoes are potato chips.

#A Pringle is a potato chip. (A)
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This argument is not logically valid, but the conclusion may be
compelling to Pringles fans.

The tendency to accept or reject a conclusion on the basis of its
consistency with everyday knowledge, regardless of its logical
status, is known as belief bias (e.g., Cherubini, Garnham, Oakhill,
& Morley, 1998; Evans, Handley, & Harper, 2001; Evans, Newstead,
& Byrne, 1993; Markovits & Nantel, 1989; Roberts & Sykes, 2003;
Shynkaruk & Thompson, 2006). Belief bias is typically studied using
categorical syllogisms, which are similar in structure to the argument
in Example A. Syllogisms contain two premises and a conclusion,
constructed with three terms: the predicate (X), which is the nonre-
peated term of the first premise; the middle term (Y); and the subject
(Z), which is the nonrepeated term of the second premise. An allow-
able conclusion links the subject and predicate terms via their rela-
tionship to the middle term; it may be either valid (following neces-
sarily from the premises) or invalid. An abstract example of a valid
syllogism is given in Example B:

All X are Y.

No Y are Z.

No Z are X. (B)

The arrangement of the premise terms is referred to as the
syllogistic figure. Four arrangements are possible: Y-X, Z-Y (Syl-
logistic Figure 1); X-Y, Z-Y (Syllogistic Figure 2); Y-X, Y-Z
(Syllogistic Figure 3); X-Y, Y-Z (Syllogistic Figure 4). The argu-
ment in Example B is an example of a syllogism in Syllogistic
Figure 4. Traditionally, each premise of the syllogism can take one
of four quantifiers: “all,” “no,” “some,” and “some . .. are not.”
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The effects of structural factors such as figure and quantification
on syllogistic inference have been studied extensively (Begg &
Denny, 1969; Dickstein, 1975, 1978, 1981; Johnson-Laird, 1983;
Revlis, 1975; Woodworth & Sells, 1935).

Evans, Barston, and Pollard (1983), in an important early study
of belief bias, showed that the believability of a given syllogistic
conclusion can have drastic effects on the probability that subjects
will endorse it. In three experiments, subjects were asked to
evaluate the validity of four types of syllogisms, which resulted
from crossing the logical status and believability of the conclu-
sions. Their design and results are summarized in Table 1. Con-
sider, for example, the problem in the lower middle cell of Table
1. The conclusion in this case is logically invalid but consistent
with everyday knowledge, and 92% of their subjects endorsed this
conclusion type as valid. The problem in the lower right cell of
Table 1 has logical structure identical to that of the problem in the
lower middle, but in this case, the conclusion is not consistent with
everyday knowledge. Only 8% of subjects endorsed this conclu-
sion type as valid. Evans et al.’s subjects were not completely
insensitive to the logical structure of the arguments, however, as
they also accepted more valid than invalid conclusions. A third
finding, which has since been replicated in a number of studies,
was that the difference in acceptance rates for valid and invalid
problems is greater when problems are unbelievable than when
they are believable (38% vs. 0% in Table 1). The interaction effect
appears to stem from the very low acceptance rate of invalid
unbelievable problems, though the precise nature of the Evans et
al. result remains unclear. In particular, it is not clear whether the
effect is primarily due to a deductive reasoning process that is
disrupted by the believability of the conclusion, an evaluation of
believability that modulates the reasoning process, or some mix-
ture of the two. Explaining the interaction has been a major goal of
extant theories of belief bias.

Rarely discussed in the belief bias literature is the fact that the
measurement of the interaction effect and, indeed, any measurement
of accuracy in the task necessarily involve some correction for sub-
jects’ overall willingness to endorse conclusions. One fairly intuitive
method of correcting for response bias effects is to simply subtract
erroneous responses, which presumably reflect the tendency to prefer
one type of response over another, from correct responses: corrected
score = P(“Valid”’IValid) — P(*“Valid”lInvalid). This subtraction can

be done separately for believable and unbelievable problems. The
interaction effect described by Evans et al. (1983) can thus be esti-
mated by a contrast of contrasts. This measure, often referred to as the
interaction index, has provided the basic datum for a substantial
number of studies that have investigated the Belief X Logic interac-
tion (e.g., Ball, Phillips, Wade, & Quayle, 2006; Evans et al., 1983;
Evans & Curtis-Holmes, 2005; Evans, Newstead, Allen, & Pollard,
1994; Morley, Evans, & Handley, 2004; Newstead, Pollard, Evans, &
Allen, 1992; Quayle & Ball, 2000; Roberts & Sykes, 2003; Shynka-
ruk & Thompson, 2006; Stupple & Ball, 2008; Thompson, Striemer,
Reikoff, Gunter, & Campbell, 2003). Rewriting the index, we can
denote P(“Valid”IValid) as H (the hit rate), and P(“Valid”lInvalid) as
F (the false-alarm rate). Then, using B and U to denote believable and
unbelievable problems, respectively, a definition of the interaction
index is as follows.

Interaction index = (Hy — Fy) — (Hy — Fp). (D

Positive values of the interaction index are typically observed
because the effect of validity is larger for problems with unbeliev-
able conclusions. (For the data in Table 1, the interaction index =
[.46 — .08] — [.92 — .92] = .38))

As much of the research inspired by the results of Evans et al.
(1983) has focused on explaining the Belief X Logic interaction,
the importance of measuring the effect accurately should not be
underestimated. In what follows, we review several theoretical
accounts of belief bias, all of which attempt to explain the inter-
action observed in contrasts of H and F. We discuss problems
arising from assumptions about the relationship between response
bias and accuracy that are inherent in the interaction index. We
describe the analysis of receiver operating characteristics (ROCs),
which can be used to assess the appropriateness of various mea-
surement indices such as H — F or d’. Then, in a series of three
experiments, we compare the results from analyses of response
proportions and ROCs. We propose a new model of belief bias that
is justified by the empirical ROCs and show that it fits our data
better than an existing model (Klauer, Musch, & Naumer, 2000).
We conclude that inappropriate assumptions about the relationship
between bias and accuracy, implicit in the interaction contrast,
have impeded understanding of the belief bias effect and that all of
the existing theories of belief bias are affected. Our model suc-

Table 1
The Design of Evans, Barston, and Pollard (1983, Experiment 1), Example Problems, and Rates
of Endorsement
Conclusion
Syllogism Believable Unbelievable
Valid No cigarettes are inexpensive. No addictive things are inexpensive.

Some addictive things are inexpensive.

Some cigarettes are inexpensive.

Therefore, some addictive things are not cigarettes. Therefore, some cigarettes are not addictive.

P(“Valid”) = 92%
No addictive things are inexpensive.
Some cigarettes are inexpensive.

Invalid

P(*“Valid”) = 46%
No cigarettes are inexpensive.
Some addictive things are inexpensive.

Therefore, some addictive things are not cigarettes. Therefore, some cigarettes are not addictive.

P(“Valid”) = 92%

P(*Valid”) = 8%

Note. Adapted from “On Belief Bias in Syllogistic Reasoning,” by K. C. Klauer, J. Musch, and B. Naumer,
2000, Psychological Review, 107, p. 853. Copyright 2000 by the American Psychological Association.
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cessfully describes the relationship between accuracy and response
bias and provides a more parsimonious explanation of the effect.

Theoretical Accounts of Belief Bias

The first account of the belief bias effect was proposed by Evans
et al. (1983) and later termed the selective scrutiny model. Selec-
tive scrutiny proposes that subjects focus initially on the conclu-
sions of the arguments and accept believable conclusions without
any evaluation of their logical validity. When conclusions are not
believable, subjects reason through the premises and accept or
reject conclusions on the basis of their perceived validity. Selective
scrutiny could thus be seen as a process whereby logic-based
responding is driven by the (un)believability of conclusions
(belief—logic); the Belief X Logic interaction occurs because
deductive reasoning is used only for unbelievable conclusions.
Recent work employing reaction time and eye-tracking measures
(reviewed below), as well as experiments comparing conclusion-
production and conclusion-evaluation tasks, does support the idea
that conclusion believability has an influence on the processing of
premises (e.g., Ball et al., 2006; Morley et al., 2004). However,
other data are problematic for the theory: Selective scrutiny pre-
dicts that there will be no effect of validity for believable prob-
lems, yet such effects are often observed (see Klauer et al., 2000,
for a meta-analysis).

A second explanation of the belief bias effect that has gained
attention in the literature is the misinterpreted necessity model
(Dickstein, 1981; Markovits & Nantel, 1989; Newstead et al.,
1992). In contrast to selective scrutiny, misinterpreted necessity
predicts that subjects will engage in reasoning at the outset and
only rely on believability after reaching conclusions that are con-
sistent with, but not necessitated by, the premises. An example of
this state of affairs is given by the following abstract problem
(Example C):

Some X are Y.

NoZare Y.

*Some Z are not X. ©

When conclusions are indeterminately invalid, subjects may
become confused or uncertain and fall back on conclusion believ-
ability to make their decisions. Misinterpreted necessity views
belief-based responding as an escape-hatch mechanism when de-
ductive reasoning is inconclusive (logic—belief). It provides a
sensible explanation of the finding of increased sensitivity to belief
on invalid problems because, by definition, only invalid problems
can lead to indeterminate conclusions.

Newstead et al. (1992) provided evidence both for and against
misinterpreted necessity. Across two initial experiments, they var-
ied whether conclusions were determinately or indeterminately
invalid and only obtained the Belief X Logic interaction when
problems were of the latter variety. In a third experiment, however,
the interaction was not obtained despite the use of indeterminately
invalid problems. The reason for this apparent inconsistency will
become clear shortly. A further weakness of the misinterpreted
necessity model, shared with selective scrutiny, is its inability to

account for effects of believability on valid conclusions (Klauer et
al., 2000; Newstead et al., 1992).

A third theory that features prominently in the literature on
belief bias is situated in the mental models framework originally
proposed by Johnson-Laird and colleagues (Johnson-Laird, 1983;
Johnson-Laird & Bara, 1984; Johnson-Laird & Steedman, 1978).
The mental models account of belief bias (Newstead et al., 1992;
Oakhill & Johnson-Laird, 1985; Oakhill, Johnson-Laird, &
Garnham, 1989) assumes three basic stages in the processing of
syllogisms. First, subjects construct a mental representation that
integrates the premises, the terms of which are described essen-
tially as mental tokens. Second, subjects check to see whether a
given conclusion is consistent with the model they have con-
structed. If the conclusion is not consistent, it is rejected; if the
conclusion is consistent, then the subject considers its believabil-
ity. If a conclusion is believable, it is accepted; if a conclusion is
unbelievable, a third process is initiated, the goal of which is to
construct alternative models of the premises. If the conclusion is
consistent with all alternative models, it is accepted, else it is
rejected. Thus, mental models theory proposes that responses
result from a mixture of belief- and logic-based operations, rather
than a single linear relation.

The role of believability in the mental models account is to bias
the reasoning process itself, such that construction of alternative
models only occurs for problems with unbelievable conclusions,
and this manifests itself as a greater effect of logical status when
conclusions are unbelievable. The theory groups problems accord-
ing to the number of possible models of the premises they allow.
Therefore, a clear prediction of mental models theory is that the
Belief X Logic interaction will only occur for stimuli that allow
the generation of alternative models (i.e., multiple-model prob-
lems) and will not depend on the type of validity (determinate or
indeterminate) of the conclusion. Exactly this prediction was tested
by Newstead et al. (1992, Experiment 3): The stimuli were single-
model, indeterminately invalid problems, and no interaction was
obtained, consistent with the mental models interpretation (but not
with misinterpreted necessity).

While mental models theory is compelling, it is important to
note that it was originally developed to explain data from the
conclusion-production task, in which subjects must generate a
valid conclusion from a set of premises. As such, it may not
accurately characterize the conclusion-evaluation paradigm used
by Evans et al. (1983) and many others. Conclusion-evaluation
paradigms seem to require different processes and to inspire dif-
ferent biases. For instance, Morley et al. (2004) evaluated the
hypothesis that conclusion production encourages forward reason-
ing (from premises to conclusion) whereas conclusion evaluation
encourages backward reasoning (the conclusion biases construal of
the premises). In a series of four experiments, Morley et al.
demonstrated structural effects of figure (figural bias) in the ab-
sence of belief bias in a conclusion-production task, while the
opposite result (belief bias in the absence of figural bias) obtained
for the conclusion-evaluation task, consistent with their predic-
tions. The authors suggested that a mental models account in
which models of premises are constructed can still apply but that
it would need to be modified to allow for effects of conclusion
believability on the construction of those models.

Mental models theory also suffers from the fact that belief bias
effects have been obtained with valid problems and one-model
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problems (Gilinsky & Judd, 1994; Klauer et al., 2000; Oakhill et
al., 1989). Oakhill et al. (1989) addressed this issue by affixing an
ad hoc conclusion-filtering mechanism to their version of the
mental models framework. In other words, subjects may be pro-
cessing syllogisms the way mental models predicts, but in cases
where conclusions are unbelievable, subjects may still exhibit
response biases that operate secondarily to filter (reject) such
conclusions. Even if one were to maintain the conclusion filter,
more recent findings from eye tracking (Ball et al., 2006) and
response time (Thompson et al., 2003) experiments have con-
verged on the notion that subjects actually spend more time pro-
cessing believable than unbelievable conclusions, which is incon-
sistent with an account of the Belief X Logic interaction in which
subjects generate more alternative models when conclusions are
unbelievable.

Despite these limitations, the detailed characterization of the
reasoning process provided by mental models theory has been
incorporated into more recent accounts of belief bias. One example
is metacognitive uncertainty (Quayle & Ball, 2000). This account
is similar to misinterpreted necessity in that the belief effect is
located in the response stage and is more prominent for invalid
conclusions. It differs in that the factor responsible for the greater
difficulty of invalid arguments is not the determinacy of the
conclusions but an increased working memory load imposed by
the larger number of alternatives required in their evaluation
(Johnson-Laird, 1983). In other words, when the number of alter-
native models exceeds working memory capacity, subjects cannot
reach a conclusion and must respond on the basis of believability.
Consistent with this view, subjects with high working memory
spans did not produce a Belief X Logic interaction, while those
with lower spans did (Quayle & Ball, 2000). The eye-tracking data
reported by Ball et al. (2006), however, are inconsistent with the
notion that subjects generate more alternatives when conclusions
are invalid.

A fourth account, verbal reasoning theory (VRT; Polk & New-
ell, 1995), bears many similarities to mental model theory, for
example, the use of model representations, but replaces the search
for alternative models with a process that linguistically encodes
and reencodes the premises. Although the verbal reasoning ac-
count has been applied to experiments on the belief bias effect
showing the interaction between belief and logic (Polk & Newell,
1995; Thompson et al., 2003), Polk and Newell (1995) did not
focus on that aspect of the data. Still, their theory predicts an
interaction in two different ways. In one variant, reasoners initially
make judgments on arguments that are clearly valid or clearly
invalid, without relying on prior beliefs. For intermediate argu-
ments, which would tend to be invalid as well, reasoners eventu-
ally give up on the reencoding process and instead make a random
choice between saying “invalid” and answering in terms of prior
beliefs. The most pronounced effect of prior beliefs would be to
incorrectly call invalid but believable arguments “valid”; hence,
there would be lower accuracy for believable arguments than for
unbelievable arguments. In the other variant of the theory, conclu-
sions are self-generated rather than evaluated, and putative con-
clusions that are not believable are scrutinized more than believ-
able conclusions, again leading to a Belief X Logic interaction.

VRT, which is highly similar to the mental models account,
makes similar predictions about response times that are not always
supported in the literature (Ball et al., 2006; Thompson et al.,

2003). Specifically, the random decision explanation offered by
VRT implies longer response times for invalid than valid problems
regardless of believability status for conclusion evaluation, and the
prediction of greater reencoding for unbelievable problems pre-
dicts longer response times for those items relative to believable
problems for conclusion generation. Both of these predictions
conflict with the response time results reported by Thompson et al.
(2003), which led the authors to propose a modified VRT (MVRT).
The new version adds the novel assumptions that (a) reasoners set
a response deadline for the reencoding process that is the same for
valid and invalid problems but are more likely to reach a conclu-
sion in time when problems are valid, and (b) reasoners set a
longer deadline for believable problems. Unfortunately, the liter-
ature does not provide a clear consensus on the issue of processing
time differences across the four problem types (Ball et al., 2006;
Thompson et al., 2003), an issue we return to in the General
Discussion. More research is necessary to decide whether MVRT,
which makes the same accuracy predictions as VRT and mental
models, is also a more viable account of belief bias.

A Multinomial Processing Tree Model: Klauer,
Musch, and Naumer (2000)

An important advancement in research on the belief bias effect
was provided by Klauer et al. (2000). The analyses conducted by
Klauer et al. were aimed at quantitatively separating the contribu-
tions of reasoning-stage effects (valid/invalid discrimination) and
response bias effects (willingness to say “valid”) to more clearly
address the accounts by mental models, selective scrutiny, and
misinterpreted necessity. To accomplish this goal, Klauer et al.
developed a multinomial processing tree (MPT) model of the
belief bias effect (see Figure 1) and used it as their primary
analytical tool. The model has four processing trees, corresponding
to each of the four critical argument types (valid or not, believable
or not). Each tree has a reasoning-stage parameter r associated
with it, which estimates the probability of correct validity detection
for a given stimulus. For example, consider the first tree in Fig-
ure 1, which corresponds to those trials on which subjects are
presented with valid, believable arguments. With probability r,,, a
“valid” detection state (D+) is entered, in which the subject
always responds “valid.” With probability 1 — r,,, a nondetection
state (D—) is entered, and subjects are forced to guess. The
guessing process may be influenced by response bias stemming
from conclusion believability. With probability (3,, the subject
guesses “valid,” and with probability 1 — 3, the subject guesses
“invalid.” For invalid, believable problems, the process proceeds
in the same manner, except that the detection of an invalid con-
clusion is governed by the r parameter (r,,). The processing trees
for the unbelievable problems are analogous but have different
parameters to reflect the unbelievable nature of the conclusion.
The MPT model thus allows for effects of believability on both the
reasoning stage (the four r parameters), and the response stage (the
two 3 parameters).

Estimating parameters in any model requires that there be at
least as many data points as parameter values. In a typical belief
bias experiment, there are four response rates (see Table 1) and,
thus, too few data points to estimate the six parameters of the MPT
model in Figure 1. The solution to this problem is either to increase
the number of data points to be fit or to simplify the model by
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The multinomial processing tree model of belief bias proposed by Klauer, Musch, and Naumer

(2000). The model was extended to analyze new data by multiplying each branch corresponding to the
believability-defined response bias parameter 3 by an additional group-defined response bias parameter o,
where x = low, medium, or high, corresponding to three conditions that differed in the perceived base rates of

valid and invalid problems. D+ = detect state; D—
believable; ; = invalid; , = unbelievable; , = valid.

constraining some parameters to be equal. Klauer et al. (2000)
adopted the strategy of increasing the number of data points by
including a set of problems with neutral conclusions (neither
believable nor unbelievable, such as “Some Stoics are not Soph-
ists”’) and by manipulating across groups the perceived base rate of
valid and invalid syllogisms. They also extended each processing
tree with an extra response bias parameter, o, where x = low,
medium, or high, corresponding to the three base-rate groups, and
included two extra r parameters for neutral stimuli.

Their approach was to test the predictions of the various theories
by setting different parameters equal and measuring the associated
changes in model fit. For example, a test of selective scrutiny,
which assumes subjects do not assess validity status when prob-
lems are believable, would imply that r,,, = r;, = 0. In a series of
eight experiments, Klauer et al. (2000) found that none of the
theoretical accounts of belief bias was consistently supported but
that there were substantial effects of believability on the reasoning
stage, such that the null hypothesis r,,, = r,,, = r;, = r;, could not
be maintained. Particularly low values were observed for r,, and
r,, relative to r,, and r,,. Additionally, constraining the guessing
parameters to be the same for believable and unbelievable prob-
lems, 3, = B,, consistently had little to no effect on the fit of the
model. Together, these results indicate that the observed interac-
tion between logic and belief is due primarily to effects of believ-
ability on the reasoning stage. Klauer et al. proposed a new theory
of belief bias, the selective processing account, which, like other
accounts before it, assumes a model-building process that is influ-
enced by conclusion believability. Subjects are assumed to build a
single mental model of the premises and to verify believable
conclusions relative to that particular model. In the case of unbe-
lievable syllogisms, however, the verification process involves
negative hypothesis testing (Klayman & Ha, 1987), in which
subjects attempt to integrate the logical negation of the conclu-
sions. As this attempt is most likely to succeed when problems are

= nondetect state; r = reasoning-stage parameter; , =

invalid, the strategy will increase the rejection rate for unbeliev-
able invalid problems relative to the other three problem types,
thereby accounting for the observed Belief X Logic interaction.

The study by Klauer et al. (2000) has had a marked influence on
subsequent research and has set a new standard for theoretical
development in the belief bias literature. The study also provided
a definitive statement of the idea that “the reasoning-based effect
is what produces the belief by logic interaction noted by Evans et
al. (1983) and later researchers,” (Morley et al., 2004, p. 671). The
Klauer et al. results also lend credence to the interpretation of the
interaction by dual process theorists as an index of the contribution
of analytical processes to syllogistic reasoning (Evans, 2006, 2007,
2008; Evans & Curtis-Holmes, 2005; but see Shynkaruk &
Thompson, 2006). Less frequently discussed, however, are the
important points the study raises about the measurement of sensi-
tivity and response bias, which provided some of the motivation
for Klauer et al.’s MPT model. Though several methods exist for
teasing apart the contributions of sensitivity and bias, the MPT
approach being one example, not all methods have been explored
or compared in the belief bias literature. We discuss this issue
more extensively in the next section.

Measuring Accuracy and Response Bias

As noted previously, one intuitive method of correcting for
response bias effects is to simply subtract P(“Valid”lInvalid) from
P(“Valid”IValid), that is, corrected score = H — F, a method that
has also been advocated in the recognition memory literature
(Snodgrass & Corwin, 1988). This correction, carried out sepa-
rately for believable and unbelievable problems, is typically used
to compute a contrast of contrasts, the interaction index. The basic
assumption implied by this statistic is that changes in response bias
for a given problem type (e.g., believable problems) lead to equal
increments in the acceptance rates for valid and invalid problems
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when accuracy is constant. An unbiased subject, by this definition,
will make no errors (F = 0) and will produce correct responses, H,
at a rate equivalent to their true sensitivity. Figure 2 provides a
visual representation of the relationship between H and F that is
implied by H — F = k, where k is a constant accuracy level.

Plots of H against F as a function of response bias at constant
sensitivity are referred to as isosensitivity curves or ROCs. Fig-
ure 2 shows a theoretical ROC implied by the sensitivity statistic
H — F. Empirical ROC curves, which to our knowledge have
never been analyzed in the domain of syllogistic reasoning, have
been used extensively by researchers in the areas of memory and
perception (Green & Swets, 1966; Macmillan & Creelman, 2005;
for a partial review, see Yonelinas & Parks, 2007) and have
recently been collected for a variety of inductive reasoning tasks
(Heit & Rotello, 2005, 2008, in press; Rotello & Heit, 2009).
Empirical ROC data can be obtained in a number of ways, for
example, by manipulating bias via payoff matrices, instructions, or
the probability of a signal (e.g., valid item) trial (Healy & Jones,
1975; Van Zandt, 2000). In these methods, subjects make a binary
(yes/no) response for each stimulus; the operating points are ob-
tained across different experimental conditions or from indepen-
dent groups of subjects. Alternatively, and more commonly, ROCs
may be obtained by requiring subjects to follow their binary
decisions (e.g., “valid” or “invalid”) with an indication of their
confidence in the response on a rating scale. The ROC in Figure
3A was generated from data reported on a 6-point confidence
scale, in which a 1 corresponded to sure valid and a 6 corre-
sponded to sure invalid. Because a rating of 1 corresponds to the
most conservative bias (a tendency to avoid “valid” responses in
the absence of strong evidence), both the hit and false-alarm rates
are lower than at any other point on the function. An important
property of ratings ROCs is that they are cumulative, that is, the (F,
H) pair at 2 is the sum of hit and false-alarm proportions from
Confidence Levels 1 and 2, the (F, H) pair at 3 is the sum of the
proportions from 1 to 3, and so forth. The cumulative nature of the
6-point ROC results in a function with 5 points; the 6th point
necessarily falls at (1, 1)." ROCs that fall higher in the space
(toward the upper left) reflect better performance because, in that
region, the proportion of correct responses (H) is high relative to
the proportion of errors (F).

1.0

0.8 A

0.6 A

0.4 +

P{"Valid" | Valid)

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

P("valid" | Invalid)

Figure 2. Receiver operating characteristic curve implied by the sensi-
tivity statistic H — F.

Figure 2 shows that the use of H — F as a measure of accuracy,
as in the interaction index of belief bias, implicitly assumes a linear
ROC, an assumption that to our knowledge has never been exam-
ined in syllogistic reasoning tasks. In the areas of memory and
perception, however, the form of the empirical ROC (both ratings
and binary response) is most often found to be curvilinear (Creel-
man & Donaldson, 1968; Egan, Schulman, & Greenberg, 1959;
Emmerich, 1968; Macmillan & Creelman, 2005; Swets, 1986a,
1986b; Tanner, Haller, & Atkinson, 1967; but see Broder &
Schiitz, 2009), and the inductive reasoning experiments reported
by Heit and Rotello (2005, 2008, in press) and Rotello and Heit
(2009) consistently produced curved ROCs similar in form to
those observed in other domains.

If ROCs generated in the belief bias task are also curvilinear,
what are the implications for conclusions reached in traditional
analyses of acceptance rates and the interaction index? A series of
simulations by Rotello, Masson, and Verde (2008) demonstrated
that when the ROC is truly curvilinear and response bias differs
across conditions, statistics based on contrasts of H and F are
associated with substantially inflated Type I error rates. That is,
even when two conditions differ only in response bias, contrasts of
H and F are likely to imply that the conditions differ in accuracy.
This problem was exaggerated with the inclusion of additional
subjects or more trials per subject and was also increased with the
size of the response bias difference across groups. The inflated
Type I error rate is a direct result of the fact that H — F is not
independent of response bias when increases in response bias do
not augment H and F by equal amounts (Macmillan & Creelman,
2005). Thus, changes in response bias caused by, for example, the
believability of syllogistic arguments could lead to differences in
H — F even if true valid/invalid discrimination is constant across
the two problem types (Klauer et al., 2000, made a similar point
with respect to the psychometric properties of proportions). To
determine whether there is cause for concern, ROCs must be
collected in a belief bias task; that was the goal of Experiments 2
and 3.

Without recourse to ROCs, one might assume that estimates of
accuracy in the belief bias task are unaffected by response bias
differences, as Klauer et al. (2000) failed to demonstrate effects of
believability on the response stage in their MPT analysis. How-
ever, their MPT model was based on “a simple threshold model”
(Klauer et al., 2000, p. 856), and the predictions made by all pure
high-threshold models for the effects of bias changes at constant
accuracy are the same as those implied by H — F: linear ROCs.?

! The analysis of ROC data is based on a maximum likelihood statistic
that uses only the unique, not cumulative, responses at each confidence
level; it also takes account of the fact that both H and F are dependent
variables measured with noise.

2 For confidence-rating-based ROCs, this prediction assumes a particu-
lar mapping between internal states and response ratings, such that “detect”
states necessarily lead to highest confidence responses and “nondetect”
states to lower confidence responses. Other state—response mappings are
possible that, in effect, make MPT models behave more like signal detec-
tion models; these mappings lead to piecewise linear ROCs that are
difficult to discriminate from those predicted by signal detection theory
(e.g., Broder & Schiitz, 2009; Krantz, 1969; Malmberg, 2002). We revisit
this issue in the modeling and discussion sections and in our analysis of
Experiment 3.
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Figure 3. A: Receiver operating characteristic curve generated by the equal-variance signal detection theory

model. B: Representation corresponding to Panel A.

In fact, it was the failure of precisely this prediction that led to the
abandonment of threshold models by many memory and percep-
tion researchers in favor of models based on signal detection
theory (SDT; Banks, 1970; Green & Swets, 1966; Macmillan &
Creelman, 2005). It is to this framework that we now turn.

A Signal Detection Model of Syllogistic Reasoning

In the present study, we evaluate an unequal-variance signal
detection model of syllogistic reasoning. SDT, widely used in the
study of recognition memory, can be readily extended to belief
bias experiments. The conclusion-evaluation task employed by
Evans et al. (1983) and others yields four response proportions (see
Table 1). If a given stimulus is actually a valid argument, the
subject’s response is either a hit (a “valid” response) or a miss (an
“invalid” response). If a test stimulus is actually an invalid argu-
ment, the subject’s response is either a correct rejection (an “in-
valid” response) or a false alarm (a “valid” response).

The signal detection model posits that inferential decisions
reflect operations on a single, continuous argument-strength di-
mension (see Figure 3B). We assume that the argument strengths
of invalid stimuli are normally distributed with a mean p; and
standard deviation o; and that the strengths of valid stimuli are
normally distributed with mean w, and standard deviation o,
where W, > w,. Subjects’ ability to distinguish between valid and
invalid stimuli is reflected as increased mean argument strength for
valid arguments. In SDT models, discrimination accuracy or sen-
sitivity can be measured in several ways. By far the most com-
monly used statistic is d’, which measures the distance between the
means of two distributions (here, for the valid and invalid items) in
units of their common standard deviation:

d' = z(H) — z(F). ()

If (and only if) the two distributions of evidence strength are
normally distributed and have equal variance, d’ is independent of
response bias.

Response bias (willingness to say “valid”’) can be measured in a
number of ways (see Macmillan & Creelman, 2005, for discus-
sion), but the more common methods are all related by the criterion
placement parameter. Criterion placement, ¢, reflects bias relative
to the zero-bias point where the valid and invalid distributions
intersect. Liberal biases (maximizing hits at the cost of increasing
false alarms) produce negative values of ¢, while conservative

biases (minimizing false alarms at the cost of a reduced hit rate)
produce positive values of c.

c= — 5[z(H) + z(F)]. 3)

In Figure 3B, the area under the valid distribution to the right of the
criterion corresponds to the hit rate (H), while the area under the
invalid distribution to the right of the criterion corresponds to the
false-alarm rate (F). It is assumed that several criterion positions
can be produced by subjects in the reasoning task, thus generating
different partitions of the strength axis as illustrated in the figure.
The degree of overlap between the distributions is an indication of
sensitivity; the greater this area is relative to either distribution, the
lower the overall sensitivity, regardless of criterion placement. The
areas under the valid and invalid distributions to the left of the
criterion correspond to misses (M) and correct rejections (CR),
respectively.

The ROC implied by this signal detection model can be gener-
ated by varying response bias in a continuous fashion while
holding sensitivity constant. Figure 3A shows that the model yields
a curvilinear ROC that is symmetrical about the minor diagonal.
Response bias is reflected in the points on the ROC: More con-
servative biases generate operating points on the left end of the
ROC (with low values of both H and F), and more liberal biases
result in operating points on the right (with higher values of both
H and F). Thus, points on the same ROC reflect equal sensitivity
but different levels of response bias.

If the ROC is transformed to normal-normal space, the result is
a zZROC, the slope of which estimates the ratio of the invalid and
valid argument standard deviations (o /o). Therefore, the slope of
the zZROC can be used to make inferences about the variances of
strength distributions; in particular, it allows evaluation of the
assumption that the variances are equal. In recognition experi-
ments, ZROC slope is often less than one, reflecting greater vari-
ability in the strengths of studied items relative to lures (Glanzer,
Kim, Hilford, & Adams, 1999; Heathcote, 2003; Ratcliff,
McKoon, & Tindall, 1994; Ratcliff, Sheu, & Gronlund, 1992). In
reasoning tasks, zROC slope is apparently also less than one,
reflecting greater variability in the strengths of valid or strong
arguments than of invalid or weak arguments (Heit & Rotello,
2005, 2008, in press; Rotello & Heit, 2009). Thus, for both
recognition and reasoning tasks, the underlying distributions have
unequal variance, which violates an assumption of the measure-
ment statistic d’.
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A major concern that applies regardless of the particular tasks or
dependent measures one chooses is whether the assumptions of a
given model have been met. For example, choosing d’ as a mea-
sure of sensitivity entails the assumption that the data are equal
variance and Gaussian in form. If the slope of the zROC is not one
or if the ROC is linear, then that assumption is violated. Similarly,
choosing H — F as a sensitivity statistic entails the assumption that
the ROC is linear and symmetric, a form that is consistent with
underlying equal-variance evidence distributions that are rectan-
gular in form. Empirical ROCs that are curvilinear or asymmetric
reflect a violation of that assumption. Violations of this type can
dramatically elevate the risk of committing a Type I error (Rotello
et al., 2008): Differences in response bias across experimental
conditions are easily (and frequently) misinterpreted as differences
in accuracy.

In the typical case where the empirical ROCs are curvilinear and
asymmetric, indicating that the equal-variance assumption has
been violated, one may choose to measure the distance between the
distributions (sensitivity) in units of either the stronger (d',) or
weaker (d',) distribution. Alternatively, the measure d, may be
substituted for d’, and the corresponding bias measure ¢, may be
substituted for c. These statistics set the standard deviation of the
lure or invalid distribution at 1 (without loss of generality) and the
standard deviation of the target or valid distribution at s and
measure distances in terms of the root-mean-square standard de-
viation (for derivation, see Macmillan & Creelman, 2005):

2 2
di= 147 [z(H) — sz(F)] = Vis 2% 4

~ s

c, = m [z(H) + z(F)] %)

An alternative method for measuring accuracy is simply to esti-
mate the area under the ROC using A_, which ranges from 0.5 for
chance performance to 1.0 for perfect accuracy (Macmillan,
Rotello, & Miller, 2004; Swets, 1986a, 1986b):

A—q><d") 6
z \5 ()

This method is preferable to d, for two reasons. First, Green and
Swets (1966) showed that when performance is unbiased, A_
equals proportion correct in the two-alternative forced-choice task.
Second, in a series of simulations comparing A_ and d,,, Macmillan
et al. (2004) showed that A_ is a relatively unbiased measure of
accuracy and has a smaller standard error than d,,.

Our experiments provide the first ROC data in the syllogistic
reasoning task, but ROCs from other reasoning tasks have been
curvilinear and asymmetric (Heit & Rotello, 2005, 2008, in press;
Rotello & Heit, 2009). Those data suggest two key points: (a) The
use of H — F as a measure of reasoning performance in the belief
bias task is probably inappropriate, and (b) application of d" would
confound sensitivity with response bias. Thus, we adopt the
unequal-variance framework in applying the signal detection
model to data from the syllogistic reasoning task.

Overview of Current Study

The goal of the present experiments was to evaluate the assump-
tion of ROC linearity in syllogistic reasoning, using novel analyt-

ical techniques and the application of quantitative models. If the
assumption of linear ROCs is not supported empirically, it is
important to know how this violation of assumptions impacts the
meaningfulness of the interaction index that is often reported in the
reasoning literature. If the interaction index is inappropriate for the
data, then theories of belief bias that follow from results obtained
with that measure are built on a faulty foundation. To investigate
this possibility, we collected ROC data for the conclusion-
evaluation task, using both the confidence-rating procedure de-
scribed previously (Experiments 1-3) and the base-rate method
(Experiment 3). We examined the effects of perceived base rates of
valid and invalid items (Experiment 1), actual base rates of valid
and invalid items (Experiment 3), and conclusion believability
(Experiments 2-3). Thus, two experiments included a factor ex-
pected to influence response bias but not reasoning accuracy, and
two included a belief bias manipulation that might affect either.
Across conditions in each study, we compared the results from the
interaction index (which relies on H — F) with the results from A_,
an SDT-based measure of the area under the ROC.

We fit the MPT model of Klauer et al. (2000) to our base-rate
ROCs, comparing its predictions and explanatory power with those
of our signal detection model. We also extended Klauer et al.’s
model to fit our confidence-rating ROCs. Although we tested only
the theoretically motivated SDT model that we have proposed, we
included several alternative instantiations of the high-threshold
model for the rating ROCs. In all cases, our MPT extensions
necessarily produced linear ROCs, as our primary question of
interest was whether the ROCs are linear and thus whether use of
the H — F interaction contrast is justified. Finally, following
Klauer et al.’s example, we conducted specific hypothesis tests for
each of the models to determine whether conclusion believability
affects accuracy, as assumed in all the theoretical accounts of the
belief bias effect, or response bias.

To preview our results, in each experiment, we demonstrated
that the assumption of a linear ROC implied by the interaction
index is unwarranted. Thus, the highly replicable interaction be-
tween validity and believability appears to be a consequence of
using an inappropriate measurement statistic (H — F) in the face of
response bias differences across experimental conditions (i.e., be-
lievability). Our data and analyses therefore challenge all existing
theories of belief bias because they are built on a flawed measure-
ment statistic: All existing theories are tacitly predicated on the
assumption of a linear ROC that is not observed empirically. In
addition, our modeling work reveals that the best description of
syllogistic reasoning ROCs is provided by the SDT model. Our
model suggests a new and more parsimonious account of the locus
of the belief bias effect.

Experiment 1

The aim of the present experiment was to assess the form of the
empirical ROC in a syllogistic reasoning task. In addition, we
manipulated response bias across two conditions so that we could
assess the impact of those bias changes on two different accuracy
measures, H — F and A_. Because base-rate manipulations have
been shown to affect response bias, but not sensitivity, in percep-
tion, memory, and reasoning experiments (Klauer et al., 2000;
Rhodes & Jacoby, 2007; Tanner, Rauk, & Atkinson, 1970), we
considered a perceived base-rate manipulation to be ideal for
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testing the robustness of H — F against changes in response bias
only. All subjects evaluated a set of abstract syllogisms, half of
which were valid and half of which were invalid. In the liberal
condition, subjects were instructed that 85% of the problems were
valid and 15% were invalid; in the conservative condition, the
instructions implied the converse. In both conditions, the actual
base rate of valid problems was 50%. Thus, intergroup differences
in H — F (i.e., a Base Rate X Validity interaction) could imply
either a true (but unexpected) sensitivity effect or a Type I error
(Rotello et al., 2008). ROC data allow us to distinguish these
alternatives because the area under the ROC provides a theoreti-
cally neutral assessment of performance (Swets, 1986a, 1986b).
Therefore, we asked subjects to follow each of their validity
decisions with a confidence rating; these ratings allowed the con-
struction of ROC curves for each condition.

We also fit and compared the signal detection and MPT models.
The purpose of fitting the signal detection model was to assess an
account that does not assume linear ROCs and has the potential to
provide measures of belief bias that do not depend on that assump-
tion. The purpose of fitting MPT models was to assess variants of
this important class of models that assume linear ROCs and to
examine what these models would infer about the nature of belief
bias. In Experiments 1 and 2, fits of the MPT model were accom-
plished by extending it to handle confidence ratings. There are
several ways in which the states of the MPT model can be mapped
onto confidence ratings (e.g., Broder & Schiitz, 2009; Malmberg,
2002); we chose two versions that we considered to be the most
faithful to the original model of Klauer et al. (2000). In Experiment
3, we repeated this analytic strategy, but we also fit the published
version of the MPT model, using the same method as Klauer et al.

Method

Subjects. Seventy-one undergraduates at the University of
California, Merced, participated; they received $5.00 for their
participation.

Design. Experiment 1 used a 2 (logical status: valid or in-
valid) X 2 (perceived base rate: 85% or 15% valid) mixed design.
All subjects were asked to evaluate the validity of 32 syllogisms,
half of which were actually valid and half of which were actually
invalid. Subjects were randomly assigned either to the conserva-
tive group (n = 34), in which they were told that 85% of the
problems were invalid, or to the liberal group (n = 37), in which
they were told that 15% of the problems were invalid (see Proce-
dure for details).

Stimuli. Sixteen syllogistic problem frames were used (see
Appendix D): Eight problem frames controlled for atmosphere
(Begg & Denny, 1969), conversion (Dickstein, 1975, 1981; Rev-
lin, Leirer, Yopp, & Yopp, 1980), and figural effects (Dickstein,
1978), and eight controlled for atmosphere and figure, but not
conversion. Although the design of this experiment did not require
control of these structural effects, this decision allowed use of
exactly the same problem frames in Experiments 2 and 3, where
conclusion believability was manipulated. Half of the eight prob-
lems in each set were valid, and half were invalid. To increase the
power of the design, each subject was presented with two versions
of each problem, for a total of 32 problems; the repeated problem
frames differed in their abstract content. Abstract content was
generated by choosing 24 letters of the alphabet (every letter

except A and M) and randomly assigning the letters to the posi-
tions of the predicate, middle, and subject terms (i.e., X, Y, and Z
in Example B). The assignment of content to structures was subject
to three constraints. First, no letter appeared more than twice
across the 32 problems. Second, no two letters appeared together
in more than one problem. Third, no letter occupied more than one
position in a given problem. Two different sets of 32 problems
were constructed by this method, each of which was presented to
approximately half of the subjects in each condition.

There were also five practice problems presented to each group
of subjects; these abstract problems did not share any of the same
problem frames as the 32 critical problems. The exact proportions
of valid and invalid practice syllogisms were varied to roughly
parallel the implied base rates in each experimental condition: The
conservative group practiced with four invalid problems and one
valid problem, and the liberal group practiced with four valid
problems and one invalid problem.

Procedure. All subjects were tested individually and were
seated approximately 2 ft in front of a computer monitor. The
instructions for the present task were similar to the instructions
used in other syllogistic reasoning studies (Klauer et al., 2000;
Newstead et al., 1992) but contained additional passages relating
to the base-rate manipulation. Specifically, subjects were told:

In this experiment, we are interested in people’s reasoning.

For each question, you will be given some information that you should
assume to be true. This will appear ABOVE a line. Then you will be
asked about a conclusion sentence BELOW the line. If you judge that
the conclusion logically follows from the statements, you should
answer “Valid”, otherwise you should answer “Not Valid”. Next, you
will be asked how confident you are in this judgment.

You should just answer each question as best as you can, based on the
information available.

Please ask the experimenter if you have any questions.

An important thing to remember is that 85% of the problems in this
experiment are actually [valid/not valid], and only 15% of them are
[invalid/valid]. So, if you need to guess whether a problem is valid or
not, you should always guess [“Valid”/“Not Valid”].

Following the instructions, subjects advanced through the five
practice trials and then the 32 critical trials. Stimuli within each
phase of the experiment were randomized for each subject. Sub-
jects made validity decisions via keypress (J/ = “valid”; F =
“invalid”). After each “valid”/“invalid” response, subjects were
asked to rate their confidence on a scale of 1 to 3 (1 = Not at all
confident, 2 = Moderately confident, 3 = Very confident). Be-
cause the ratings ranged from low to high confidence for “valid”
and “invalid” responses, there was a total of six possible response
categories. We subsequently recoded the responses with the num-
bers 1-6, where 1 reflects a high-confidence “valid” judgment, 3
reflects a low-confidence “valid” judgment, 4 reflects a low-
confidence “invalid” judgment, and 6 reflects a high-confidence
“invalid” judgment.

Results

The proportion of conclusions accepted (summarized in Table
2) was first analyzed using methods similar to those used in the
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Table 2
Hit Rate (H), False-Alarm Rate (F), and Contrast Results for
Experiments 1-2

H=P F=P
Experiment Condition (“Valid”’IValid) (“Valid”lIlnvalid) H — F
1 Liberal .79 .67 12
Conservative 55 31 24
2 Believable .86 .61 25
Unbelievable .68 32 .36

reasoning literature. A 2 X 2 mixed analysis of variance
(ANOVA) was conducted with validity as a within-subjects factor
and perceived base rate (low vs. high) as a between-subjects factor.
The ANOVA confirmed that subjects accepted more valid than
invalid conclusions (H — F > 0), F(1, 69) = 69.964, MSE = .017,
p < .001, m? = .503. Our bias manipulation also had the intended
effect: Subjects’ overall acceptance rates were higher in the liberal
than in the conservative condition, F(1, 69) = 57.353, MSE =
056, p < .001, n* =.454. Finally, these two factors interacted:
H — F was greater for subjects in the conservative condition, F(1,
69) = 7.713, MSE = .017, p < .01, 7> = .101, implying that
accuracy was higher for that group than for the liberal group.
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ROCs for the conservative and liberal conditions are plotted in
Figure 4A. As can be seen in the figure, the operating points for the
liberal group (circles) are displaced upward and rightward relative
to the corresponding points for the conservative group (squares),
indicating a main effect of condition on response bias that is
consistent with the ANOVA results. The height of the two ROCs
in the space is similar, however, suggesting that there is little
difference in accuracy across the groups. We confirmed this ob-
servation using Metz’s ROCKIT software (Metz, 1998) to com-
pare A_ for the two conditions: There was no significant difference
in accuracy (z = 0.50, p = .60).

Although the interaction between condition and validity that was
observed in the acceptance rates (H — F) appears to contradict the
conclusion that there is no difference in accuracy (A_) between the two
conditions, this apparent discrepancy is readily explained by the forms
of the implied and empirical ROCs for the two conditions. As noted
previously, ROCs implied by the accuracy measure H — F are linear
with unit slope. The y-intercept is obtained by subtracting F* from H
for each group and equals .24 and .12 for the conservative and liberal
groups, respectively (see Table 2). The corresponding implied ROCs
are superimposed on the observed ROCs in Figure 4A. Two points are
evident in the figure. First, the intercept for the conservative condition
is higher than that for the liberal condition, consistent with the con-
clusion based on acceptance rates that subjects in the conservative
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Figure 4. Empirical receiver operating characteristics (ROCs) for Experiments 1-3. ROCs implied by H — F
are superimposed on the observed data (dashed lines). A: ROCs for the conservative (squares) and liberal
(circles) conditions of Experiment 1. B: ROCs for unbelievable (squares) and believable (circles) problems,
Experiment 2. C: ROCs for unbelievable (squares) and believable (circles) problems, Experiment 3. D: ROCs
for the conservative (squares), liberal (circles), and neutral (diamonds) conditions of Experiment 3.
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condition were better able to detect the difference between valid and
invalid problems. Second, the ROCs implied by H — F do not fit the
data well, suggesting that this accuracy measure is not appropriate for
the data.

Models fit. We fit three different models to these data: two
MPT models (MPT1 and MPT2) and our signal detection model.
MPT fits were accomplished by extending Klauer et al.’s (2000)
model to allow confidence ratings. (See Malmberg, 2002, for
related efforts to fit rating data with multinomial models.) In the
most basic, eight parameter version of the model depicted in
Figure 5, we assumed that high-confidence responses follow di-
rectly from entry into the detect state (D+), yielding a “1” re-
sponse for valid detection and a “6” response for invalid detection.
The probability of a high-confidence error—(P(“1”lInvalid) or
P(“6”IValid)—was set to an arbitrarily small, nonzero, value
(.0000001). This version of the model, which we call MPT1,
follows Klauer et al. in making the strong assumption that subjects
virtually never produce high-confidence errors. We assumed that
lower confidence responses, Ratings 2-5, are made only from
nondetect states. When the subject has guessed, with probability 3,
that the item is valid, then the response “2” is given with proba-
bility a, and the response “3” with probability 1 — «,. When the
item is guessed to be invalid, then the response “4” is given with
probability o, and the response “5” with probability 1 — o,. This
model requires two reasoning parameters (r,, r;) and one response
bias parameter () for each condition, as well as two parameters
that map internal states onto confidence ratings (o, o).

According to this strict version of the model, entry into State
D+ always leads to a high-confidence, correct response; invalid
items essentially never result in a high-confidence error. As noted

Valid Liberal

Valid
Conservative

by Klauer et al. (2000), it may be inappropriate to assume that
reasoners never make errors “which they then hold with high
confidence” (p. 857), in which case the model must be modified.
In discussing this issue, the authors wrote, “False positive deci-
sions are, in fact, an important topic of the present theoretical and
empirical argument. The new theory of belief bias developed later
allows one to specify the conditions under which they arise fre-
quently” (Klauer et al., 2000, pp. 857-858). The conditions in
question appear to necessitate the use of one-model problems,
which were not used in the present experiments. For this reason, the
MPT extension in Figure 5 is the ratings version that is most faithful
to Klauer et al.’s description. Nonetheless, high-confidence errors
were observed in all of the previous studies reported by Heit and
Rotello (2005, 2008, in press) and Rotello and Heit (2009), and the
same is clearly true in Experiment 1 (see Figure 4A). To account for
high-confidence errors, we also implemented a different mapping of
internal states to confidence ratings, MPT2. Rather than assuming
high-confidence errors occurred with probability .0000001, in MPT2
that probability was a free parameter, €. Those high-confidence errors
are assumed to arise from decision noise (e.g., random responding) or
other non-reasoning-based processes.

As suggested by a reviewer, we also fit an MPT model (MPT-R)
in which any confidence rating (R), including “sure valid,” could
be given from the uncertain state (D—). This model is capable of
producing ROCs that approach the curved functions generated by
SDT models, and thus, this analysis does not speak at all to the
measurement issue under examination in this study. The conclu-
sions reached with MPT-R agreed substantially with those of our
other MPT models, and this model consistently failed to outper-
form the SDT model. Thus, we do not discuss this model any

Invalid
Liberal

Invalid
Conservative

Figure 5. MPT1: the multinomial processing tree (MPT) model proposed by Klauer, Musch, and Naumer
(2000), extended to the ratings design of Experiment 1. Slightly modified versions of this basic framework were
applied to data from Experiments 1-3, as described in the text. In MPT1, the probability of a high-confidence
error—P(“1”lInvalid) or P(“6”IValid)—was set to an arbitrarily low value (.0000001). D+ = detect state; D—
= nondetect state; r = reasoning-stage parameter; . = conservative; ; = invalid; ; = liberal; , = valid.
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further, though we have reported the statistics for all MPT-R fits in
Appendix B. The equations for the MPT1, MPT2, and MPT-R
models are provided in Appendix A.

Finally, we also fit an unequal-variance signal detection model
in which responses were presumed to be made along a single
dimension of argument strength. To fit each condition, this model
requires two reasoning parameters (w,, o,) and five decision
criteria (c,—cs). Equations are provided in Appendix A.

Best fitting parameter values were estimated for each model by
using Excel’s Solver routine to minimize G? (Dodson, Prinzmetal,
& Shimamura, 1998). Model selection was accomplished by com-
paring values of the Akaike information criterion (AIC; Akaike,
1973) and the Bayesian information criterion (BIC; Schwartz,
1978) for each condition (both conditions lead to the same con-
clusion). These statistics combine a goodness-of-fit statistic, In(L),
the log-likelihood of the data given the model, with a penalty for
the number of free parameters (k):

AIC = — 2In(L) + 2k, (7)
BIC = — 2In(L) + kIn(n). (8)

BIC weights the parameters as a function of the sample size, n. The
resulting values of both AIC and BIC are smaller for more parsi-
monious models, assuming equivalent goodness of fit (Myung,
Pitt, & Kim, 2003). The parameter penalty in BIC is more severe;
thus, both measures are usually reported.

Modeling results. Consistent with the visually poor fit of the
ROCs implied by the measure H — F, shown in Figure 4A, the fit of
the simple MPT1 model to the ROCs was very poor in all compari-
sons. As such, we report only the augmented version of the MPT
model (MPT?2), which allowed for the possibility of high-confidence
errors. Fit statistics for MPT1 can be found in Appendix B. MPT2
provided a much better fit to the ROCs than did MPT1, but a very
similar pattern of parameter values was obtained.

The best fitting parameter values for each model are shown in
Table 3, and several fit statistics are presented in Table 4. All of
the fit statistics indicate that the SDT model provides the better fit
to the data. The ROCs generated with the best fitting parameter

Table 3
Best Fitting Parameter Values for MPT2 and SDT, Experiment 1

Model Parameter Liberal condition Conservative condition

MPT2 r, .54 .32
r; 21 32
B .68 42
o, .82
oy 24
€ 17

SDT i 0.50 0.56
o, 1.16 1.21
¢ 0.51 1.30
¢ —0.21 0.55
5 —0.44 0.46
Cy -0.53 0.19
Cs —1.05 —0.54
d, 0.46 0.50

a

Note. In the SDT, d, is computed from ., and o, (see Equation 4 in the

text) and is not an extra free parameter. MPT2 = Multinomial Processing
Tree 2 model; SDT = signal detection theory model.

Table 4
Fit Statistics for MPT2 and SDT in Experiment 1

MPT2 SDT
Condition AIC BIC G AIC BIC G5y
Liberal 3,661.65 3,962.11 106.24 3,559.23 3,594.77 1.83
Conservative  3,579.69 3,609.64 56.67 3,530.44 3,565.38 5.42

Note.  MPT2 = Multinomial Processing Tree 2 model; SDT = signal
detection theory model; AIC = Akaike information criterion; BIC =
Bayesian information criterion.

values of each model are shown in Figure 6, separately for the
liberal and conservative conditions. As is clear in the figure, MPT2
generates ROCs that fail to adequately capture the observed func-
tions: The shapes of the ROCs are too linear, and the predicted
operating points (shown as crosses) do not correspond well to the
observed points (shown as circles). In contrast, the shape of the
SDT-generated ROC is closer to that of the data, and each pre-
dicted operating point falls near the corresponding observed point
in the data. The fact that the SDT model provides a better account
of the data confirms that the ROCs are not linear, supporting our
claim that A_ is a better measure of accuracy than H — F for these
results.

The parameter values of the models (see Table 3) make clear
that both models find a substantial effect of condition on response
bias: The (3 parameter of MPT2 is larger for the liberal condition
than the conservative condition, reflecting an increased tendency
to guess “valid,” and there are more negatively valued (i.e., liber-
ally placed) criteria in the liberal condition according to SDT,
reflecting greater willingness to say “valid.” To evaluate the sig-
nificance of these response bias differences, the bias parameters
for each model were constrained to be equal across conditions, and
G? values for these restricted models were computed. If the re-
striction significantly reduces the fit of the model, then we can
infer that different bias parameters are needed. The restricted
version of each model is nested within the corresponding full
model, and the difference in the fit (G2 ;ceq — Gran) is distributed
as a chi-square with degrees of freedom (df) equal to the difference
in the number of free parameters. For MPT2, the restricted model
assumes 3, = 3., and the full model does not, for a difference of
one parameter and thus one degree of freedom. For SDT, the
restricted model assumes a single set of criteria (¢; ... cs),
whereas the full model estimates separate criteria for each condi-
tion, for a difference of five degrees of freedom. The chi-square
test indicated the restriction of equal response bias parameters
significantly reduced the fit of both models (MPT2: AG?,;
=84.508, p < .001; SDT: AGZ,; = 188.402, p < .001). Therefore,
both models conclude that response bias differs between condi-
tions, an unsurprising result given the design of the experiment.

A more interesting question asks what the models conclude
about the reasoning process: Do both models predict equal accu-
racy across conditions, consistent with the empirical ROCs? It can
be seen that, in fact, the MPT2 and SDT models differ in their
assessment of the degree to which accuracy differs by condition.
Table 3 suggests that there is an interaction between condition and
validity in the reasoning-stage parameters of MPT2, with r,, > r,.
and r;; < r,.. As can be seen in Figure 6, this amounts to differ-
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Figure 6. A: Observed (circles) and MPT2-predicted (crosses) receiver operating characteristics (ROCs) for
the liberal condition of Experiment 1. B: Observed and MPT2-predicted ROCs for the conservative condition.
C: Observed (circles) and SDT-predicted (crosses) ROCs for the liberal condition of Experiment 1. D: Observed
and SDT-predicted ROCs for the conservative condition. MPT2 = Multinomial Processing Tree 2 model;

SDT = signal detection theory model.

ences in ROC height and slope across the conditions. To confirm
this pattern, the r parameters were constrained to be equal across
the groups, at each level of validity (i.e., the constraint r,, = r,,
ry, = r,, was imposed), thus freeing two degrees of freedom for the
chi-square test. This restriction resulted in a significant reduction
in fit for MPT2 (AG3,; = 62.939, p < .001). An analogous test of
the reasoning stage in the SDT model implies the restrictiond,, . =
d, ;. In Equation 4, it can be seen that the sensitivity parameter d,,
depends on both d', (w,/o,) and s (1/0,). Thus, d, is calculated
from the free parameters of the model, rather than serving as an
additional parameter, and imposing the restriction frees two pa-
rameters for the chi-square test. The restriction of equal sensitivity
and slope for the liberal and conservative groups had little effect
on the fit of the SDT model (AG54; = 0.42, p > .750).> Thus, only
SDT infers that subjects in the two groups perform at similar
accuracy levels,* consistent with our expectations: Subjects
were randomly assigned to experimental conditions, and the
perceived base-rate manipulation was expected to affect re-
sponse bias but not accuracy (Klauer et al., 2000).
Discussion. The results from Experiment 1 indicated our ma-
nipulation of perceived base rate had the desired effect on response
bias, though the presence of an apparent accuracy effect was
shown to depend on whether or not the ROCs were assumed to be
linear. A test of ROC area (A_) indicated, contrary to the results in
H — F (see Table 2), that there was no difference in accuracy

across the two conditions. The MPT2 model indicated effects of
condition on both the reasoning and response stages of the model,
consistent with the results in H — F, whereas the SDT model
indicated effects on response bias only, consistent with A_. The
SDT model provided the best fit to the data, confirming what is
apparent in Figure 4: The ROCs are not linear, and there is no
difference in accuracy across the groups. We conclude that appli-
cation of the measure H — F produced a Type I error in the
analyses of the acceptance rates shown in Table 2, consistent with
the predictions of Rotello et al. (2008).

3 We also fit an equal-variance version of the SDT model in which the
distributions of valid and invalid problems were assumed to have the same
variance; this model fit significantly worse than the model with free
variance (AG>y; = 13.14, p < .01).

4We also considered whether artifacts from averaging over subjects
could account for the success of the SDT model. Although we did not have
enough data to model individual-subject ROCs, we did fit the ROCs for a
group of 15 high- and 15 medium-accuracy subjects (chance-level ROCs
are necessarily linear, rendering low-accuracy groups less informative).
For both the medium- and high-performing groups, the SDT model fit
significantly better than the MPT model (SDT G34 = 1.37 and 4.01,
respectively; MPT G54 = 26.48 and 41.16, respectively). We reached
analogous conclusions in analyses of subgroups in Experiment 2 and 3.
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In summary, Experiment 1 revealed that a response bias manip-
ulation in a syllogistic reasoning task produced an artifactual
accuracy effect as measured with H — F. Because accuracy effects
in the belief bias task are typically measured with a contrast
involving H — F, one implication is that the apparent accuracy
effects in the belief bias task could be the result of response bias
differences across the believability of the conclusion. The goal of
Experiment 2 was to investigate the locus of belief bias effects
using ROC analysis and model-based comparisons.

Experiment 2

Experiment 2 used a design similar to that of Experiment 1 but
with a manipulation of conclusion believability rather than per-
ceived base rate. As in typical studies of the belief bias effect,
subjects in Experiment 2 evaluated the conclusions of four kinds of
syllogisms: those with believable and unbelievable conclusions,
each of which was equally likely to be logically valid or invalid.
As in Experiment 1, we compared summary statistics based on
H — F (including the interaction index), ROC area (A.), and
quantitative models (SDT and MPT2) to more thoroughly assess
accuracy effects. Believability-based differences in H — F (the
Belief X Logic interaction) in this case could imply a true sensi-
tivity effect or a Type I error (Rotello et al., 2008) depending on
the nature of the empirical ROC functions and the conclusions of
the best fitting model.

Method

Subjects. Thirty-eight undergraduates at the University of
Massachusetts (Amherst, MA) participated; they received extra
credit in their psychology courses in exchange for their participa-
tion.

Design. Experiment 2 used a 2 (valid or invalid problem) X 2
(believable or unbelievable conclusion) within-subjects design. All
subjects were asked to evaluate the validity of syllogisms that
differed in their logical status and conclusion believability.

Stimuli. All subjects were presented with the same 16 syllo-
gistic problem frames as in Experiment 1. The abstract content
used in Experiment 1 was replaced with meaningful content; each
problem frame was assigned content that led to one believable
conclusion and one unbelievable conclusion, thus providing a total
of 32 problems. All sets of content were randomly assigned to the
32 problem structures.

Meaningful content for 13 problems was taken from a previous
study (Morley et al., 2004); new content was generated for the
remaining 19 problems. For the new content, conclusion believ-
ability was rated in a separate study. Fifty-nine psychology under-
graduates at the University of Massachusetts rated the believability
of a large set of potential conclusion statements, presented in
isolation, on a 1-5 scale (1 = unbelievable, 3 = neutral, 5 =
believable). Items that elicited the most extreme ratings, on aver-
age, were selected to serve as conclusions in Experiment 2. (See
Appendix C for a detailed list of the conclusions and ratings.) All
content was chosen such that the conclusions described a
category—exemplar relationship between the subject and predicate
terms. To minimize the effects of premise believability, subject
and predicate terms were linked via an esoteric middle term. For
example:

No sculptors are Hammerkops.

Some Hammerkops are not artists.

xSome artists are not sculptors. (D)

The semantic content was counterbalanced across subjects such
that it appeared in both believable and unbelievable forms and both
valid and invalid structures. Between subjects, modulation of
believability was accomplished by reversing the order of assign-
ment of words to the subject and predicate positions. In other
words, for each subject who received the conclusion “Some spi-
ders are not insects,” an equal number received the conclusion
“Some insects are not spiders,” and no subject received both
conclusions. Furthermore, for each of the 16 structures, the actual
believable or unbelievable content was also varied so that, for
example, the structure in Example D received one set of content
(e.g., artists/sculptors/Hammerkops) for one subset but a different
set of content (e.g., insects/spiders/metazoans) for another subset.
Counterbalancing the content by believability and validity thus
yielded four subsets of 32 problems, with each structure containing
a unique set of content in each subset.

As we described in the Method section of Experiment 1, half of
the problem structures allowed illicit conversion, which has pre-
viously been described as a structural confound in belief bias
experiments (Evans et al., 1983; Revlis, 1975; Revlin et al., 1980).
Although the premise quantifiers in half of our problems were
convertible, conversion of each problem would lead to the same
response; thus, these particular problems should not influence the
belief bias effect.

Finally, all subjects received three valid and two invalid practice
problems with different structures, selected from the pool of ab-
stract stimuli used in the practice phase of Experiment 1.

Procedure. All subjects were tested individually. The proce-
dure was identical to that of Experiment 1 except that the instruc-
tions did not mention any base-rate manipulation.

Results

The proportion of conclusions accepted is reported in Table 2 as
a function of the validity and believability of the conclusion.
Similar to Experiment 1, we analyzed these responses using a 2 X
2 ANOVA with logical status and believability as within-subjects
factors. Subjects were more likely to accept valid than invalid
conclusions, F(1, 37) = 59.55, MSE = .061, p < .001, n2 = .617,
and they were more likely to accept believable than unbelievable
conclusions, F(1, 37) = 38.24, MSE = .054, p < .001, n? =.508.
Importantly, these factors interacted: There was a greater effect of
logical status for unbelievable than believable problems, F(1,
37) = 6.50, MSE = .020, p < .05, * =.150. This pattern of
responses replicates previous studies of belief bias (e.g., Evans et
al., 1983).

The increased tendency to accept problems with believable
conclusions may indicate a form of response bias, akin to the
response bias displayed by subjects in the liberal condition of
Experiment 1. To evaluate that possibility, we used the confidence
ratings to generate ROCs for believable and unbelievable prob-
lems; the results are plotted in Figure 4B. As expected from the
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values of H and F, the operating points for believable problems are
displaced upward and rightward relative to the corresponding
points for unbelievable problems, indicating a main effect of
believability on response bias: Subjects responded “valid” more
often to problems with believable conclusions. The points for both
believable and unbelievable problems appear to lie on a single
ROC, however, indicating that subjects showed little to no differ-
ence in accuracy when judging conclusion validity. A comparison
of A, for believable and unbelievable ROCs was consistent with
this interpretation, indicating there was no difference in the area
under the ROC as a function of problem type (z = 0.62, p = .54).

As in Experiment 1, the source of the measurement discrepancy
is apparent upon consideration of the implied and observed ROCs.
In Figure 4B, the linear functions implied by H — F are superim-
posed on the observed responses to believable and unbelievable
problems. The effect of the believability manipulation in the
present experiment is similar to the effect of perceived base rates
in Experiment 1: A change in response bias resulted in a change in
the y-intercepts of the ROCs implied by H — F.

Models fit. As with Experiment 1, we fit two versions of a
multinomial model to the data, though the fit of the model corre-
sponding to MPT1 was again very poor in all comparisons and is
not considered further. Minor modifications were made to MPT2
to account for the believability factor in the design. First, rather
than four reasoning-stage parameters to measure detection of valid
(v) and invalid (i) problems for the conservative (¢) and liberal (/)
groups of Experiment 1, there were four parameters for detection
of valid and invalid problems with unbelievable (#) and believable
(b) conclusions. In other words, the parameters r,, r,., 7;, and r;.
were replaced with the four reasoning-stage parameters (r,,, 7.,
'y 1) Of Klauer et al.’s (2000) model. Second, the two condition-
defined response-stage parameters used to fit the data of Experi-
ment 1 (3, and B,.) were replaced with the two believability-
defined response-stage parameters of Klauer et al.’s model (3, and
B,). These changes resulted in a full (unconstrained) model with
nine parameters. Thus, MPT?2 as applied to these data is a direct
extension of Klauer et al.’s model to a confidence-rating design.

As with Experiment 1, we also fit a signal detection model to the
data. For the SDT model, H — F is an inappropriate accuracy
measure; if the SDT model fits the data better than the multinomial
model, then conclusions based on H — F are likely to be erroneous
(Rotello et al., 2008).

Modeling results. The best fitting parameter values for each
model are presented in Table 5, and fit statistics are presented in
Table 6. As in Experiment 1, the SDT model consistently provided
a better fit than the MPT2 model. Using the parameter values in
Table 5, we generated predicted ROCs for each condition; these
are presented in Figure 7 along with the observed data. As is clear
in the figure, the MPT2 model produces ROCs that do not ade-
quately describe the observed ROCs: The form of each predicted
ROC is too linear, and the predicted operating points do not
correspond very well to the observed points. In contrast, the
parameters of the SDT model generate ROCs that are more similar
in form to the empirical ROCs, and each point predicted by the
model falls near the corresponding observed point. The fact that
the SDT model again provides a better description of the data
confirms the nonlinearity that is visually apparent in Figure 4B and
adds further support for our claim that A_ is a better measure of
accuracy for conclusion-evaluation data than H — F.

Table 5

Best Fitting Parameter Values for MPT2 and SDT, Experiment 2

Model Parameter Believable Unbelievable

MPT2 r, .59 .50
r, 2 35
B 67 45
o, .83
oy 21
€ .16

SDT M, 0.73 0.93
o, 1.06 1.32
c 0.58 1.17
x —0.19 0.57
3 -0.33 0.40
4 —0.48 0.26
cs —0.96 —0.48
d 0.71 0.79

a

Note. In the SDT, d, is computed from w, and o, (see Equation 4 in the
text) and is not an extra free parameter. MPT2 = Multinomial Processing
Tree 2 model; SDT = signal detection theory model.

The parameter values obtained with MPT2 are similar to those
reported by Klauer et al. (2000). The reasoning-stage parameters
r,, and r;, are lower than the values for r,, and r,,, respectively,
indicating that reasoning is reduced when there is a conflict be-
tween logical status and believability at a given level of validity.
There also appears to be an effect of believability on the response
bias parameter (3, with 3, > (3, suggesting the observed interac-
tion between logical status and believability is a product of effects
on both the reasoning stage and response stage. The pattern of
parameters in the SDT model suggests a different story, however,
with marked effects on the response criteria (more negative criteria
for believable than for unbelievable problems) and relatively
smaller effects on the sensitivity measure d,, which is derived from
the free parameters of the model.

To evaluate the significance of the parameter differences across
levels of believability, hypothesis tests were conducted for both
models by constraining certain parameter values to be equal for
believable and unbelievable problems. For the response stage in
MPT?2, a null effect of believability suggests a restricted model in
which 3, = B, Imposing this restriction significantly reduced the
fit of the multinomial model (AG? 4 = 28.73, p < .001), indicating
an effect of believability on the response stage. An analogous test
of response bias in the SDT model implies a single set of criteria
(cy .. .cs) for believable and unbelievable problems. Imposing this
restriction also reduced the fit of the SDT model (AG2,; = 64.70,
p < .001). Thus, the models concur that one effect of believability
is to shift response bias.

A more critical question is whether the models attribute perfor-
mance differences for believable and unbelievable problems to a
difference in the accuracy with which the validity of the conclu-
sions is judged. In the multinomial model, we addressed this
question by considering the reasoning-stage parameters, r,,, 7.,
ry, and r;,. If believability affects accuracy, then constraining the
model parameters so that reasoning is equally successful for be-
lievable and unbelievable problems at each level of validity (i.e.,
the restrictions r,,, = r,,, and r;, = r,,) should worsen the fit of the
model. Imposing this restriction markedly reduced the fit of the
model (AG3,; = 14.63, p < .001), indicating an interaction at the
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Table 6
Fit Statistics for MPT2 and SDT in Experiment 2
MPT2 SDT
Conclusion AIC BIC Gy AIC BIC G3ys
Believable 1,820.33 1,846.79 83.60 1,748.68 1,779.55 9.95
Unbelievable 1,918.82 1,945.28 3334 1,900.47 1,931.34 12.99

Note.  MPT2 = Multinomial Processing Tree 2 model; SDT = signal
detection theory model; AIC = Akaike information criterion; BIC =
Bayesian information criterion.

level of the reasoning-stage parameters as previously reported by
Klauer et al. (2000). An analogous test of the reasoning stage in the
SDT model implies the restriction d,, , = d, . As d, depends on
both the distance between the valid and invalid distributions (.,
and the ratio of the valid and invalid standard deviations (1/0,; see
Equation 4), a test of equal sensitivity implies equal slope and
mean separation for believable and unbelievable problems, which
frees two degrees of freedom for the chi-square test. Imposing this
constraint had little effect on the fit of the SDT model (AGZ,; =
2.39, p > .25), indicating a negligible effect of believability on
accuracy.’

To summarize, SDT outperforms MPT2° and suggests there is
no effect of conclusion believability on sensitivity to logical status.
The results for MPT?2 replicated the pattern in the reasoning-stage
parameters observed in Klauer et al. (2000) but failed to capture
the form of the observed ROCs and thus provided a worse fit. The
MPT?2 model indicated an interaction at the level of the reasoning-
stage parameters, consistent with the results in H — F (see Table
2), a statistic that is not appropriate for these data because the
observed ROCs are not linear.

Discussion. These data replicated the standard belief bias ef-
fect in all respects: Subjects accepted significantly more valid than
invalid and more believable than unbelievable conclusions. In
addition, the key interaction between believability and validity in
the conclusion acceptance rates was observed. Interestingly, in a
pattern of results similar to that of Experiment 1, accuracy, as
measured by the area under the ROC (A,), did not differ with
conclusion believability. Furthermore, the SDT model, which as-
sumes a nonlinear ROC, consistently outperformed the MPT2
model in describing the data. Hypothesis tests carried out on both
models revealed opposing conclusions regarding the locus of the
belief bias effect, with MPT2 locating the effect in both the
reasoning and response stages and the SDT model inferring an
effect solely on the response stage. The interaction between be-
lievability and validity and the notion (supported by the MPT2
model) that believability acts on the reasoning stage appear to be
the result of inflated Type I error associated with the linearity
assumption (Rotello et al., 2008).

These data present a pattern of acceptance rates and MPT model
parameters similar to those described by Klauer et al. (2000).
However, our design did not provide enough data for a between-
subjects analysis of group-averaged acceptance rates analogous to
that reported by Klauer et al. (i.e., the design provided too few data
points relative to the number of free parameters in the original
model). As such, it is possible that our novel extension of the MPT
model to ROC data (i.e., the proposed mapping of the internal

states to confidence ratings) produced conclusions that would not
have been reached had the group analysis been possible. To
address this issue, Experiment 3 included a base-rate manipulation
in addition to the belief bias manipulation of Experiment 2. Thus,
the data collected in Experiment 3 allowed us to apply the same
model-fitting and ROC-based analysis strategy as in Experiments
1 and 2, while also allowing us to employ Klauer et al.’s model-
fitting strategy.

Experiment 3

In Experiment 3, three separate groups of subjects performed the
belief bias task from Experiment 2. The groups differed only with
respect to the actual base rates of valid and invalid syllogisms that
were presented. In the liberal group, subjects were instructed that
60% of the problems would be valid and 40% would be invalid;
they were then presented with 32 valid and 22 invalid problems. In
the conservative group, the subjects were instructed that 40% of
the problems would be valid and 60% would be invalid; they were
then presented with 22 valid and 32 invalid problems. In the
neutral group, subjects were told that 50% of the problems would
be valid and 50% would be invalid; they were then presented with
27 valid and 27 invalid problems.

The addition of the base-rate manipulation to the design of
Experiment 2 allowed us to fit the MPT model to the average
acceptance rates for three groups differing only in response bias, as
in Klauer et al. (2000). For this analysis, the original model used
by the authors was applied; no additional parameterization was
necessary. The model, which we refer to as MPTK, is illustrated in
Figure 1. As in Klauer et al., each tree in Figure 1 was extended
with an extra response bias parameter «,, where x = low, medium,
or high, corresponding to the base-rate conditions; the baseline
model for acceptance rates thus contains nine parameters. The
equations for MPTK can be found in Appendix A.

As in Experiment 2, Klauer et al.”s (2000) MPT model was also
extended to the confidence-rating data. The model was fit to ROCs
for the conservative, liberal, and neutral groups and for believable
and unbelievable arguments. The fit to ROCs allowed comparison
of the parameter values with those obtained in the fit to average
acceptance rates, as well as comparison with the SDT model. To
examine the locus of effects stemming from base rates and con-
clusion believability, hypothesis tests were conducted by con-
straining certain parameter values to be constant across conditions.
The ROC data were again used to supplement an analysis using
H — F, to provide a more thorough examination of believability
and base-rate effects indicated in the observed response propor-
tions.

The present design also included a greater number of trials per
subject, to increase the number of observations contributing to the
operating points of the ROCs and to increase our power to detect
the effects of the base-rate manipulation.

5 As in Experiment 1, constraining the variances of the valid and invalid
distributions to be equal impaired the fit (AG3;; = 8.73, p < .02).

¢ As in Experiment 1, we also fit the ROCs for a group of 15 high- and
15 medium-accuracy subjects to evaluate whether averaging over subjects
changed the model selection results. For both groups, the SDT model fit
significantly better than the MPT model (SDT medium-accuracy G2, =
1.16 and high-accuracy 14.19; MPT G354 = 42.50 and 20.77).
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Figure 7. A: Observed (circles) and MPT2-predicted (crosses) receiver operating characteristics (ROCs) for
believable problems, Experiment 2. B: Observed and MPT2-predicted ROCs for unbelievable problems. C:
Observed (circles) and SDT-predicted (crosses) ROCs for believable problems in Experiment 2. D: Observed
and SDT-predicted ROCs for unbelievable problems. MPT2 = Multinomial Processing Tree 2 model; SDT =

signal detection theory model.

Method

Subjects. Seventy-two undergraduates at the University of
Massachusetts volunteered to participate in exchange for extra
credit in their psychology courses.

Design. Experiment 3 used a 2 (validity) X 2 (believability) X
3 (base rate) mixed design. All subjects were asked to evaluate the
validity of 54 syllogisms differing in logical status and conclusion
believability. Subjects were randomly divided into three groups
differing in the proportion of valid and invalid syllogisms. Subjects
in the conservative group received 11 believable valid, 11 unbe-
lievable valid, 16 believable invalid, and 16 unbelievable invalid
syllogisms. Subjects in the liberal group received 16 believable
valid, 16 unbelievable valid, 11 believable invalid, and 11 unbe-
lievable invalid syllogisms. In the neutral group, subjects received
equal numbers of valid, invalid, believable, and unbelievable syl-
logisms.

Stimuli. All subjects evaluated 54 syllogisms, created using
the four subsets of 32 stimuli from Experiment 2. Subjects re-
ceived two blocks of stimuli (although the blocking was not
apparent to them). The same set of structures contributed to both
blocks, the main difference being in the actual content used to
construct the stimuli for a given subject in each block. In the first
block, subjects received the believable (or unbelievable) version of
each set of content (e.g., “Some skyscrapers are not buildings”),

and in the second block, they received the unbelievable (or believ-
able) version of the same set (e.g., “Some buildings are not
skyscrapers”). The version in the second block was always as-
signed to a different structure with the same validity status as in the
first block. The assignment of content sets to validity status was
also counterbalanced between subjects, so that, for example, the
set containing skyscrapers/buildings appeared in both valid and
invalid structures.

For the conservative group, subjects evaluated 22 valid syllo-
gisms, randomly sampled from the sets corresponding to Blocks 1
and 2, with the constraint that equal numbers of believable and
unbelievable stimuli appeared in the sample. In the first block,
subjects received either five believable (and six unbelievable)
valid syllogisms or six believable (and five unbelievable) valid
syllogisms. The numbers for each subject were reversed in the
second block, so that each subject evaluated a total of 11 believ-
able valid and 11 unbelievable valid syllogisms in the conservative
group. All 32 invalid stimuli (16 per block) were presented in the
conservative condition; half of these were believable, and half
were unbelievable. The same logic was applied to the liberal
group; counterbalancing thus meant each subject in the liberal
group evaluated 11 believable invalid and 11 unbelievable invalid
syllogisms; all 32 valid stimuli were presented in the liberal
condition. In the neutral group, subjects received equal numbers of
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valid and invalid stimuli. As 54 stimuli were used, with the
constraint that equal numbers of valid, invalid, believable, and
unbelievable problems were presented, it was necessary to coun-
terbalance the exact number of problems in each of the four cells
defined by problem type. Thus, subjects received six stimuli from
one of the four problem types in Block 1 (and seven from each of
the other three types in the same block) and six from the type in
Block 2 that differed in both believability and validity status from
the set of six stimuli in Block 1 (with seven from each of the other
three types). So, for example, a subject who received six believable
valid problems in Block 1 would receive six unbelievable invalid
problems in Block 2. Counterbalancing by problem type yielded
four subgroups, each with a total of 27 problems at each level of
validity and believability.

Finally, all subjects received practice problems, selected from
the pool of stimuli used in the practice phase of Experiment 1. For
the practice phase, the conservative group received two valid and
four invalid problems; the liberal group received four valid and
two invalid problems; the neutral group received three valid and
three invalid problems.

Procedure. The procedure was similar to that of Experiment
1, the only exceptions being the use of different numbers of
practice (six) and critical trials (54), the specific percentages of
valid and invalid problems indicated in the instructions (60%/40%,
40%/60%, or 50%/50%), and the fact that problem presentation
was accomplished using blocked randomization.

Results

The observed response proportions for the four problem types
and the three groups are summarized in Table 7. Table 7 also
shows the corresponding logic, belief, and interaction contrasts.
The proportion of conclusions accepted was analyzed using a 2 X
2 X 2 X 3 mixed ANOVA with validity, believability, and test
block as within-subjects factors and base rate (low, medium, high)
as a between-subjects factor. The ANOVA confirmed that subjects
accepted more valid than invalid conclusions, F(1, 69) = 126.480,
MSE = .087, p < .001, ~r|2 = .647, and more believable than
unbelievable conclusions, F(1, 69) = 70.509, MSE = .074, p <
001, m* =.505. As in Experiment 2, believability and validity
interacted: There was a greater effect of validity for unbelievable
than for believable problems, F(1, 69) = 15.224, MSE = .029,p <
001, m? =.181, as in typical belief bias experiments. There was
also a main effect of condition, F(2, 69) = 23.857, MSE = .099,
p < .001, n* = .409, indicating differences in response bias as a

Table 7
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function of actual base rate. Pairwise comparisons confirmed that
all three groups differed from one another in overall acceptance
rates; the liberal group accepted more conclusions than the neutral
group, #(70) = 6.91, p < .001, and the neutral group accepted more
conclusions than the conservative group, #(70) = 4.50, p < .001.
Unlike the results of Experiment 1, however, base rate and logical
status did not interact, F(2, 69) = 1.602, MSE = .087, p = .209,
m? = .044, though planned comparisons revealed that H — F was
marginally larger in the conservative than the liberal group (.33 vs.
22), 1(70) = 1.784, p = .079. Finally, there was a marginal
interaction between validity and list half, indicating that H — F
was slightly higher in the first block (.32 vs. .28), F(1, 69) =
3.173, MSE = .024, p = .079, m* =.044. This likely reflects a
fatigue effect due to the relatively large number of trials in the
present experiment. No other effects reached or approached sig-
nificance.

The greater acceptance rates for believable conclusions suggest
a response bias effect. To examine this possibility, we used sub-
jects’ confidence ratings to generate ROCs for believable and
unbelievable problems; the results are plotted in Figure 4C. Con-
sistent with the results in the acceptance rates, the operating points
for believable problems are displaced upward and rightward rela-
tive to the corresponding points for unbelievable problems, indi-
cating a main effect of believability on response bias. As in
Experiment 2, however, the points for both believable and unbe-
lievable problems appear to fall on a single ROC, indicating that
subjects were equally accurate in evaluating believable and unbe-
lievable problems. A comparison of A_ for believable and unbe-
lievable ROCs was consistent with that interpretation, revealing no
difference in area under the ROC for the two problem types (z =
1.26, p = 21).

As in Experiments 1 and 2, the source of the measurement
discrepancy is apparent upon inspection of the implied and ob-
served ROCs. In Figure 4C, the functions implied by H — F are
superimposed on the observed ROCs for believable and unbeliev-
able problems, collapsed across base-rate condition. The effect of
the believability manipulation in the present experiment replicates
the response bias effects of the previous experiments: A change in
response bias resulted in an artifactual change in the y-intercepts of
the ROCs implied by H — F.

As can be seen in Figure 4D, the effects of the base-rate
manipulation are also apparent in the ROCs; the operating points
on the ROC for the liberal condition are displaced upward and
rightward relative to the corresponding points on the conservative

Observed and Model-Predicted Hit Rates (H), False-Alarm Rates (F), and Contrast Results for Experiment 3

H = P(“Valid”IValid)

F = P(*Valid”lInvalid)

Condition Conclusion Observed MPTK SDT Observed MPTK SDT H — F observed

Liberal Believable 91 91 91 76 .76 76 15
Unbelievable 74 76 75 45 45 44 29

Conservative Believable 72 1 72 43 .40 43 29
Unbelievable .58 .60 59 21 24 21 37

Neutral Believable .82 .83 82 60 .62 60 22
Unbelievable 72 .70 72 38 .36 39 34

Note.  MPTK = multinomial processing tree model of Klauer, Musch, and Naumer (2000); SDT = signal detection theory model.
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and neutral ROCs. The effect on response bias is also apparent in
the comparison of the neutral and conservative ROCs: The oper-
ating points for the conservative condition are clustered nearer to
the origin than the corresponding points on the neutral ROC.
Though the data are consistent with our previous analyses in that
there were no significant effects of response bias on A, in any of
these comparisons, there were marginal effects indicating lower
accuracy for the liberal relative to the conservative condition (z =
1.83, p = .07) and for the liberal relative to the neutral condition
(z = 1.82, p = .07). Although the cause of these marginal effects
is unclear, it is important to remember that, despite what our
results may suggest, not all effects on H — F necessarily imply null
effects in ROCs. Additionally, effects of actual base-rate manip-
ulations on the form of the ROC, although not always obtained,
have been reported for other experimental tasks (Van Zandt, 2000;
see Benjamin, Diaz, & Wee, 2009, for review).

Models fit. In the present experiment, three versions of the
MPT model were fit. As we elaborate shortly, the MPTK model
was fit to the data in Table 7, using the methods of Klauer et al.
(2000). MPT2 was fit to the believability ROCs, exactly as in
Experiment 2 (i.e., collapsing across the base-rate conditions). A
third model, MPT3, was fit to the ROCs across base-rate condi-
tions (i.e., collapsing across believability).

The model used by Klauer et al. (2000), here termed MPTK, was
fit to the group-averaged hit and false-alarm rates (i.e., the data in
Table 7). This model, described in Figure 1, contains a distinct
reasoning parameter for each problem type: r,,, 7., 'y, and 7,
Following Klauer et al. and Broder and Schiitz (2009), these param-
eters were held constant across the base-rate conditions. There are also
two guessing (bias) parameters to account for believability, one each
for believable and unbelievable problems (3, and (,; these were
constant across base-rate conditions), and there are three bias param-
eters to account for the base-rate manipulation (o, where x=low,
medium, or high). Because this model describes only the overall
acceptance rates for the four problem types, there are no parameters to
map internal states onto confidence ratings.

The other new model for Experiment 3 is MPT3, which ac-
counts for the base-rate factor in the ROCs but not the believability
factor. This model has six reasoning parameters (7., 7,y '\ Fier Fir
r;,), corresponding to valid and invalid detection across the three
base-rate conditions. Like the Klauer et al. (2000) model, MPT3
includes a response bias parameter for each base-rate condition
(B,, where x=low, medium, or high). Like the MPT2 model,
MPT3 includes two bias parameters that map internal states onto
confidence ratings (o, o,) and a parameter (€) that captures
high-confidence errors.

As in Experiments 1 and 2, we also fit a signal detection model to
the data in each base-rate condition and for both believable and
unbelievable conclusions. For the SDT model, H — F is an inappro-
priate accuracy measure. Therefore, if the SDT model outperforms the
MPT models, then conclusions based on H — F are likely to be
erroneous (Rotello et al., 2008).

Modeling results.

Belief bias ROC modeling. The MPTK model of Klauer et al.
(2000) provided a good fit to the data (G34; = 5.63, p > .05). The
best fitting parameter values can be found in Table 8, and the
predicted and observed response proportions can be found in Table
7. The pattern across the o parameters shows that the model is
sensitive to the differences in the base rate of valid problems

across conditions. Imposing the restriction that base rate had no
effect (i.e., o, = o, = w,,) significantly reduced the quality of fit
(AG3,; = 163.50, p < .001), confirming that the groups differed in
their overall willingness to say “valid.”

The reasoning-stage parameters show the same pattern as in
Klauer et al. (2000): r,,, <r,, and r;, < 1,,; in Experiment 2, using
an extension of this model to the ratings design (MPT2), we also
found the same pattern. These parameters imply that reasoning is
less accurate when believability conflicts with validity, with par-
ticularly low accuracy for invalid believable problems. Consistent
with this implication, we found that while imposing the constraint
b = Ty = Ty, did not affect the fit of the model (AG3,; = 4.42,
p > .05), imposing the constraint r,,, = r,,, = r;, = r;, led to a
significant loss in goodness of fit (AG34; = 29.85, p < .001). The
values for the believability-defined bias parameters (3, and 3,)
indicate belief bias in the response stage as well, with a higher
value for 3, than 3,,. Setting the 3 parameters equal reduced the fit
of the model (AG3,; = 10.61, p < .01). These findings replicate
those of our previous experiments and indicate that our results are
not due to the novel extension of the MPT model to confidence
ratings. According to MPTK, the interaction between validity and
believability that is observed in the interaction index of H — F is
due to effects on the reasoning and response stages.

We also addressed the issue of whether the use of confidence-
rating data to generate empirical ROCs distorted the results in
favor of the SDT model over the multinomial models. Broder and
Schiitz (2009) recently argued that multinomial and SDT models
are more fairly compared when the operating points on the empir-
ical ROC are collected independently of one another via a manip-
ulation of the base rate of target items or a payoff scheme.
Therefore, we also fit a signal detection model to the group data,
using a model like the one in Figure 3B. The accuracy parameter
d ., which combines ., and o, (where x = believable or unbe-
lievable; see Equation 4), was fixed across base-rate conditions;
only the six decision criteria (c,,, one per base-rate condition, y,

yx?

r

Table 8
Best Fitting Parameter Values for MPTK and SDT for the Base-
Rate Conditions of Experiment 3

Model Parameter Liberal Conservative Neutral
MPTK Top 49
i .07
Tou 43
i 22
B, .99
" .69
a .82 44 .67
SDT Wyp 0.85
[ 1.13
O 1.18
O 1.49
C, -0.72 0.18 -0.25
C, 0.14 0.81 0.28
d, , 0.78
0.89

a, u

Note. In the SDT, d, is computed from p, and o, (see Equation 4 in the
text) and is not an extra free parameter. MPTK = multinomial processing
tree model of Klauer, Musch, and Naumer (2000); SDT = signal detection
theory model.
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and believability value, x) were allowed to vary. If our analyses of
the confidence-rating data were biased in favor of the SDT model,
then a comparison of MPTK and SDT fits to the response propor-
tions in each base-rate condition should result in a conclusion that
differs from those reached in the ratings comparisons.

The best fitting parameter values of each model are shown in
Table 8, the predicted response proportions are shown in Table 7,
and the fit statistics G, AIC, and BIC are shown in Table 9. While
both models fit the data, the SDT model fit better in terms of G*
and AIC, though MPTK had a slight edge in BIC. As in our other
analyses, we found that constraining the SDT accuracy parameters
to be equal for the believable and unbelievable problems did not
harm the fit (AG34; = 0.77, p > .6), but equating the criteria for
believable and unbelievable problems (¢, = ¢, in each base-rate
condition) did (AG3,; = 150.05, p < .001). Thus, the SDT model
fits well and implies that conclusion believability only affects
response bias. This result is consistent with our conclusions based
on the confidence-rating ROCs and suggests that our analyses have
not distorted the data.

Having confirmed that our acceptance-rate data (see Table 7)
and basic modeling efforts replicate the Klauer et al. (2000)
findings, we turned our attention to fitting the observed ratings
ROCs with the remaining models (MPT2, MPT3, and SDT).
The best fitting parameter values for each model are shown in
Tables 10 and 11, and the corresponding fit statistics are re-
ported in Table 12.

As in Experiments 1 and 2, the SDT model consistently pro-
vided a better fit to the data than did the multinomial model
applied to either the ROCs as a function of base-rate condition
(MPT3) or believability (MPT2). In Figure 8, ROCs generated
with the best fitting parameter values of MPT2 and SDT are shown
along with the observed data for believable and unbelievable
problems. As in Experiment 2, the MPT2 model generates linear
ROC:s that are inconsistent with the form of the observed ROCs. In
contrast, the SDT model produces ROCs that are much closer in
form to the observed data, with each predicted point falling close
to the corresponding observed point. The fact that the SDT model
provides a better description of the data than does MPT2 confirms
what is visually apparent in Figures 4C and 4D: The ROCs are not
linear. This further supports our claim that A_ is a better accuracy
measure than H — F or the interaction index for these data.

The parameter values for the reasoning stage in the MPT2
model (see Table 10) show the same pattern as the one obtained
with the MPTK model: r,, < r,, and r,, < r,, indicating the
interaction between validity and believability observed in the
acceptance rates is due to an effect on reasoning processes. We
tested this hypothesis by imposing the restrictions that r,, = r,,
and r;,, = r;,. The fit of MPT2 was significantly reduced by that

Table 9

Fit Statistics for MPTK and SDT in Experiment 3

Model AIC BIC G? df
MPTK 4,488.68 4,545.07 5.61 3
SDT 4,485.38 4,548.04 0.34 2

Table 10
Best Fitting Parameter Values for MPT2 and SDT for Problem
Types in Experiment 3

Model Parameter Believable Unbelievable

MPT2 r, .60 .52
T; 24 40
B .61 A7
o, .68
oy .37
€ 17

SDT . 0.68 0.81
o, 1.03 1.14
¢ 0.52 0.96
¢ 0.01 0.52
cs -0.26 0.32
Cy —0.51 0.09
Cs -0.95 -0.43
d 0.67 0.76

a

Note. In the SDT, d,, is computed from ., and o, (see Equation 4 in the

text) and is not an extra free parameter. MPT2 = Multinomial Processing
Tree 2 model; SDT = signal detection theory model.

restriction (AG3, = 52.57, p < .001), supporting the conclusion

that there are substantial effects of believability on the reasoning
stage. However, the believability-defined response bias parame-
ters, 3, and 3,,, also differ from one another, replicating the effect
that we observed in Experiment 2. Indeed, imposing the restriction
that the bias parameters were equal (B, = f3,) significantly re-
duced the fit of the model (AG7,; = 36.95, p < .001). Thus, MPT2
concludes that believability affects both the reasoning stage and
the decision stage of processing.

The parameter values for SDT (see Table 10) suggest a different
conclusion. While there are large effects of believability on re-
sponse bias (i.e., more negatively valued criteria for believable
than for unbelievable problems), the effects on the accuracy mea-
sure d, (derived from w and o) are quite small. Model-based
hypothesis tests supported these interpretations. Imposing the con-

Table 11
Best Fitting Parameter Values for MPT3 and SDT for the Base-
Rate Conditions of Experiment 3

Model Parameter Liberal Conservative Neutral

MPT3 r, .57 45 .62
T 24 31 .39
B .67 .40 .55
o, .68
oy .37
€ 17

SDT . 0.54 0.81 0.71
g, 1.02 1.27 1.01
¢ 0.48 1.15 0.58
¢y -0.03 0.57 0.20
[eN —-0.34 0.42 —0.01
cy —0.48 0.11 —0.28
Ccs —-0.94 —0.60 —0.57
d, 0.53 0.71 0.71

a

Note.  MPTK = multinomial processing tree model of Klauer, Musch,
and Naumer (2000); SDT = signal detection theory model; AIC = Akaike
information criterion; BIC = Bayesian information criterion.

Note. In the SDT, d, is computed from w, and o, (see Equation 4 in the

text) and is not an extra free parameter. MPT3 = Multinomial Processing
Tree 3 model; SDT = signal detection theory model.
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Table 12
Fit Statistics for MPT2 (Conclusion Believability), MPT3 (Base
Rate), and SDT in Experiment 3

MPT2, MPT3 SDT

Condition/

conclusion AIC BIC Gay AIC BIC G3y
Believable  6,168.47 6,201.91 24559 5,936.29 5,975.30 11.41
Unbelievable 6,286.35 6,319.79 92.09 6,231.67 6,270.68 35.41
Liberal 4,064.99 4,095.99 160.66 3,920.78 3,956.95 14.45
Conservative 3,772.00 3,802.20 65.68 3,719.03 3,754.26 10.71
Neutral 4,583.58 4,615.29 124.04 4,467.33 4,504.32  5.79

Note. MPT2 = Multinomial Processing Tree 2 model; MPT3 = Multi-
nomial Processing Tree 3 model; SDT = signal detection theory model;
AIC = Akaike information criterion; BIC = Bayesian information crite-
rion.

straint of a single set of five criteria in the SDT model (i.e., no
differences as a function of believability) led to a marked loss in
goodness of fit (AGZ, = 223.41, p < .001), but constraining
accuracy to be equal for believable and unbelievable problems
(i.e., constraining the parameters for mean separation, w,, = .,
and slope, o,, = @,,) had no significant effect on the fit’ (AG3,;
= 2.71, p > .25). According to SDT, believability affects response
bias but not accuracy.

These results are consistent with those of Experiment 2: The
signal detection model provides a better description of the data and
locates the belief bias effect in the response stage.® The MPTK and
MPT2 models imply linear ROCs that are inconsistent with the
observed ROCs; the models also conclude there are effects of
believability on both the reasoning and response stages. The erro-
neous conclusions suggested by the MPTK and MPT2 analyses
arise from inappropriate assumptions about the form of the ROC,
assumptions that are shared by the statistic H — F.

Base-rate ROC modeling. We also evaluated the SDT and
multinomial models using the ratings ROCs for each base-rate
condition, collapsing over the believability factor. Both models
should show changes in their response bias parameters across
conditions, but because all conditions included the same problems,
we would not expect the model parameters to indicate accuracy
differences across the base-rate factor. This analysis involved the
MPT3 and SDT models; Figure 9 shows the best fitting ROCs. The
parameter values of both the MPT3 and SDT models confirm that
the response bias manipulation was effective: The 3 parameters of
MPTS3 increase with the proportion of valid problems, as does the
number of negatively valued (i.e., liberally placed) decision crite-
ria in the SDT model. Constraining these parameters to be equal
across base-rate conditions significantly worsened the fit of both
models (for MPT3, AG34; = 85.51, p < .001, and for SDT, AG7o4¢
= 215.853, p < .001). Thus, both models detect substantial effects
of condition on willingness to say “valid,” consistent with the
results of Experiment 1.

Inspection of the parameter values in Table 11 reveals differ-
ences in the reasoning-stage parameters as a function of base rate
in MPT3, indicating effects of condition on valid and invalid
detection that are similar to those of Experiment 1. Specifically,
the pattern r;, < r,. < r;, 1. <1, <Tr,, was obtained, indicating
accuracy differences among the three groups, with reasoning suc-
cess being particularly high in the unbiased (50% valid) condition.

in

Tests of the hypotheses r,,, = r,, 1, = ry andr,, =r,, ry, =7
indicated both sets of constraints significantly reduced the fit of
MPT3 (AG5, = 25.50, p < .001, and AG34; = 18.80, p < .001,
respectively). The constraint r,,, = r,,, r;, = r;., also reduced the
fit of MPT3 (AG2,, = 35.38, p < .001). The MPT3 model
indicates the base-rate manipulation significantly affected sensi-
tivity to validity status in these three groups, with accuracy being
particularly high in the neutral group. An analogous test in the
SDT model implies the constraint d,, . =d, , = d, ,, which can
be accomplished by setting the parameters for mean separation
(w,) and slope (1/0,) equal across the three conditions. Imposing
this constraint led to a significant loss in fit for SDT (AG34 =
11.05, p < .05). Unlike the results for MPT3, however, the
difference in accuracy was driven by the liberal condition; a test of
the constraint d, . = d, , indicated no difference in accuracy
between the conservative and neutral conditions (AG3,; = 5.15,
p > .05). Thus, while the results for MPT3 indicated differences in
accuracy among all three groups, with particularly high accuracy
in the neutral condition, the results for SDT were consistent with
the results for A_ that indicated slightly lower sensitivity for the
liberal group but no difference in sensitivity between the conser-
vative and neutral groups.

Discussion. Experiment 3 replicated the main results of
Klauer et al. (2000) and of Experiment 2. A standard belief bias
effect was observed in the acceptance rates, and an analysis using
multinomial models, including MPTK (the original model of
Klauer et al., 2000), indicated that these results were due to effects
of believability on response bias and sensitivity to logical status. In
contrast, the signal detection model, which provided the best fit to
the data in every condition, indicated no effect of believability on
accuracy but large response bias effects. As in Experiments 1 and
2, Experiment 3 showed that the accuracy measure H — F, which
is implicitly or explicitly used in most analyses of the belief bias
effect, is influenced by changes in response bias. Conclusions
based on H — F were similar to those suggested by the Klauer et
al. and MPT2 models, which make assumptions about the form of
the ROC that are similar to the assumptions of H — F. An analysis
of A_, which is theoretically and empirically justified by the form
of the ROCs and the fit of the SDT model, suggested no difference
in accuracy as a function of believability. Because the SDT model
provided the best account of the data, A_ is preferred over H — F
in the analysis of data from belief bias experiments using the
conclusion-evaluation task. Use of H — F produced a Type I error
in measuring accuracy across conclusion believability, consistent
with the results of the simulations in Rotello et al. (2008).

i

General Discussion

In a series of three experiments, changes in response bias in the
syllogistic reasoning task produced changes in accuracy as mea-
sured by H — F, though no such changes were apparent in

7 As in Experiment 1, constraining the variances of the valid and invalid
distributions to be equal impaired the fit (AG3;; = 6.02, p < .05).

8 As in Experiments 1 and 2, we also fit the ROCs for a group of 15 high-
and 15 medium-accuracy subjects to evaluate whether averaging over
subjects changed the model selection results. For both groups, the SDT
model fit significantly better than the MPT model (SDT medium-accuracy
G54 = 4.70 and high-accuracy 25.87; MPT G3,; = 46.41 and 213.23).
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Figure 8. A: Observed (circles) and MPT2-predicted (crosses) receiver operating characteristics (ROCs) for
believable problems, Experiment 3. B: Observed and MPT2-predicted ROCs for unbelievable problems. C:
Observed (circles) and SDT-predicted (crosses) ROCs for believable problems in Experiment 3. D: Observed
and SDT-predicted ROCs for unbelievable problems. MPT2 = Multinomial Processing Tree 2 model; SDT =

signal detection theory model.

estimates of ROC area (A_) or the SDT-based sensitivity parameter
d,. The same pattern of results was obtained whether bias was
manipulated by changing the perceived base rates of valid and
invalid problems (Experiment 1), conclusion believability (Exper-
iments 2-3), or actual base rates (Experiment 3). A comparison of
empirical and implied ROC curves indicated that the measurement
discrepancy was due to the assumption of ROC linearity inherent
in H — F. In all three experiments, the linearity assumption was
directly evaluated by comparing the fit of multinomial models,
which produce linear ROCs, and the signal detection model, which
produces curvilinear ROCs. In every comparison, the SDT model
outperformed the MPT in describing the ROCs, indicating that the
observed ROCs are not linear and that contrasts of hits and false
alarms confound sensitivity and response bias. The fact that we
consistently obtained a Type I error in H — F is consistent with the
simulation results reported by Rotello et al. (2008) and provides a
strong argument in favor of alternative measures of accuracy in the
conclusion-evaluation task. One such alternative, the measure A_,
produced results that were in line with conclusions based on visual
inspection of the observed ROCs and direct tests using quantitative
models. As such, for researchers wishing to avoid measurement
error associated with response bias in the conclusion-evaluation
task, we recommend the use of A_.

A major goal of the present study was to examine the locus of
the belief bias effect. Although the results reported by Klauer et al.
(2000) were consistent with previous theories of belief bias in
suggesting that conclusion believability affects accuracy via ef-
fects on the reasoning stage, with little to no effect on the response
stage, the authors used an MPT analysis to reach this conclusion.
In the present study, we extended the MPT model to ROCs and
found that the parameters indicated effects of our response bias
manipulations on accuracy and ROC slope. In Experiment 3, we
also fit the original MPT model of Klauer et al. to data from the
belief bias task and replicated their finding that the apparent
accuracy difference favoring unbelievable problems in hits and
false alarms was modeled in the reasoning stage, just as in our
extended MPT analyses. In contrast, the SDT model indicated that
the effects of conclusion believability are limited to the response
stage, with minimal effects on sensitivity or ROC slope. The
superior fit of the SDT model supports the response bias interpre-
tation and confirms what is visually apparent in the ROCs: The
Belief X Logic interaction obtained in H — F is a Type I error.
These data are inconsistent with selective scrutiny theory, misin-
terpreted necessity, mental models theory, metacognitive uncer-
tainty, VRT, MVRT, and the selective processing theory advanced
by Klauer et al., all of which attempt to explain the Belief X Logic
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Figure 9. A: Observed (circles) and MPT3-predicted (crosses) receiver operating characteristics (ROCs) for
the liberal condition of Experiment 3. B: Observed and MPT3-predicted ROCs for the conservative condition.
C: Observed and MPT3-predicted ROCs for the neutral condition. D: Observed (circles) and SDT-predicted
(crosses) ROCs for the liberal condition of Experiment 3. E: Observed and SDT-predicted ROCs for the
conservative condition. F: Observed and SDT-predicted ROCs for the neutral condition. MPT3 = Multinomial
Processing Tree 3 model; SDT = signal detection theory model.

interaction and specifically predict higher accuracy for unbeliev-
able problems. The data also suggest a reinterpretation of results
relevant to the heuristic-analytic theory of deduction (e.g., Evans
& Curtis-Holmes, 2005; Shynkaruk & Thompson, 2006), which is
taken up below.

In accounting for the present results, the only adequate theory of
belief bias that we know of is provided by SDT. The SDT model,
applied to syllogistic reasoning, assumes two Gaussian distribu-
tions of argument strength corresponding to valid and invalid
problems, with higher mean strength assigned to the former. The
strength axis is partitioned with a response criterion such that
“valid” responses occur only for items that fall to the right of the
criterion. The interpretation of the belief bias effect provided by
SDT is simple: Believable conclusions produce a shift in response
criteria to favor the “valid” response, and unbelievable conclusions
produce a shift in response criteria to favor the “invalid” response.
Valid/invalid discrimination, modeled as the mean separation of
strength distributions corresponding to valid and invalid argu-
ments, is unaffected by conclusion believability.

The criterion shift account is parsimonious, but it may also be
oversimplified. For instance, it is possible that conclusion believ-
ability does not shift response criteria but instead shifts the
strength distributions. In recognition memory, SDT-based expla-
nations assuming criterion shifts and distribution shifts have been
notoriously difficult to discriminate (Rotello & Macmillan, 2008).
For the belief bias task, the alternative SDT-based explanation
would amount to a model with a single criterion and four distri-
butions ordered, in terms of mean strength, w,,, > W,,, > Ky = Wi
where Ww,, — Mip = M — M- Though research designed to
discriminate between the two accounts of belief bias has yet to be
conducted, it should be noted that in the present study, markedly

similar effects of perceived base rate (Experiment 1) and conclu-
sion believability (Experiment 2) were obtained (see Table 2 and
Figures 4A and 4B), indicating that the most parsimonious inter-
pretation of the data set as a whole is that the same process
produces both effects. Since it is not clear why a change in the
perceived base rate of abstract arguments would affect their
strength, the criterion shift interpretation is to be preferred.

A more serious criticism of SDT is that it does not explicitly
model the reasoning process or provide an account of how subjects
determine whether arguments are valid or invalid. Though the
criticism may be warranted, the purpose of the SDT modeling was
not to provide a processing account but to determine whether
conclusion believability affects accuracy and/or response bias (a
goal shared by Klauer et al., 2000). It is conceivable that conclu-
sion believability has subtle effects on how subjects process syl-
logistic arguments. For instance, Thompson et al. (2003) found
longer response times for believable invalid than for unbelievable
invalid problems but no difference between believable and unbe-
lievable valid problems. Ball et al. (2006) used eye tracking to
measure inspection times for syllogistic premises, following the
first viewing of conclusions. Though premise inspection times did
not differ before conclusion viewing, the authors found longer
postconclusion premise times for believable invalid and unbeliev-
able valid problems relative to believable valid and unbelievable
invalid problems. Although the results of these two studies are not
consistent in the specific patterns obtained across the four problem
types, they at least converge in showing longer processing times
for believable than unbelievable problems. Processing differences
do not necessitate accuracy differences, however. As the aim of the
SDT analysis was to assess accuracy differences, we do not see
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evidence of processing differences, in and of itself, as being
incompatible with a criterion shift account.

An advantage of the SDT approach we have adopted in the
current study is that it offers a thorough account of the decision
process involved in syllogistic reasoning. As pointed out by
Rotello and Heit (2009), one potentially fruitful research strategy
would be to complement future processing accounts of reasoning
with SDT analyses of decision making, allowing an understanding
of both the accumulation of evidence and the way in which
decision processes act on the evidence once it is accumulated. In
general, SDT analyses can be used to constrain the development of
more detailed processing accounts. In addition, processing ac-
counts could be used to make more detailed predictions, for
example, about where particular arguments would fall on a scale of
argument strength, that could then be used by an SDT account. For
the time being, however, it must be concluded that SDT provides
the only explanation of the belief bias effect that is consistent with
our results.

The SDT-based account also provides an explanation for anom-
alies related to the behavior of the interaction index that has
implications for dual process theories of deduction (Evans, 2006,
2007; Shynkaruk & Thompson, 2006). Dual process theories of
reasoning generally posit two reasoning systems: a fast-acting,
error-prone heuristic system, which is more heavily influenced by
prior knowledge, and a slower, less error-prone analytic system,
which more closely follows the rules of logic. In support of this
distinction, Evans and Curtis-Holmes (2005) showed that, when
subjects were given only 10 s to evaluate a conclusion in the belief
bias task, the effect of believability was increased, and the effect of
logic reduced, relative to a condition in which no time constraint
was imposed. Interestingly, the interaction index was also reduced
in the 10-s group, consistent with the idea that the interaction effect
reflects the operation of analytical processes that were curtailed by
the short deadline. A number of results argue against this inter-
pretation of the interaction, however. First, a pair of studies by
Newstead et al. (1992, Experiment 5) and Evans et al. (1994,
Experiment 3) demonstrated that when relatively complex instruc-
tions stressing the correct interpretation of syllogistic quantifiers or
the concept of logical necessity are given, the main effect of belief
and the Belief X Logic interaction are greatly reduced. Second, a
study by Quayle and Ball (2000) showed that the Belief X Logic
interaction is reduced in subjects with relatively high working
memory spans. Third, a study by Shynkaruk and Thompson
(2006), using a deadline procedure similar to that of Evans and
Curtis-Holmes, observed the Belief X Logic interaction (also
assessed with H — F) in subjects given both a short (10-s) and a
long (60-s) response deadline in which speeded responses could be
reconsidered and possibly corrected. The size of the interaction
effect did not differ by response opportunity, although it was only
obtained for subjects with relatively high reasoning accuracy: Poor
reasoners showed no interaction at either response opportunity. In
reference to the assumption that the interaction reflects analytical
processing, the authors wrote,

under the more probable assumption that the short deadline was
sufficient to curtail extensive analysis, one must conclude that the
interaction is not due to formal reasoning processes but, rather, arises
from the application of fast and simple heuristics, which can be
applied in about 10 sec. (Shynkaruk & Thompson, 2006, p. 630)

Although this statement is consistent with the bulk of the results
cited above, it still does not explain why the interaction was not
observed in the 10-s condition of the study by Evans and Curtis-
Holmes, or why it would be obtained only for subjects in the
higher accuracy group, who would, intuitively at least, seem less
likely to rely on heuristic responding.

An answer is provided once one considers the relationship
between accuracy and ROC form. In the conditions of both studies
in which the interaction was not obtained, accuracy was at (Shy-
nkaruk & Thompson, 2006) or very near (Evans & Curtis-Holmes,
2005) chance levels. Although the area measure A_ cannot be
estimated from the available data, it is likely that these conditions
would have yielded ROCs falling at or near the chance line. As
chance performance necessarily produces a straight line with unit
slope, the isosensitivity relationship for near-chance responding is
expected to yield roughly equal estimates of H — F at every level
of response bias. Thus, the interaction index is reduced as perfor-
mance approaches the floor.

Still, at a more general level, our findings are compatible with
dual process theories of deduction, if not specific versions such as
selective scrutiny or selective processing. In terms of the signal
detection account illustrated in Figure 3B, the analytic system may
act to determine the position of arguments along the axis of
argument strength, while the heuristic system might use
knowledge-based cues such as believability to determine the loca-
tion of the response criterion. Furthermore, our data do not rule out
alternative, more complex, signal detection interpretations of dual
process theory (e.g., the multidimensional account in Heit &
Rotello, 2008, in press; Rotello & Heit, 2009), but these are not
required to account for the data from Experiments 1-3.

Finally, we do not feel that our results pose problems for the
MPT framework in general but only for those models that generate
linear ROC:s. It is possible that an MPT approach that differs from
the one proposed by Klauer et al. (2000) will eventually provide an
adequate description of our data. In the recognition literature, for
instance, it has been pointed out that high-threshold models that
assume more complex mappings of internal states to rating re-
sponses can be used to generate ROCs that more closely approx-
imate the curvilinear functions typically observed for the ratings
task (Broder & Schiitz, 2009; Erdfelder & Buchner, 1998; Klauer
& Kellen, in press; Malmberg, 2002). Though we did consider one
such alternative mapping, in which the nondetect states could lead
to high- and low-confidence responses (i.e., MPT-R), we still
found that a superior fit was provided by SDT. In any case, the
main purpose of the present study was not to document the
flexibility of the MPT framework but to evaluate the assumption of
ROC linearity implied by H — F. For this reason, the mapping
used in the present study was chosen to differ minimally from the
structure and logic of the double high threshold model proposed by
Klauer et al., in which high-confidence errors were assumed to not
occur. The close correspondence between the results for MPTK
and MPT2 in Experiment 3 suggests that the mapping we adopted
was appropriate in that respect. We suspect that, regardless of the
framework one applies to the present results, models that provide
a good account of the ROC data will agree with the conclusions
reached in our SDT model: Changes in bias do not augment H and
F by equal amounts. It is for this reason that analyses based on
H — F are likely to result in Type I errors, as indicated by Rotello
et al. (2008). We have shown that the Belief X Logic interaction
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is one such error and that several theories of belief bias assuming
an interpretation of the data stemming from H — F are affected.
In sum, we feel that alternative models of belief bias should be
constructed and compared in future work, whether they involve an
SDT or an MPT framework. Alternatives to ratings-based ROCs
should also be evaluated as tests of the assumptions made by
processing and measurement models (e.g., base-rate ROCs of the
sort collected in Experiment 3). We hope that our work will have
an effect similar to that of the seminal study by Klauer et al.
(2000), supplying an impetus for the construction of quantitative
models that will provide an improvement over our SDT model.

Related Findings in the Memory Literature

One’s choice of accuracy measure should not be made arbi-
trarily. As we have shown for the belief bias task, the interpretation
of the data depends critically on which measure is used. Following
Swets (1986a, 1986b), Rotello et al. (2008) showed that the use of
accuracy statistics such as H — F, d', A’ (Pollack & Norman,
1964), percent correct, and the Goodman-Kruskal gamma corre-
lation (Goodman & Kruskal, 1954; Nelson, 1984) necessarily
entails assumptions about the structure of the underlying data. For
example, d' assumes that the underlying evidence distributions are
equal-variance Gaussian in form; H — F and percent correct are
consistent with equal-variance rectangular distributions. When
those assumptions are violated, bias differences across experimen-
tal conditions are very likely to be misinterpreted as accuracy
differences. Worse, Rotello et al.”s simulations showed that the
probability of making such a Type I error increases with sample
size (i.e., running more subjects or more trials exaggerates the
problem). This type of problem is at the heart of previous misin-
terpretations of the belief bias effect: Use of a measure, H — F,
whose assumptions are inconsistent with the form of the data, led
to the erroneous claim of an accuracy effect.

Type I errors of the sort uncovered in this investigation are not
limited to the belief bias literature. A number of similar cases have
been identified recently in the memory literature. For example,
recognition memory for negatively valenced stimuli is often
thought to be better than recognition of neutral stimuli, but ROC-
based analyses of both younger and older adults’ memory for
emotional stimuli have shown that the effect is one of response
bias and not accuracy (Dougal & Rotello, 2007; Kapucu, Rotello,
Ready, & Seidl, 2008). Similarly, researchers have argued that
when subjects claim to remember the experience of studying an
item, accuracy is high relative to trials in which subjects claim only
to know an item was presented (see Yonelinas, 2002, for a sum-
mary). However, modeling work has demonstrated that the differ-
ence between remember and know judgments is only one of
response bias (e.g., Cohen, Rotello, & Macmillan, 2008; Rotello,
Macmillan, Hicks, & Hautus, 2006; Rotello & Zeng, 2008; Verde,
Macmillan, & Rotello, 2006).

Another example is the revelation effect (Watkins & Peynircio-
glu, 1990), in which subjects make more “old” responses to
recognition memory probes that follow an unrelated revelation
task than to probes that are not preceded by such a task; d’ is also
found to be higher in the revelation condition than the control
condition. The revelation task itself can be almost anything (ana-
gram solution, math problems, etc.), which made the effect quite
puzzling theoretically. Using ROC analyses, Verde and Rotello

(2003, 2004) showed that the use of d’' was not justified by the
data, which were consistent with unequal-variance Gaussian evi-
dence distributions. They concluded that the revelation effect is
usually just a response bias effect: Subjects respond more liberally
in the revelation condition.

Finally, in the domain of metacognition, Weaver and Kelemen
(2003) rejected their preferred theory on the basis of results from
a test using gamma correlations. Masson and Rotello (2009)
showed that the gamma statistic has unfortunate properties that
render it a poor measure of performance. In particular, although
gamma has been marketed as a nonparametric statistic (Nelson,
1984, 1986), its value is not independent of response bias. An
ROC-based reanalysis of Weaver and Kelemen’s data indicated
that the previously rejected theory was actually well supported by
the data.

Broader Implications for Reasoning and Related Areas
of Cognitive Psychology

Because the belief bias effect on syllogistic reasoning is so well
documented, it has been investigated more broadly in the reason-
ing literature, in application to other issues. For example, Stanov-
ich and West (1998) examined the belief bias effect along with
performance on several standardized reasoning tests and found that
the likelihood of avoiding belief bias is associated with individual
differences in general cognitive ability. Norenzayan, Smith, Jun
Kim, and Nisbett (2002) used belief bias measures to study cultural
differences in reasoning, namely, whether Western thinkers are
more likely than others to favor formal reasoning and hence are
less likely to show a belief bias. In the context of the Norenzayan
et al. study, Unsworth and Medin (2005) raised the question of
whether apparent cross-cultural differences might simply reflect a
response bias rather than true differences in the use of logic. More
generally, having a better understanding of the belief bias effect in
syllogistic reasoning, including better measures of the effect,
would help to support applications such as the study of individual
differences or cross-cultural differences. For example, knowing
whether belief bias truly corresponds to lower accuracy on some
materials than other materials or is a response bias by nature has
implications for the interpretation of whatever results are found.

The belief bias effect on syllogistic reasoning has gained much
of its importance because it is a well-studied example of the
influence of top-down knowledge, a topic that pervades cognitive
psychology. In syllogistic reasoning, specifically, following one’s
beliefs rather than the rules of logic is an error, but in the more
general case of reasoning under uncertainty, it iS normative to
consider other knowledge (Heit, Hahn, & Feeney, 2005; Skyrms,
2000). Indeed, studies of inductive or probabilistic reasoning have
documented widespread and systematic effects of beliefs. For
example, experts in a given domain typically use knowledge
specific to that domain to override default patterns of inductive
reasoning that would be used by nonexperts (see Hayes, Heit, &
Swendsen, in press, and Shafto, Coley, & Vitkin, 2007, for re-
views). Potentially, once better analytical tools and better theoret-
ical accounts are developed to address belief bias in syllogistic
reasoning, these could be applied to effects of beliefs on other
forms of reasoning. We place priority on developing theoretical
accounts of reasoning that span different reasoning tasks and
paradigms, rather than just narrowly addressing syllogistic reason-
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ing. For instance, recent work by Heit and Rotello (2005, 2008, in
press) and Rotello and Heit (2009) has applied signal detection
models to inductive reasoning to examine the effects of related
variables that differentially cue the application of real-world
knowledge.

The effects of prior beliefs are also pervasive in tasks that do not
explicitly seek to investigate reasoning (e.g., memory; Heit, 1993).
On this point, Heit (1997) argued that models of reasoning ideally
will dovetail with models of other cognitive abilities such as
memory and categorization. For instance, there is a tradition in
memory research going back at least to Bartlett (1932) that con-
cerns itself with the influences of prior beliefs (or schemas) on
memory. Heit (1993) conducted simulations to examine the effects
of prior beliefs on recognition memory by comparing recognition
of stereotype-congruent versus stereotype-incongruent stimuli
(person descriptions). Although the methodology employed by
Heit differed from that of the present study, he concluded that an
apparent advantage in recognition accuracy for incongruent stimuli
was not due to differential processing of congruent and incongru-
ent stimuli (i.e., selective weighting, or distortion, of one type of
stimuli or the other). Instead, his favored explanation of the effect
of prior beliefs on recognition was that it was a simple response
bias effect, with memory traces corresponding to prior beliefs
having a fixed, positive effect on the familiarity of stereotype-
congruent stimuli, leading to an increased level of false alarms on
those stimuli.

In categorization research, there is also an important area of
study investigating the influences of wider beliefs on concept
learning (Murphy & Medin, 1985). Heit (1994, 2001) assessed
several experiments showing effects of prior beliefs on categori-
zation and again concluded that these were best explained as a kind
of a response bias, with memory traces corresponding to prior
beliefs having a fixed effect on category representations, rather
than as differential processing of category members depending on
whether or not they fit prior beliefs. Thus, prior beliefs may have
similar effects in reasoning, memory, and categorization, and
people do not necessarily process syllogistic arguments, stimuli to
be memorized, or category members to be learned differently
depending on whether they fit prior beliefs. The work of Heit
(1993, 1994, 2001) did not apply multidimensional signal detec-
tion models, but such models (without the prior belief component)
have been used to account for both memory (e.g., Banks, 2000;
Hautus, Macmillan, & Rotello, 2008; Rotello, Macmillan, &
Reeder, 2004) and categorization phenomena (e.g., Ashby & Gott,
1988; Maddox & Dodd, 2003). Future work could extend these
models to include an explicit role for prior belief in these domains.

Beyond the specific issue of the belief bias effect, our findings
have wider implications for models of reasoning. One important
research program (Oaksford & Chater, 2007) has used an account
based on Bayesian probability theory to address several tasks
(syllogistic reasoning, conditional reasoning, and the selection
task) that have traditionally been the subject of theories of deduc-
tion. In effect, this work extends standard logic to probabilities,
where the premises and conclusions of arguments can have some
level of uncertainty. Chater and Oaksford (1999) presented the
probability heuristics model (PHM) of syllogistic reasoning, which
has at its center the notion of probabilistic validity. By taking this
position, the PHM is able to address not only the use of traditional

syllogistic quantifiers (“all,” “no,” “some,” “some . . . are not”) but

”

also generalized quantifiers (“most,” “few”) by treating these as
probabilistic statements. In a similar way, the PHM assumes that a
conclusion derived from a given set of premises has a probability
attached to it. Thus, the PHM differs markedly from the other
accounts of syllogistic reasoning that we have reviewed because it
characterizes the output of the reasoning process as a continuously
distributed value (a probability) rather than as a discrete (valid or
invalid) judgment or mental state.® Although the PHM differs from
our own SDT account in many ways, the models share the central
notion that the reasoning process results in a continuous argument-
strength value. Our own analyses (e.g., the finding of curvilinear
rather than linear ROCs; see also Rotello & Heit, 2009) strongly
support this idea, and thus, they also support Chater and Oaks-
ford’s PHM.

We have not applied the PHM to our own results because it does
not address the belief bias effect directly. Chater and Oaksford
(1999) suggested that belief bias is a matter of everyday reasoning
strategies rather than something intrinsic to syllogistic reasoning
itself. Although we think it is desirable to model the everyday
reasoning processes that lead to the belief bias effect, our finding
that belief bias can be explained as a form of response bias applied
to argument-strength values is roughly compatible with the PHM
approach.

Finally, our work suggests new tools for assessing the calibra-
tion of confidence and accuracy in deductive reasoning (Prowse-
Turner & Thompson, 2009; Shynkaruk & Thompson, 2006). For
instance, Prowse-Turner and Thompson (2009) showed that while
reasoners tend to be poorly calibrated (overconfident) for the
syllogistic reasoning task, calibration can be much improved with
training that involves trial-by-trial accuracy feedback and instruc-
tion in the concept of logical necessity. Although the analytical
approach taken by the authors was quite rigorous, accuracy was
assessed in some cases by using percent correct. As we have
shown, ROC curves can be used to obtain more appropriate mea-
sures of performance such as A_ and are readily available when
confidence ratings are collected. ROCs based on metacognitive
assessments of performance (rating confidence in the correctness
of a response; Type II ROCs) can also be used to provide area-
based measures that estimate monitoring accuracy (Galvin, Podd,
Drga, & Whitmore, 2003; Higham, Perfect, & Bruno, 2009). We
hope future work that expands on the foundation laid by Prowse-
Turner and Thompson will benefit from supplementary measures
of reasoning and monitoring accuracy that can be obtained with
ROCs.

Summary

In sum, the present study has demonstrated for the first time that
ROC:s for the belief bias task are not linear, meaning that accuracy
is best measured using A_. Traditional analyses that contrast ac-
ceptance rates for valid and invalid problems at each level of
believability are likely to produce Type I errors, such as the
artifactual interaction between validity and believability that we

? The PHM suggests that the weakest conclusions are those associated
with the “some . .. are not” quantifier (Chater & Oaksford, 1999). Thus,
the relatively low accuracy levels observed in our experiments may reflect
our use of that quantifier in the conclusion (see Appendix C).
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demonstrated in two experiments. Our results suggest that none of
the current theories of belief bias are satisfactory because all of
them explain the interaction between validity and believability in
terms of an accuracy difference rather than the bias difference that
we have documented. We advance a new model that provides the
best quantitative fit to the data in each experiment; it characterizes
belief bias as a response bias effect that operates on the positioning
of subjects’ response criteria. Though some readers may find this
conclusion to be unbelievable, we feel confident that a thorough
consideration of the argument we have presented will nonetheless
compel its endorsement.
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Appendix A

Model Equations for Experiments 1-3

MPTK Model
Valid Problems
P(“Valid”IBelievable) = r,, + (1 — r,,)B,x..
P(“Valid”|Unbelievable) = r,, + (1 — r,,)B.
Invalid Problems
P(“Valid”[Believable) = (1 — r;,)B,0,.
P(“Valid”[Unbelievable) = (1

- riu)BuOL.x'

Note: The parameter «, is a response bias parameter estimating
P(“Valid”) where x is defined by the base-rate condition in Ex-
periment 3 (x = low, medium, or high). With the exception of the
x subscript, the four equations are identical across the three con-
ditions.

MPT-R Model
Valid Problems
PC1”) = r,, + (1 = 1,)B,0,;.
P(27) = (1 = r,)Bay.
P(3”) = (1 = 1Bl — o — ).
=)= B = a5 — ).
P(S7) = (1 = n( = Bays.

P(6”) = (1 = r,)(1 = Byaye.

P(4”) = (1

Invalid Problems

P(1™) = (1 = ry)Byay.

P(27) = (1 = 1By,

P(37) = (1 = r)By(1 — ay = @)
PE4) = (1 = 1)1 — B — a5 — ).
PES) = (1= r)(1 = Bays.

PC6™) = 1,y + (1 — 1)1 — Baye.

Note: The subscript y varies with the believability of the prob-
lem conclusion (b = believable, u = unbelievable). These equa-
tions correspond to MPT-R applied to the belief bias data from
Experiments 2 and 3. MPT-R applied to the data from Experiment
1 uses the equations above, except that the subscripts b and u are
replaced with the subscripts / and ¢, corresponding to the liberal
and conservative conditions of that experiment. MPT-R applied to
base-rate data from Experiment 3 is the same as in Experiment 1

but uses three levels of bias (/, ¢, n) corresponding to the liberal,
conservative, and neutral conditions of that experiment.

MPT1 Model
Valid Problems
P(“17) = r, [1 = P(“67)].

P(27) = (1 = r,)By,[1 — P(6™)].

P(“37) = (1 = B, — ax)[l — P(6M)].
P(4”) = (1 = r, )1 — Bay[l — PC6™)].
P57y = (1 = ryd — B — ayll — PC67)].

P(“6”) = .0000001.
Invalid Problems

P(“1””) = .0000001.

P(2”) = (1 = ry)Byou[l — P(17)].

P(37) = (1 = r)By(1 = ay)[1 = P(*1)].
P47y = (1 = rp)(1 — Byay[l — PC17)].
P(*5”) = (1 = r,)(1 — B)(1 — [l — PC17)].

P(“6”) = ry[1 = P(“17)].

Note: The subscript y varies with the believability of the prob-
lem conclusion (b = believable, u = unbelievable). These equa-
tions correspond to MPT1 applied to the belief bias data from
Experiments 2 and 3. MPT1 applied to the data from Experiment
1 uses the equations above, except that the subscripts b and u are
replaced with the subscripts / and ¢, corresponding to the liberal
and conservative conditions of that experiment. MPT1 applied to
base-rate data from Experiment 3 is the same as MPT3 (detailed
below), except that the parameter € is constrained to equal O in the
equations and P(“6”IValid) = P(“1”lInvalid) = .0000001.

MPT2 Model
Valid Problems
P(“1”) = r,(1 — €).
P(“27) = (1 — r,)B,a(l — €).
P(“37) = (1 = 1, )By(1 — ay)(1 — ©).
PC4”) = (1 = r, (1 = Bay(l — ©).
PC5”) = (1 = ryd = B

P(“6”) = &.

— a1 — ©).
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Invalid Problems

P(“1”) = €.

P(“27) = (1 = ry)Byax(l — ).

P(“37) = (I = ry)B(1 — ay)(1 — ©).
P(47) = (1 = ry)(1 — Bay(d — 9).
P57 = (1 = r)(1 = B — o)1 — ©).

P(“6™) = r,(1 — ©).

Note: The subscript y varies with the believability of the prob-
lem conclusion (b = believable, u = unbelievable). These equa-
tions correspond to MPT2 applied to the belief bias data from
Experiments 2 and 3. MPT?2 applied to the data from Experiment
1 uses the equations above, except that the subscripts b and u are
replaced with the subscripts / and ¢, corresponding to the liberal
and conservative conditions of that experiment.

MPT3 Model
Valid Problems

PC1”) = r (1 — ¢€).

P(27) = (1 = r Bl — ).
P(37) = (1 = r Bl — o)1 — #).
P47 = (1 = r ) = Boy(l — ©).
P57 = (1 = r)(1 = BI( — a1 — ©).
P(“6”) = €.

Invalid Problems
P(“1”) = €.
P(2") = (1 — r)Bau(l — €).
P(“3") = (1 — r,)B(1 — a)(1 — €).

P(“47) = (1 = r,)(1 — Baud — o).

P57y = (1 = rp)(1 = B — a1 — ©).
PC6™) = r, (1 — €).

Note: The subscript x indexes the base-rate condition in Exper-

iment 3 (x = low, medium, or high).

SDT Model

Valid Believable Problems

PC17) = @[y, — c1p)lo,).

P(27) = ®l(py), = p)0,] = Pl = €1)l0,)-
P(37) = ®l(pyy, = c3p)0,] = Pl = €)/0,]-
P(*47) = D[(pyy, = caploy,] = Pl = €3)/0,]-

P(*5”) = @[(n,), — c5p)/0,,] = Cl(,, — Cap)0yp)

P(“6”) = Pl(cs, = pap)oy)-
Invalid Believable Problems
P(“1”) = ®(—cyp).
P(“2”) = ®(—c,,) — P(—cyp)-
P(“3”) = ®(—cy,) — P(—cyp)-
P(“4”) = B(—cyy) — P(—c3p).
P(“57) = ®(—cs,) — B(—cyp).
P(“6”) = D(csy,).

Note: In the signal detection theory equations, ®(z) returns a
value P(z) on the inverse standard normal cumulative distribution
function for a value z. The equations for unbelievable arguments
are the same but are subscripted with u instead of b. The same set
of equations applies to the data of all three experiments, the only
differences being whether parameters are subscripted according to
conclusion believability (Experiments 2 and 3) or bias condition
(Experiments 1 and 3). In the case of Experiment 3, an extra set of
12 equations with subscript n was used to fit data from the neutral
condition.

(Appendices continue)
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Appendix B

Fit Statistics for the MPT1 and MPT-R Models in Experiments 1-3

Table B1
MPT1 MPT-R
Experiment Condition Gay AIC BIC G3yt AIC BIC
1 Liberal 6,467.39 10,020.91 10,046.29 60.22 3,617.63 3,653.16
Conservative 4,271.39 7,792.41 7,817.37 100.38 3,625.40 3,660.35
2 Believable 3,023.75 4,758.48 4,780.53 23.41 1,762.14 1,793.01
Unbelievable 2,279.59 4,163.07 4,185.12 26.16 1,913.64 1,944.51
3 Believable 9,869.44 15,790.33 15,818.19 35.63 5,960.51 5,999.52
Unbelievable 8,667.65 14,859.91 14,887.77 83.96 6,280.22 6,319.23
Liberal 6,392.14 10,294.47 10,320.30 28.82 3,935.15 3,971.32
Conservative 4,175.09 7,879.41 7,904.58 38.74 3,747.06 3,782.30
Neutral 7,982.56 12,440.09 12,466.51 21.84 4,483.37 4,520.37

Note. MPT-R allows responses from the nondetect state to map onto every level of confidence, thus producing curved
receiver operating characteristics that approximate those generated by SDT. This model is therefore a major departure from
the MPT model proposed by Klauer, Musch, and Naumer (2000) and is not useful for testing the linearity assumption.
Nonetheless, we reached the same conclusions with this model as we did in our other MPT analyses and consistently
obtained poorer fits for MPT-R than for SDT. For comparison, fit statistics for SDT can be found in Tables 4, 6, and 12
in the main text. MPT = multinomial processing tree; MPT1 = Multinomial Processing Tree 1 model; MPT-R =
multinomial processing tree model with confidence rating; SDT = signal detection theory model; AIC = Akaike
information criterion; BIC = Bayesian information criterion.

Appendix C

Conclusion Ratings for Materials Used in Experiments 2 and 3

Table C1

Believable M SD Unbelievable M SD
Some animals are not llamas. 4.55 1.21 Some llamas are not animals. 1.00 0.00
Some bears are not grizzlies. 4.75 0.84 Some grizzlies are not bears. 1.52 1.21
Some birds are not parrots. 4.68 1.06 Some parrots are not birds. 1.19 0.79
Some boats are not canoes. 4.35 1.31 Some canoes are not boats. 1.86 1.56
Some cars are not oldsmobiles. 4.19 1.56 Some oldsmobiles are not cars. 1.43 0.96
Some criminals are not robbers. 4.61 1.05 Some robbers are not criminals. 2.11 1.59
Some dances are not tangos. 4.68 0.90 Some tangos are not dances. 1.65 1.23
Some drinks are not beers. 4.82 0.77 Some beers are not drinks. 1.58 1.36
Some horses are not ponies. 3.68 1.63 Some ponies are not horses. 2.42 1.78
Some insects are not spiders. 4.58 1.09 Some spiders are not insects. 2.07 1.56
Some killers are not assassins. 3.96 1.69 Some assassins are not killers. 1.32 0.79
Some plants are not weeds. 4.52 1.15 Some weeds are not plants. 2.29 1.58
Some relatives are not uncles. 4.84 0.73 Some uncles are not relatives. 2.29 1.67
Some reptiles are not lizards. 4.39 1.29 Some lizards are not reptiles. 1.48 1.06
Some storms are not blizzards. 4.86 0.76 Some blizzards are not storms. 1.55 1.15
Some trees are not oaks. 4.55 1.23 Some oaks are not trees. 1.96 1.50
Some weapons are not cannons. 4.61 1.17 Some cannons are not weapons. 2.61 1.73
Some words are not verbs. 4.86 0.76 Some verbs are not words. 1.55 1.36

Some writers are not novelists. 4.79 0.79 Some novelists are not writers. 1.84 1.49
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Appendix D

Problem Structures Used in Experiments 1-3

A

Set A Set B
Valid Invalid  Valid Invalid
EI2 O1 EI2 02 OA2 02 OE2 02
EI3 O1 EI3 02 AO2 Ol EO2 Ol
El4 Ol EI4 02 OA3 Ol OE3 Ol
IE4 02 1E4 O1 AO3 02 EO3 02

B

No X are Y.
Some Z are Y.

Some Z are not X.

Figure DI. A: Set A includes problems that minimize figure, atmosphere, and conversion effects. Set B
includes problems that minimize figure and atmosphere effects. Structures are identified by quantifiers used in
the premises, where A = all, E = no, I = some, and O = some . . . are not. The first letter corresponds to the
quantifier of the first premise, and the third letter corresponds to the conclusion. Following the quantifiers for
the two premises is a number corresponding to figure, and following the quantifier for the conclusion is a number
corresponding to the ordering of conclusion terms. A 1 indicates a conclusion in the Z-X direction and a 2
indicates a conclusion in the X-Z direction. B: Using this notation, the above example would be syllogism

EI2_Ol.
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