CSE 135: Introduction to Theory of Computation
Closure Properties of CFLs

Sungjin Im
University of California, Merced

03-17-2015

Union of CFLs

Let L; be language recognized by G; = (V1,%1, R1,51) and L the
language recognized by Gy = (V2, X2, R, S2)
Is L1 U Ly a context free language?

Union of CFLs

Let L; be language recognized by G; = (V1,%1, R1,51) and L the
language recognized by Gy = (V2, X2, R, S2)
Is L1 U Ly a context free language? Yes.

Union of CFLs

Let L; be language recognized by G; = (V1,%1, R1,51) and L the
language recognized by Gy = (V2, X2, R, S2)

Is L1 U Ly a context free language? Yes.

Just add the rule S — 51|15,

Union of CFLs

Let L; be language recognized by G; = (V1,%1, R1,51) and L the
language recognized by Gy = (V2, X2, R, S2)

Is L1 U Ly a context free language? Yes.

Just add the rule S — 51|15,

But make sure that V4 N Vo, = 0 (by renaming some variables).

Union of CFLs

Let L; be language recognized by G; = (V1,%1, R1,51) and L the
language recognized by Gy = (V2, X2, R, S2)

Is L1 U Ly a context free language? Yes.

Just add the rule S — 51|15,

But make sure that V4 N Vo, = 0 (by renaming some variables).

Closure of CFLs under Union

G =(V,%,R,S) such that L(G) = L(G1) U L(Gp):
» V=V UVo,U{S} (the three sets are disjoint)
> Y =3Y,Ud,
> RZRlURzU{5—>51|52}

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)

» Concatenation:

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)

» Concatenation: LiLy generated by a grammar with an
additional rule S — 515,

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)
» Concatenation: LiLy generated by a grammar with an
additional rule S — 515,

» Kleene Closure:

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)

» Concatenation: LiLy generated by a grammar with an
additional rule S — 515,

» Kleene Closure: L generated by a grammar with an
additional rule S — 5;S|e

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)
» Concatenation: LiLy generated by a grammar with an
additional rule S — 515,

» Kleene Closure: L generated by a grammar with an
additional rule S — 5;S|e

As before, ensure that Vi N Vo, = (0. S is a new start symbol.

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)
» Concatenation: LiLy generated by a grammar with an
additional rule S — 515,
» Kleene Closure: L generated by a grammar with an
additional rule S — 5;S|e

As before, ensure that Vi N Vo, = (0. S is a new start symbol.
(Exercise: Complete the Proof!) O

Intersection

Let L; and Ly be context free languages.

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition
CFLs are not closed under intersection

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition
CFLs are not closed under intersection
Proof.

» Ly ={ab'c/|i,j>0}isa CFL

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition
CFLs are not closed under intersection
Proof.

» Ly ={ab'c/|i,j>0}isa CFL
» Generated by a grammar with rules S — XY; X — aXb|e;
Y = cYle.

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

» Ly ={ab'c/|i,j>0}isa CFL
» Generated by a grammar with rules S — XY; X — aXb|e;
Y = cYle.

» Ly ={a'bc|i,j>0}isa CFL.

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.
» Ly ={ab'c/|i,j>0}isa CFL

» Generated by a grammar with rules S — XY; X — aXb|e;
Y = cYle.

» Ly ={a'bc|i,j>0}isa CFL.

» Generated by a grammar with rules S — XY; X — aX]e;
Y — bYcle.

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.
» Ly ={ab'c/|i,j>0}isa CFL

» Generated by a grammar with rules S — XY; X — aXb|e;
Y = cYle.

» Ly ={a'bc|i,j>0}isa CFL.

» Generated by a grammar with rules S — XY; X — aX]e;
Y — bYcle.

» But 1N Ly =

Intersection

Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.
» Ly ={ab'c/|i,j>0}isa CFL

» Generated by a grammar with rules S — XY; X — aXb|e;
Y = cYle.

» Ly ={a'bc|i,j>0}isa CFL.

» Generated by a grammar with rules S — XY; X — aX]e;
Y — bYcle.

» But LyjNLy={a"b"c" | n>0}is not a CFL. O

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that

accepts R.

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.

» The stack of P’ is the stack of P

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.

» The stack of P’ is the stack of P

» The state of P at any time is the pair (state of P, state of
M)

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.

» The stack of P’ is the stack of P

» The state of P at any time is the pair (state of P, state of
M): Qe = Qp x Qu

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.

» The stack of P’ is the stack of P

» The state of P at any time is the pair (state of P, state of
M): Qe = Qp x Qu

» These determine the transition function of P’.

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.
» The stack of P’ is the stack of P
» The state of P at any time is the pair (state of P, state of
M): Qe = Qp x Qu
» These determine the transition function of P’.
» The final states of P’ are those in which both the state of P
and state of M are accepting:

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.
» The stack of P’ is the stack of P
» The state of P at any time is the pair (state of P, state of
M): Qe = Qp x Qu
» These determine the transition function of P’.
» The final states of P’ are those in which both the state of P
and state of M are accepting: Fpr = Fp X Fpy

Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.
» The stack of P’ is the stack of P
» The state of P at any time is the pair (state of P, state of
M): Qe = Qp x Qu
» These determine the transition function of P’.
» The final states of P’ are those in which both the state of P
and state of M are accepting: Fpr = Fp X Fpy O

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is L context free?

Complementation

Let L be a context free language. Is L context free? No!

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.

Suppose CFLs were closed under complementation.

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» Ly and L, are CFL.

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have
» L1 and Ly are CFL. Then, since CFLs closed under union,
Ly ULy is CFL.

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have
» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have
» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL
i.e., CFLs are closed under intersection. Contradiction!

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
L = {x | x not of the form ww} is a CFL.

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
L = {x | x not of the form ww} is a CFL.

» L generated by a grammar with rules

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL
i.e., CFLs are closed under intersection. Contradiction! O

Proof 2.
L = {x | x not of the form ww} is a CFL.

» L generated by a grammar with rules X — a|b, A — a|XAX,
B — b|XBX, S —

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL
i.e., CFLs are closed under intersection. Contradiction! O

Proof 2.
L = {x | x not of the form ww} is a CFL.

» L generated by a grammar with rules X — a|b, A — a|XAX,
B — b|XBX, S — A|B|AB|BA

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL

i.e., CFLs are closed under intersection. Contradiction! O

Proof 2.
L = {x | x not of the form ww} is a CFL.

» L generated by a grammar with rules X — a|b, A — a|XAX,
B — b|XBX, S — A|B|AB|BA

But L = {ww | w € {a, b}*} is not a CFL! (Why?) O

Set Difference

Proposition
IfLy isa CFL and Ly is a CFL then Ly \ Ly is not necessarily a CFL

Set Difference

Proposition
IfLy isa CFL and Ly is a CFL then Ly \ Ly is not necessarily a CFL

Proof.
Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) O

Set Difference

Proposition
IfLy isa CFL and Ly is a CFL then Ly \ Ly is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) O
Proposition

If Lisa CFL and R is a regular language then L\ R is a CFL

Set Difference

Proposition
IfLy isa CFL and Ly is a CFL then Ly \ Ly is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) O
Proposition

If Lisa CFL and R is a regular language then L\ R is a CFL

Proof.
L\R=LNR 0

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty?

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty?
Solution: Check if the start symbol S is generating.

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty?
Solution: Check if the start symbol S is generating. How long does
that take?

Determining generating symbols

Algorithm

Gen = {}
for every rule A — x where x € X*

Gen = Gen U {A}
repeat

for every rule A — vy

if all variables in 7y are generating then
Gen = Gen U {A}

until Gen does not change

Determining generating symbols

Algorithm

Gen = {}
for every rule A — x where x € X*

Gen = Gen U {A}
repeat

for every rule A — vy

if all variables in 7y are generating then
Gen = Gen U {A}

until Gen does not change

» Both for-loops take O(n) time where n = |G]|.

Determining generating symbols

Algorithm

Gen = {}
for every rule A — x where x € X*

Gen = Gen U {A}
repeat

for every rule A — vy

if all variables in 7y are generating then
Gen = Gen U {A}

until Gen does not change

» Both for-loops take O(n) time where n = |G]|.

» Each iteration of repeat-until loop discovers a new variable.
So number of iterations is O(n). And total is O(n?).

Membership Problem

Given a CFG G = (V,X,R,S) in Chomsky Normal Form, and a
string w € ¥, is w € L(G)?

Membership Problem

Given a CFG G = (V,X,R,S) in Chomsky Normal Form, and a
string w € ¥, is w € L(G)?
Central question in parsing.

“Simple” Solution

“Simple” Solution

» Let |w| = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n — 1 iff w € L(G)

“Simple” Solution

» Let |w| = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n — 1 iff w € L(G)

» Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

“Simple” Solution

» Let |w| = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n — 1 iff w € L(G)

» Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

» Number of parse trees of size 2n — 1 is k2"~ where k is the
number of variables in G. So algorithm is exponential in n!

“Simple” Solution

» Let |w| = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n — 1 iff w € L(G)

» Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

» Number of parse trees of size 2n — 1 is k2"~ where k is the
number of variables in G. So algorithm is exponential in n!

» We will see an algorithm that runs in O(n3) time (the
constant will depend on k).

First Ideas

Notation
Suppose w = wiws - - - Wy, where w; € X. Let w;; denote the

substring of w starting at position i of length j. Thus,
Wij = WiWjq1 - Witj1

First Ideas

Notation

Suppose w = wiws - - - Wy, where w; € X. Let w;; denote the
substring of w starting at position i of length j. Thus,

Wij = WiWit1 - Witj-1

Main Idea
For every A€ V, and every i < n, j < n+1— i, we will determine
if A :*> W,'J.

First Ideas

Notation

Suppose w = wiws - - - Wy, where w; € X. Let w;; denote the
substring of w starting at position i of length j. Thus,

Wij = WiWit1 - Witj-1

Main ldea

For every A€ V, and every i < n, j < n+1— i, we will determine
if A :*> W,'J.

Now, w € L(G) iff S = wy , = w; thus, we will solve the
membership problem.

First Ideas

Notation

Suppose w = wiws - - - Wy, where w; € X. Let w;; denote the
substring of w starting at position i of length j. Thus,

Wij = WiWit1 - Witj-1

Main ldea

For every A€ V, and every i < n, j < n+1— i, we will determine
if A :*> W,'J.

Now, w € L(G) iff S = wy , = w; thus, we will solve the
membership problem.

How do we determine if A = w; ; for every A, i, 7

Base Case
Substrings of length 1

Observation
For any A,i, A = w1 iff A— w; 1 is a rule.

Base Case
Substrings of length 1

Observation
For any A,i, A = w1 iff A— w; 1 is a rule.

» Since G is in Chomsky Normal Form, G does not have any
e-rules, nor any unit rules.

Base Case
Substrings of length 1

Observation
For any A,i, A = w1 iff A— w; 1 is a rule.

» Since G is in Chomsky Normal Form, G does not have any
e-rules, nor any unit rules.

Thus, for each A and i, one can determine if A = Wi 1.

Inductive Step

Longer substrings

Suppose for every variable X and every w;
(¢ < j) we have determined if X = w;

Inductive Step

Longer substrings

Witk j—k

Suppose for every variable X and every w;
(¢ < j) we have determined if X = w;
» AS w; ; iff there are variables B and C

and some k < j such that A— BC is a
ruIe, and B :*> Wi k and C :*> Witk j—k

Inductive Step

Longer substrings

AN

C

Witk j—k

Suppose for every variable X and every w;
(¢ < j) we have determined if X = w;
» AS w; ; iff there are variables B and C

and some k < j such that A— BC is a
ruIe, and B :*> Wi k and C :*> Witk j—k

» Since k and j — k are both less than j, we
can inductively determine if A = wj .

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains X;; = {A| A = w;}.

Initialize: Xj;1={A|A— w1}
for j = 2 to n do
for i =1 ton—j+1 do
Xy =0
for Kk = 1 to j—1 do
X,'JZX,‘JU{A’A-)BC, BEX,'};(, CEX,‘Jrk,j,k}

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains X;; = {A| A = w;}.

Initialize: Xj;1={A|A— w1}
for j = 2 to n do
for i =1 ton—j+1 do
Xi; =0
for Kk = 1 to j—1 do
X;JZX,‘JU{A’A%BC, BEX,'};(, CEXiJrk,j,k}

Correctness: After each iteration of the outermost loop, X; ;
contains exactly the set of variables A that can derive w; j, for each
i.

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains X;; = {A| A = w;}.

Initialize: Xj;1={A|A— w1}
for j = 2 to n do
for i =1 ton—j+1 do
Xi; =0
for Kk = 1 to j—1 do
X;JZX,‘JU{A’A%BC, BEX,'};(, CEXiJrk,j,k}

Correctness: After each iteration of the outermost loop, X; ;
contains exactly the set of variables A that can derive w; j, for each
i.Time = O(n3).

Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

J/i 1 2 3 4 5

5

4

3

2

1 {B} {AC {AC {B} {AC]
b a a b a

Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

J/i 1 2 3 4 5
5
4
3
2 {5, A} {B} {§,C} {S,A}
1 {B} {AC {AC {B} {AC]
b a a b a

Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

J/i 1 2 3 4 5
5
4
3 0 {B} {B}
2 | {S.A} {B} {s.¢}t {SA
1 {B} {AC {AC {B} {AC]
b a a b a

Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

J/i 1 2 3 4 5
5
4 0 {S,A C}
3 0 {B} {B}
2 {5, A} {B} {5,C} {S,A}
1 {B} {Act {Acr {B} {AC}
b a a b a

Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

J/i 1 2 3 4 5
5 | {S,A C}
4 0 {S,A C}
3 0 {B} {B}
2 | {S.A} {B} {s.¢}t {S,A
1 {B} {AC {AC {B} {AC]
b a a b a

More Decision Problems

Given a CFGs G; and Gy

More Decision Problems

Given a CFGs G; and Gy
> Is L(Gy) = X*7

More Decision Problems

Given a CFGs G; and Gy
> Is L(Gy) = X*7
> Is L(G1) N L(Gp) = 0?

More Decision Problems

Given a CFGs G; and Gy
> Is L(Gy) = X*7
> Is L(G1) N L(Gp) = 0?
> Is L(G1) = L(Gp)?

More Decision Problems

Given a CFGs G; and Gy
Is L(Gy) = X£*?

Is L(Gy) N L(Gy) = (7
Is L(G1) = L(Gp)?

Is G ambiguous?

v

v

v

v

More Decision Problems

Given a CFGs G; and Gy
> Is L(Gy) = X*7

Is L(Gy) N L(Gy) = (7

Is L(G1) = L(Gp)?

Is G ambiguous?

v

v

v

v

Is L(Gy) inherently ambiguous?

More Decision Problems

Given a CFGs G; and Gy
> Is L(Gy) = X*7

Is L(Gy) N L(Gy) = (7

Is L(G1) = L(Gp)?

Is G ambiguous?

v

v

v

v

Is L(Gy) inherently ambiguous?

All these problems are undecidable.

	Regular operations

