
CSE 135: Introduction to Theory of Computation
Closure Properties of CFLs

Sungjin Im

University of California, Merced

03-17-2015

Union of CFLs

Let L1 be language recognized by G1 = (V1,Σ1,R1,S1) and L2 the
language recognized by G2 = (V2,Σ2,R2, S2)
Is L1 ∪ L2 a context free language?

Yes.
Just add the rule S → S1|S2
But make sure that V1 ∩ V2 = ∅ (by renaming some variables).

Closure of CFLs under Union
G = (V ,Σ,R,S) such that L(G) = L(G1) ∪ L(G2):

I V = V1 ∪ V2 ∪ {S} (the three sets are disjoint)

I Σ = Σ1 ∪ Σ2

I R = R1 ∪ R2 ∪ {S → S1|S2}

Union of CFLs

Let L1 be language recognized by G1 = (V1,Σ1,R1,S1) and L2 the
language recognized by G2 = (V2,Σ2,R2, S2)
Is L1 ∪ L2 a context free language? Yes.

Just add the rule S → S1|S2
But make sure that V1 ∩ V2 = ∅ (by renaming some variables).

Closure of CFLs under Union
G = (V ,Σ,R,S) such that L(G) = L(G1) ∪ L(G2):

I V = V1 ∪ V2 ∪ {S} (the three sets are disjoint)

I Σ = Σ1 ∪ Σ2

I R = R1 ∪ R2 ∪ {S → S1|S2}

Union of CFLs

Let L1 be language recognized by G1 = (V1,Σ1,R1,S1) and L2 the
language recognized by G2 = (V2,Σ2,R2, S2)
Is L1 ∪ L2 a context free language? Yes.
Just add the rule S → S1|S2

But make sure that V1 ∩ V2 = ∅ (by renaming some variables).

Closure of CFLs under Union
G = (V ,Σ,R,S) such that L(G) = L(G1) ∪ L(G2):

I V = V1 ∪ V2 ∪ {S} (the three sets are disjoint)

I Σ = Σ1 ∪ Σ2

I R = R1 ∪ R2 ∪ {S → S1|S2}

Union of CFLs

Let L1 be language recognized by G1 = (V1,Σ1,R1,S1) and L2 the
language recognized by G2 = (V2,Σ2,R2, S2)
Is L1 ∪ L2 a context free language? Yes.
Just add the rule S → S1|S2
But make sure that V1 ∩ V2 = ∅ (by renaming some variables).

Closure of CFLs under Union
G = (V ,Σ,R,S) such that L(G) = L(G1) ∪ L(G2):

I V = V1 ∪ V2 ∪ {S} (the three sets are disjoint)

I Σ = Σ1 ∪ Σ2

I R = R1 ∪ R2 ∪ {S → S1|S2}

Union of CFLs

Let L1 be language recognized by G1 = (V1,Σ1,R1,S1) and L2 the
language recognized by G2 = (V2,Σ2,R2, S2)
Is L1 ∪ L2 a context free language? Yes.
Just add the rule S → S1|S2
But make sure that V1 ∩ V2 = ∅ (by renaming some variables).

Closure of CFLs under Union
G = (V ,Σ,R,S) such that L(G) = L(G1) ∪ L(G2):

I V = V1 ∪ V2 ∪ {S} (the three sets are disjoint)

I Σ = Σ1 ∪ Σ2

I R = R1 ∪ R2 ∪ {S → S1|S2}

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2,S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation:

L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure:

L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.

(Exercise: Complete the Proof!) �

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.
Let L1 be language generated by G1 = (V1,Σ1,R1, S1) and L2 the
language generated by G2 = (V2,Σ2,R2, S2)

I Concatenation: L1L2 generated by a grammar with an
additional rule S → S1S2

I Kleene Closure: L∗1 generated by a grammar with an
additional rule S → S1S |ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!) �

Intersection

Let L1 and L2 be context free languages.

L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL

I Generated by a grammar with rules S → XY ; X → aXb|ε;
Y → cY |ε.

I L2 = {aibjc j | i , j ≥ 0} is a CFL.
I Generated by a grammar with rules S → XY ; X → aX |ε;

Y → bYc|ε.
I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.

I L2 = {aibjc j | i , j ≥ 0} is a CFL.
I Generated by a grammar with rules S → XY ; X → aX |ε;

Y → bYc|ε.
I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 =

{anbncn | n ≥ 0} is not a CFL. �

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.

I L1 = {aibic j | i , j ≥ 0} is a CFL
I Generated by a grammar with rules S → XY ; X → aXb|ε;

Y → cY |ε.
I L2 = {aibjc j | i , j ≥ 0} is a CFL.

I Generated by a grammar with rules S → XY ; X → aX |ε;
Y → bYc|ε.

I But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL. �

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R.

A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M)

: QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting:

FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then L ∩ R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P ′ will simulate P and M simultaneously
on the same input and accept if both accept. Then P ′ accepts
L ∩ R.

I The stack of P ′ is the stack of P

I The state of P ′ at any time is the pair (state of P, state of
M): QP′ = QP × QM

I These determine the transition function of P ′.

I The final states of P ′ are those in which both the state of P
and state of M are accepting: FP′ = FP × FM �

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is L context free?

No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation.

Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL.

Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL.

Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules

X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S →

A|B|AB|BA
But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, L2, we have

I L1 and L2 are CFL. Then, since CFLs closed under union,

L1 ∪ L2 is CFL. Then, again by hypothesis, L1 ∪ L2 is CFL.

I i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction! �

Proof 2.
L = {x | x not of the form ww} is a CFL.

I L generated by a grammar with rules X → a|b, A→ a|XAX ,
B → b|XBX , S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?) �

Set Difference

Proposition

If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof.
Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) �

Proposition

If L is a CFL and R is a regular language then L \ R is a CFL

Proof.
L \ R = L ∩ R �

Set Difference

Proposition

If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof.
Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) �

Proposition

If L is a CFL and R is a regular language then L \ R is a CFL

Proof.
L \ R = L ∩ R �

Set Difference

Proposition

If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof.
Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) �

Proposition

If L is a CFL and R is a regular language then L \ R is a CFL

Proof.
L \ R = L ∩ R �

Set Difference

Proposition

If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof.
Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) �

Proposition

If L is a CFL and R is a regular language then L \ R is a CFL

Proof.
L \ R = L ∩ R �

Emptiness Problem

Given a CFG G with start symbol S , is L(G) empty?

Solution: Check if the start symbol S is generating. How long does
that take?

Emptiness Problem

Given a CFG G with start symbol S , is L(G) empty?
Solution: Check if the start symbol S is generating.

How long does
that take?

Emptiness Problem

Given a CFG G with start symbol S , is L(G) empty?
Solution: Check if the start symbol S is generating. How long does
that take?

Determining generating symbols

Algorithm

Gen = {}
for every rule A→ x where x ∈ Σ∗

Gen = Gen ∪ {A}
repeat

for every rule A→ γ
if all variables in γ are generating then

Gen = Gen ∪ {A}
until Gen does not change

I Both for-loops take O(n) time where n = |G |.
I Each iteration of repeat-until loop discovers a new variable.

So number of iterations is O(n). And total is O(n2).

Determining generating symbols

Algorithm

Gen = {}
for every rule A→ x where x ∈ Σ∗

Gen = Gen ∪ {A}
repeat

for every rule A→ γ
if all variables in γ are generating then

Gen = Gen ∪ {A}
until Gen does not change

I Both for-loops take O(n) time where n = |G |.

I Each iteration of repeat-until loop discovers a new variable.
So number of iterations is O(n). And total is O(n2).

Determining generating symbols

Algorithm

Gen = {}
for every rule A→ x where x ∈ Σ∗

Gen = Gen ∪ {A}
repeat

for every rule A→ γ
if all variables in γ are generating then

Gen = Gen ∪ {A}
until Gen does not change

I Both for-loops take O(n) time where n = |G |.
I Each iteration of repeat-until loop discovers a new variable.

So number of iterations is O(n). And total is O(n2).

Membership Problem

Given a CFG G = (V ,Σ,R,S) in Chomsky Normal Form, and a
string w ∈ Σ∗, is w ∈ L(G)?

Central question in parsing.

Membership Problem

Given a CFG G = (V ,Σ,R,S) in Chomsky Normal Form, and a
string w ∈ Σ∗, is w ∈ L(G)?
Central question in parsing.

“Simple” Solution

I Let |w | = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n − 1 iff w ∈ L(G)

I Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

I Number of parse trees of size 2n − 1 is k2n−1 where k is the
number of variables in G . So algorithm is exponential in n!

I We will see an algorithm that runs in O(n3) time (the
constant will depend on k).

“Simple” Solution

I Let |w | = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n − 1 iff w ∈ L(G)

I Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

I Number of parse trees of size 2n − 1 is k2n−1 where k is the
number of variables in G . So algorithm is exponential in n!

I We will see an algorithm that runs in O(n3) time (the
constant will depend on k).

“Simple” Solution

I Let |w | = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n − 1 iff w ∈ L(G)

I Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

I Number of parse trees of size 2n − 1 is k2n−1 where k is the
number of variables in G . So algorithm is exponential in n!

I We will see an algorithm that runs in O(n3) time (the
constant will depend on k).

“Simple” Solution

I Let |w | = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n − 1 iff w ∈ L(G)

I Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

I Number of parse trees of size 2n − 1 is k2n−1 where k is the
number of variables in G . So algorithm is exponential in n!

I We will see an algorithm that runs in O(n3) time (the
constant will depend on k).

“Simple” Solution

I Let |w | = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n − 1 iff w ∈ L(G)

I Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

I Number of parse trees of size 2n − 1 is k2n−1 where k is the
number of variables in G . So algorithm is exponential in n!

I We will see an algorithm that runs in O(n3) time (the
constant will depend on k).

First Ideas

Notation
Suppose w = w1w2 · · ·wn, where wi ∈ Σ. Let wi ,j denote the
substring of w starting at position i of length j . Thus,
wi ,j = wiwi+1 · · ·wi+j−1

Main Idea
For every A ∈ V , and every i ≤ n, j ≤ n + 1− i , we will determine
if A

∗⇒ wi ,j .

Now, w ∈ L(G) iff S
∗⇒ w1,n = w ; thus, we will solve the

membership problem.
How do we determine if A

∗⇒ wi ,j for every A, i , j?

First Ideas

Notation
Suppose w = w1w2 · · ·wn, where wi ∈ Σ. Let wi ,j denote the
substring of w starting at position i of length j . Thus,
wi ,j = wiwi+1 · · ·wi+j−1

Main Idea
For every A ∈ V , and every i ≤ n, j ≤ n + 1− i , we will determine
if A

∗⇒ wi ,j .

Now, w ∈ L(G) iff S
∗⇒ w1,n = w ; thus, we will solve the

membership problem.
How do we determine if A

∗⇒ wi ,j for every A, i , j?

First Ideas

Notation
Suppose w = w1w2 · · ·wn, where wi ∈ Σ. Let wi ,j denote the
substring of w starting at position i of length j . Thus,
wi ,j = wiwi+1 · · ·wi+j−1

Main Idea
For every A ∈ V , and every i ≤ n, j ≤ n + 1− i , we will determine
if A

∗⇒ wi ,j .

Now, w ∈ L(G) iff S
∗⇒ w1,n = w ; thus, we will solve the

membership problem.

How do we determine if A
∗⇒ wi ,j for every A, i , j?

First Ideas

Notation
Suppose w = w1w2 · · ·wn, where wi ∈ Σ. Let wi ,j denote the
substring of w starting at position i of length j . Thus,
wi ,j = wiwi+1 · · ·wi+j−1

Main Idea
For every A ∈ V , and every i ≤ n, j ≤ n + 1− i , we will determine
if A

∗⇒ wi ,j .

Now, w ∈ L(G) iff S
∗⇒ w1,n = w ; thus, we will solve the

membership problem.
How do we determine if A

∗⇒ wi ,j for every A, i , j?

Base Case
Substrings of length 1

Observation
For any A, i , A

∗⇒ wi ,1 iff A→ wi ,1 is a rule.

I Since G is in Chomsky Normal Form, G does not have any
ε-rules, nor any unit rules.

Thus, for each A and i , one can determine if A
∗⇒ wi ,1.

Base Case
Substrings of length 1

Observation
For any A, i , A

∗⇒ wi ,1 iff A→ wi ,1 is a rule.

I Since G is in Chomsky Normal Form, G does not have any
ε-rules, nor any unit rules.

Thus, for each A and i , one can determine if A
∗⇒ wi ,1.

Base Case
Substrings of length 1

Observation
For any A, i , A

∗⇒ wi ,1 iff A→ wi ,1 is a rule.

I Since G is in Chomsky Normal Form, G does not have any
ε-rules, nor any unit rules.

Thus, for each A and i , one can determine if A
∗⇒ wi ,1.

Inductive Step
Longer substrings

A

B C

wi ,k wi+k,j−k

Suppose for every variable X and every wi ,`

(` < j) we have determined if X
∗⇒ wi ,`

I A
∗⇒ wi ,j iff there are variables B and C

and some k < j such that A→ BC is a
rule, and B

∗⇒ wi ,k and C
∗⇒ wi+k,j−k

I Since k and j − k are both less than j , we
can inductively determine if A

∗⇒ wi ,j .

Inductive Step
Longer substrings

A

B C

wi ,k wi+k,j−k

Suppose for every variable X and every wi ,`

(` < j) we have determined if X
∗⇒ wi ,`

I A
∗⇒ wi ,j iff there are variables B and C

and some k < j such that A→ BC is a
rule, and B

∗⇒ wi ,k and C
∗⇒ wi+k,j−k

I Since k and j − k are both less than j , we
can inductively determine if A

∗⇒ wi ,j .

Inductive Step
Longer substrings

A

B C

wi ,k wi+k,j−k

Suppose for every variable X and every wi ,`

(` < j) we have determined if X
∗⇒ wi ,`

I A
∗⇒ wi ,j iff there are variables B and C

and some k < j such that A→ BC is a
rule, and B

∗⇒ wi ,k and C
∗⇒ wi+k,j−k

I Since k and j − k are both less than j , we
can inductively determine if A

∗⇒ wi ,j .

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains Xi ,j = {A | A ∗⇒ wi ,j}.

Initialize: Xi ,1 = {A | A→ wi ,1}
for j = 2 to n do

for i = 1 to n − j + 1 do
Xi ,j = ∅
for k = 1 to j − 1 do

Xi ,j = Xi ,j ∪ {A | A→ BC , B ∈ Xi ,k , C ∈ Xi+k,j−k}

Correctness: After each iteration of the outermost loop, Xi ,j

contains exactly the set of variables A that can derive wi ,j , for each
i .Time = O(n3).

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains Xi ,j = {A | A ∗⇒ wi ,j}.

Initialize: Xi ,1 = {A | A→ wi ,1}
for j = 2 to n do

for i = 1 to n − j + 1 do
Xi ,j = ∅
for k = 1 to j − 1 do

Xi ,j = Xi ,j ∪ {A | A→ BC , B ∈ Xi ,k , C ∈ Xi+k,j−k}

Correctness: After each iteration of the outermost loop, Xi ,j

contains exactly the set of variables A that can derive wi ,j , for each
i .

Time = O(n3).

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains Xi ,j = {A | A ∗⇒ wi ,j}.

Initialize: Xi ,1 = {A | A→ wi ,1}
for j = 2 to n do

for i = 1 to n − j + 1 do
Xi ,j = ∅
for k = 1 to j − 1 do

Xi ,j = Xi ,j ∪ {A | A→ BC , B ∈ Xi ,k , C ∈ Xi+k,j−k}

Correctness: After each iteration of the outermost loop, Xi ,j

contains exactly the set of variables A that can derive wi ,j , for each
i .Time = O(n3).

Example

Example

Consider grammar
S → AB | BC , A→ BA | a, B → CC | b, C → AB | a Let

w = baaba. The sets Xi ,j = {A | A ∗⇒ wi ,j}:

j/i 1 2 3 4 5

5

{S ,A,C}

4

∅ {S ,A,C}

3

∅ {B} {B}

2

{S ,A} {B} {S ,C} {S ,A}

1 {B} {A,C} {A,C} {B} {A,C}
b a a b a

Example

Example

Consider grammar
S → AB | BC , A→ BA | a, B → CC | b, C → AB | a Let

w = baaba. The sets Xi ,j = {A | A ∗⇒ wi ,j}:

j/i 1 2 3 4 5

5

{S ,A,C}

4

∅ {S ,A,C}

3

∅ {B} {B}

2

{S ,A} {B} {S ,C} {S ,A}

1 {B} {A,C} {A,C} {B} {A,C}
b a a b a

Example

Example

Consider grammar
S → AB | BC , A→ BA | a, B → CC | b, C → AB | a Let

w = baaba. The sets Xi ,j = {A | A ∗⇒ wi ,j}:

j/i 1 2 3 4 5

5

{S ,A,C}

4

∅ {S ,A,C}

3

∅ {B} {B}

2 {S ,A} {B} {S ,C} {S ,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

Example

Example

Consider grammar
S → AB | BC , A→ BA | a, B → CC | b, C → AB | a Let

w = baaba. The sets Xi ,j = {A | A ∗⇒ wi ,j}:

j/i 1 2 3 4 5

5

{S ,A,C}

4

∅ {S ,A,C}

3 ∅ {B} {B}
2 {S ,A} {B} {S ,C} {S ,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

Example

Example

Consider grammar
S → AB | BC , A→ BA | a, B → CC | b, C → AB | a Let

w = baaba. The sets Xi ,j = {A | A ∗⇒ wi ,j}:

j/i 1 2 3 4 5

5

{S ,A,C}

4 ∅ {S ,A,C}
3 ∅ {B} {B}
2 {S ,A} {B} {S ,C} {S ,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

Example

Example

Consider grammar
S → AB | BC , A→ BA | a, B → CC | b, C → AB | a Let

w = baaba. The sets Xi ,j = {A | A ∗⇒ wi ,j}:

j/i 1 2 3 4 5

5 {S ,A,C}
4 ∅ {S ,A,C}
3 ∅ {B} {B}
2 {S ,A} {B} {S ,C} {S ,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?
I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?
I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?

I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?
I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?
I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?
I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

More Decision Problems

Given a CFGs G1 and G2

I Is L(G1) = Σ∗?

I Is L(G1) ∩ L(G2) = ∅?
I Is L(G1) = L(G2)?

I Is G1 ambiguous?

I Is L(G1) inherently ambiguous?

All these problems are undecidable.

	Regular operations

