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Union of CFLs

Let L; be language recognized by G; = (V1,%1, R1,51) and L the
language recognized by Gy = (V2, X2, R, S2)

Is L1 U Ly a context free language? Yes.

Just add the rule S — 51|15,

But make sure that V4 N Vo, = 0 (by renaming some variables).

Closure of CFLs under Union

G =(V,%,R,S) such that L(G) = L(G1) U L(Gp):
» V=V UVo,U{S} (the three sets are disjoint)
> Y =3Y,Ud,
> RZRlURzU{5—>51|52}
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Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Proof.
Let Ly be language generated by Gy = (V1,X1, R1, S1) and Ly the
language generated by Gy = (V2, X2, R2, S2)
» Concatenation: LiLy generated by a grammar with an
additional rule S — 515,
» Kleene Closure: L generated by a grammar with an
additional rule S — 5;S|e

As before, ensure that Vi N Vo, = (0. S is a new start symbol.
(Exercise: Complete the Proof!) O
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Let L; and Ly be context free languages. L3 N Ly is not necessarily
context free!

Proposition

CFLs are not closed under intersection

Proof.
» Ly ={ab'c/|i,j>0}isa CFL

» Generated by a grammar with rules S — XY; X — aXb|e;
Y = cYle.

» Ly ={a'bc|i,j>0}isa CFL.

» Generated by a grammar with rules S — XY; X — aX]e;
Y — bYcle.

» But LyjNLy={a"b"c" | n>0}is not a CFL. O
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Intersection with Regular Languages

Proposition
If L isa CFL and R is a regular language then LN R is a CFL.

Proof.
Let P be the PDA that accepts L, and let M be the DFA that
accepts R. A new PDA P’ will simulate P and M simultaneously
on the same input and accept if both accept. Then P’ accepts
LNR.
» The stack of P’ is the stack of P
» The state of P at any time is the pair (state of P, state of
M): Qe = Qp x Qu
» These determine the transition function of P’.
» The final states of P’ are those in which both the state of P
and state of M are accepting: Fpr = Fp X Fpy O

Why does this construction not work for intersection of two CFLs?
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Complementation

Let L be a context free language. Is L context free? No!

Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L1, Ly, we have

» L1 and Ly are CFL. Then, since CFLs closed under union,
L1 U Ly is CFL. Then, again by hypothesis, L; U L5 is CFL.
» ie, LiNLyisa CFL

i.e., CFLs are closed under intersection. Contradiction! O

Proof 2.
L = {x | x not of the form ww} is a CFL.

» L generated by a grammar with rules X — a|b, A — a|XAX,
B — b|XBX, S — A|B|AB|BA

But L = {ww | w € {a, b}*} is not a CFL! (Why?) O
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Set Difference

Proposition
IfLy isa CFL and Ly is a CFL then Ly \ Ly is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and
complementation is a special case of set difference. (How?) O
Proposition

If Lisa CFL and R is a regular language then L\ R is a CFL

Proof.
L\R=LNR 0
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Determining generating symbols

Algorithm

Gen = {}
for every rule A — x where x € X*

Gen = Gen U {A}
repeat

for every rule A — vy

if all variables in 7y are generating then
Gen = Gen U {A}

until Gen does not change

» Both for-loops take O(n) time where n = |G]|.

» Each iteration of repeat-until loop discovers a new variable.
So number of iterations is O(n). And total is O(n?).
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“Simple” Solution

» Let |w| = n. Since G is in Chomsky Normal Form, w has a
parse tree of size 2n — 1 iff w € L(G)

» Construct all possible parse (binary) trees and check if any of
them is a valid parse tree for w

» Number of parse trees of size 2n — 1 is k2"~ where k is the
number of variables in G. So algorithm is exponential in n!

» We will see an algorithm that runs in O(n3) time (the
constant will depend on k).
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First Ideas

Notation

Suppose w = wiws - - - Wy, where w; € X. Let w;; denote the
substring of w starting at position i of length j. Thus,

Wij = WiWit1 - Witj-1

Main ldea

For every A€ V, and every i < n, j < n+1— i, we will determine
if A :*> W,'J.

Now, w € L(G) iff S = wy , = w; thus, we will solve the
membership problem.

How do we determine if A = w; ; for every A, i, 7
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Base Case
Substrings of length 1

Observation
For any A,i, A = w1 iff A— w; 1 is a rule.

» Since G is in Chomsky Normal Form, G does not have any
e-rules, nor any unit rules.

Thus, for each A and i, one can determine if A = Wi 1.
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Inductive Step

Longer substrings

AN

C

Witk j—k

Suppose for every variable X and every w;
(¢ < j) we have determined if X = w;
» AS w; ; iff there are variables B and C

and some k < j such that A— BC is a
ruIe, and B :*> Wi k and C :*> Witk j—k

» Since k and j — k are both less than j, we
can inductively determine if A = wj .
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Initialize: Xj;1={A|A— w1}
for j = 2 to n do
for i =1 ton—j+1 do
Xi; =0
for Kk = 1 to j—1 do
X;JZX,‘JU{A’A%BC, BEX,'};(, CEXiJrk,j,k}

Correctness: After each iteration of the outermost loop, X; ;
contains exactly the set of variables A that can derive w; j, for each
i.Time = O(n3).
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Consider grammar
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Example

Example

Consider grammar
S—AB|BC, A— BA|a, B— CC|b, C — AB|a Let

w = baaba. The sets X;; = {A| A= w; }:

J/i 1 2 3 4 5
5 | {S,A C}
4 0 {S,A C}
3 0 {B} {B}
2 | {S.A} {B} {s.¢}t {S,A
1 {B} {AC {AC {B} {AC]
b a a b a
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> Is L(Gy) = X*7
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Is L(G1) = L(Gp)?
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Is L(Gy) inherently ambiguous?

All these problems are undecidable.
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