CSE 135: Introduction to Theory of Computation Closure Properties of CFLs

Sungjin Im

University of California, Merced

03-17-2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ ls $L_1 \cup L_2$ a context free language?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ Is $L_1 \cup L_2$ a context free language? Yes.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ Is $L_1 \cup L_2$ a context free language? Yes. Just add the rule $S \to S_1 | S_2$

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ Is $L_1 \cup L_2$ a context free language? Yes. Just add the rule $S \rightarrow S_1 | S_2$ But make sure that $V_1 \cap V_2 = \emptyset$ (by renaming some variables).

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ Is $L_1 \cup L_2$ a context free language? Yes. Just add the rule $S \rightarrow S_1 | S_2$ But make sure that $V_1 \cap V_2 = \emptyset$ (by renaming some variables).

Closure of CFLs under Union $G = (V, \Sigma, R, S)$ such that $L(G) = L(G_1) \cup L(G_2)$: $\blacktriangleright V = V_1 \cup V_2 \cup \{S\}$ (the three sets are disjoint)

$$\blacktriangleright \Sigma = \Sigma_1 \cup \Sigma_2$$

$$\blacktriangleright R = R_1 \cup R_2 \cup \{S \to S_1 | S_2\}$$

Proposition

CFLs are closed under concatenation and Kleene closure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Concatenation:

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

► Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- Kleene Closure:

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- ► Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- ► Kleene Closure: L_1^* generated by a grammar with an additional rule $S \rightarrow S_1 S | \epsilon$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- ► Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- ► Kleene Closure: L_1^* generated by a grammar with an additional rule $S \rightarrow S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. *S* is a new start symbol.

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- ► Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- Kleene Closure: L_1^* generated by a grammar with an additional rule $S \rightarrow S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. S is a new start symbol. (Exercise: Complete the Proof!)

Let L_1 and L_2 be context free languages.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

CFLs are not closed under intersection

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

CFLs are not closed under intersection

Proof.

•
$$L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$$
 is a CFL

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Proof.

•
$$L_1 = \{a^i b^j c^j \mid i, j \ge 0\}$$
 is a CFL

• Generated by a grammar with rules $S \rightarrow XY$; $X \rightarrow aXb|\epsilon$; $Y \rightarrow cY|\epsilon$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• But $L_1 \cap L_2 =$

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Proof.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proposition If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

▶ The stack of P' is the stack of P

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

- ► The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M)

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

- The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

- The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M

• These determine the transition function of P'.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

- The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M
- These determine the transition function of P'.
- The final states of P' are those in which both the state of P and state of M are accepting:

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

- The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M
- These determine the transition function of P'.
- ► The final states of P' are those in which both the state of P and state of M are accepting: F_{P'} = F_P × F_M

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let *P* be the PDA that accepts *L*, and let *M* be the DFA that accepts *R*. A new PDA *P'* will simulate *P* and *M* simultaneously on the same input and accept if both accept. Then *P'* accepts $L \cap R$.

- The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M
- These determine the transition function of P'.
- ► The final states of P' are those in which both the state of P and state of M are accepting: F_{P'} = F_P × F_M

Why does this construction not work for intersection of two CFLs?

Complementation

Let *L* be a context free language. Is \overline{L} context free?

(ロ)、(型)、(E)、(E)、 E) の(の)

Complementation

Let *L* be a context free language. Is \overline{L} context free? No!

(ロ)、(型)、(E)、(E)、 E) の(の)

Complementation

Let L be a context free language. Is \overline{L} context free? No!

(ロ)、(型)、(E)、(E)、 E) のQの

Proof 1.

Suppose CFLs were closed under complementation.
Let *L* be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let *L* be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

• $\overline{L_1}$ and $\overline{L_2}$ are CFL.

Let *L* be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.

• i.e., $L_1 \cap L_2$ is a CFL

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.

• i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.

• i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2. $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.

• i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

- $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.
 - L generated by a grammar with rules

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

- $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.
 - ▶ *L* generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a|XAX$, $B \rightarrow b|XBX$, $S \rightarrow$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

- $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.
 - ► L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a|XAX$, $B \rightarrow b|XBX, S \rightarrow A|B|AB|BA$

Let *L* be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

- $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.
 - ► L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a|XAX$, $B \rightarrow b|XBX, S \rightarrow A|B|AB|BA$

But $\overline{L} = \{ww \mid w \in \{a, b\}^*\}$ is not a CFL! (Why?)

Proposition If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

 \square

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proof. $L \setminus R = L \cap \overline{R}$

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty?

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating. How long does that take?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Determining generating symbols

```
Algorithm

Gen = {}

for every rule A \to x where x \in \Sigma^*

Gen = Gen \cup \{A\}

repeat

for every rule A \to \gamma

if all variables in \gamma are generating then

Gen = Gen \cup \{A\}

until Gen does not change
```

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ(?)

Determining generating symbols

```
Algorithm

Gen = {}

for every rule A \to x where x \in \Sigma^*

Gen = Gen \cup \{A\}

repeat

for every rule A \to \gamma

if all variables in \gamma are generating then

Gen = Gen \cup \{A\}

until Gen does not change
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Both for-loops take O(n) time where n = |G|.

Determining generating symbols

```
Algorithm

Gen = {}

for every rule A \to x where x \in \Sigma^*

Gen = Gen \cup \{A\}

repeat

for every rule A \to \gamma

if all variables in \gamma are generating then

Gen = Gen \cup \{A\}

until Gen does not change
```

- Both for-loops take O(n) time where n = |G|.
- Each iteration of repeat-until loop discovers a new variable. So number of iterations is O(n). And total is O(n²).

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$? Central question in parsing.

Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n − 1 iff w ∈ L(G)

(ロ)、(型)、(E)、(E)、 E) の(の)

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n − 1 iff w ∈ L(G)
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n − 1 iff w ∈ L(G)
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- ► Number of parse trees of size 2n 1 is k²ⁿ⁻¹ where k is the number of variables in G. So algorithm is exponential in n!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n − 1 iff w ∈ L(G)
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- ► Number of parse trees of size 2n 1 is k²ⁿ⁻¹ where k is the number of variables in G. So algorithm is exponential in n!

► We will see an algorithm that runs in O(n³) time (the constant will depend on k).

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \le n, j \le n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n, j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$. Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \le n, j \le n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

How do we determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$ for every A, i, j?

Base Case Substrings of length 1

Observation For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Base Case

Substrings of length 1

Observation

For any $A, i, A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

► Since G is in Chomsky Normal Form, G does not have any e-rules, nor any unit rules.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Base Case

Substrings of length 1

Observation

For any $A, i, A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

► Since G is in Chomsky Normal Form, G does not have any e-rules, nor any unit rules.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, for each A and *i*, one can determine if $A \stackrel{*}{\Rightarrow} w_{i,1}$.

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Inductive Step Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

► $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and Cand some k < j such that $A \rightarrow BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,j-k}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Inductive Step Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

- $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and Cand some k < j such that $A \rightarrow BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,i-k}$
- ▶ Since k and j k are both less than j, we can inductively determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.$

Initialize:
$$X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}$$

for $j = 2$ to n do
for $i = 1$ to $n - j + 1$ do
 $X_{i,j} = \emptyset$
for $k = 1$ to $j - 1$ do
 $X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, B \in X_{i,k}, C \in X_{i+k,j-k}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.$

Initialize:
$$X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}$$

for $j = 2$ to n do
for $i = 1$ to $n - j + 1$ do
 $X_{i,j} = \emptyset$
for $k = 1$ to $j - 1$ do
 $X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, B \in X_{i,k}, C \in X_{i+k,j-k}\}$

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each i.

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.$

Initialize:
$$X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}$$

for $j = 2$ to n do
for $i = 1$ to $n - j + 1$ do
 $X_{i,j} = \emptyset$
for $k = 1$ to $j - 1$ do
 $X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, B \in X_{i,k}, C \in X_{i+k,j-k}\}$

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each *i*.Time = $O(n^3)$.

Example

Consider grammar $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$ Let w = baaba. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

Example

Consider grammar $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$ Let w = baaba. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

Example

Consider grammar $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$ Let w = baaba. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3					
2	$\{S,A\}$	$\{B\}$	$\{S, C\}$	{ <i>S</i> , <i>A</i> }	
1	<i>{B}</i>	$\{A, C\}$	$\{A, C\}$	<i>{B}</i>	$\{A, C\}$
	b	а	а	Ь	а

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Example

Consider grammar $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$ Let w = baaba. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3	Ø	$\{B\}$	$\{B\}$		
2	$\{S,A\}$	$\{B\}$	$\{S, C\}$	{ <i>S</i> , <i>A</i> }	
1	<i>{B}</i>	$\{A, C\}$	$\{A, C\}$	$\{B\}$	$\{A, C\}$
	b	а	а	b	а

Example

Consider grammar $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$ Let w = baaba. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4	Ø	$\{S, A, C\}$			
3	Ø	<i>{B}</i>	$\{B\}$		
2	$\{S,A\}$	<i>{B}</i>	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	<i>{B}</i>	$\{A, C\}$	$\{A, C\}$	<i>{B}</i>	$\{A, C\}$
	b	а	а	b	а

Example

Consider grammar $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$ Let w = baaba. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5	$\{S, A, C\}$				
4	Ø	$\{S, A, C\}$			
3	Ø	$\{B\}$	$\{B\}$		
2	$\{S,A\}$	$\{B\}$	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	<i>{B}</i>	$\{A, C\}$	$\{A, C\}$	<i>{B}</i>	$\{A, C\}$
	b	а	а	b	а

Given a CFGs G_1 and G_2

Given a CFGs G_1 and G_2 • Is $L(G_1) = \Sigma^*$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given a CFGs G_1 and G_2

• Is
$$L(G_1) = \Sigma^*$$
?

▶ Is
$$L(G_1) \cap L(G_2) = \emptyset$$
?

Given a CFGs G_1 and G_2

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Is $L(G_1) = L(G_2)$?

Given a CFGs G_1 and G_2

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?

- Is $L(G_1) = L(G_2)$?
- ▶ Is *G*₁ ambiguous?

Given a CFGs G_1 and G_2

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?
- Is $L(G_1) = L(G_2)$?
- Is G₁ ambiguous?
- ▶ Is *L*(*G*₁) inherently ambiguous?

Given a CFGs G_1 and G_2

- Is $L(G_1) = \Sigma^*$?
- ▶ Is $L(G_1) \cap L(G_2) = \emptyset$?
- ▶ Is $L(G_1) = L(G_2)$?
- Is G₁ ambiguous?
- ▶ Is *L*(*G*₁) inherently ambiguous?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

All these problems are undecidable.