CSE 135: Introduction to Theory of Computation Closure Properties of CFLs

Sungjin Im

University of California, Merced

$$
03-17-2015
$$

Union of CFLs

Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$
Is $L_{1} \cup L_{2}$ a context free language?

Union of CFLs

Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$
Is $L_{1} \cup L_{2}$ a context free language? Yes.

Union of CFLs

Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$
Is $L_{1} \cup L_{2}$ a context free language? Yes.
Just add the rule $S \rightarrow S_{1} \mid S_{2}$

Union of CFLs

Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$
Is $L_{1} \cup L_{2}$ a context free language? Yes.
Just add the rule $S \rightarrow S_{1} \mid S_{2}$
But make sure that $V_{1} \cap V_{2}=\emptyset$ (by renaming some variables).

Union of CFLs

Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$
Is $L_{1} \cup L_{2}$ a context free language? Yes.
Just add the rule $S \rightarrow S_{1} \mid S_{2}$
But make sure that $V_{1} \cap V_{2}=\emptyset$ (by renaming some variables).
Closure of CFLs under Union
$G=(V, \Sigma, R, S)$ such that $L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$:

- $V=V_{1} \cup V_{2} \cup\{S\}$ (the three sets are disjoint)
- $\Sigma=\Sigma_{1} \cup \Sigma_{2}$
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation:

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation: $L_{1} L_{2}$ generated by a grammar with an additional rule $S \rightarrow S_{1} S_{2}$

Concatenation, Kleene Closure

Proposition
CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation: $L_{1} L_{2}$ generated by a grammar with an additional rule $S \rightarrow S_{1} S_{2}$
- Kleene Closure:

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation: $L_{1} L_{2}$ generated by a grammar with an additional rule $S \rightarrow S_{1} S_{2}$
- Kleene Closure: L_{1}^{*} generated by a grammar with an additional rule $S \rightarrow S_{1} S \mid \epsilon$

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation: $L_{1} L_{2}$ generated by a grammar with an additional rule $S \rightarrow S_{1} S_{2}$
- Kleene Closure: L_{1}^{*} generated by a grammar with an additional rule $S \rightarrow S_{1} S \mid \epsilon$
As before, ensure that $V_{1} \cap V_{2}=\emptyset . S$ is a new start symbol.

Concatenation, Kleene Closure

Proposition

CFLs are closed under concatenation and Kleene closure
Proof.
Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation: $L_{1} L_{2}$ generated by a grammar with an additional rule $S \rightarrow S_{1} S_{2}$
- Kleene Closure: L_{1}^{*} generated by a grammar with an additional rule $S \rightarrow S_{1} S \mid \epsilon$
As before, ensure that $V_{1} \cap V_{2}=\emptyset . S$ is a new start symbol.
(Exercise: Complete the Proof!)

Intersection

Let L_{1} and L_{2} be context free languages.

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection
Proof.

- $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection
Proof.

- $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b \mid \epsilon$; $Y \rightarrow c Y \mid \epsilon$.

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection
Proof.

- $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b \mid \epsilon$; $Y \rightarrow c Y \mid \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection
Proof.

- $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b \mid \epsilon$; $Y \rightarrow c Y \mid \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X \mid \epsilon$; $Y \rightarrow b Y c \mid \epsilon$.

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection
Proof.

- $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b \mid \epsilon$; $Y \rightarrow c Y \mid \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X \mid \epsilon$; $Y \rightarrow b Y c \mid \epsilon$.
- But $L_{1} \cap L_{2}=$

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!

Proposition
CFLs are not closed under intersection
Proof.

- $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b \mid \epsilon$; $Y \rightarrow c Y \mid \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X \mid \epsilon$; $Y \rightarrow b Y c \mid \epsilon$.
- But $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not a CFL.

Intersection with Regular Languages

Proposition
If L is a $C F L$ and R is a regular language then $L \cap R$ is a CFL.

Intersection with Regular Languages

Proposition
If L is a $C F L$ and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R.

Intersection with Regular Languages

Proposition
If L is a $C F L$ and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

Intersection with Regular Languages

Proposition
If L is a CFL and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P

Intersection with Regular Languages

Proposition
If L is a $C F L$ and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of M)

Intersection with Regular Languages

Proposition
If L is a $C F L$ and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of $M): Q_{P^{\prime}}=Q_{P} \times Q_{M}$

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of $M): Q_{P^{\prime}}=Q_{P} \times Q_{M}$
- These determine the transition function of P^{\prime}.

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.
Proof.
Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of $M): Q_{P^{\prime}}=Q_{P} \times Q_{M}$
- These determine the transition function of P^{\prime}.
- The final states of P^{\prime} are those in which both the state of P and state of M are accepting:

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of $M): Q_{P^{\prime}}=Q_{P} \times Q_{M}$
- These determine the transition function of P^{\prime}.
- The final states of P^{\prime} are those in which both the state of P and state of M are accepting: $F_{P^{\prime}}=F_{P} \times F_{M}$

Intersection with Regular Languages

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of $M): Q_{P^{\prime}}=Q_{P} \times Q_{M}$
- These determine the transition function of P^{\prime}.
- The final states of P^{\prime} are those in which both the state of P and state of M are accepting: $F_{P^{\prime}}=F_{P} \times F_{M}$

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is \bar{L} context free?

Complementation

Let L be a context free language. Is \bar{L} context free? No!

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation.

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL.

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL.

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL.

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
$L=\{x \mid x$ not of the form $w w\}$ is a CFL.

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any
two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
$L=\{x \mid x$ not of the form $w w\}$ is a CFL.

- L generated by a grammar with rules

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
$L=\{x \mid x$ not of the form $w w\}$ is a CFL.

- L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a| X A X$, $B \rightarrow b \mid X B X, S \rightarrow$

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
$L=\{x \mid x$ not of the form $w w\}$ is a CFL.

- L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a| X A X$, $B \rightarrow b|X B X, S \rightarrow A| B|A B| B A$

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1.
Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2.
$L=\{x \mid x$ not of the form $w w\}$ is a CFL.

- L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a| X A X$, $B \rightarrow b|X B X, S \rightarrow A| B|A B| B A$
But $\bar{L}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is not a CFL! (Why?)

Set Difference

Proposition
If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL

Set Difference

Proposition
If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL
Proof.
Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Set Difference

Proposition
If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL
Proof.
Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition
If L is a CFL and R is a regular language then $L \backslash R$ is a CFL

Set Difference

Proposition
If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL
Proof.
Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition
If L is a CFL and R is a regular language then $L \backslash R$ is a CFL
Proof.
$L \backslash R=L \cap \bar{R}$

Emptiness Problem

Given a CFG G with start symbol S, is $L(G)$ empty?

Emptiness Problem

Given a CFG G with start symbol S, is $L(G)$ empty? Solution: Check if the start symbol S is generating.

Emptiness Problem

Given a CFG G with start symbol S, is $L(G)$ empty? Solution: Check if the start symbol S is generating. How long does that take?

Determining generating symbols

Algorithm

```
Gen = {}
for every rule A->x where x\in \Sigma*
    Gen = Gen \cup{A}
repeat
    for every rule A->\gamma
        if all variables in }\gamma\mathrm{ are generating then
        Gen = Gen \cup{A}
until Gen does not change
```


Determining generating symbols

Algorithm

```
Gen = {}
for every rule }A->x\mathrm{ where }x\in\mp@subsup{\Sigma}{}{*
    Gen = Gen \cup{A}
repeat
    for every rule A->\gamma
        if all variables in }\gamma\mathrm{ are generating then
        Gen = Gen \cup{A}
until Gen does not change
```

- Both for-loops take $O(n)$ time where $n=|G|$.

Determining generating symbols

Algorithm

```
Gen = {}
for every rule }A->x\mathrm{ where }x\in\mp@subsup{\Sigma}{}{*
    Gen = Gen \cup{A}
repeat
    for every rule A->\gamma
        if all variables in }\gamma\mathrm{ are generating then
        Gen = Gen \cup{A}
```

until Gen does not change

- Both for-loops take $O(n)$ time where $n=|G|$.
- Each iteration of repeat-until loop discovers a new variable. So number of iterations is $O(n)$. And total is $O\left(n^{2}\right)$.

Membership Problem

Given a CFG $G=(V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^{*}$, is $w \in L(G)$?

Membership Problem

Given a CFG $G=(V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^{*}$, is $w \in L(G)$?
Central question in parsing.

"Simple" Solution

"Simple" Solution

- Let $|w|=n$. Since G is in Chomsky Normal Form, w has a parse tree of size $2 n-1$ iff $w \in L(G)$

"Simple" Solution

- Let $|w|=n$. Since G is in Chomsky Normal Form, w has a parse tree of size $2 n-1$ iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w

"Simple" Solution

- Let $|w|=n$. Since G is in Chomsky Normal Form, w has a parse tree of size $2 n-1$ iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size $2 n-1$ is $k^{2 n-1}$ where k is the number of variables in G. So algorithm is exponential in n !

"Simple" Solution

- Let $|w|=n$. Since G is in Chomsky Normal Form, w has a parse tree of size $2 n-1$ iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size $2 n-1$ is $k^{2 n-1}$ where k is the number of variables in G. So algorithm is exponential in n !
- We will see an algorithm that runs in $O\left(n^{3}\right)$ time (the constant will depend on k).

First Ideas

Notation

Suppose $w=w_{1} w_{2} \cdots w_{n}$, where $w_{i} \in \Sigma$. Let $w_{i, j}$ denote the substring of w starting at position i of length j. Thus,

$$
w_{i, j}=w_{i} w_{i+1} \cdots w_{i+j-1}
$$

First Ideas

Notation

Suppose $w=w_{1} w_{2} \cdots w_{n}$, where $w_{i} \in \Sigma$. Let $w_{i, j}$ denote the substring of w starting at position i of length j. Thus,
$w_{i, j}=w_{i} w_{i+1} \cdots w_{i+j-1}$
Main Idea
For every $A \in V$, and every $i \leq n, j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i, j}$.

First Ideas

Notation

Suppose $w=w_{1} w_{2} \cdots w_{n}$, where $w_{i} \in \Sigma$. Let $w_{i, j}$ denote the substring of w starting at position i of length j. Thus,
$w_{i, j}=w_{i} w_{i+1} \cdots w_{i+j-1}$
Main Idea
For every $A \in V$, and every $i \leq n, j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i, j}$.
Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1, n}=w$; thus, we will solve the membership problem.

First Ideas

Notation

Suppose $w=w_{1} w_{2} \cdots w_{n}$, where $w_{i} \in \Sigma$. Let $w_{i, j}$ denote the substring of w starting at position i of length j. Thus,
$w_{i, j}=w_{i} w_{i+1} \cdots w_{i+j-1}$
Main Idea
For every $A \in V$, and every $i \leq n, j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i, j}$.
Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1, n}=w$; thus, we will solve the membership problem.
How do we determine if $A \stackrel{*}{\Rightarrow} w_{i, j}$ for every A, i, j ?

Base Case

Substrings of length 1

Observation
For any $A, i, A \stackrel{*}{\Rightarrow} w_{i, 1}$ iff $A \rightarrow w_{i, 1}$ is a rule.

Base Case

Substrings of length 1

Observation
For any $A, i, A \stackrel{*}{\Rightarrow} w_{i, 1}$ iff $A \rightarrow w_{i, 1}$ is a rule.

- Since G is in Chomsky Normal Form, G does not have any ϵ-rules, nor any unit rules.

Base Case

Substrings of length 1

Observation
For any $A, i, A \stackrel{*}{\Rightarrow} w_{i, 1}$ iff $A \rightarrow w_{i, 1}$ is a rule.

- Since G is in Chomsky Normal Form, G does not have any ϵ-rules, nor any unit rules.
Thus, for each A and i, one can determine if $A \stackrel{*}{\Rightarrow} w_{i, 1}$.

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i, \ell}$ $(\ell<j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i, \ell}$

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i, \ell}$ $(\ell<j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i, \ell}$

- $A \stackrel{*}{\Rightarrow} w_{i, j}$ iff there are variables B and C and some $k<j$ such that $A \rightarrow B C$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i, k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k, j-k}$

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i, \ell}$ $(\ell<j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i, \ell}$

- $A \stackrel{*}{\Rightarrow} w_{i, j}$ iff there are variables B and C and some $k<j$ such that $A \rightarrow B C$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i, k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k, j-k}$
- Since k and $j-k$ are both less than j, we can inductively determine if $A \stackrel{*}{\Rightarrow} w_{i, j}$.

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}$.
Initialize: $\quad X_{i, 1}=\left\{A \mid A \rightarrow w_{i, 1}\right\}$
for $j=2$ to n do

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-j+1 \text { do } \\
& X_{i, j}=\emptyset \\
& \quad \text { for } k=1 \text { to } j-1 \text { do } \\
& \quad X_{i, j}=X_{i, j} \cup\left\{A \mid A \rightarrow B C, B \in X_{i, k}, C \in X_{i+k, j-k}\right\}
\end{aligned}
$$

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}$.
Initialize: $\quad X_{i, 1}=\left\{A \mid A \rightarrow w_{i, 1}\right\}$
for $j=2$ to n do

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-j+1 \text { do } \\
& X_{i, j}=\emptyset \\
& \quad \text { for } k=1 \text { to } j-1 \text { do } \\
& \quad X_{i, j}=X_{i, j} \cup\left\{A \mid A \rightarrow B C, B \in X_{i, k}, C \in X_{i+k, j-k}\right\}
\end{aligned}
$$

Correctness: After each iteration of the outermost loop, $X_{i, j}$ contains exactly the set of variables A that can derive $w_{i, j}$, for each i.

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}$.
Initialize: $\quad X_{i, 1}=\left\{A \mid A \rightarrow w_{i, 1}\right\}$
for $j=2$ to n do

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-j+1 \text { do } \\
& X_{i, j}=\emptyset \\
& \quad \text { for } k=1 \text { to } j-1 \text { do } \\
& \quad X_{i, j}=X_{i, j} \cup\left\{A \mid A \rightarrow B C, B \in X_{i, k}, C \in X_{i+k, j-k}\right\}
\end{aligned}
$$

Correctness: After each iteration of the outermost loop, $X_{i, j}$ contains exactly the set of variables A that can derive $w_{i, j}$, for each i. Time $=O\left(n^{3}\right)$.

Example

Example

Consider grammar
$S \rightarrow A B|B C, A \rightarrow B A| a, B \rightarrow C C|b, C \rightarrow A B| a$ Let $w=$ baaba. The sets $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}:$

Example

Example

Consider grammar
$S \rightarrow A B|B C, A \rightarrow B A| a, B \rightarrow C C|b, C \rightarrow A B| a$ Let $w=$ baaba. The sets $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}:$

j / i	1	2	3	4	5
5					
4					
3					
2					
1	$\{B\}$	$\{A, C\}$	$\{A, C\}$	$\{B\}$	$\{A, C\}$
	b	a	a	b	a

Example

Example

Consider grammar
$S \rightarrow A B|B C, A \rightarrow B A| a, B \rightarrow C C|b, C \rightarrow A B| a$ Let $w=$ baaba. The sets $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}:$

Example

Example

Consider grammar
$S \rightarrow A B|B C, A \rightarrow B A| a, B \rightarrow C C|b, C \rightarrow A B| a$ Let $w=$ baaba. The sets $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}:$

Example

Example

Consider grammar
$S \rightarrow A B|B C, A \rightarrow B A| a, B \rightarrow C C|b, C \rightarrow A B| a$ Let $w=$ baaba. The sets $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}:$

j / i	1	2	3	4	5
5					
4	\emptyset	$\{S, A, C\}$			
3	\emptyset	$\{B\}$	$\{B\}$		
2	$\{S, A\}$	$\{B\}$	$\{S, C\}$	$\{S, A\}$	
1	$\{B\}$	$\{A, C\}$	$\{A, C\}$	$\{B\}$	$\{A, C\}$
	b	a	a	b	a

Example

Example

Consider grammar
$S \rightarrow A B|B C, A \rightarrow B A| a, B \rightarrow C C|b, C \rightarrow A B| a$ Let $w=$ baaba. The sets $X_{i, j}=\left\{A \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}:$

More Decision Problems

Given a CFGs G_{1} and G_{2}

More Decision Problems

Given a CFGs G_{1} and G_{2}

- Is $L\left(G_{1}\right)=\Sigma^{*}$?

More Decision Problems

Given a CFGs G_{1} and G_{2}

- Is $L\left(G_{1}\right)=\Sigma^{*}$?
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?

More Decision Problems

Given a CFGs G_{1} and G_{2}

- Is $L\left(G_{1}\right)=\Sigma^{*}$?
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- Is $L\left(G_{1}\right)=L\left(G_{2}\right)$?

More Decision Problems

Given a CFGs G_{1} and G_{2}

- Is $L\left(G_{1}\right)=\Sigma^{*}$?
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- Is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- Is G_{1} ambiguous?

More Decision Problems

Given a CFGs G_{1} and G_{2}

- Is $L\left(G_{1}\right)=\Sigma^{*}$?
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- Is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- Is G_{1} ambiguous?
- Is $L\left(G_{1}\right)$ inherently ambiguous?

More Decision Problems

Given a CFGs G_{1} and G_{2}

- Is $L\left(G_{1}\right)=\Sigma^{*}$?
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- Is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- Is G_{1} ambiguous?
- Is $L\left(G_{1}\right)$ inherently ambiguous?

All these problems are undecidable.

