CSE 135: Introduction to Theory of Computation
Closure Properties of Regular Languages

Sungjin Im

University of California, Merced

02-19-2015
Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language.
Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language.
- Very useful in studying the properties of one language by relating it to other (better understood) languages.
Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language.
- Very useful in studying the properties of one language by relating it to other (better understood) languages.
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language.
- Very useful in studying the properties of one language by relating it to other (better understood) languages.
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity.
Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language.
- Very useful in studying the properties of one language by relating it to other (better understood) languages.
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity.
 - i.e., the universe of regular languages is closed under these operations.
Closure Properties

Definition
Regular Languages are closed under an operation \(\text{op} \) on languages if

\[
L_1, L_2, \ldots L_n \text{ regular} \implies L = \text{op}(L_1, L_2, \ldots L_n) \text{ is regular}
\]
Closure Properties

Definition
Regular Languages are closed under an operation \(\text{op} \) on languages if

\[
L_1, L_2, \ldots, L_n \text{ regular} \implies L = \text{op}(L_1, L_2, \ldots, L_n) \text{ is regular}
\]

Example
Regular languages are closed under

- “halving”, i.e., \(L \) regular \(\implies \frac{1}{2}L \) regular.
Closure Properties

Definition
Regular Languages are closed under an operation op on languages if

$$L_1, L_2, \ldots L_n \text{ regular } \implies L = \text{op}(L_1, L_2, \ldots L_n) \text{ is regular}$$

Example
Regular languages are closed under

- “halving”, i.e., L regular $\implies \frac{1}{2} L$ regular.
- “reversing”, i.e., L regular $\implies L^{\text{rev}}$ regular.
Operations from Regular Expressions

Proposition

Regular Languages are closed under \cup, \circ and \ast.

Proof.

$(\text{Summarizing previous arguments.})$

$\Rightarrow L_1, L_2 \text{ regular } \Rightarrow \exists \text{ regexes } R_1, R_2 \text{ s.t. } L_1 = L(R_1) \text{ and } L_2 = L(R_2)$.

$= \Rightarrow L_1 \cup L_2 = L(R_1 \cup R_2) = \Rightarrow L_1 \cup L_2 \text{ regular}$.

$= \Rightarrow L_1 \circ L_2 = L(R_1 \circ R_2) = \Rightarrow L_1 \circ L_2 \text{ regular}$.

$= \Rightarrow L_1^* = L(R_1^*) = \Rightarrow L_1^* \text{ regular}$.

\blacksquare
Proposition

Regular Languages are closed under \cup, \circ and \ast.

Proof.

(Summarizing previous arguments.)

- L_1, L_2 regular $\implies \exists$ regexes R_1, R_2 s.t. $L_1 = L(R_1)$ and $L_2 = L(R_2)$.
 - $\implies L_1 \cup L_2 = L(R_1 \cup R_2) \implies L_1 \cup L_2$ regular.
 - $\implies L_1 \circ L_2 = L(R_1 \circ R_2) \implies L_1 \circ L_2$ regular.
 - $\implies L_1^* = L(R_1^*) \implies L_1^*$ regular.
Proposition

Regular Languages are closed under \cup, \circ and \ast.

Proof.

(Summarizing previous arguments.)

$\quad L_1, L_2$ regular $\implies \exists$ regexes R_1, R_2 s.t. $L_1 = L(R_1)$ and $L_2 = L(R_2)$.

$\quad \implies L_1 \cup L_2 = L(R_1 \cup R_2) \implies L_1 \cup L_2$ regular.

$\quad \implies L_1 \circ L_2 = L(R_1 \circ R_2) \implies L_1 \circ L_2$ regular.

$\quad \implies L_1^* = L(R_1^*) \implies L_1^*$ regular.

□
Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof.

If L is regular, then there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ such that $L(M) = L$. Then, $M = (Q, \Sigma, \delta, q_0, Q \setminus F)$ (i.e., switch accept and non-accept states) accepts \overline{L}.

□
Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if \(L \) is regular then \(\overline{L} = \Sigma^* \setminus L \) is also regular.

Proof.

- If \(L \) is regular, then there is a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) such that \(L = L(M) \).
Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if \(L \) is regular then \(\overline{L} = \Sigma^* \setminus L \) is also regular.

Proof.

- If \(L \) is regular, then there is a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) such that \(L = L(M) \).
- Then, \(\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F) \) (i.e., switch accept and non-accept states) accepts \(\overline{L} \).
Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if \(L \) is regular then \(\overline{L} = \Sigma^* \setminus L \) is also regular.

Proof.

- If \(L \) is regular, then there is a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) such that \(L = L(M) \).
- Then, \(\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F) \) (i.e., switch accept and non-accept states) accepts \(\overline{L} \). □

What happens if \(M \) (above) was an NFA?
Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if \(L_1 \) and \(L_2 \) are regular then \(L_1 \cap L_2 \) is also regular.
Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.
Observe that $L_1 \cap L_2 = \overline{L_1 \cup L_2}$.

Is there a direct proof for intersection (yielding a smaller DFA)?
Proposition

Regular Languages are closed under intersection, i.e., if \(L_1 \) and \(L_2 \) are regular then \(L_1 \cap L_2 \) is also regular.

Proof.

Observe that \(L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2} \). Since regular languages are closed under union and complementation, we have

- \(\overline{L_1} \) and \(\overline{L_2} \) are regular
Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular
Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1 \cup L_2}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1 \cup L_2}$ is regular
- Hence, $L_1 \cap L_2 = \overline{L_1 \cup L_2}$ is regular. □
Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular
- Hence, $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?
Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2, respectively.

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.
Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2, respectively.

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

- $Q = Q_1 \times Q_2$
- $q_0 = \langle q_1, q_2 \rangle$
- $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$
- $F = F_1 \times F_2$
Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2, respectively.

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

- $Q = Q_1 \times Q_2$
- $q_0 = \langle q_1, q_2 \rangle$
- $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$
- $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise)
Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2, respectively.

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

- $Q = Q_1 \times Q_2$
- $q_0 = \langle q_1, q_2 \rangle$
- $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$
- $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise)

What happens if M_1 and M_2 where NFAs?
Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2, respectively.

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

- $Q = Q_1 \times Q_2$
- $q_0 = \langle q_1, q_2 \rangle$
- $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$
- $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise)

What happens if M_1 and M_2 where NFAs? Still works! Set $\delta(\langle p_1, p_2 \rangle, a) = \delta_1(p_1, a) \times \delta_2(p_2, a)$.
An Example

\[
\begin{array}{c}
q_0^0 \\
\quad 1 \\
\quad 0 \\
\quad q_1^0 \\
\quad 1
\end{array}
\quad \times
\quad \begin{array}{c}
\quad 0 \\
\quad 1 \\
q_0^1 \\
\quad 0 \\
q_1^1
\end{array}
=
\begin{array}{c}
q_{00} \\
\quad 1 \\
\quad 0 \\
\quad q_{10} \\
\quad q_{11}
\end{array}
\quad \begin{array}{c}
\quad 1 \\
\quad 1 \\
\quad 0 \\
\quad 0 \\
\quad 0
\end{array}
\]
Example (1)

\[\Sigma = \{0, 1\}. \text{ Say } w \in L \text{ iff } |w| \text{ is divisible by 7, but not 3, and } w \text{ contains 1100 as a substring. Is } L \text{ regular or not?} \]

Answer: \(L \) is regular. Define

- \(L_1 \) to be the strings where \(|w| \) is divisible by 7.
Example (1)

$\Sigma = \{0, 1\}$. Say $w \in L$ iff $|w|$ is divisible by 7, but not 3, and w contains 1100 as a substring. Is L regular or not?

Answer: L is regular. Define

- L_1 to be the strings where $|w|$ is divisible by 7. ($\left(\{0, 1\}^7\right)^* \text{ is for } L_1.$)
- L_2 to be the strings where $|w|$ is divisible by 3.
Example (1)

\[\Sigma = \{0, 1\}.\] Say \(w \in L\) iff \(|w|\) is divisible by 7, but not 3, and \(w\) contains 1100 as a substring. Is \(L\) regular or not?

Answer: \(L\) is regular. Define

- \(L_1\) to be the strings where \(|w|\) is divisible by 7. \(((\{0, 1\}^7)^*\) is for \(L_1\).)
- \(L_2\) to be the strings where \(|w|\) is divisible by 3. \(((\{0, 1\}^3)^*\) is for \(L_2\).)
- \(L_3\) to be the strings having 1100 as a substring.
Example (1)

\[\Sigma = \{0, 1\} \]. Say \(w \in L \) iff \(|w| \) is divisible by 7, but not 3, and \(w \) contains 1100 as a substring. Is \(L \) regular or not? Answer: \(L \) is regular. Define

\- \(L_1 \) to be the strings where \(|w| \) is divisible by 7. ((\(\{0, 1\}^7 \))^* is for \(L_1 \).)

\- \(L_2 \) to be the strings where \(|w| \) is divisible by 3. ((\(\{0, 1\}^3 \))^* is for \(L_2 \).)

\- \(L_3 \) to be the strings having 1100 as a substring. ((\(\{0, 1\}^*1100\{0, 1\}^* \))^* is for \(L_3 \).)

\[L = (L_1 \cap L_2) \cap L_3. \]
Example (1)

$$\Sigma = \{0, 1\}$$. Say \(w \in L\) iff \(|w|\) is divisible by 7, but not 3, and \(w\) contains 1100 as a substring. Is \(L\) regular or not?

Answer: \(L\) is regular. Define

- \(L_1\) to be the strings where \(|w|\) is divisible by 7.
 \(((\{0, 1\}^7)^* \text{ is for } L_1.\))
- \(L_2\) to be the strings where \(|w|\) is divisible by 3.
 \(((\{0, 1\}^3)^* \text{ is for } L_2.\))
- \(L_3\) to be the strings having 1100 as a substring.
 \((\{0, 1\}^*1100\{0, 1\}^* \text{ is for } L_3.\))

\(L = (L_1 \cap \overline{L_2}) \cap L_3.\)
Example (1)

\(\Sigma = \{0, 1\} \). Say \(w \in L \) iff \(|w| \) is divisible by 7, but not 3, and \(w \) contains 1100 as a substring. Is \(L \) regular or not?

Answer: \(L \) is regular. Define

- \(L_1 \) to be the strings where \(|w| \) is divisible by 7.
 \((\{0, 1\}^7)^* \) is for \(L_1 \).

- \(L_2 \) to be the strings where \(|w| \) is divisible by 3.
 \((\{0, 1\}^3)^* \) is for \(L_2 \).

- \(L_3 \) to be the strings having 1100 as a substring.
 \(\{0, 1\}^*1100\{0, 1\}^* \) is for \(L_3 \).

\(L = (L_1 \cap \overline{L_2}) \cap L_3 \). So \(L \) is regular.
Example (2)

For any two languages L_1 and L_2, if $L_1 \cup L_2$ and L_1 are both regular, then L_2 must be regular. Is this claim true? Answer: This is not true. Consider the case $L_1 = \Sigma^*$. Clearly, $L_1 \cup L_2 = L_1$ is regular. But we can pick any non-regular language L_2.
Example (3)

\[\Sigma = \{0, 1\} \]. Say \(w \in L \) iff \(w \) starts with 1101 and ends with 010 or 101, and contains 101010 as a substring.

Answer: \(L \) is regular. Define

- \(L_1 \) to be the strings starting with 1101
- \(L_2 \) to be the strings ending with 010 or 101
- \(L_3 \) to be the strings having 101010 as a substring
Example (3)

\[\Sigma = \{0, 1\}. \] Say \(w \in L \) iff \(w \) starts with 1101 and ends with 010 or 101, and contains 101010 as a substring.

Answer: \(L \) is regular. Define

- \(L_1 \) to be the strings starting with 1101
 \((1101\{0, 1\}^* \) is for \(L_1 \).)
- \(L_2 \) to be the strings ending with 010 or 101.

\[L = L_1 \cap L_2 \cap L_3. \] So \(L \) is regular.
Example (3)

Σ = \{0, 1\}. Say \(w \in L \) iff \(w \) starts with 1101 and ends with 010 or 101, and contains 101010 as a substring.

Answer: \(L \) is regular. Define

- \(L_1 \) to be the strings starting with 1101

 \((1101\{0, 1\}^* \) is for \(L_1 \).)

- \(L_2 \) to be the strings ending with 010 or 101.

 \(\{0, 1\}^*(010 \cup 101) \) is for \(L_2 \).)

- \(L_3 \) to be the strings having 101010 as a substring.
Example (3)

$\Sigma = \{0, 1\}$. Say $w \in L$ iff w starts with 1101 and ends with 010 or 101, and contains 101010 as a substring.

Answer: L is regular. Define

- L_1 to be the strings starting with 1101
 ($1101\{0, 1\}^*$ is for L_1.)
- L_2 to be the strings ending with 010 or 101.
 ($\{0, 1\}^*(010 \cup 101)$ is for L_2.)
- L_3 to be the strings having 101010 as a substring.
 ($\{0, 1\}^*101010\{0, 1\}^*$ is for L_3.)

$L = L_1 \cap L_2 \cap L_3$.

So L is regular.
Example (3)

$\Sigma = \{0, 1\}$. Say $w \in L$ iff w starts with 1101 and ends with 010 or 101, and contains 101010 as a substring.

Answer: L is regular. Define

- L_1 to be the strings starting with 1101
 ($1101\{0, 1\}^* \text{ is for } L_1$.)

- L_2 to be the strings ending with 010 or 101.
 ($\{0, 1\}^*(010 \cup 101) \text{ is for } L_2$.)

- L_3 to be the strings having 101010 as a substring.
 ($\{0, 1\}^*101010\{0, 1\}^* \text{ is for } L_3$.)

$L = L_1 \cap L_2 \cap L_3$.

Example (3)

$\Sigma = \{0, 1\}$. Say $w \in L$ iff w starts with 1101 and ends with 010 or 101, and contains 101010 as a substring.

Answer: L is regular. Define

- L_1 to be the strings starting with 1101
 ($1101\{0, 1\}^*$ is for L_1.)

- L_2 to be the strings ending with 010 or 101.
 ($\{0, 1\}^*(010 \cup 101)$ is for L_2.)

- L_3 to be the strings having 101010 as a substring.
 ($\{0, 1\}^*101010\{0, 1\}^*$ is for L_3.)

$L = L_1 \cap L_2 \cap L_3$. So L is regular.