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Finite Languages

Definition
A language is finite if it has finitely many strings.

Example

{0, 1, 00, 10} is a finite language

, however, (00 ∪ 11)∗ is not.
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Finiteness and Regularity

Proposition

If L is finite then L is regular.

Proof.
Let L = {w1,w2, . . .wn}. Then R = w1 ∪w2 ∪ · · · ∪wn is a regular
expression defining L. �
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Are all languages regular?

Proposition

The language
Leq = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s} is not
regular.

Proof

?

No DFA has enough states to keep track of the number of 0s and
1s it might see. �

Above is a weak argument because E = {w ∈
{0, 1}∗ | w has an equal number of 01 and 10 substrings} is
regular!
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Proving Non-Regularity

Proposition

The language
Leq = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s} is not
regular.

Proof.
Suppose (for contradiction) Leq is recognized by DFA
M = (Q, {0, 1}, δ, q0,F ), where |Q| = n.

I There must be j < k ≤ n such that δ̂(q0, 0
j) = δ̂(q0, 0

k) (= q
say).

I Let x = 0j , y = 0k−j , and z = 0n−k1n; so xyz = 0n1n. ··→
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Proving Non-Regularity

Proof (contd).

q0 qx = 0j

y = 0k−j

I We have δ̂(q0, 0
j) = δ̂(q0, 0

k) = q

I Since 0n1n ∈ Leq, δ̂(q0, 0
n1n) ∈ F .

δ̂(q0, 0
n1n) = δ̂(δ̂(q0, 0

k ), 0n−k1n) (since δ̂(q, uv) = δ̂(δ̂(q, u), v))

= δ̂(δ̂(q0, 0
j ), 0n−k1n) (δ̂(q0, 0

j ) = δ̂(q0, 0
k ))

= δ̂(q0, 0
n−k+j1n) (since δ̂(q, uv) = δ̂(δ̂(q, u), v))

I So M accepts 0n−k+j1n as well.

But, 0n−k+j1n 6∈ Leq! �
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Pumping Lemma: Overview

Pumping Lemma

The lemma generalizes this argument. Gives the template of an
argument that can be used to easily prove that many languages are
non-regular.



Pumping Lemma
The Statement

Lemma
If L is regular then there is a number p (the pumping length) such
that ∀w ∈ L with |w | ≥ p, ∃x , y , z ∈ Σ∗ such that w = xyz and

1. |y | > 0

2. |xy | ≤ p

3. ∀i ≥ 0. xy iz ∈ L
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Proving the Pumping Lemma

Proof.
Let M = (Q,Σ, δ, q0,F ) be a DFA such that L(M) = L and let
p = |Q|.

Let w = w1w2 · · ·wn ∈ L be such that n ≥ p. For
1 ≤ i ≤ n, let si = δ̂(q0,w1 · · ·wi ); define s0 = q0.

I Since s0, s1, . . . , si , . . . sp are p + 1 states, there must be j , k,
0 ≤ j < k ≤ p such that sj = sk (= q say).

I Take x = w1 · · ·wj , y = wj+1 · · ·wk , and z = wk+1 · · ·wn

I Observe that since j < k ≤ p, we have |xy | ≤ p and
|y | > 0. ··→
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Proof . . .
Technical Claim

Claim
For all i ≥ 1, δ̂(xy i ) = δ̂(q0, x).

Proof.
We will prove it by induction on i .

I Base Case: By our assumption that sj = sk and the definition

of x and y , we have δ̂(q0, xy) = sk = sj = δ̂(q0, x).

I Induction Step: We have

δ̂(q0, xy
`+1) = δ̂(δ̂(q0, xy

`), y)

= δ̂(δ̂(q0, x), y)

= δ̂(q0, xy) = δ̂(q0, x)

�
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Completing the Proof

Proof (contd).

q0 sj = sk = q q′
x

y

z

I We have δ̂(q0, xy
i ) = δ̂(q0, x) for all i ≥ 1

I Since w ∈ L, we have δ̂(q0,w) = δ̂(q0, xyz) ∈ F

I Observe,
δ̂(q0, xz) = δ̂(δ̂(q0, x), z) = δ̂(δ̂(q0, xy), z) = δ̂(q0,w). So
xz ∈ L

I Similarly, δ̂(q0, xy
iz) = δ̂(q0, xyz) ∈ F and so xy iz ∈ L �
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iz) = δ̂(q0, xyz) ∈ F and so xy iz ∈ L �
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Finite Languages and Pumping Lemma

Question
Do finite languages really satisfy the condition in the pumping
lemma?

Recall Pumping Lemma: If L is regular then there is a number p
(the pumping length) such that ∀w ∈ L with |w | ≥ p,
∃x , y , z ∈ Σ∗ such that w = xyz and

1. |y | > 0

2. |xy | ≤ p

3. ∀i ≥ 0. xy iz ∈ L

Answer
Yes, they do. Let p be larger than the longest string in the
language. Then the condition “∀w ∈ L with |w | ≥ p, . . .” is
vaccuously satisfied as there are no strings in the language longer
than p!
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Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping
lemma.

If L is not regular

pumping lemma says nothing about L!

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

p. w ∈ L. with |w | ≥ p x , y , z ∈ Σ∗. w = xyz
(1) |y | > 0
(2) |xy | ≤ p
(3) ∀i ≥ 0. xy iz ∈ L



not all of them hold

Equivalent to showing that if (1), (2) then (3) does not. In other
words, we can find i such that xy iz 6∈ L
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Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular

∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p

∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p

∀x , y , z Opponent divides w into x , y , and z such that
|y | > 0, and |xy | ≤ p

∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p

∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).

Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.

Your strategy should work for any p and any subdivision that the
opponent may come up with.



Game View

Think of using the Pumping Lemma as a game between you and
an opponent.

L Task: To show that L is not regular
∀p. Opponent picks p
∃w . Pick w that is of length at least p
∀x , y , z Opponent divides w into x , y , and z such that

|y | > 0, and |xy | ≤ p
∃k. You pick k and win if xykz 6∈ L

Pumping Lemma: If L is regular, opponent has a winning strategy
(no matter what you do).
Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the
opponent may come up with.



Example I

Proposition

L0n1n = {0n1n | n ≥ 0} is not regular.

Proof.
Suppose L0n1n is regular. Let p be the pumping length for L0n1n.

I Consider w = 0p1p

I Since |w | > p, there are x , y , z such that w = xyz , |xy | ≤ p,
|y | > 0, and xy iz ∈ L0n1n, for all i .

I Since |xy | ≤ p, x = 0r , y = 0s and z = 0t1p. Further, as
|y | > 0, we have s > 0.

xy0z = 0r ε0t1p = 0r+t1p

Since r + t < p, xy0z 6∈ L0n1n. Contradiction! �
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Example II

Proposition

Leq = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s} is not
regular.

Proof.
Suppose Leq is regular. Let p be the pumping length for Leq.
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|y | > 0, we have s > 0.
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Since r + t < p, xy0z 6∈ Leq. Contradiction! �
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A Tale of two Proofs

Non Pumping Lemma

Suppose Leq is recognized by
DFA M with p states. Consider
the input 0p1p.

There exist j , k
and state q such that

I j < k and
δ̂(q0, 0

j) = δ̂(q0, 0
k) = q

I Since 0p1p ∈ Leq,
0k0(p−k)1p is accepted by M
and so is 0j0(p−k)1p.

I But 0j0(p−k)1p 6∈ Leq.

Pumping Lemma

Suppose Leq is regular. Let p be
pumping length for Leq. Consider
w = 0p1p.

There exist x , y , z
such that

I w = xyz , |xy | ≤ p, |y | > 0:
so for some r , s, t, x = 0r ,
y = 0s and z = 0t1p, with
s > 0.

I xy iz ∈ Leq for all i : so
xy0z ∈ Leq.

I But xy0z = 0p−s1p 6∈ Leq
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Example III

Proposition

Lp = {0i | i prime} is not regular

Proof.
Suppose Lp is regular. Let p be the pumping length for Lp.

I Consider w = 0m, where m ≥ p + 2 and m is prime.

I Since |w | > p, there are x , y , z such that w = xyz , |xy | ≤ p,
|y | > 0, and xy iz ∈ Lp, for all i .

I Thus, x = 0r , y = 0s and z = 0t . Further, as |y | > 0, we
have s > 0.

xy r+tz = 0r (0s)(r+t)0t = 0r+s(r+t)+t . Now
r + s(r + t) + t = (r + t)(s + 1). Further
m = r + s + t ≥ p + 2 and s > 0 mean that t ≥ 2 and
s + 1 ≥ 2. Thus, xy r+tz 6∈ Lp. Contradiction! �
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Example IV

Question
Is Lxx = {xx | x ∈ {0, 1}∗} is regular?

Suppose Lxx is regular, and let p be the pumping length of Lxx .

I Consider w = 0p0p ∈ L.

I Can we find substrings x , y , z satisfying the conditions in the
pumping lemma?

Yes! Consider x = ε, y = 00, z = 02p−2.

I Does this mean Lxx satisfies the pumping lemma? Does it
mean it is regular?

I No! We have chosen a bad w . To prove that the pumping
lemma is violated, we only need to exhibit some w that cannot
be pumped.

I Another bad choice (01)p(01)p.
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Example IV
Reloaded

Proposition

Lxx = {xx | x ∈ {0, 1}∗} is not regular.

Proof.
Suppose Lxx is regular. Let p be the pumping length for Lxx .

I Consider w = 0p10p1.

I Since |w | > p, there are x , y , z such that w = xyz , |xy | ≤ p,
|y | > 0, and xy iz ∈ Lp, for all i .

I Since |xy | ≤ p, x = 0r , y = 0s and z = 0t10p1. Further, as
|y | > 0, we have s > 0.

xy0z = 0r ε0t10p1 = 0r+t10p1

Since r + t < p, xy0z 6∈ Lxx . Contradiction! �
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Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

I “keep track of counts”: e.g., L0n1n not regular.

I “compare far apart pieces” of the input: e.g. Lxx not regular.

I do “computations that require it to look at global properties”
of the input. e.g. Lprime not regular.

. . . and pumping lemma provides one way to find out some of these
limitations.



Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

I “keep track of counts”: e.g., L0n1n not regular.

I “compare far apart pieces” of the input: e.g. Lxx not regular.

I do “computations that require it to look at global properties”
of the input. e.g. Lprime not regular.

. . . and pumping lemma provides one way to find out some of these
limitations.


	Converting a DFA to an Equivalent Regular Expression
	Generalized NFA
	Converting DFA to GNFA
	Converting GNFA to Regular Expression


