CSE 135: Introduction to Theory of Computation Non-regular languages and Pumping Lemma

Sungjin Im

University of California, Merced

02-12-2015

Finite Languages

Definition

A language is finite if it has finitely many strings.

Finite Languages

Definition

A language is finite if it has finitely many strings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

 $\{0,1,00,10\}$ is a finite language

Finite Languages

Definition

A language is finite if it has finitely many strings.

Example

 $\{0,1,00,10\}$ is a finite language, however, $(00\cup 11)^*$ is not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finiteness and Regularity

Proposition If L is finite then L is regular.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finiteness and Regularity

Proposition If L is finite then L is regular.

Proof. Let $L = \{w_1, w_2, \dots, w_n\}$. Then $R = w_1 \cup w_2 \cup \dots \cup w_n$ is a regular expression defining L.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof

No DFA has enough states to keep track of the number of 0s and 1s it might see.

Proposition

The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof?

No DFA has enough states to keep track of the number of 0s and 1s it might see.

Above is a weak argument because $E = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 01 and 10 substrings}\}$ is regular!

Proposition

The language $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \} \text{ is not regular.}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$, where |Q| = n.

Proposition

The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$, where |Q| = n.

► There must be $j < k \le n$ such that $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$ (= q say).

Proposition

The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$, where |Q| = n.

► There must be $j < k \le n$ such that $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$ (= q say).

• Let
$$x = 0^j$$
, $y = 0^{k-j}$, and $z = 0^{n-k}1^n$; so $xyz = 0^n1^n$. $\cdots \rightarrow$

Proof (contd).

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof (contd).

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

Since
$$0^n 1^n \in L_{eq}$$
, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad (q_1) \qquad z = 0^{n-k} 1^n \qquad (q')$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

Since
$$0^n 1^n \in L_{eq}$$
, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\hat{\delta}(q_0,0^n1^n) = \hat{\delta}(\hat{\delta}(q_0,0^k),0^{n-k}1^n)$$

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad (q_1) \qquad z = 0^{n-k} 1^n \qquad (q')$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

• Since
$$0^n 1^n \in L_{eq}$$
, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

 $\hat{\delta}(q_0, 0^n 1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \qquad (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad (q_1) \qquad z = 0^{n-k} 1^n \qquad (q')$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

Since
$$0^n 1^n \in L_{eq}$$
, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$egin{aligned} &\hat{\delta}(q_0, 0^n 1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) \end{aligned}$$

(since $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$)

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad (q_1) \qquad z = 0^{n-k} 1^n \qquad (q')$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

Since
$$0^n 1^n \in L_{eq}$$
, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \qquad (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) \qquad (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad q_1 \qquad z = 0^{n-k}1^n \qquad q'$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

• Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) & (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) & (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) & (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad q_1 \qquad z = 0^{n-k}1^n \qquad q'$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

• Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) & (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) & (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) & (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \end{split}$$

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad q \qquad z = 0^{n-k}1^n \qquad q'$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

• Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \qquad (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) \qquad (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) \qquad (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \end{split}$$

• So M accepts $0^{n-k+j}1^n$ as well.

Proof (contd).

$$y = 0^{k-j}$$

$$(q_0) \qquad x = 0^j \qquad (q_1) \qquad z = 0^{n-k} 1^n \qquad (q')$$

• We have
$$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

• Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) & (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) & (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) & (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \end{split}$$

► So *M* accepts $0^{n-k+j}1^n$ as well. But, $0^{n-k+j}1^n \notin L_{eq}!$

・ロト・日本・モート モー うへぐ

Pumping Lemma: Overview

Pumping Lemma

The lemma generalizes this argument. Gives the template of an argument that can be used to easily prove that many languages are non-regular.

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and 1. |y| > 0

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. |y| > 0
- 2. $|xy| \leq p$

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1. |y| > 0
- 2. $|xy| \leq p$
- 3. $\forall i \geq 0$. $xy^i z \in L$

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$. For $1 \le i \le n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$. For $1 \le i \le n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p + 1 states, there must be j, k, $0 \le j < k \le p$ such that $s_j = s_k$ (= q say).

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$. For $1 \le i \le n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p + 1 states, there must be j, k, $0 \le j < k \le p$ such that $s_j = s_k$ (= q say).

• Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$. For $1 \le i \le n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p + 1 states, there must be j, k, $0 \le j < k \le p$ such that $s_j = s_k$ (= q say).
- ▶ Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$
- ► Observe that since j < k ≤ p, we have |xy| ≤ p and |y| > 0.

Proof . . . Technical Claim

> Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Proof . . . Technical Claim

> Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Technical Claim

Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof . . .

Technical Claim

Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

Base Case: By our assumption that s_j = s_k and the definition of x and y, we have δ̂(q₀, xy) = s_k = s_j = δ̂(q₀, x).

Technical Claim

Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

Base Case: By our assumption that s_j = s_k and the definition of x and y, we have δ̂(q₀, xy) = s_k = s_j = δ̂(q₀, x).

Induction Step: We have

Technical Claim

Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

- Base Case: By our assumption that s_j = s_k and the definition of x and y, we have δ̂(q₀, xy) = s_k = s_j = δ̂(q₀, x).
- Induction Step: We have

$$\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^{\ell}), y)$$

Technical Claim

Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

- Base Case: By our assumption that s_j = s_k and the definition of x and y, we have δ̂(q₀, xy) = s_k = s_j = δ̂(q₀, x).
- Induction Step: We have

$$egin{aligned} &\hat{\delta}(q_0,xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0,xy^{\ell}),y) \ &= \hat{\delta}(\hat{\delta}(q_0,x),y) \end{aligned}$$

Technical Claim

Claim For all $i \ge 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

- Base Case: By our assumption that s_j = s_k and the definition of x and y, we have δ̂(q₀, xy) = s_k = s_j = δ̂(q₀, x).
- Induction Step: We have

$$egin{aligned} &\hat{\delta}(q_0,xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0,xy^\ell),y) \ &= \hat{\delta}(\hat{\delta}(q_0,x),y) \ &= \hat{\delta}(q_0,xy) = \hat{\delta}(q_0,x) \end{aligned}$$

Proof (contd).

æ

イロト イポト イヨト イヨト

Proof (contd).

æ

イロト イポト イヨト イヨト

• We have
$$\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$$
 for all $i \ge 1$

Proof (contd).

$$(q_0) \xrightarrow{x} (s_j = s_k = q) \xrightarrow{z} (q')$$

- We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \geq 1$
- Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$

Proof (contd).

$$(q_0) \xrightarrow{x} (s_j = s_k = q) \xrightarrow{z} (q')$$

- We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \ge 1$
- Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$
- Observe, $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w)$. So $xz \in L$

Proof (contd).

$$(q_0) \xrightarrow{x} (s_j = s_k = q) \xrightarrow{z} (q')$$

- We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \ge 1$
- Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$
- Observe, $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w)$. So $xz \in L$
- Similarly, $\hat{\delta}(q_0, xy^i z) = \hat{\delta}(q_0, xyz) \in F$ and so $xy^i z \in L$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

- 1. |y| > 0
- 2. $|xy| \leq p$
- 3. $\forall i \geq 0$. $xy^i z \in L$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

1. |y| > 02. $|xy| \le p$ 3. $\forall i \ge 0$. $xy^i z \in L$

Answer

Yes, they do. Let p be larger than the longest string in the language. Then the condition " $\forall w \in L$ with $|w| \ge p, \ldots$ " is vaccuously satisfied as there are no strings in the language longer than p!

L regular implies that L satisfies the condition in the pumping lemma.

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular pumping lemma says nothing about L!

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Pumping Condition

$$\exists p. \quad \forall w \in L. \text{ with } |w| \ge p \qquad \exists x, y, z \in \Sigma^*. w = xyz \\ (1) \quad |y| > 0 \\ (2) \quad |xy| \le p \\ (3) \quad \forall i \ge 0. xy^i z \in L \end{cases}$$

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \exists p. & \forall w \in L. \text{ with } |w| \ge p & \exists x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \le p \\ (3) & \forall i \ge 0. \ xy^i z \in L \end{array} \right\}$$

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \forall p. & \not\forall w \in L. \text{ with } |w| \ge p & \exists x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \le p \\ (3) & \forall i \ge 0. \ xy^i z \in L \end{array} \right\}$$

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \forall p. & \exists w \in L. \text{ with } |w| \ge p \\ (1) & |y| > 0 \\ (2) & |xy| \le p \\ (3) & \forall i \ge 0. xy^{i}z \in L \end{array} \right\}$$

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \forall p. & \exists w \in L. \text{ with } |w| \ge p & \forall x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \le p \\ (3) & \forall i \ge 0. \ xy^i z \in L \end{array} \right\} \text{ not all of them hold}$$

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \forall p. & \exists w \in L. \text{ with } |w| \ge p & \forall x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \le p \\ (3) & \forall i \ge 0. \ xy^i z \in L \end{array} \right\} \text{ not all of them hold}$$

Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find *i* such that $xy^i z \notin L$

Think of using the Pumping Lemma as a game between you and an opponent.

Think of using the Pumping Lemma as a game between you and an opponent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

L Task: To show that L is not regular

Think of using the Pumping Lemma as a game between you and an opponent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

L Task: To show that *L* is not regular $\forall p$. Opponent picks *p*

Think of using the Pumping Lemma as a game between you and an opponent.

- L Task: To show that L is not regular
- $\forall p$. Opponent picks p
- $\exists w$. Pick w that is of length at least p

Think of using the Pumping Lemma as a game between you and an opponent.

 $\begin{array}{ll} L & \text{Task: To show that } L \text{ is not regular} \\ \forall p. & \text{Opponent picks } p \\ \exists w. & \text{Pick } w \text{ that is of length at least } p \\ \forall x, y, z & \text{Opponent divides } w \text{ into } x, y, \text{ and } z \text{ such that} \\ |y| > 0, \text{ and } |xy| \le p \end{array}$

Think of using the Pumping Lemma as a game between you and an opponent.

 $\begin{array}{ll} L & \text{Task: To show that } L \text{ is not regular} \\ \forall p. & \text{Opponent picks } p \\ \exists w. & \text{Pick } w \text{ that is of length at least } p \\ \forall x, y, z & \text{Opponent divides } w \text{ into } x, y, \text{ and } z \text{ such that} \\ |y| > 0, \text{ and } |xy| \le p \\ \exists k. & \text{You pick } k \text{ and win if } xy^k z \notin L \end{array}$

Think of using the Pumping Lemma as a game between you and an opponent.

L	Task: To show that <i>L</i> is not regular
∀ <i>p</i> .	Opponent picks <i>p</i>
∃ <i>w</i> .	Pick w that is of length at least p
$\forall x, y, z$	Opponent divides w into x, y , and z such that
	$ y > 0$, and $ xy \leq p$
$\exists k.$	You pick k and win if $xy^k z \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Think of using the Pumping Lemma as a game between you and an opponent.

L	Task: To show that <i>L</i> is not regular
∀ <i>p</i> .	Opponent picks <i>p</i>
∃w.	Pick w that is of length at least p
$\forall x, y, z$	Opponent divides w into x, y , and z such that
	$ y > 0$, and $ xy \le p$
$\exists k.$	You pick k and win if $xy^k z \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do). Contrapositive: If you can beat the opponent, L not regular.

Think of using the Pumping Lemma as a game between you and an opponent.

L	Task: To show that <i>L</i> is not regular
∀ <i>p</i> .	Opponent picks <i>p</i>
∃w.	Pick w that is of length at least p
$\forall x, y, z$	Opponent divides w into x, y , and z such that
	$ y > 0$, and $ xy \le p$
$\exists k.$	You pick k and win if $xy^k z \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, L not regular. Your strategy should work for any p and any subdivision that the opponent may come up with.

Example I

Proposition $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example I

Proposition $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n} .
Proposition $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Consider $w = 0^p 1^p$

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let *p* be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_{0n1n}$, for all *i*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let *p* be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all *i*.

► Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let *p* be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_{0n1n}$, for all *i*.
- ► Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^{0}z = 0^{r} \epsilon 0^{t} 1^{p} = 0^{r+t} 1^{p}$$

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let *p* be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all *i*.
- ► Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p, $xy^0 z \notin L_{0n1n}$. Contradiction!

Proposition

 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose L_{eq} is regular. Let *p* be the pumping length for L_{eq} .

Proposition

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

Suppose L_{eq} is regular. Let *p* be the pumping length for L_{eq} .

• Consider $w = 0^p 1^p$

Proposition

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose L_{eq} is regular. Let *p* be the pumping length for L_{eq} .

- Consider $w = 0^p 1^p$
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_{eq}$, for all *i*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose L_{eq} is regular. Let *p* be the pumping length for L_{eq} .

- Consider $w = 0^p 1^p$
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_{eq}$, for all *i*.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^{0}z = 0^{r} \epsilon 0^{t} 1^{p} = 0^{r+t} 1^{p}$$

Since r + t < p, $xy^0 z \notin L_{eq}$. Contradiction!

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA *M* with *p* states. Consider the input $0^{p}1^{p}$.

Pumping Lemma

Suppose L_{eq} is regular. Let p be pumping length for L_{eq} . Consider $w = 0^{p}1^{p}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA *M* with *p* states. Consider the input $0^{p}1^{p}$. There exist *j*, *k* and state *q* such that

Pumping Lemma

Suppose L_{eq} is regular. Let p be pumping length for L_{eq} . Consider $w = 0^{p}1^{p}$. There exist x, y, zsuch that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA *M* with *p* states. Consider the input $0^{p}1^{p}$. There exist *j*, *k* and state *q* such that

•
$$j < k$$
 and
 $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Pumping Lemma

Suppose L_{eq} is regular. Let p be pumping length for L_{eq} . Consider $w = 0^{p}1^{p}$. There exist x, y, zsuch that

▶ w = xyz, $|xy| \le p$, |y| > 0: so for some $r, s, t, x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$, with s > 0.

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA *M* with *p* states. Consider the input $0^{p}1^{p}$. There exist *j*, *k* and state *q* such that

►
$$j < k$$
 and
 $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Since $0^p 1^p \in L_{eq}$, $0^k 0^{(p-k)} 1^p$ is accepted by Mand so is $0^j 0^{(p-k)} 1^p$.

Pumping Lemma

Suppose L_{eq} is regular. Let p be pumping length for L_{eq} . Consider $w = 0^{p}1^{p}$. There exist x, y, zsuch that

- ▶ w = xyz, $|xy| \le p$, |y| > 0: so for some $r, s, t, x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$, with s > 0.
- ► $xy^i z \in L_{eq}$ for all *i*: so $xy^0 z \in L_{eq}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA *M* with *p* states. Consider the input $0^{p}1^{p}$. There exist *j*, *k* and state *q* such that

- ► j < k and $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^p 1^p \in L_{eq}$, $0^k 0^{(p-k)} 1^p$ is accepted by Mand so is $0^j 0^{(p-k)} 1^p$.
- ▶ But $0^j 0^{(p-k)} 1^p \notin L_{eq}$.

Pumping Lemma

Suppose L_{eq} is regular. Let p be pumping length for L_{eq} . Consider $w = 0^{p}1^{p}$. There exist x, y, zsuch that

- ▶ w = xyz, $|xy| \le p$, |y| > 0: so for some $r, s, t, x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$, with s > 0.
- ► $xy^i z \in L_{eq}$ for all *i*: so $xy^0 z \in L_{eq}$.
- But $xy^0z = 0^{p-s}1^p \notin L_{eq}$

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

• Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.

▶ Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0.

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.

► Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0. $xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t}$.

Proposition $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.
- ▶ Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0. $xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t}$. Now r + s(r+t) + t = (r+t)(s+1). Further $m = r+s+t \ge p+2$ and s > 0 mean that $t \ge 2$ and $s+1 \ge 2$. Thus, $xy^{r+t}z \notin L_p$. Contradiction!

Question Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

Question Is $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

• Consider
$$w = 0^p 0^p \in L$$
.

Question Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question Is $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

- Consider $w = 0^p 0^p \in L$.
- ► Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider x = e, y = 00, z = 0^{2p-2}.

Question Is $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

- Consider $w = 0^p 0^p \in L$.
- ► Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider x = e, y = 00, z = 0^{2p-2}.

Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?

Question Is $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

- Consider $w = 0^p 0^p \in L$.
- ► Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider x = e, y = 00, z = 0^{2p-2}.
- Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.

Question Is $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

• Consider
$$w = 0^p 0^p \in L$$
.

- ► Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider x = e, y = 00, z = 0^{2p-2}.
- Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.
- Another bad choice $(01)^p(01)^p$.

Example IV Reloaded

Proposition $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example IV Reloaded

Proposition $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let *p* be the pumping length for L_{xx} .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Reloaded

Proposition $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx} .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Consider $w = 0^p 10^p 1$.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let *p* be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.
- ▶ Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.
- ► Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

 $xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$
Example IV

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- ▶ Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all *i*.
- ► Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$$

Since r + t < p, $xy^0z \notin L_{xx}$. Contradiction!

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., L_{0n1n} not regular.
- "compare far apart pieces" of the input: e.g. L_{xx} not regular.
- do "computations that require it to look at global properties" of the input. e.g. L_{prime} not regular.

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., L_{0n1n} not regular.
- "compare far apart pieces" of the input: e.g. L_{xx} not regular.
- do "computations that require it to look at global properties" of the input. e.g. L_{prime} not regular.

... and pumping lemma provides one way to find out some of these limitations.