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Operations on Languages

I Recall: A language is a set of strings

I We can consider new languages derived from operations on
given languages

I e.g., L1 ∪ L2, L1 ∩ L2, 1
2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure
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Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages
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Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.
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Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 =

{ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.
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Regular Expressions
A Simple Programming Language

Stephen Cole Kleene

A regular expression is a formula for representing a (complex)
language in terms of “elementary” languages combined using the
three operations union, concatenation and Kleene closure.



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗
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Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following
conventions.

I Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means
(R ∪ ((S∗) ◦ T ))

I Associativity: (R ∪ (S ∪ T )) = ((R ∪ S) ∪ T ) = R ∪ S ∪ T
and (R ◦ (S ◦ T )) = ((R ◦ S) ◦ T ) = R ◦ S ◦ T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S
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Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string
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(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s
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Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε
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Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions to Finite Automata
. . . to Non-determinstic Finite Automata

Lemma
For any regex R, there is an NFA NR s.t. L(NR) = L(R).

Proof Idea
We will build the NFA NR for R, inductively, based on the number
of operators in R, #(R).

I Base Case: #(R) = 0 means that R is ∅, ε, or a (from some
a ∈ Σ). We will build NFAs for these cases.

I Induction Hypothesis: Assume that for regular expressions R,
with #(R) ≤ n, there is an NFA NR s.t. L(NR) = L(R).

I Induction Step: Consider R with #(R) = n + 1. Based on the
form of R, the NFA NR will be built using the induction
hypothesis.
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Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε
q0

R = a
q0 q1
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Induction Step: Union

Case R = R1 ∪ R2

By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1) and
L(N2) = L(R2). Build NFA N s.t. L(N) = L(N1) ∪ L(N2)
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Induction Step: Union
Formal Definition

Case R = R1 ∪ R2

Let N1 = (Q1,Σ, δ1, q1,F1) and N2 = (Q2,Σ, δ2, q2,F2) (with
Q1 ∩ Q2 = ∅) such that L(N1) = L(R1) and L(N2) = L(R2). The
NFA N = (Q,Σ, δ, q0,F ) is given by

I Q = Q1 ∪ Q2 ∪ {q0}, where q0 6∈ Q1 ∪ Q2

I F = F1 ∪ F2
I δ is defined as follows

δ(q, a) =


δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

{q1, q2} if q = q0 and a = ε
∅ otherwise



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F .

Based on the
transitions out of q0, q0

ε−→N q1
w−→N q or

q0
ε−→N q2

w−→N q. Consider q0
ε−→N q1

w−→N q. (Other
case is similar) This means q1

w−→N1 q (as N has the same
transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).
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Induction Step: Kleene Closure

First Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

Problem: May not accept ε! One can show that L(N) = (L(N1))+.
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Example demonstrating the problem
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Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗. Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗.
The previous construction, gives an NFA that accepts 0 6∈ (L(N))∗!
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Induction Step: Kleene Closure
Correct Construction

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗
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Formal definition and proof of correctness left as exercise.
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Regular Expressions to NFA
To Summarize

We built an NFA NR for each regular expression R inductively

I When R was an elementary regular expression, we gave an
explicit construction of an NFA recognizing L(R)

I When R = R1 op R2 (or R = op(R1)), we constructed an NFA
N for R, using the NFAs for R1 and R2.
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An Example
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Example Continued
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Regular Expressions to NFA
An Example (2)

Build NFA for (a ∪ b)∗aba
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Regular Expressions to NFA
An Example (3)

Build NFA for (01 ∪ 001 ∪ 010)∗
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An Example (3)

Build NFA for (01 ∪ 001 ∪ 010)∗



Today

I Defined Regular Expressions

I Syntax: what a regex is built out of — ∅, ε, characters in Σ,
and operators ∪, ◦, ∗.

I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).
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