
CSE 135: Introduction to Theory of Computation
Regular Expressions

Sungjin Im

University of California, Merced

02-05-2015



Operations on Languages

I Recall: A language is a set of strings

I We can consider new languages derived from operations on
given languages

I e.g., L1 ∪ L2, L1 ∩ L2, 1
2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure



Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages

I e.g., L1 ∪ L2, L1 ∩ L2, 1
2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure



Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages
I e.g., L1 ∪ L2,

L1 ∩ L2, 1
2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure



Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages
I e.g., L1 ∪ L2, L1 ∩ L2,

1
2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure



Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages
I e.g., L1 ∪ L2, L1 ∩ L2, 1

2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure



Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages
I e.g., L1 ∪ L2, L1 ∩ L2, 1

2L, . . .

I A simple but powerful collection of operations:

I Union, Concatenation and Kleene Closure



Operations on Languages

I Recall: A language is a set of strings
I We can consider new languages derived from operations on

given languages
I e.g., L1 ∪ L2, L1 ∩ L2, 1

2L, . . .

I A simple but powerful collection of operations:
I Union, Concatenation and Kleene Closure



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 =

{helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}

I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 =

{000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}

I L1 = set of strings ending in 0; L2 = set of strings beginning
with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 =

set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} =

L. L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L.

L ◦ ∅ = ∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ =

∅.



Concatenation of Languages

Definition
Given languages L1 and L2, we define their concatenation to be the
language L1 ◦ L2 = {xy | x ∈ L1, y ∈ L2}

Example

I L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}
I L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}
I L1 = set of strings ending in 0; L2 = set of strings beginning

with 01. L1 ◦ L2 = set of strings containing 001 as a substring

I L ◦ {ε} = L. L ◦ ∅ = ∅.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 =

{ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 =

{ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 =

{ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}

, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 =

{00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 =

{ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}.

For i > 0, ∅i = ∅. ∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i =

∅. ∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise

L∗ =
⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅.

∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅.

∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}.

L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅.

∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ =

set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅.

∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅.

∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅. ∅∗ =

{ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

I ∅ is one of only two languages whose Kleene closure is finite.
Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other?

{ε}∗ = {ε}.



Kleene Closure

Definition

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any
number of strings (possibly none) from L, possibly with repetitions
and concatenating all of them.

I If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ = set of
all binary strings (including ε).

I ∅0 = {ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}
I ∅ is one of only two languages whose Kleene closure is finite.

Which is the other? {ε}∗ = {ε}.



Regular Expressions
A Simple Programming Language

Stephen Cole Kleene

A regular expression is a formula for representing a (complex)
language in terms of “elementary” languages combined using the
three operations union, concatenation and Kleene closure.



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}
Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}
Basis

ε

L(ε) = {ε}
a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}
Basis

ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)
Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)
Induction

(R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)
(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)
Induction

(R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics

∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax

Semantics

∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅

L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε

L(ε) = {ε}

a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a

L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a L(a) = {a}

(R1 ∪ R2)

L((R1 ∪ R2)) = L(R1) ∪ L(R2)

Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a L(a) = {a}

(R1 ∪ R2) L((R1 ∪ R2)) = L(R1) ∪ L(R2)
Induction (R1 ◦ R2)

L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a L(a) = {a}

(R1 ∪ R2) L((R1 ∪ R2)) = L(R1) ∪ L(R2)
Induction (R1 ◦ R2) L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 )

L((R∗1 )) = L(R1)∗



Regular Expressions
Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following
forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a L(a) = {a}

(R1 ∪ R2) L((R1 ∪ R2)) = L(R1) ∪ L(R2)
Induction (R1 ◦ R2) L((R1 ◦ R2)) = L(R1) ◦ L(R2)

(R∗1 ) L((R∗1 )) = L(R1)∗



Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following
conventions.

I Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means
(R ∪ ((S∗) ◦ T ))

I Associativity: (R ∪ (S ∪ T )) = ((R ∪ S) ∪ T ) = R ∪ S ∪ T
and (R ◦ (S ◦ T )) = ((R ◦ S) ◦ T ) = R ◦ S ◦ T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S



Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following
conventions.

I Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means

(R ∪ ((S∗) ◦ T ))

I Associativity: (R ∪ (S ∪ T )) = ((R ∪ S) ∪ T ) = R ∪ S ∪ T
and (R ◦ (S ◦ T )) = ((R ◦ S) ◦ T ) = R ◦ S ◦ T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S



Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following
conventions.

I Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means
(R ∪ ((S∗) ◦ T ))

I Associativity: (R ∪ (S ∪ T )) = ((R ∪ S) ∪ T ) = R ∪ S ∪ T
and (R ◦ (S ◦ T )) = ((R ◦ S) ◦ T ) = R ◦ S ◦ T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S



Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following
conventions.

I Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means
(R ∪ ((S∗) ◦ T ))

I Associativity: (R ∪ (S ∪ T )) = ((R ∪ S) ∪ T ) = R ∪ S ∪ T
and (R ◦ (S ◦ T )) = ((R ◦ S) ◦ T ) = R ◦ S ◦ T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S



Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following
conventions.

I Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means
(R ∪ ((S∗) ◦ T ))

I Associativity: (R ∪ (S ∪ T )) = ((R ∪ S) ∪ T ) = R ∪ S ∪ T
and (R ◦ (S ◦ T )) = ((R ◦ S) ◦ T ) = R ◦ S ◦ T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗

= ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅

∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗

Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗

Strings that have 001 as a sub-
string



Regular Expression Examples

R L(R)

(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗

0∅ ∅

0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of 1s
is divisible by 3

(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-
string



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗

Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0)

Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗

Strings that do not have two
consecutive 0s



More Examples

R L(R)

(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alternat-
ing 0s and 1s

(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alternat-
ing 0s and 1s

(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two
consecutive 0s



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1

(but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R =

∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅

I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R.

R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff

ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ =

R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ =

ε



Some Regular Expression Identities

We say R1 = R2 if L(R1) = L(R2).

I Commutativity: R1 ∪ R2 = R2 ∪ R1 (but R1 ◦ R2 6= R2 ◦ R1

typically)

I Associativity: (R1 ∪ R2) ∪ R3 = R1 ∪ (R2 ∪ R3) and
(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

I Distributivity: R ◦ (R1 ∪ R2) = R ◦ R1 ∪ R ◦ R2 and
(R1 ∪ R2) ◦ R = R1 ◦ R ∪ R2 ◦ R

I Concatenating with ε: R ◦ ε = ε ◦ R = R

I Concatenating with ∅: R ◦ ∅ = ∅ ◦ R = ∅
I R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

I (R∗)∗ = R∗

I ∅∗ = ε



Useful Notation

Definition
Define R+ = RR∗.

Thus, R∗ = R+ ∪ ε. In addition, R+ = R∗ iff
ε ∈ L(R).



Useful Notation

Definition
Define R+ = RR∗. Thus, R∗ = R+ ∪ ε.

In addition, R+ = R∗ iff
ε ∈ L(R).



Useful Notation

Definition
Define R+ = RR∗. Thus, R∗ = R+ ∪ ε. In addition, R+ = R∗ iff
ε ∈ L(R).



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem
L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

I Given regular expression R, will construct NFA N such that
L(N) = L(R)

I Given DFA M, will construct regular expression R such that
L(M) = L(R) �



Regular Expressions to Finite Automata
. . . to Non-determinstic Finite Automata

Lemma
For any regex R, there is an NFA NR s.t. L(NR) = L(R).

Proof Idea
We will build the NFA NR for R, inductively, based on the number
of operators in R, #(R).

I Base Case: #(R) = 0 means that R is ∅, ε, or a (from some
a ∈ Σ). We will build NFAs for these cases.

I Induction Hypothesis: Assume that for regular expressions R,
with #(R) ≤ n, there is an NFA NR s.t. L(NR) = L(R).

I Induction Step: Consider R with #(R) = n + 1. Based on the
form of R, the NFA NR will be built using the induction
hypothesis.



Regular Expressions to Finite Automata
. . . to Non-determinstic Finite Automata

Lemma
For any regex R, there is an NFA NR s.t. L(NR) = L(R).

Proof Idea
We will build the NFA NR for R, inductively, based on the number
of operators in R, #(R).

I Base Case: #(R) = 0 means that R is ∅, ε, or a (from some
a ∈ Σ). We will build NFAs for these cases.

I Induction Hypothesis: Assume that for regular expressions R,
with #(R) ≤ n, there is an NFA NR s.t. L(NR) = L(R).

I Induction Step: Consider R with #(R) = n + 1. Based on the
form of R, the NFA NR will be built using the induction
hypothesis.



Regular Expressions to Finite Automata
. . . to Non-determinstic Finite Automata

Lemma
For any regex R, there is an NFA NR s.t. L(NR) = L(R).

Proof Idea
We will build the NFA NR for R, inductively, based on the number
of operators in R, #(R).

I Base Case: #(R) = 0 means that R is ∅, ε, or a (from some
a ∈ Σ). We will build NFAs for these cases.

I Induction Hypothesis: Assume that for regular expressions R,
with #(R) ≤ n, there is an NFA NR s.t. L(NR) = L(R).

I Induction Step: Consider R with #(R) = n + 1. Based on the
form of R, the NFA NR will be built using the induction
hypothesis.



Regular Expressions to Finite Automata
. . . to Non-determinstic Finite Automata

Lemma
For any regex R, there is an NFA NR s.t. L(NR) = L(R).

Proof Idea
We will build the NFA NR for R, inductively, based on the number
of operators in R, #(R).

I Base Case: #(R) = 0 means that R is ∅, ε, or a (from some
a ∈ Σ). We will build NFAs for these cases.

I Induction Hypothesis: Assume that for regular expressions R,
with #(R) ≤ n, there is an NFA NR s.t. L(NR) = L(R).

I Induction Step: Consider R with #(R) = n + 1. Based on the
form of R, the NFA NR will be built using the induction
hypothesis.



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε
q0

R = a
q0 q1

a



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅

q0

R = ε
q0

R = a
q0 q1

a



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε
q0

R = a
q0 q1

a



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε

q0

R = a
q0 q1

a



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε
q0

R = a
q0 q1

a



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε
q0

R = a

q0 q1
a



Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as
follows.

R = ∅
q0

R = ε
q0

R = a
q0 q1

a



Induction Step: Union

Case R = R1 ∪ R2

By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1) and
L(N2) = L(R2). Build NFA N s.t. L(N) = L(N1) ∪ L(N2)



Induction Step: Union

Case R = R1 ∪ R2

By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1) and
L(N2) = L(R2).

Build NFA N s.t. L(N) = L(N1) ∪ L(N2)

q1

q11

q12

q2 q21



Induction Step: Union

Case R = R1 ∪ R2

By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1) and
L(N2) = L(R2). Build NFA N s.t. L(N) = L(N1) ∪ L(N2)

q1

q11

q12

q2 q21



Induction Step: Union

Case R = R1 ∪ R2

By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1) and
L(N2) = L(R2). Build NFA N s.t. L(N) = L(N1) ∪ L(N2)

q0

q1

q11

q12

q2 q21

ε

ε



Induction Step: Union
Formal Definition

Case R = R1 ∪ R2

Let N1 = (Q1,Σ, δ1, q1,F1) and N2 = (Q2,Σ, δ2, q2,F2) (with
Q1 ∩ Q2 = ∅) such that L(N1) = L(R1) and L(N2) = L(R2). The
NFA N = (Q,Σ, δ, q0,F ) is given by

I Q = Q1 ∪ Q2 ∪ {q0}, where q0 6∈ Q1 ∪ Q2

I F = F1 ∪ F2
I δ is defined as follows

δ(q, a) =


δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

{q1, q2} if q = q0 and a = ε
∅ otherwise



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F .

Based on the
transitions out of q0, q0

ε−→N q1
w−→N q or

q0
ε−→N q2

w−→N q. Consider q0
ε−→N q1

w−→N q. (Other
case is similar) This means q1

w−→N1 q (as N has the same
transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the

transitions out of q0, q0
ε−→N q1

w−→N q or
q0

ε−→N q2
w−→N q.

Consider q0
ε−→N q1

w−→N q. (Other
case is similar) This means q1

w−→N1 q (as N has the same
transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the

transitions out of q0, q0
ε−→N q1

w−→N q or
q0

ε−→N q2
w−→N q. Consider q0

ε−→N q1
w−→N q. (Other

case is similar)

This means q1
w−→N1 q (as N has the same

transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the

transitions out of q0, q0
ε−→N q1

w−→N q or
q0

ε−→N q2
w−→N q. Consider q0

ε−→N q1
w−→N q. (Other

case is similar) This means q1
w−→N1 q (as N has the same

transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the

transitions out of q0, q0
ε−→N q1

w−→N q or
q0

ε−→N q2
w−→N q. Consider q0

ε−→N q1
w−→N q. (Other

case is similar) This means q1
w−→N1 q (as N has the same

transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar.

Then, q1
w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the

transitions out of q0, q0
ε−→N q1

w−→N q or
q0

ε−→N q2
w−→N q. Consider q0

ε−→N q1
w−→N q. (Other

case is similar) This means q1
w−→N1 q (as N has the same

transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1.

Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the

transitions out of q0, q0
ε−→N q1

w−→N q or
q0

ε−→N q2
w−→N q. Consider q0

ε−→N q1
w−→N q. (Other

case is similar) This means q1
w−→N1 q (as N has the same

transition as N1 on the states in Q1) and q ∈ F1. This means
w ∈ L(N1).

⇐ w ∈ L(N1) ∪ L(N2). Consider w ∈ L(N1); case of w ∈ L(N2)
is similar. Then, q1

w−→N1 q for some q ∈ F1. Thus,

q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).



Induction Step: Concatenation

Case R = R1 ◦ R2

I By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1)
and L(N2) = L(R2)

I Build NFA N s.t. L(N) = L(N1) ◦ L(N2)

Formal definition and proof of correctness left as exercise.



Induction Step: Concatenation

Case R = R1 ◦ R2

I By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1)
and L(N2) = L(R2)

I Build NFA N s.t. L(N) = L(N1) ◦ L(N2)

q1

q11

q12

q2 q21

Formal definition and proof of correctness left as exercise.



Induction Step: Concatenation

Case R = R1 ◦ R2

I By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1)
and L(N2) = L(R2)

I Build NFA N s.t. L(N) = L(N1) ◦ L(N2)

q1

q11

q12

q2 q21

Formal definition and proof of correctness left as exercise.



Induction Step: Concatenation

Case R = R1 ◦ R2

I By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1)
and L(N2) = L(R2)

I Build NFA N s.t. L(N) = L(N1) ◦ L(N2)

q1

q11

q12

q2 q21

ε

ε

Formal definition and proof of correctness left as exercise.



Induction Step: Concatenation

Case R = R1 ◦ R2

I By induction hypothesis, there are N1,N2 s.t. L(N1) = L(R1)
and L(N2) = L(R2)

I Build NFA N s.t. L(N) = L(N1) ◦ L(N2)

q1

q11

q12

q2 q21

ε

ε

Formal definition and proof of correctness left as exercise.



Induction Step: Kleene Closure

First Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

Problem: May not accept ε! One can show that L(N) = (L(N1))+.



Induction Step: Kleene Closure

First Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

Problem: May not accept ε! One can show that L(N) = (L(N1))+.



Induction Step: Kleene Closure

First Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

Problem: May not accept ε! One can show that L(N) = (L(N1))+.



Induction Step: Kleene Closure

First Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

ε

ε

Problem: May not accept ε! One can show that L(N) = (L(N1))+.



Induction Step: Kleene Closure
First Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

ε

ε

Problem: May not accept ε! One can show that L(N) = (L(N1))+.



Induction Step: Kleene Closure

Second Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

Problem: May accept strings that are not in (L(N1))∗!



Induction Step: Kleene Closure

Second Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

ε

ε

Problem: May accept strings that are not in (L(N1))∗!



Induction Step: Kleene Closure

Second Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

ε

ε

Problem: May accept strings that are not in (L(N1))∗!



Induction Step: Kleene Closure
Second Attempt

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

ε

ε

Problem: May accept strings that are not in (L(N1))∗!



Example demonstrating the problem

q0 q1

0, 1

1

0, 1

Example NFA N

q0 q1

0, 1

1

ε

0, 1

Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗. Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗.
The previous construction, gives an NFA that accepts 0 6∈ (L(N))∗!



Example demonstrating the problem

q0 q1

0, 1

1

0, 1

Example NFA N

q0 q1

0, 1

1

ε

0, 1

Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗.

Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗.
The previous construction, gives an NFA that accepts 0 6∈ (L(N))∗!



Example demonstrating the problem

q0 q1

0, 1

1

0, 1

Example NFA N

q0 q1

0, 1

1

ε

0, 1

Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗. Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗.

The previous construction, gives an NFA that accepts 0 6∈ (L(N))∗!



Example demonstrating the problem

q0 q1

0, 1

1

0, 1

Example NFA N

q0 q1

0, 1

1

ε

0, 1

Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗. Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗.

The previous construction, gives an NFA that accepts 0 6∈ (L(N))∗!



Example demonstrating the problem

q0 q1

0, 1

1

0, 1

Example NFA N

q0 q1

0, 1

1

ε

0, 1

Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗. Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗.
The previous construction, gives an NFA that accepts 0 6∈ (L(N))∗!



Induction Step: Kleene Closure
Correct Construction

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

Formal definition and proof of correctness left as exercise.



Induction Step: Kleene Closure
Correct Construction

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q0

q1

q2

ε

ε

Formal definition and proof of correctness left as exercise.



Induction Step: Kleene Closure
Correct Construction

Case R = R∗1

I By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

I Build NFA N s.t. L(N) = (L(N1))∗

q q0

q1

q2

ε

ε

ε

Formal definition and proof of correctness left as exercise.



Regular Expressions to NFA
To Summarize

We built an NFA NR for each regular expression R inductively

I When R was an elementary regular expression, we gave an
explicit construction of an NFA recognizing L(R)

I When R = R1 op R2 (or R = op(R1)), we constructed an NFA
N for R, using the NFAs for R1 and R2.



Regular Expressions to NFA
To Summarize

We built an NFA NR for each regular expression R inductively

I When R was an elementary regular expression, we gave an
explicit construction of an NFA recognizing L(R)

I When R = R1 op R2 (or R = op(R1)), we constructed an NFA
N for R, using the NFAs for R1 and R2.



Regular Expressions to NFA
To Summarize

We built an NFA NR for each regular expression R inductively

I When R was an elementary regular expression, we gave an
explicit construction of an NFA recognizing L(R)

I When R = R1 op R2 (or R = op(R1)), we constructed an NFA
N for R, using the NFAs for R1 and R2.



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε



Example Continued

Build NFA for (1 ∪ 01)∗

N(1∪01)∗

1

0 ε 1

ε

ε

ε

ε

ε



Example Continued

Build NFA for (1 ∪ 01)∗

N(1∪01)∗

1

0 ε 1

ε

ε

ε

ε

ε



Example Continued

Build NFA for (1 ∪ 01)∗

N(1∪01)∗

1

0 ε 1

ε

ε

ε

ε

ε



Regular Expressions to NFA
An Example (2)

Build NFA for (a ∪ b)∗aba



Regular Expressions to NFA
An Example (2)

Build NFA for (a ∪ b)∗aba



Regular Expressions to NFA
An Example (3)

Build NFA for (01 ∪ 001 ∪ 010)∗



Regular Expressions to NFA
An Example (3)

Build NFA for (01 ∪ 001 ∪ 010)∗



Today

I Defined Regular Expressions

I Syntax: what a regex is built out of — ∅, ε, characters in Σ,
and operators ∪, ◦, ∗.

I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).



Today

I Defined Regular Expressions
I Syntax: what a regex is built out of — ∅, ε, characters in Σ,

and operators ∪, ◦, ∗.

I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).



Today

I Defined Regular Expressions
I Syntax: what a regex is built out of — ∅, ε, characters in Σ,

and operators ∪, ◦, ∗.
I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).



Today

I Defined Regular Expressions
I Syntax: what a regex is built out of — ∅, ε, characters in Σ,

and operators ∪, ◦, ∗.
I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).



Today

I Defined Regular Expressions
I Syntax: what a regex is built out of — ∅, ε, characters in Σ,

and operators ∪, ◦, ∗.
I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).



Today

I Defined Regular Expressions
I Syntax: what a regex is built out of — ∅, ε, characters in Σ,

and operators ∪, ◦, ∗.
I Semantics: what language a regex stands for.

I Expressive power of regular expressions: can express (any and
only) regular languages

I Today: Languages represented by regular expressions are
regular (we showed how to build NFAs for them).

I Coming up: Regular languages can be represented by regular
expressions (by building regex for any given DFA).


	Operations on Languages
	Regular Expressions
	Definition and Identities
	Regular Expressions and Regular Languages
	Regular Expressions to NFA


