
CSE 135: Introduction to Theory of Computation
Rice’s Theorem and Closure Properties

Sungjin Im

University of California, Merced

04-21-2015

Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A reduction (a.k.a. mapping reduction/many-one reduction) from
a language A to a language B is a computable function
f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is reducible to B, and we denote it by
A ≤m B.

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is r.e., then A is r.e.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition

If A ≤m B and B is decidable, then A is decidable.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
deciding B. Then a Turing machine that decides A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is undecidable, then B is undecidable.

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w .

i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w . i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable.

For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm.

Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.

Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?)

This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR.

Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) =

Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗.

If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) =

{0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}.

Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm.

Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects

i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.

Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided?

None! By Rice’s
Theorem

Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided? None!

By Rice’s
Theorem

Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided? None! By Rice’s
Theorem

Properties

Definition
A property of languages is simply a set of languages.

We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}

; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}

I Non-example: {M |M has 15 states} ←− This is a property
of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states}

←− This is a property
of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages.

Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states}

= Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)

Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!

Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!

Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.

I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable.

··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P.

i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.

Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P

Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP.

··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

The reduction f maps 〈M,w〉 to N, where N is a TM that
behaves as follows:

On input x
Ignore the input and run M on w
If M does not accept (or doesn’t halt)

then do not accept x (or do not halt)

If M does accept w
then run M0 on x and accept x iff M0 does.

Notice that indeed if M accepts w then L(N) = L(M0). Otherwise
L(N) = ∅. �

Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.

Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.

Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.

Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT

Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT

Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and
complementation.

Proof.
Given TMs M1, M2 that decide languages L1, and L2
I A TM that decides L1 ∪ L2: on input x , run M1 and M2 on x ,

and accept iff either accepts. (Similarly for intersection.)

I A TM that decides L1: On input x , run M1 on x , and accept
if M1 rejects, and reject if M1 accepts. �

Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and
complementation.

Proof.
Given TMs M1, M2 that decide languages L1, and L2
I A TM that decides L1 ∪ L2: on input x , run M1 and M2 on x ,

and accept iff either accepts. (Similarly for intersection.)

I A TM that decides L1: On input x , run M1 on x , and accept
if M1 rejects, and reject if M1 accepts. �

Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and
complementation.

Proof.
Given TMs M1, M2 that decide languages L1, and L2
I A TM that decides L1 ∪ L2: on input x , run M1 and M2 on x ,

and accept iff either accepts.

(Similarly for intersection.)

I A TM that decides L1: On input x , run M1 on x , and accept
if M1 rejects, and reject if M1 accepts. �

Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and
complementation.

Proof.
Given TMs M1, M2 that decide languages L1, and L2
I A TM that decides L1 ∪ L2: on input x , run M1 and M2 on x ,

and accept iff either accepts. (Similarly for intersection.)

I A TM that decides L1: On input x , run M1 on x , and accept
if M1 rejects, and reject if M1 accepts. �

Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and
complementation.

Proof.
Given TMs M1, M2 that decide languages L1, and L2
I A TM that decides L1 ∪ L2: on input x , run M1 and M2 on x ,

and accept iff either accepts. (Similarly for intersection.)

I A TM that decides L1: On input x , run M1 on x , and accept
if M1 rejects, and reject if M1 accepts. �

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene
Closure.

Proof.
Given TMs M1 and M2 that decide languages L1 and L2.

I A TM to decide L1L2:

On input x , for each of the |x |+ 1
ways to divide x as yz : run M1 on y and M2 on z , and accept
if both accept. Else reject.

I A TM to decide L∗1: On input x , if x = ε accept. Else, for
each of the 2|x |−1 ways to divide x as w1 . . .wk (wi 6= ε): run
M1 on each wi and accept if M1 accepts all. Else reject. �

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene
Closure.

Proof.
Given TMs M1 and M2 that decide languages L1 and L2.

I A TM to decide L1L2: On input x , for each of the |x |+ 1
ways to divide x as yz : run M1 on y and M2 on z , and accept
if both accept. Else reject.

I A TM to decide L∗1: On input x , if x = ε accept. Else, for
each of the 2|x |−1 ways to divide x as w1 . . .wk (wi 6= ε): run
M1 on each wi and accept if M1 accepts all. Else reject. �

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene
Closure.

Proof.
Given TMs M1 and M2 that decide languages L1 and L2.

I A TM to decide L1L2: On input x , for each of the |x |+ 1
ways to divide x as yz : run M1 on y and M2 on z , and accept
if both accept. Else reject.

I A TM to decide L∗1:

On input x , if x = ε accept. Else, for
each of the 2|x |−1 ways to divide x as w1 . . .wk (wi 6= ε): run
M1 on each wi and accept if M1 accepts all. Else reject. �

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene
Closure.

Proof.
Given TMs M1 and M2 that decide languages L1 and L2.

I A TM to decide L1L2: On input x , for each of the |x |+ 1
ways to divide x as yz : run M1 on y and M2 on z , and accept
if both accept. Else reject.

I A TM to decide L∗1: On input x , if x = ε accept. Else, for
each of the 2|x |−1 ways to divide x as w1 . . .wk (wi 6= ε): run
M1 on each wi and accept if M1 accepts all. Else reject. �

Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.
Given TMs M1, M2 that recognize languages L1, L2
I A TM that recognizes L1 ∪ L2: on input x , run M1 and M2 on

x in parallel, and accept iff either accepts. (Similarly for
intersection; but no need for parallel simulation) �

Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.
Given TMs M1, M2 that recognize languages L1, L2

I A TM that recognizes L1 ∪ L2: on input x , run M1 and M2 on
x in parallel, and accept iff either accepts. (Similarly for
intersection; but no need for parallel simulation) �

Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.
Given TMs M1, M2 that recognize languages L1, L2
I A TM that recognizes L1 ∪ L2: on input x , run M1 and M2 on

x in parallel, and accept iff either accepts.

(Similarly for
intersection; but no need for parallel simulation) �

Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.
Given TMs M1, M2 that recognize languages L1, L2
I A TM that recognizes L1 ∪ L2: on input x , run M1 and M2 on

x in parallel, and accept iff either accepts. (Similarly for
intersection; but no need for parallel simulation) �

Complementation

Proposition

R.E. languages are not closed under complementation.

Proof.
Atm is r.e. but Atm is not. �

Regular Operations

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.
Given TMs M1 and M2 recognizing L1 and L2
I A TM to recognize L1L2:

On input x , do in parallel, for each
of the |x |+ 1 ways to divide x as yz : run M1 on y and M2 on
z , and accept if both accept. Else reject.

I A TM to recognize L∗1: On input x , if x = ε accept. Else, do
in parallel, for each of the 2|x |−1 ways to divide x as w1 . . .wk

(wi 6= ε): run M1 on each wi and accept if M1 accepts all.
Else reject. �

Regular Operations

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.
Given TMs M1 and M2 recognizing L1 and L2
I A TM to recognize L1L2: On input x , do in parallel, for each

of the |x |+ 1 ways to divide x as yz : run M1 on y and M2 on
z , and accept if both accept. Else reject.

I A TM to recognize L∗1: On input x , if x = ε accept. Else, do
in parallel, for each of the 2|x |−1 ways to divide x as w1 . . .wk

(wi 6= ε): run M1 on each wi and accept if M1 accepts all.
Else reject. �

Regular Operations

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.
Given TMs M1 and M2 recognizing L1 and L2
I A TM to recognize L1L2: On input x , do in parallel, for each

of the |x |+ 1 ways to divide x as yz : run M1 on y and M2 on
z , and accept if both accept. Else reject.

I A TM to recognize L∗1:

On input x , if x = ε accept. Else, do
in parallel, for each of the 2|x |−1 ways to divide x as w1 . . .wk

(wi 6= ε): run M1 on each wi and accept if M1 accepts all.
Else reject. �

Regular Operations

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.
Given TMs M1 and M2 recognizing L1 and L2
I A TM to recognize L1L2: On input x , do in parallel, for each

of the |x |+ 1 ways to divide x as yz : run M1 on y and M2 on
z , and accept if both accept. Else reject.

I A TM to recognize L∗1: On input x , if x = ε accept. Else, do
in parallel, for each of the 2|x |−1 ways to divide x as w1 . . .wk

(wi 6= ε): run M1 on each wi and accept if M1 accepts all.
Else reject. �

	Reductions
	Definitions and Observations
	Examples

	Rice's Theorem
	Properties
	Main Theorem

	Closure Properties
	Decidable Languages
	Recursively Enumerable Languages

