CSE 135: Introduction to Theory of Computation Rice's Theorem and Closure Properties

Sungjin Im

University of California, Merced

04-21-2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to a language B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

In this case, we say A is reducible to B, and we denote it by $A \leq_m B$.

Reductions and Recursive Enumerability

Proposition

```
If A \leq_m B and B is r.e., then A is r.e.
```

Proof.

Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w

Compute f(w)

Run M_B on f(w)

Accept if M_B accepts, and reject if M_B rejects \Box
```

Corollary If $A \leq_m B$ and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable, then A is decidable.

Proof.

Let f be a reduction from A to B and let M_B be a Turing Machine *deciding* B. Then a Turing machine that decides A is

```
On input w

Compute f(w)

Run M_B on f(w)

Accept if M_B accepts, and reject if M_B rejects \Box
```

Corollary

If $A \leq_m B$ and A is undecidable, then B is undecidable.

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m \text{HALT} \implies \text{HALT}$ undecidable. Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows: On input xRun M on xIf M accepts then halt and accept If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w.

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m \text{HALT} \implies \text{HALT}$ undecidable. Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows: On input xRun M on xIf M accepts then halt and accept If M rejects then go into an infinite loop N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note: in fact, E_{TM} is not recognizable.

Proposition

The language $E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable. Note: in fact, E_{TM} is not recognizable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable.

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} . Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

```
On input x

If x \neq w, reject

else run M on w, and accept if M accepts w

and accept if P rejects (M) and rejects if P accepts (M)
```

, and accept if B rejects $\langle M_1 \rangle$, and rejects if B accepts $\langle M_1 \rangle$.

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} . Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

```
On input x
If x \neq w, reject
else run M on w, and accept if M accepts w
```

, and accept if *B* rejects $\langle M_1 \rangle$, and rejects if *B* accepts $\langle M_1 \rangle$. Then we show that (1) if $\langle M, w \rangle \in A_{\text{TM}}$, then accept, and (2) $\langle M, w \rangle \in A_{\text{TM}}$, then reject. (how?)

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} . Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

```
On input x

If x \neq w, reject

else run M on w, and accept if M accepts w
```

, and accept if *B* rejects $\langle M_1 \rangle$, and rejects if *B* accepts $\langle M_1 \rangle$. Then we show that (1) if $\langle M, w \rangle \in A_{\rm TM}$, then accept, and (2) $\langle M, w \rangle \in A_{\rm TM}$, then reject. (how?) This implies $A_{\rm TM}$ is decidable, which is a contradiction.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

We give a reduction f from A_{TM} to REGULAR.

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then L(N) =

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$.

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

```
If w \in L(M) then L(N) = \Sigma^*. If w \notin L(M) then L(N) =
```

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}.$

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x If x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}$. Thus, $\langle N \rangle \in \mathsf{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\mathrm{TM}}$

Checking Equality

Proposition $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Checking Equality

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from $E_{\rm TM}$ (assume that we know $E_{\rm TM}$ is R.E.) to EQ_{\rm TM}.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from $E_{\rm TM}$ (assume that we know $E_{\rm TM}$ is R.E.) to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from E_{TM} (assume that we know E_{TM} is R.E.) to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$.

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from E_{TM} (assume that we know E_{TM} is R.E.) to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$. Observe $M \in E_{\text{TM}}$ iff $L(M) = \emptyset$ iff $L(M) = L(M_1)$ iff $\langle M, M_1 \rangle \in \text{EQ}_{\text{TM}}$.

Checking Properties

Given M

Does
$$L(M)$$
 contain M ?
Is $L(M)$ non-empty?
Is $L(M)$ empty?
Is $L(M)$ infinite?
Is $L(M)$ finite?
Is $L(M)$ co-finite (i.e., is $\overline{L(M)}$ finite)?
Is $L(M) = \Sigma^*$?

Which of these properties can be decided?

Checking Properties

Given M

$$\begin{array}{c} \text{Does } L(M) \text{ contain } M? \\ \text{Is } L(M) \text{ non-empty?} \\ \text{Is } L(M) \text{ empty?} \\ \text{Is } L(M) \text{ infinite?} \\ \text{Is } L(M) \text{ finite?} \\ \text{Is } L(M) \text{ co-finite (i.e., is } \overline{L(M)} \text{ finite)?} \\ \text{Is } L(M) = \Sigma^*? \end{array} \right\} \text{ Undecidable}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Which of these properties can be decided? None!

Checking Properties

Given M

$$\begin{array}{c} \text{Does } L(M) \text{ contain } M? \\ \text{Is } L(M) \text{ non-empty?} \\ \text{Is } L(M) \text{ empty?} \\ \text{Is } L(M) \text{ infinite?} \\ \text{Is } L(M) \text{ finite?} \\ \text{Is } L(M) \text{ co-finite (i.e., is } \overline{L(M)} \text{ finite)?} \\ \text{Is } L(M) = \Sigma^*? \end{array} \right\}$$
 Undecidable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Which of these properties can be decided? None! By Rice's Theorem

Definition A *property of languages* is simply a set of languages.

Definition A property of languages is simply a set of languages. We say L satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

• Example: $\{M \mid L(M) \text{ is infinite}\}$

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

• Example: $\{M \mid L(M) \text{ is infinite}\}; E_{TM} = \{M \mid L(M) = \emptyset\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

- Example: $\{M \mid L(M) \text{ is infinite}\}; E_{TM} = \{M \mid L(M) = \emptyset\}$
- ▶ Non-example: {*M* | *M* has 15 states}

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

- Example: $\{M \mid L(M) \text{ is infinite}\}; E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$
- ► Non-example: {M | M has 15 states} ← This is a property of TMs, and not languages!

Trivial Properties

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states}

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states} = P_{R.E.}

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.} = set of all r.e. languages$
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states} = P_{R.E.}

Observation. For any trivial property \mathbb{P} , $L_{\mathbb{P}}$ is decidable. (Why?)

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states} = P_{R.E.}

Observation. For any trivial property \mathbb{P} , $\mathcal{L}_{\mathbb{P}}$ is decidable. (Why?) Then $\mathcal{L}_{\mathbb{P}} = \Sigma^*$ or $\mathcal{L}_{\mathbb{P}} = \emptyset$.

Rice's Theorem

Proposition

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Rice's Theorem

Proposition

If $\mathbb P$ is a non-trivial property, then $L_{\mathbb P}$ is undecidable.

▶ Thus $\{M \mid L(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

▶ Thus $\{M \mid L(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)

We cannot algorithmically determine any interesting property of languages represented as Turing Machines!

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

Example

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $\mathcal{L}_{\mathbb{P}}$ is undecidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

• Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)

• Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)
- Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.

• Then, since A_{TM} is undecidable, $L_{\mathbb{P}}$ is also undecidable.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)
- ▶ Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.
- ▶ Then, since A_{TM} is undecidable, $L_{\mathbb{P}}$ is also undecidable. ...→

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} .

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M,w\rangle$ for $A_{\rm TM},$ to N such that

• If M accepts w then N accepts the same language as M_0 .

- Then $L(N) = L(M_0) \in \mathbb{P}$
- If *M* does not accept *w* then *N* accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M,w\rangle$ for $A_{\rm TM},$ to N such that

• If M accepts w then N accepts the same language as M_0 .

- Then $L(N) = L(M_0) \in \mathbb{P}$
- If *M* does not accept *w* then *N* accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $N \in L_{\mathbb{P}}$.

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M, w \rangle$ for $A_{\rm TM}$, to N such that

• If M accepts w then N accepts the same language as M_0 .

 $\cdots \rightarrow$

- Then $L(N) = L(M_0) \in \mathbb{P}$
- If *M* does not accept *w* then *N* accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $N \in L_{\mathbb{P}}$.

Proof (contd).

The reduction f maps $\langle M, w \rangle$ to N, where N is a TM that behaves as follows:

On input x
Ignore the input and run M on w
If M does not accept (or doesn't halt)
 then do not accept x (or do not halt)
If M does accept w
 then run M₀ on x and accept x iff M₀ does.

Notice that indeed if *M* accepts *w* then $L(N) = L(M_0)$. Otherwise $L(N) = \emptyset$.

Rice's Theorem Recap

Every non-trivial property of r.e. languages is undecidable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rice's Theorem

Every non-trivial property of r.e. languages is undecidable

 Rice's theorem says nothing about properties of Turing machines

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rice's Theorem

Every non-trivial property of r.e. languages is undecidable

- Rice's theorem says nothing about properties of Turing machines
- Rice's theorem says nothing about whether a property of languages is recurisvely enumerable or not.

Big Picture ... again

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Big Picture ... again

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Proposition

Decidable languages are closed under union, intersection, and complementation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

Decidable languages are closed under union, intersection, and complementation.

Proof.

Given TMs M_1 , M_2 that decide languages L_1 , and L_2

A TM that decides L₁ ∪ L₂: on input x, run M₁ and M₂ on x, and accept iff either accepts.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

Decidable languages are closed under union, intersection, and complementation.

Proof.

Given TMs M_1 , M_2 that decide languages L_1 , and L_2

A TM that decides L₁ ∪ L₂: on input x, run M₁ and M₂ on x, and accept iff either accepts. (Similarly for intersection.)

Proposition

Decidable languages are closed under union, intersection, and complementation.

Proof.

Given TMs M_1 , M_2 that decide languages L_1 , and L_2

- A TM that decides L₁ ∪ L₂: on input x, run M₁ and M₂ on x, and accept iff either accepts. (Similarly for intersection.)
- A TM that decides *L*₁: On input *x*, run *M*₁ on *x*, and accept if *M*₁ rejects, and reject if *M*₁ accepts.

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2 .

• A TM to decide L_1L_2 :

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2 .

► A TM to decide L₁L₂: On input x, for each of the |x| + 1 ways to divide x as yz: run M₁ on y and M₂ on z, and accept if both accept. Else reject.

Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2 .

► A TM to decide L₁L₂: On input x, for each of the |x| + 1 ways to divide x as yz: run M₁ on y and M₂ on z, and accept if both accept. Else reject.

► A TM to decide *L*^{*}₁:
Proposition

Decidable languages are closed under concatenation and Kleene Closure.

Proof.

Given TMs M_1 and M_2 that decide languages L_1 and L_2 .

- ► A TM to decide L₁L₂: On input x, for each of the |x| + 1 ways to divide x as yz: run M₁ on y and M₂ on z, and accept if both accept. Else reject.
- A TM to decide L₁^{*}: On input x, if x = e accept. Else, for each of the 2^{|x|-1} ways to divide x as w₁...w_k (w_i ≠ e): run M₁ on each w_i and accept if M₁ accepts all. Else reject.

Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

Given TMs M_1 , M_2 that recognize languages L_1 , L_2

Proposition

R.E. languages are closed under union, and intersection.

Proof.

Given TMs M_1 , M_2 that recognize languages L_1 , L_2

A TM that recognizes L₁ ∪ L₂: on input x, run M₁ and M₂ on x in parallel, and accept iff either accepts.

Proposition

R.E. languages are closed under union, and intersection.

Proof.

Given TMs M_1 , M_2 that recognize languages L_1 , L_2

► A TM that recognizes L₁ ∪ L₂: on input x, run M₁ and M₂ on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation)

Complementation

Proposition

R.E. languages are not closed under complementation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

 $A_{\rm TM}$ is r.e. but $\overline{A_{\rm TM}}$ is not.

Proposition

R.E languages are closed under concatenation and Kleene closure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

• A TM to recognize L_1L_2 :

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

► A TM to recognize L₁L₂: On input x, do in parallel, for each of the |x| + 1 ways to divide x as yz: run M₁ on y and M₂ on z, and accept if both accept. Else reject.

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

► A TM to recognize L₁L₂: On input x, do in parallel, for each of the |x| + 1 ways to divide x as yz: run M₁ on y and M₂ on z, and accept if both accept. Else reject.

• A TM to recognize L_1^* :

Proposition

R.E languages are closed under concatenation and Kleene closure.

Proof.

Given TMs M_1 and M_2 recognizing L_1 and L_2

- ► A TM to recognize L₁L₂: On input x, do in parallel, for each of the |x| + 1 ways to divide x as yz: run M₁ on y and M₂ on z, and accept if both accept. Else reject.
- A TM to recognize L₁^{*}: On input x, if x = e accept. Else, do in parallel, for each of the 2^{|x|-1} ways to divide x as w₁...w_k (w_i ≠ e): run M₁ on each w_i and accept if M₁ accepts all. Else reject.