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Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A reduction (a.k.a. mapping reduction/many-one reduction) from
a language A to a language B is a computable function
f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is reducible to B, and we denote it by
A ≤m B.



Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is r.e., then A is r.e.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is not r.e., then B is not r.e.



Reductions and Decidability

Proposition

If A ≤m B and B is decidable, then A is decidable.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
deciding B. Then a Turing machine that decides A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is undecidable, then B is undecidable.



The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w .

i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �
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Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �
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Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �
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Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �
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Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided?

None! By Rice’s
Theorem
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Properties

Definition
A property of languages is simply a set of languages.

We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!
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Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages.

Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.
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Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!
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Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable
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Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→
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Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P.

i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→
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Proof of Rice’s Theorem

Proof (contd).

The reduction f maps 〈M,w〉 to N, where N is a TM that
behaves as follows:

On input x
Ignore the input and run M on w
If M does not accept (or doesn’t halt)

then do not accept x (or do not halt)

If M does accept w
then run M0 on x and accept x iff M0 does.

Notice that indeed if M accepts w then L(N) = L(M0). Otherwise
L(N) = ∅. �



Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.



Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.



Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.



Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT



Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT



Boolean Operators

Proposition

Decidable languages are closed under union, intersection, and
complementation.

Proof.
Given TMs M1, M2 that decide languages L1, and L2
I A TM that decides L1 ∪ L2: on input x , run M1 and M2 on x ,

and accept iff either accepts. (Similarly for intersection.)

I A TM that decides L1: On input x , run M1 on x , and accept
if M1 rejects, and reject if M1 accepts. �
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Regular Operators

Proposition

Decidable languages are closed under concatenation and Kleene
Closure.

Proof.
Given TMs M1 and M2 that decide languages L1 and L2.

I A TM to decide L1L2:

On input x , for each of the |x |+ 1
ways to divide x as yz : run M1 on y and M2 on z , and accept
if both accept. Else reject.

I A TM to decide L∗1: On input x , if x = ε accept. Else, for
each of the 2|x |−1 ways to divide x as w1 . . .wk (wi 6= ε): run
M1 on each wi and accept if M1 accepts all. Else reject. �
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Boolean Operators

Proposition

R.E. languages are closed under union, and intersection.

Proof.
Given TMs M1, M2 that recognize languages L1, L2
I A TM that recognizes L1 ∪ L2: on input x , run M1 and M2 on

x in parallel, and accept iff either accepts. (Similarly for
intersection; but no need for parallel simulation) �
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Complementation

Proposition

R.E. languages are not closed under complementation.

Proof.
Atm is r.e. but Atm is not. �
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