CSE 135: Introduction to Theory of Computation Decidability and Recognizability

Sungjin Im

University of California, Merced

04-14 and 4-16-2015

- Instead of giving a Turing Machine, we shall often describe a program as code in some programming language (or often "pseudo-code")
 - Possibly using high level data structures and subroutines (Recall that TM and RAM are equivalent (even polynomially))
- Inputs and outputs are complex objects, encoded as strings
- Examples of objects:
 - Matrices, graphs, geometric shapes, images, videos, ...
 - DFAs, NFAs, Turing Machines, Algorithms, other machines . . .

Encoding Complex Objects

 "Everything" finite can be encoded as a (finite) string of symbols from a finite alphabet (e.g. ASCII)

1

- Can in turn be encoded in binary (as modern day computers do). No special ⊔ symbol: use self-terminating representations
- Example: encoding a "graph."

(1,2,3,4)((1,2)(2,3)(3,1)(1,4))

2

3

encodes the graph

- We have already seen several algorithms, for problems involving complex objects like DFAs, NFAs, regular expressions, and Turing Machines
 - For example, convert a NFA to DFA; Given a NFA N and a word w, decide if w ∈ L(N); ...

- All these inputs can be encoded as strings and all these algorithms can be implemented as Turing Machines
- Some of these algorithms are for decision problems, while others are for computing more general functions
- All these algorithms terminate on all inputs

Examples: Problems regarding Computation

Some more decision problems that have algorithms that always halt (sketched in the textbook)

- On input (B, w) where B is a DFA and w is a string, decide if B accepts w.
 Algorithm: simulate B on w and accept iff simulated B accepts
- ➤ On input ⟨B⟩ where B is a DFA, decide if L(B) = Ø. Algorithm: Use a fixed point algorithm to find all reachable states. See if any final state is reachable.

Code is just data: A TM can take "the code of a program" (DFA, NFA or TM) as part of its input and analyze or even execute this code

Examples: Problems regarding Computation

Some more decision problems that have algorithms that always halt (sketched in the textbook)

- On input (B, w) where B is a DFA and w is a string, decide if B accepts w.
 Algorithm: simulate B on w and accept iff simulated B accepts
- ➤ On input ⟨B⟩ where B is a DFA, decide if L(B) = Ø. Algorithm: Use a fixed point algorithm to find all reachable states. See if any final state is reachable.

Code is just data: A TM can take "the code of a program" (DFA, NFA or TM) as part of its input and analyze or even execute this code

Universal Turing Machine (a simple "Operating System"): Takes a TM M and a string w and simulates the execution of M on w

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M)and M halts on every input.

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M)and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.) or simply recognizable) if there exists a TM *M* which recognizes *L*. *L* is said to be Turing-decidable (Recursive or simply decidable) if there exists a TM *M* which decides *L*.

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M)and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.) or simply recognizable) if there exists a TM *M* which recognizes *L*. *L* is said to be Turing-decidable (Recursive or simply decidable) if there exists a TM *M* which decides *L*.

Every finite language is decidable

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M)and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.) or simply recognizable) if there exists a TM *M* which recognizes *L*. *L* is said to be Turing-decidable (Recursive or simply decidable) if there exists a TM *M* which decides *L*.

- Every finite language is decidable: For example, by a TM that has all the strings in the language "hard-coded" into it
- We just saw some example algorithms all of which terminate in a finite number of steps, and output yes or no (accept or reject). i.e., They decide the corresponding languages.

- But not all languages are decidable! We will show:
 - $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- But not all languages are decidable! We will show:
 - $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable

► However *A*_{TM} is Turing-recognizable!

- But not all languages are decidable! We will show:
 - $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable

► However *A*_{TM} is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

```
Program U for recognizing A_{\text{TM}}:
```

```
On input \langle M, w \rangle
simulate M on w
if simulated M accepts w, then accept
else reject (by moving to q_{rei})
```

```
Program U for recognizing A_{\text{TM}}:
```

```
On input \langle M, w \rangle
simulate M on w
if simulated M accepts w, then accept
else reject (by moving to q_{\rm rej})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

 $L(U) = A_{\mathrm{TM}}$

```
Program U for recognizing A_{\text{TM}}:
```

```
On input \langle M, w \rangle
simulate M on w
if simulated M accepts w, then accept
else reject (by moving to q_{\rm rej})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\rm TM}$$

But U does not decide $A_{\rm TM}$

Program U for recognizing A_{TM} :

```
On input \langle M, w \rangle
simulate M on w
if simulated M accepts w, then accept
else reject (by moving to q_{rei})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\rm TM}$$

But *U* does not decide A_{TM} : If *M* rejects *w* by not halting (does not halt on *w*), *U* rejects $\langle M, w \rangle$ by not halting (does not halt on $\langle M, w \rangle$).

Program U for recognizing A_{TM} :

```
On input \langle M, w \rangle
simulate M on w
if simulated M accepts w, then accept
else reject (by moving to q_{rei})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\text{TM}}$$

But *U* does not decide A_{TM} : If *M* rejects *w* by not halting (does not halt on *w*), *U* rejects $\langle M, w \rangle$ by not halting (does not halt on $\langle M, w \rangle$). Indeed (as we shall see) no TM decides A_{TM} .

Proposition If L and \overline{L} are recognizable, then L is decidable

Proof.

Program *P* for deciding *L*, given programs P_L and $P_{\overline{L}}$ for recognizing *L* and \overline{L} :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition If L and \overline{L} are recognizable, then L is decidable

Proof.

Program *P* for deciding *L*, given programs P_L and $P_{\overline{L}}$ for recognizing *L* and \overline{L} :

• On input x, simulate P_L and $P_{\overline{L}}$ on input x.

Proposition If L and \overline{L} are recognizable, then L is decidable

Proof.

Program *P* for deciding *L*, given programs P_L and $P_{\overline{L}}$ for recognizing *L* and \overline{L} :

On input x, simulate P_L and P_L on input x. Whether x ∈ L or x ∉ L, one of P_L and P_L will halt in finite number of steps.

Which one to simulate first?

Proposition If L and \overline{L} are recognizable, then L is decidable

Proof.

Program *P* for deciding *L*, given programs P_L and $P_{\overline{L}}$ for recognizing *L* and \overline{L} :

▶ On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.

• Which one to simulate first? Either could go on forever.

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

Program *P* for deciding *L*, given programs P_L and $P_{\overline{L}}$ for recognizing *L* and \overline{L} :

- ▶ On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel P_L and P_L on input x until either P_L or P_L accepts

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

Program *P* for deciding *L*, given programs P_L and $P_{\overline{L}}$ for recognizing *L* and \overline{L} :

- ▶ On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel P_L and P_L on input x until either P_L or P_L accepts
- If P_L accepts, accept x and halt. If P_L accepts, reject x and halt.

Proof (contd). In more detail, P works as follows: On input x for i = 1, 2, 3, ...simulate P_L on input x for i steps simulate $P_{\overline{L}}$ on input x for i steps if either simulation accepts, break if P_L accepted, accept x (and halt) if $P_{\overline{L}}$ accepted, reject x (and halt)

```
Proof (contd).

In more detail, P works as follows:

On input x

for i = 1, 2, 3, ...

simulate P_L on input x for i steps

simulate P_{\overline{L}} on input x for i steps

if either simulation accepts, break

if P_L accepted, accept x (and halt)

if P_{\overline{L}} accepted, reject x (and halt)
```

(Alternately, maintain configurations of P_L and $P_{\overline{L}}$, and in each iteration of the loop advance both their simulations by one step.)

So far:

• A_{TM} is undecidable (will learn soon)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But it is recognizable

So far:

• A_{TM} is undecidable (will learn soon)

- But it is recognizable
- Is every language recognizable?

So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

Proposition

 $\overline{A_{\rm TM}}$ is unrecognizable

So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

Proposition

 $\overline{A_{\rm TM}}$ is unrecognizable

Proof.

If $\overline{A_{\rm TM}}$ is recognizable, since $A_{\rm TM}$ is recognizable, the two languages will be decidable too!

So far:

- A_{TM} is undecidable (will learn soon)
- But it is recognizable
- Is every language recognizable? No!

Proposition

 $\overline{A_{\rm TM}}$ is unrecognizable

Proof.

If $\overline{A_{\text{TM}}}$ is recognizable, since A_{TM} is recognizable, the two languages will be decidable too!

Note: Decidable languages are closed under complementation, but recognizable languages are not.

Decision Problems and Languages

- A decision problem requires checking if an input (string) has some property. Thus, a decision problem is a function from strings to boolean.
- A decision problem is represented as a formal language consisting of those strings (inputs) on which the answer is "yes".

Recursive Enumerability

 A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- ► The language of a Turing Machine M, denoted as L(M), is the set of all strings w on which M accepts.

Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- ► The language of a Turing Machine M, denoted as L(M), is the set of all strings w on which M accepts.
- ► A language L is recursively enumerable/Turing recognizable if there is a Turing Machine M such that L(M) = L.

Decidability

► A language L is decidable if there is a Turing machine M such that L(M) = L and M halts on every input.

(ロ)、(型)、(E)、(E)、 E) の(の)

Decidability

► A language L is decidable if there is a Turing machine M such that L(M) = L and M halts on every input.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► Thus, if *L* is decidable then *L* is recursively enumerable.

Undecidability

Definition

A language L is undecidable if L is not decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

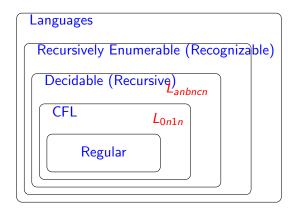
Undecidability

Definition

A language L is undecidable if L is not decidable. Thus, there is no Turing machine M that halts on every input and L(M) = L.

- ▶ This means that either *L* is not recursively enumerable. That is there is no turing machine *M* such that L(M) = L, or
- L is recursively enumerable but not decidable. That is, any Turing machine M such that L(M) = L, M does not halt on some inputs.

Big Picture



Relationship between classes of Languages

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► For the rest of this lecture, let us fix the input alphabet to be {0,1}

► For the rest of this lecture, let us fix the input alphabet to be {0,1}; a string over any alphabet can be encoded in binary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► For the rest of this lecture, let us fix the input alphabet to be {0,1}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program *M* can itself be encoded as a binary string.

- ► For the rest of this lecture, let us fix the input alphabet to be {0,1}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program *M* can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program.

- ► For the rest of this lecture, let us fix the input alphabet to be {0,1}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program *M* can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)

- ► For the rest of this lecture, let us fix the input alphabet to be {0,1}; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program *M* can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)
- We will consider decision problems (language) whose inputs are Turing Machine (encoded as a binary string)

The Diagonal Language

Definition Define $L_d = \{M \mid M \notin L(M)\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Diagonal Language

Definition

Define $L_d = \{M \mid M \notin L(M)\}$. Thus, L_d is the collection of Turing machines (programs) M such that M does not halt and accept (i.e. either reject or never ends) when given itself as input.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

 L_d is not recursively enumerable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

 L_d is not recursively enumerable.

Proof. Recall that,

Proposition

 L_d is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proposition

 L_d is not recursively enumerable.

Proof.

Recall that,

- Inputs are strings over {0,1}
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine

Proposition

 L_d is not recursively enumerable.

Proof.

Recall that,

- Inputs are strings over {0, 1}
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine

In what follows, we will denote the *i*th binary string (in lexicographic order) as the number *i*.

Proposition

 L_d is not recursively enumerable.

Proof.

Recall that,

- Inputs are strings over {0, 1}
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine
- In what follows, we will denote the *i*th binary string (in lexicographic order) as the number *i*. Thus, we can say *j* ∈ *L*(*i*), which means that the Turing machine corresponding to *i*th binary string accepts the *j*th binary string. …→

Completing the proof

Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the (i, j)th entry is Y if and only if $j \in L(i)$.

							Inputs \longrightarrow		
			2						• • •
TMs	1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
\downarrow	2	N Y N N	Ν	Ν	Ν	Ν	Ν	Ν	
	3	Y	Ν	Υ	Ν	Υ	Υ	Υ	
	4	Ν	Υ	Ν	Υ	Υ	Ν	Ν	
	5	Ν	Υ	Ν	Υ	Υ	Ν	Ν	
	6	Ν	Ν	Y	Ν	Υ	Ν	Υ	

Completing the proof

Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the (i, j)th entry is Y if and only if $j \in L(i)$.

Innute ____

						inputs —		
								•••
1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
2	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
3	Y	Ν	Υ	Ν	Υ	Υ	Υ	
4	Ν	Υ	Ν	Υ	Υ	Ν	Ν	
5	Ν	Υ	Ν	Υ	Υ	Ν	Ν	
6	Ν	Ν	Υ	Ν	Υ	Ν	Υ	
	1 2 3 4 5	1 N 2 N 3 Y 4 N 5 N	1 N N 2 N N 3 Y N 4 N Y 5 N Y	1 N N 2 N N N 3 Y N Y 4 N Y N 5 N Y N	1 N N N 2 N N N N 3 Y N Y N 4 N Y N Y 5 N Y N Y	1 N N N N 2 N N N N N 3 Y N Y N Y 4 N Y N Y Y 5 N Y N Y Y	1 2 3 4 5 6 1 N N N N N N 2 N N N N N N 3 Y N Y N Y Y 4 N Y N Y N Y 5 N Y N Y N	1 2 3 4 5 6 7 1 N N N N N N N 2 N N N N N N N 3 Y N Y N Y Y Y 4 N Y N Y Y N N 5 N Y N Y N N N 6 N N Y N Y N Y

For the sake of contradiction, suppose L_d is recognized by a Turing machine. Say by the *j*th binary string. i.e., $L_d = L(j)$.

Completing the proof

Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the (i, j)th entry is Y if and only if $j \in L(i)$.

Innute ____

							mputs —		
		1	2	3	4	5	6	7	• • •
TMs	1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
\downarrow	2	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
	3	Υ	N	Υ	Ν	Υ	Υ	Υ	
	4	N Y N	Υ	N	Y	Υ	Ν	Ν	
	5	Ν	Υ	Ν	Y	Υ	Ν	Ν	
	6	Ν	Ν	Υ	Ν	Y	Ν	Υ	

For the sake of contradiction, suppose L_d is recognized by a Turing machine. Say by the *j*th binary string. i.e., $L_d = L(j)$. But $j \in L_d$ iff $j \notin L(j)$! More concretly, suppose $j \notin L(j)$ – note that *j* can be a string or a TM. Then, by definition, $j \in L_d = L(j)$. The other case $j \in L(j)$ can be handled similarly.

Consider the following program

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the following program

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

Does the above program recognize L_d ?

Consider the following program

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

Does the above program recognize L_d ? No, because it may never output "yes" if *i* does not halt on *i*.

Recursively Enumerable but not Decidable

• L_d not recursively enumerable, and therefore not decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recursively Enumerable but not Decidable

L_d not recursively enumerable, and therefore not decidable. Are there languages that are recursively enumerable but not decidable?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recursively Enumerable but not Decidable

L_d not recursively enumerable, and therefore not decidable. Are there languages that are recursively enumerable but not decidable?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Yes, $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Proposition A_{TM} is r.e. but not decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that $A_{\rm TM}$ is r.e.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM *M* that always halts and $L(M) = A_{\text{TM}}$.

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM *M* that always halts and $L(M) = A_{\text{TM}}$. Consider a TM *D* as follows:

```
On input i
Run M on input \langle i, i \rangle
Output ''yes'' if i rejects i
Output ''no'' if i accepts i
```

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM *M* that always halts and $L(M) = A_{\text{TM}}$. Consider a TM *D* as follows:

```
On input i
Run M on input \langle i, i \rangle
Output 'yes'' if i rejects i
Output 'no'' if i accepts i
```

Observe that $L(D) = L_d!$

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

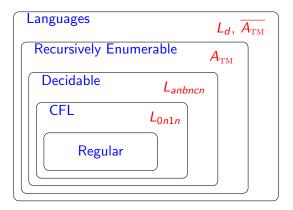
Proof.

We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM *M* that always halts and $L(M) = A_{\text{TM}}$. Consider a TM *D* as follows:

```
On input i
Run M on input \langle i, i \rangle
Output ''yes'' if i rejects i
Output ''no'' if i accepts i
```

Observe that $L(D) = L_d!$ But, L_d is not r.e. which gives us the contradiction.

A more complete Big Picture



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

 Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix
- ► The problem L_d reduces to the problem A_{TM} as follows: "To see if w ∈ L_d check if ⟨w, w⟩ ∈ A_{TM}."

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

On input w, apply reduction to transform w into an input w' for problem 2

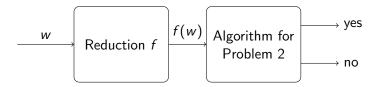
• Run M on w', and use its answer.

W

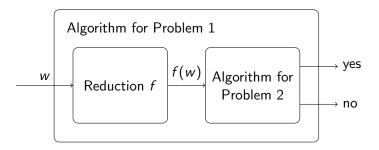
Reductions schematically

Reductions schematically

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @



Reductions schematically



Reductions schematically

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x
Run M on x
If M accepts then halt and accept
If M rejects then go into an infinite loop
```

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x
Run M on x
If M accepts then halt and accept
If M rejects then go into an infinite loop
```

Observe that f(M) halts on input w if and only if M accepts w

 $\cdots \rightarrow$

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M, w \rangle
Construct program f(M)
Run H on \langle f(M), w \rangle
Accept if H accepts and reject if H rejects
```

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M, w \rangle
Construct program f(M)
Run H on \langle f(M), w \rangle
Accept if H accepts and reject if H rejects
```

T decides A_{TM} .

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M, w \rangle
Construct program f(M)
Run H on \langle f(M), w \rangle
Accept if H accepts and reject if H rejects
```

T decides $A_{\rm TM}.$ But, $A_{\rm TM}$ is undecidable, which gives us the contradiction.

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

In this case, we say A is mapping/many-one reducible to B, and we denote it by $A \leq_m B$.

Convention

In this course, we will drop the adjective "mapping" or "many-one", and simply talk about reductions and reducibility.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w

Compute f(w)

Run M_B on f(w)

Accept if M_B does and reject if M_B rejects
```

Reductions and non-r.e.

Corollary

If $A \leq_m B$ and A is not recursively enumerable then B is not recursively enumerable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Corollary

If $A \leq_m B$ and A is undecidable then B is undecidable.