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Part I

Quick Survey



(Discrete) Math Background

I I know how to prove
∑n

i=1 i = n(n + 1)/2 by induction.
I Yes, sure!
I Yes, probably.
I No.



(Discrete) Math Background

I I understand the definition of injective and surjective
functions.

I Yes, sure!
I Yes, probably.
I No..



(Discrete) Math Background

I I know that the two sets of natural numbers and integer
numbers have an “equal” size, and can explain why.

I Yes, sure!
I Yes, probably.
I No.
I No clue.



(Discrete) Math Background

I understand the asymptotic notation. For example, I understand
why 1010

10
n log n)-runtime is asymptotically better than

n2-runtime.

I Yes.

I No.



(Discrete) Math Background

Given a set S of size k , I know the number of subsets of S is 2k ,
and can expalin why

I Yes, sure!

I Yes, probably.

I No.



Other courses taken

I I’ve taken CSE100 Algorithm Design and Analysis.

I I’m taking it.

I I haven’t.

I I haven’t, and no plan to take it.



Other information

I I’ve heard of the problem “P = NP?”.

I No.



Other information

I I’ve heard of the Halting problem.

I No.



Part II

Administrivia



Lecture/Discussion Time and Venue

I Lecture: Classroom 113, 4:30-5:45pm, TR.

I Discussion: SSM 104, 7:30-8:20am, R.



Instructional Staff

I Instructor:
I Sungjin Im (sim3)
I Office: SE2 214
I Office Hour: TBD. See course webpage.

I Teaching Assistant:
I Maryam Shadloo (mshadloo)
I Office: TBD
I Office Hour: TBD. See course webpage

* You can email the instructor or TA to ask a question. But if it is
not confidential, I encourage you to use UCMCROPS.*



Electronic Bulletin Boards

I Webpage:
faculty.ucmerced.edu/sim3/teaching/spring15

I UCMCROPS:
ucmcrops.ucmerced.edu/portal/site/201510-14582-CSE-135-01



Textbooks

I Prerequisites: CSE-115 Discrete Mathematics

I Main Reference: Introduction to the Theory of Computation
** 2nd ** edition by Michael Sipser

I Lecture Notes: Available on the web-page
I Other References

I Introduction to Automata Theory, Languages, and
Computation by Hopcroft, Motwani, and Ullman

I Elements of the Theory of Computation by Lewis, and
Papadimitriou



Grading Policy: Overview

Total Grade and Weight

I Attendance: 5%

I Homeworks: 20%

I Midterm 1: 25%

I Midterm 2: 20%

I Final: 30%



Attendance

I Helps you see a high-level picture.

I You can miss up to 4 lectures and 2 discussion sections with
no penalties. Here absence due to illiness, academic travel,
etc. does not count, but you must provide the instructor or
TA with the proof.

I Then -0.5% for every lecture class you miss.
I Ex) Misses 5 lectures and 4 discussions sections:

5 - ((5 - 4)+ (4 - 2))/2% = 3.5%

I Attendance sheet will be circulated during the class.



Homework

I Approximately 12 homeworks will be released.
I A student suggested “more homeworks with less problems.”

I Each homework’s due date will be clearly specified. But in
most cases, homework will be released every Tuesday and will
be due the following Tuesday, 4:30pm.

I No late homeworks. Two Lowest homework scores will be
dropped.

I Homeworks may be solved in groups of size at most 3, and
only one submission is needed from each group.

I Read homework guidelines on the course website.



Exams

I First Midterm: TBD. Will be during the class time.

I Second Midterm: TBD. Will be during the class time.

I Final: 8:00-11:00am, Tue, May 12 / Classroom 113.

I Midterm2 will only cover materials Midterm1 doesn’t cover.

I Final Exam will cover all the course materials.



Part III

Why CSE 135?



Ever-growing Data

http://visual.ly/what-big-data



What to Compute?

http://aimblog.uoregon.edu/tag/social-network/



Efficient Algorithms Needed

I Speed (running time)

I Memory



Problems of Inherently Different Complexities
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Problems of Inherently Different Complexities



Problems of Inherently Different Complexities



Formal Definition of Computers Needed

On January 24th, Apple Computer will introduce Macintosh.
And you’ll see why 1984 won’t be like “1984”.
... From Apple 1984 Super Bowl Commercial Introducing
Macintosh Computer:



Three models

The three main computational models/problem classes in the
course

Computational Model Applications

Finite State Machines/
Regular Expressions

text processing, lexical analysis,
protocol verification

Pushdown Automata/
Context-free Grammars

compiler parsing, software
modeling, natural language
processing

Turing machines undecidability, computational
complexity, cryptography



Part IV

Three Tales of Computation . . .



The three Tales

I What is the nature of infinity?

I How do we learn language?

I How does the human brain work?

These diverse threads of scientific enquiry led to an understanding
of computation.



The first story

Understanding Infinity
One machine to solve them all . . .



Infinitum actu non datur

There are no actual infinities; only potential
infinities.

“I protest against the use of infinite
magnitude as something completed,
which is never permissible in
mathematics. Infinity is merely a way
of speaking, the true meaning being
a limit which certain ratios approach
indefinitely close, while others are
permitted to increase without
restriction.”: Gauss

“There are more primes than in any
given collection of prime numbers”:
Euclid

Aristotle



To Infinity and Beyond!
Georg Cantor (1845–1918)

I Laid the foundations of the theory of
infinite sets

I Developed the theory of infinite ordinals
(numbers)

I Showed how the size of (infinite) sets
could be measured

I Showed there were more real numbers
than natural numbers

I Presaged ideas that would later show
that very few problems can actually be
solved computationally

Georg Cantor



Devil

or Messiah?

I Cantor’s work received widespread opposition during his time
I Theologians saw Cantor’s work as a challenge to the

uniqueness of absolute infinity in the nature of God
I Poincaré called it the “great disease” infecting mathematics
I Kronecker called Cantor a “charlatan”, a “renegade”, and a

“corrupter of youth”!

I But, it also had some supporters

“No one shall expel us from the Paradise created by
Cantor”: Hilbert
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Crisis in Set Theory
Bertrand Russell (1872–1970)

I Mathematician, philosopher, writer, and
political activist who won the Nobel prize
in literature!

I Discovered disturbing paradoxes in
Cantor’s theory

Bertrand Russell



Russell’s Paradox

I Riddle: “In a small village, the barber shaves all the men who
do not shave themselves (and only them). Does the barber
shave himself?”

I Russell: “Consider the set A of all sets that are not members
of themselves. Is A a member of itself?”



Russell’s Paradox

I Riddle: “In a small village, the barber shaves all the men who
do not shave themselves (and only them). Does the barber
shave himself?”

I Russell: “Consider the set A of all sets that are not members
of themselves. Is A a member of itself?”



Axiomatic Method to the Rescue
David Hilbert (1863–1943)

I Solution to the crises: Formalism that
avoids the paradoxes

I Define concepts precisely
I Define axioms and rules of inference that

can be used to write down formal proofs

David Hilbert



Formal Proofs
Euclid of Alexandria (around 300 BCE)

I Euclid’s Elements sets out
I Axioms (or postulates), which are self

evident truths, and
I Proves all results in geometry from these

truths formally

Euclid of Alexandria



Euclid’s Postulates

A1 A straight line can be drawn from any point to any point.

A2 A finite line segment can be extended to an infinite straight
line.

A3 A circle can be drawn with any point as center and any given
radius.

A4 All right angles are equal.

A5 If a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, will meet on that side
on which the angles are less than two right angles.



Example of a Formal Proof
Elements: Proposition 32

Proposition

The interior angles of a triangle sum to two right angles.

Proof.

1. Extend one side (say) BC to D [A2]

2. Draw a line parallel to AB through point
C; call it CE [P31]

3. Since AB is parallel to CE, BAC = ACE
and ABC = ECD [P29]

4. Thus, the sum of the interior angles =
ACB + ACE + ECD = 180o �

B C

A

D

E



Consistency and Completeness

Proof System

Precise definition of what constitutes a proof — each line is an
axiom, or is derived from previous lines by rule of inference.

I Correctness of proof reduced to checking if it follows the rules
of the system; no ambiguity!

Consistency

A proof system is consistent if it only allows true statements to be
proved; no false conclusions.

Completeness

A proof system is complete if every true statement has a proof that
adheres to its rules.
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Agenda for the 20th Century
Hilbert’s Paris Lecture (1900)

I Suggested 23 open problems to be investigated in the 20th
century; some remain open to this day!

I One was to obtain a consistent and complete proof system for
mathematics — axioms and rules that will allow all (and only)
mathematical truths to be proved



Shocking Discovery

Kurt Gödel (1906–1978)

I In 1930, at the annual meeting of the
Society of German Scientists and
Physicians, Hilbert said of his program,
“We must know. We will know.”

I At one of the satellite conferences of the
same meeting, Kurt Gödel pronounced
that Hilbert’s program was fated to fail!

Kurt Gödel
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Gödel’s Insight

Incompleteness Theorem: Gödel showed that given any
consistent proof system for number theory, one can construct
a statement about numbers that is true but cannot be proved!

I Relied on the Liar’s Paradox which says “This statement is
false.”

I To get incompleteness, Gödel constructed the statement “This
statement is unprovable” inside number theory!



Mechanized Computation

I The heart of the axiomatic method, is that proof correctness
reduces to mechanical checking.

I But what is mechanical checking?

I What are limits of mechanical computation?
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Mechanized Computation

I The heart of the axiomatic method, is that proof correctness
reduces to mechanical checking.

I But what is mechanical checking?

I What are limits of mechanical computation?



The Computer Revolution
Alonzo Church, Emil Post, and Alan Turing (1936)

Alonzo Church Emil Post Alan Turing

I Church (λ-calculus), Post (Post’s machine), Turing (Turing
machine) independently come up with formal definition of
mechanical computation that are equivalent

I Discovered problems that cannot be solved computationally



Halting Problem

I Given a description of an arbitrary computer program, decide
whether the program finishes running or continues to run
forever.

I Halting problem is not solvable.



The second story

Understanding Language
One grammar to generate it all . . .



The Problem of Language Acquisition

I Language is an important human cognitive process that allows
us to share information, thoughts and subjective experiences

I Though language is complex, it is acquired and used skillfully
by children

I What is the mechanism behind its acquisition and use?



Behaviorism

I All things that organisms do — actions, thinking, feeling —
are behaviors, in response to sensory input

I Behaviors are the only measurable things

I Scientific description of such behavior should not rely on
internal physiological events or hypothetical constructs such
as the mind



Verbal Behavior
Burrhus Skinner (1904–1990)

I The child’s mind is a blank slate, and
language is learned

I The learning process is a gradual change
based on sensory input provided to the
organism

I Thinking is a form of “verbal behavior”
B.F. Skinner



Critique of Verbal Behavior
Noam Chomsky (1928–)

Behaviorist account is flawed because the
underpinnings of natural language are highly
abstract principles, and children acquire
language without explicit instruction or
environment clues to these principles.

Noam Chomsky



Humboldt: “infinite use of finite media”
Too many sentences to learn

“A person capable of producing sentences with up to 20
words, can deal with at least 1020 sentences. At the rate
of 5 seconds per sentence, she would need 100 trillion
years (with no time for eating or sleeping) to memorize
them.”: Pinker



Humboldt: “infinite use of finite media”
Recursive build-up

I The longest English sentence in the Guinness Book of World
Records is a 1,300 word sentence in Faulkner’s Absalom,
Absalom! that begins “They both bore it as though . . . ”

I Steven Pinker thought of submitting the following record
breaker: Faulkner wrote, “They both bore it as though . . . ”

I But that could be easily broken by: Pinker wrote that
Faulkner wrote, “They both . . . ”



Grammatical Correctness independent of Cognition
Ungrammatical Comprehensible Sentences

I The child seems sleeping.

I It’s flying finches, they are.

I Sally poured the glass with water.

I Who did a book about impress you?

I This sentence no verb.



Grammatical Correctness independent of Cognition
Grammatical Incomprehensible Sentences

I Chomsky: “Colorless green ideas sleep furiously.”

I Edward Lear: “It’s a fact the whole word knows, That Pobbles
are happier without their toes.”



Generative and Universal Grammars
Chomsky’s Solution

The key to language acquisition is learning a Generative Grammar
for the language that describes

I Word categories (like nouns, verbs, etc.)

I Rules determining how categories are put together

Chomsky’s theory: A core Universal Grammar is innate to all
humans.



Chomsky Hierarchy

Chomsky found grammars of different complexity conveniently
describe various aspects of languages.

Echoed in compiler design

I Lexical tokens described using “regular expressions”

I Language syntax described using “context-free grammars”



Chomsky Hierarchy

Chomsky found grammars of different complexity conveniently
describe various aspects of languages. Echoed in compiler design

I Lexical tokens described using “regular expressions”

I Language syntax described using “context-free grammars”



The third story

Understanding the Brain
One machine to think it all . . .



The Human Brain

I Central organ in the body that controls and regulates all
human activity

I Believed the seat of “higher mental activity”: thought, reason
and abstraction

I How does it work?



Neurons
Santiago Ramón y Cajal (1852–1934)

I Neurons are the primary functional unit of
the brain and the central nervous system

I Neurons receive information at dendrites
and transmit via axons

I They communicate with each other
through junctions called synapses

Santiago Ramón y Ca-

jal



Mathematical Model of Neural Nets
McCullough and Pitts (1943)

Warren Sturgis McCullough Walter Pitts

I Came up with a mathematical model of a neuron

I Motivation to compare the computational power of networks
of neurons with Turing Machines



Simple Neural Net

Input Output

y1

y2

y3
1

1

2

2

A Simple Neural Net

I Neurons have excitatory (circles) or inhibitory (dots) synapses

I Neuron produces 1 if the number of excitatory synapses with
1-input exceeds the number of inhibitory synapses with
1-input by at least the threshold of the neuron (number inside
triangle)



Finite State Automata

I Finite automata model introduced by Huffman (1954), Moore
(1956) and Mealy (1955) to model sequential circuits

I Kleene, 1956: Neural Nets of McCullough-Pitts the same as
Finite Automata



Nondeterminism
Michael Rabin and Dana Scott (1959)

Michael Rabin Dana Scott

I Introduced the notion of Nondeterministic Finite Automata

I Understanding the power of nondeterministic computation has
remained a fundamental problem since then



Nondeterminism
Can explore multiple choices



Part V

Course Overview



Three Tales of Computation

I What is the nature of infinity?

I How do we learn language?

I How does the human brain work?

Computation underlies all these diverse scientific enquiries and
they laid the foundations of a theory that we will explore.



Objectives

Understand the nature of computation in a manner that is
independent of our understanding of physical laws (or of the laws
themselves)

I Its a fundamental scientific question

I Provides the foundation for the science of computationally
solving problems



Problems through the Computational Lens

Mathematical problems look fundamentally different when viewed
through the computational lens

I Not all problems equally easy to solve — some will take longer
or use more memory, no matter how clever you are Not all
problems can be solved!

I The “complexity” of the problem influences the nature of the
solution

I May explore alternate notions of “solving” like approximate
solutions, “probabilistically correct” solutions, partial solutions,
etc.



Course Overview

The three main computational models/problem classes in the
course

Computational Model Applications

Finite State Machines/
Regular Expressions

text processing, lexical analysis,
protocol verification

Pushdown Automata/
Context-free Grammars

compiler parsing, software
modeling, natural language
processing

Turing machines undecidability, computational
complexity, cryptography
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