
CSE 135: Introduction to Theory of Computation
Decidability and Recognizability

Sungjin Im

University of California, Merced

04-28, 30-2014

High-Level Descriptions of Computation

I Instead of giving a Turing Machine, we shall often describe a
program as code in some programming language (or often
“pseudo-code”)

I Possibly using high level data structures and subroutines
(Recall that TM and RAM are equivalent (even polynomially))

I Inputs and outputs are complex objects, encoded as strings
I Examples of objects:

I Matrices, graphs, geometric shapes, images, videos, . . .
I DFAs, NFAs, Turing Machines, Algorithms, other machines . . .

High-Level Descriptions of Computation
Encoding Complex Objects

I “Everything” finite can be encoded as a (finite) string of
symbols from a finite alphabet (e.g. ASCII)

I Can in turn be encoded in binary (as modern day computers
do). No special t symbol: use self-terminating representations

I Example: encoding a “graph.”

(1,2,3,4)((1,2)(2,3)(3,1)(1,4))

encodes the graph
1

2

3

4

High-Level Descriptions of Computation

I We have already seen several algorithms, for problems
involving complex objects like DFAs, NFAs, regular
expressions, and Turing Machines

I For example, convert a NFA to DFA; Given a NFA N and a
word w , decide if w ∈ L(N); . . .

I All these inputs can be encoded as strings and all these
algorithms can be implemented as Turing Machines

I Some of these algorithms are for decision problems, while
others are for computing more general functions

I All these algorithms terminate on all inputs

High-Level Descriptions of Computation
Examples: Problems regarding Computation

Some more decision problems that have algorithms that always
halt (sketched in the textbook)

I On input 〈B,w〉 where B is a DFA and w is a string, decide if
B accepts w .
Algorithm: simulate B on w and accept iff simulated B
accepts

I On input 〈B〉 where B is a DFA, decide if L(B) = ∅.
Algorithm: Use a fixed point algorithm to find all reachable
states. See if any final state is reachable.

Code is just data: A TM can take “the code of a program” (DFA,
NFA or TM) as part of its input and analyze or even execute this
code

Universal Turing Machine (a simple “Operating System”): Takes a
TM M and a string w and simulates the execution of M on w

High-Level Descriptions of Computation
Examples: Problems regarding Computation

Some more decision problems that have algorithms that always
halt (sketched in the textbook)

I On input 〈B,w〉 where B is a DFA and w is a string, decide if
B accepts w .
Algorithm: simulate B on w and accept iff simulated B
accepts

I On input 〈B〉 where B is a DFA, decide if L(B) = ∅.
Algorithm: Use a fixed point algorithm to find all reachable
states. See if any final state is reachable.

Code is just data: A TM can take “the code of a program” (DFA,
NFA or TM) as part of its input and analyze or even execute this
code
Universal Turing Machine (a simple “Operating System”): Takes a
TM M and a string w and simulates the execution of M on w

Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.)
or simply recognizable) if there exists a TM M which recognizes L.
L is said to be Turing-decidable (Recursive or simply decidable) if
there exists a TM M which decides L.

I Every finite language is decidable: For example, by a TM that
has all the strings in the language “hard-coded” into it

I We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.)
or simply recognizable) if there exists a TM M which recognizes L.
L is said to be Turing-decidable (Recursive or simply decidable) if
there exists a TM M which decides L.

I Every finite language is decidable: For example, by a TM that
has all the strings in the language “hard-coded” into it

I We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.)
or simply recognizable) if there exists a TM M which recognizes L.
L is said to be Turing-decidable (Recursive or simply decidable) if
there exists a TM M which decides L.

I Every finite language is decidable

: For example, by a TM that
has all the strings in the language “hard-coded” into it

I We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.)
or simply recognizable) if there exists a TM M which recognizes L.
L is said to be Turing-decidable (Recursive or simply decidable) if
there exists a TM M which decides L.

I Every finite language is decidable: For example, by a TM that
has all the strings in the language “hard-coded” into it

I We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Decidable and Recognizable Languages

I But not all languages are decidable! We will show:
I Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

I However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Decidable and Recognizable Languages

I But not all languages are decidable! We will show:
I Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

I However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Decidable and Recognizable Languages

I But not all languages are decidable! We will show:
I Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

I However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm

: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting.

Indeed (as we shall see) no TM
decides Atm.

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first? Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x .

Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first? Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first?

Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first? Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first? Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first? Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x

for i = 1, 2, 3, . . .
simulate PL on input x for i steps

simulate PL on input x for i steps

if either simulation accepts, break

if PL accepted, accept x (and halt)

if PL accepted, reject x (and halt)

(Alternately, maintain configurations of PL and PL, and in each
iteration of the loop advance both their simulations by one
step.) �

Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x

for i = 1, 2, 3, . . .
simulate PL on input x for i steps

simulate PL on input x for i steps

if either simulation accepts, break

if PL accepted, accept x (and halt)

if PL accepted, reject x (and halt)

(Alternately, maintain configurations of PL and PL, and in each
iteration of the loop advance both their simulations by one
step.) �

Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable?

No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Decision Problems and Languages

I A decision problem requires checking if an input (string) has
some property. Thus, a decision problem is a function from
strings to boolean.

I A decision problem is represented as a formal language
consisting of those strings (inputs) on which the answer is
“yes”.

Recursive Enumerability

I A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

I The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

I A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.

Recursive Enumerability

I A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

I The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

I A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.

Recursive Enumerability

I A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

I The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

I A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.

Decidability

I A language L is decidable if there is a Turing machine M such
that L(M) = L and M halts on every input.

I Thus, if L is decidable then L is recursively enumerable.

Decidability

I A language L is decidable if there is a Turing machine M such
that L(M) = L and M halts on every input.

I Thus, if L is decidable then L is recursively enumerable.

Undecidability

Definition
A language L is undecidable if L is not decidable.

Thus, there is no
Turing machine M that halts on every input and L(M) = L.

I This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

I L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.

Undecidability

Definition
A language L is undecidable if L is not decidable. Thus, there is no
Turing machine M that halts on every input and L(M) = L.

I This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

I L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.

Big Picture

Regular

CFL L0n1n

Decidable (Recursive)
Lanbncn

Recursively Enumerable (Recognizable)

Languages

Relationship between classes of Languages

Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}

; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string.

Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program.

(If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

The Diagonal Language

Definition
Define Ld = {M |M 6∈ L(M)}.

Thus, Ld is the collection of Turing
machines (programs) M such that M does not halt and accept (i.e.
either reject or never ends) when given itself as input.

The Diagonal Language

Definition
Define Ld = {M |M 6∈ L(M)}. Thus, Ld is the collection of Turing
machines (programs) M such that M does not halt and accept (i.e.
either reject or never ends) when given itself as input.

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}
I Every Turing Machine can be described by a binary string and

every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}
I Every Turing Machine can be described by a binary string and

every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}

I Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}
I Every Turing Machine can be described by a binary string and

every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}
I Every Turing Machine can be described by a binary string and

every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}
I Every Turing Machine can be described by a binary string and

every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i . Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

For the sake of contradiction, suppose Ld is recognized by a Turing
machine. Say by the jth binary string. i.e., Ld = L(j). But j ∈ Ld
iff j 6∈ L(j)! More concretly, suppose j /∈ L(j) – note that j can be
a string or a TM. Then, by definition, j ∈ Ld = L(j). The other
case j ∈ L(j) can be handled similarly. �

Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

For the sake of contradiction, suppose Ld is recognized by a Turing
machine. Say by the jth binary string. i.e., Ld = L(j).

But j ∈ Ld
iff j 6∈ L(j)! More concretly, suppose j /∈ L(j) – note that j can be
a string or a TM. Then, by definition, j ∈ Ld = L(j). The other
case j ∈ L(j) can be handled similarly. �

Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

For the sake of contradiction, suppose Ld is recognized by a Turing
machine. Say by the jth binary string. i.e., Ld = L(j). But j ∈ Ld
iff j 6∈ L(j)! More concretly, suppose j /∈ L(j) – note that j can be
a string or a TM. Then, by definition, j ∈ Ld = L(j). The other
case j ∈ L(j) can be handled similarly. �

Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld? No, because it may never
output “yes” if i does not halt on i .

Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld?

No, because it may never
output “yes” if i does not halt on i .

Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld? No, because it may never
output “yes” if i does not halt on i .

Recursively Enumerable but not Decidable

I Ld not recursively enumerable, and therefore not decidable.

Are there languages that are recursively enumerable but not
decidable?

I Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}

Recursively Enumerable but not Decidable

I Ld not recursively enumerable, and therefore not decidable.
Are there languages that are recursively enumerable but not
decidable?

I Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}

Recursively Enumerable but not Decidable

I Ld not recursively enumerable, and therefore not decidable.
Are there languages that are recursively enumerable but not
decidable?

I Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e.

Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm.

Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld !

But, Ld is not r.e. which gives us the
contradiction. �

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

A more complete Big Picture

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm

Atm

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

I Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides

; Solving a system of
linear equations reduces to inverting a matrix

I The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

I Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides

; Solving a system of
linear equations reduces to inverting a matrix

I The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

I Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides; Solving a system of
linear equations reduces to inverting a matrix

I The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

I Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides; Solving a system of
linear equations reduces to inverting a matrix

I The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.
Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1
I On input w , apply reduction to transform w into an input w ′

for problem 2

I Run M on w ′, and use its answer.

Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.
Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1

I On input w , apply reduction to transform w into an input w ′

for problem 2

I Run M on w ′, and use its answer.

Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.
Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1
I On input w , apply reduction to transform w into an input w ′

for problem 2

I Run M on w ′, and use its answer.

Schematic View

Algorithm for Problem 1

Reduction f
Algorithm for

Problem 2

w

f (w)
yes

no

Reductions schematically

Schematic View

Algorithm for Problem 1

Reduction f

Algorithm for
Problem 2

w f (w)

yes

no

Reductions schematically

Schematic View

Algorithm for Problem 1

Reduction f
Algorithm for

Problem 2

w f (w)
yes

no

Reductions schematically

Schematic View

Algorithm for Problem 1

Reduction f
Algorithm for

Problem 2

w f (w)
yes

no

Reductions schematically

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT.

Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT. Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT. Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm.

But, Atm is undecidable, which gives us the
contradiction. �

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT. Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �

Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.

Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.

Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.

Convention

In this course, we will drop the adjective “mapping” or
“many-one”, and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.
Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.
Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B.

Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.
Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�

Reductions and non-r.e.

Corollary

If A ≤m B and A is not recursively enumerable then B is not
recursively enumerable.

Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.
Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.

Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.
Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.

Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.
Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.

Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A reduction (a.k.a. mapping reduction/many-one reduction) from
a language A to a language B is a computable function
f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is reducible to B, and we denote it by
A ≤m B.

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is r.e., then A is r.e.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition

If A ≤m B and B is decidable, then A is decidable.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
deciding B. Then a Turing machine that decides A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is undecidable, then B is undecidable.

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w .

i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w . i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable.

For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm.

Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.

Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?)

This implies Atm is decidable,
which is a contradiction. �

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR.

Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) =

Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗.

If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) =

{0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}.

Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm.

Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects

i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.

Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided?

None! By Rice’s
Theorem

Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided? None!

By Rice’s
Theorem

Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided? None! By Rice’s
Theorem

Properties

Definition
A property of languages is simply a set of languages.

We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}

; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}

I Non-example: {M |M has 15 states} ←− This is a property
of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states}

←− This is a property
of TMs, and not languages!

Properties

Definition
A property of languages is simply a set of languages. We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages.

Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states}

= Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)

Then LP = Σ∗ or LP = ∅.

Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.

Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!

Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!

Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.

I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable.

··→

Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P.

i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.

Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P

Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP.

··→

Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P. i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→

Proof of Rice’s Theorem

Proof (contd).

The reduction f maps 〈M,w〉 to N, where N is a TM that
behaves as follows:

On input x
Ignore the input and run M on w
If M does not accept (or doesn’t halt)

then do not accept x (or do not halt)

If M does accept w
then run M0 on x and accept x iff M0 does.

Notice that indeed if M accepts w then L(N) = L(M0). Otherwise
L(N) = ∅. �

Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.

Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.

Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.

Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT

Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT

	High-Level Descriptions of Computation
	Deciding vs. Recognizing
	An Undecidable but Recognizable Language
	Complementation

	Undecidability
	Recap
	Diagonalization
	The Universal Language

	Reductions
	Informal Overview
	Definition and Properties

	Reductions
	Definitions and Observations
	Examples

	Rice's Theorem
	Properties
	Main Theorem

