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High-Level Descriptions of Computation

I Instead of giving a Turing Machine, we shall often describe a
program as code in some programming language (or often
“pseudo-code”)

I Possibly using high level data structures and subroutines
(Recall that TM and RAM are equivalent (even polynomially))

I Inputs and outputs are complex objects, encoded as strings
I Examples of objects:

I Matrices, graphs, geometric shapes, images, videos, . . .
I DFAs, NFAs, Turing Machines, Algorithms, other machines . . .



High-Level Descriptions of Computation
Encoding Complex Objects

I “Everything” finite can be encoded as a (finite) string of
symbols from a finite alphabet (e.g. ASCII)

I Can in turn be encoded in binary (as modern day computers
do). No special t symbol: use self-terminating representations

I Example: encoding a “graph.”

(1,2,3,4)((1,2)(2,3)(3,1)(1,4))

encodes the graph
1

2

3

4



High-Level Descriptions of Computation

I We have already seen several algorithms, for problems
involving complex objects like DFAs, NFAs, regular
expressions, and Turing Machines

I For example, convert a NFA to DFA; Given a NFA N and a
word w , decide if w ∈ L(N); . . .

I All these inputs can be encoded as strings and all these
algorithms can be implemented as Turing Machines

I Some of these algorithms are for decision problems, while
others are for computing more general functions

I All these algorithms terminate on all inputs



High-Level Descriptions of Computation
Examples: Problems regarding Computation

Some more decision problems that have algorithms that always
halt (sketched in the textbook)

I On input 〈B,w〉 where B is a DFA and w is a string, decide if
B accepts w .
Algorithm: simulate B on w and accept iff simulated B
accepts

I On input 〈B〉 where B is a DFA, decide if L(B) = ∅.
Algorithm: Use a fixed point algorithm to find all reachable
states. See if any final state is reachable.

Code is just data: A TM can take “the code of a program” (DFA,
NFA or TM) as part of its input and analyze or even execute this
code

Universal Turing Machine (a simple “Operating System”): Takes a
TM M and a string w and simulates the execution of M on w
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Decidable and Recognizable Languages

Recall: Definition
A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (Recursively Enumerable (R.E.)
or simply recognizable) if there exists a TM M which recognizes L.
L is said to be Turing-decidable (Recursive or simply decidable) if
there exists a TM M which decides L.

I Every finite language is decidable: For example, by a TM that
has all the strings in the language “hard-coded” into it

I We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.
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Decidable and Recognizable Languages

I But not all languages are decidable! We will show:
I Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

I However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable
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Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.
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Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.
Program P for deciding L, given programs PL and PL for
recognizing L and L:

I On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

I Which one to simulate first? Either could go on forever.

I On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

I If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→
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Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x

for i = 1, 2, 3, . . .
simulate PL on input x for i steps

simulate PL on input x for i steps

if either simulation accepts, break

if PL accepted, accept x (and halt)

if PL accepted, reject x (and halt)

(Alternately, maintain configurations of PL and PL, and in each
iteration of the loop advance both their simulations by one
step.) �
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Deciding vs. Recognizing

So far:

I Atm is undecidable (will learn soon)

I But it is recognizable

I Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.
If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.
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Decision Problems and Languages

I A decision problem requires checking if an input (string) has
some property. Thus, a decision problem is a function from
strings to boolean.

I A decision problem is represented as a formal language
consisting of those strings (inputs) on which the answer is
“yes”.



Recursive Enumerability

I A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

I The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

I A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.
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Decidability

I A language L is decidable if there is a Turing machine M such
that L(M) = L and M halts on every input.

I Thus, if L is decidable then L is recursively enumerable.
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Undecidability

Definition
A language L is undecidable if L is not decidable.

Thus, there is no
Turing machine M that halts on every input and L(M) = L.

I This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

I L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.
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Decidable (Recursive)
Lanbncn

Recursively Enumerable (Recognizable)

Languages

Relationship between classes of Languages



Machines as Strings

I For the rest of this lecture, let us fix the input alphabet to be
{0, 1}

; a string over any alphabet can be encoded in binary.

I Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

I We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)
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The Diagonal Language

Definition
Define Ld = {M |M 6∈ L(M)}.

Thus, Ld is the collection of Turing
machines (programs) M such that M does not halt and accept (i.e.
either reject or never ends) when given itself as input.
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A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.
Recall that,

I Inputs are strings over {0, 1}
I Every Turing Machine can be described by a binary string and

every binary string can be viewed as Turing Machine

I In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→
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Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

For the sake of contradiction, suppose Ld is recognized by a Turing
machine. Say by the jth binary string. i.e., Ld = L(j). But j ∈ Ld
iff j 6∈ L(j)! More concretly, suppose j /∈ L(j) – note that j can be
a string or a TM. Then, by definition, j ∈ Ld = L(j). The other
case j ∈ L(j) can be handled similarly. �
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Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld? No, because it may never
output “yes” if i does not halt on i .
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Recursively Enumerable but not Decidable

I Ld not recursively enumerable, and therefore not decidable.

Are there languages that are recursively enumerable but not
decidable?

I Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}
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The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.
We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �
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Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

I Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides

; Solving a system of
linear equations reduces to inverting a matrix

I The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”
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Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.
Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1
I On input w , apply reduction to transform w into an input w ′

for problem 2

I Run M on w ′, and use its answer.
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The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→
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The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT.

Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �
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Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.
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Convention

In this course, we will drop the adjective “mapping” or
“many-one”, and simply talk about reductions and reducibility.



Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.
Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�
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Reductions and non-r.e.

Corollary

If A ≤m B and A is not recursively enumerable then B is not
recursively enumerable.



Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.
Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.
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Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is r.e., then A is r.e.
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Reductions and Decidability

Proposition

If A ≤m B and B is decidable, then A is decidable.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
deciding B. Then a Turing machine that decides A is

On input w
Compute f (w)
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Accept if MB accepts, and reject if MB rejects �
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If A ≤m B and A is undecidable, then B is undecidable.



The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w .

i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �
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Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �
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Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �
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〈M,w〉 ∈ Atm �



Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �
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Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided?

None! By Rice’s
Theorem



Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided? None!

By Rice’s
Theorem



Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided? None! By Rice’s
Theorem



Properties

Definition
A property of languages is simply a set of languages.

We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!
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Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages.

Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.
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Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!
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Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable
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Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→
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Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P.

i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→
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Proof of Rice’s Theorem

Proof (contd).

The reduction f maps 〈M,w〉 to N, where N is a TM that
behaves as follows:

On input x
Ignore the input and run M on w
If M does not accept (or doesn’t halt)

then do not accept x (or do not halt)

If M does accept w
then run M0 on x and accept x iff M0 does.

Notice that indeed if M accepts w then L(N) = L(M0). Otherwise
L(N) = ∅. �



Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.
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Atm, Etm, HALT
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